1
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
2
|
Loomis RJ, Johnson PR. Emerging Vaccine Technologies. Vaccines (Basel) 2015; 3:429-47. [PMID: 26343196 PMCID: PMC4494353 DOI: 10.3390/vaccines3020429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022] Open
Abstract
Vaccination has proven to be an invaluable means of preventing infectious diseases by reducing both incidence of disease and mortality. However, vaccines have not been effectively developed for many diseases including HIV-1, hepatitis C virus (HCV), tuberculosis and malaria, among others. The emergence of new technologies with a growing understanding of host-pathogen interactions and immunity may lead to efficacious vaccines against pathogens, previously thought impossible.
Collapse
Affiliation(s)
- Rebecca J Loomis
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.
| | - Philip R Johnson
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Boliar S, Das S, Bansal M, Shukla BN, Patil S, Shrivastava T, Samal S, Goswami S, King CR, Bhattacharya J, Chakrabarti BK. An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies. PLoS One 2015; 10:e0122443. [PMID: 25822521 PMCID: PMC4379091 DOI: 10.1371/journal.pone.0122443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.
Collapse
Affiliation(s)
- Saikat Boliar
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Supratik Das
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Manish Bansal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Brihaspati N. Shukla
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Shilpa Patil
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Tripti Shrivastava
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Sweety Samal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Sandeep Goswami
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | | | - Jayanta Bhattacharya
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
| | - Bimal K. Chakrabarti
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 496 Udyog Vihar, Phase-III, Gurgaon-122 016, Haryana, India
- * E-mail:
| |
Collapse
|
4
|
Abstract
UNLABELLED The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity. Here, we report the production and characterization of a stable HIV-1 mosaic M gp140 Env trimer. The mosaic M trimer bound CD4 as well as multiple broadly neutralizing monoclonal antibodies, and biophysical characterization suggested substantial stability. The mosaic M trimer elicited higher neutralizing antibody (nAb) titers against clade B viruses than a previously described clade C (C97ZA.012) gp140 trimer in guinea pigs, whereas the clade C trimer elicited higher nAb titers than the mosaic M trimer against clade A and C viruses. A mixture of the clade C and mosaic M trimers elicited nAb responses that were comparable to the better component of the mixture for each virus tested. These data suggest that combinations of relatively small numbers of immunologically complementary Env trimers may improve nAb responses. IMPORTANCE The development of an HIV-1 vaccine remains a formidable challenge due to multiple circulating strains of HIV-1 worldwide. This study describes a candidate HIV-1 Env protein vaccine whose sequence has been designed by computational methods to address HIV-1 diversity. The characteristics and immunogenicity of this Env protein, both alone and mixed together with a clade C Env protein vaccine, are described.
Collapse
|
5
|
Abstract
Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, Division of Infection and Immunity, University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
6
|
McBurney SP, Landucci G, Forthal DN, Ross TM. Evaluation of heterologous vaginal SHIV SF162p4 infection following vaccination with a polyvalent Clade B virus-like particle vaccine. AIDS Res Hum Retroviruses 2012; 28:1063-72. [PMID: 22214267 PMCID: PMC3423648 DOI: 10.1089/aid.2011.0351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The vast diversity of HIV-1 infections has greatly impeded the development of a successful HIV-1/AIDS vaccine. Previous vaccine work has demonstrated limited levels of protection against SHIV/SIV infection, but protection was observed only when the challenge virus was directly matched to the vaccine strain. As it is likely impossible to directly match the vaccine strain to all infecting strains in nature, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. In this study we investigated the ability of polyvalent and consensus vaccines to protect against a heterologous clade B challenge. Rhesus macaques were vaccinated with ConB or PolyB virus-like particle vaccines. All vaccines were highly immunogenic with high titers of antibody found in all vaccinated groups against SIV Gag. Antibody responses were also observed against a diverse panel of clade B envelopes. Following vaccination nonhuman primates (NHPs) were challenged via the vaginal route with SHIV(SF162p4). The PolyB vaccine induced a 66.7% reduction in the rate of infection as well as causing a two log reduction in viral burden if infection was not blocked. ConB vaccination had no effect on either the infection rate or viral burden. These results indicate that a polyvalent clade-matched vaccine is better able to protect against a heterologous challenge as compared to a consensus vaccine.
Collapse
Affiliation(s)
- Sean P. McBurney
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Molecular Virology and Microbiology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Molecular Virology and Microbiology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Abstract
Although vaccines have proven life saving against a myriad of infectious diseases, various pathogens have remained refractory to prophylaxis of their host by active immunization. New insights in the three dimensional (3D) structure, domain organization and dynamics of viral and bacterial surface proteins can guide the design of effective vaccines in several ways. In this review we highlight recent developments in structure-based vaccine design that are aimed at stabilization of native conformations and focusing immune response to conserved epitopes. Detailed 3D structures of pathogen surface proteins provide knowledge on how to minimize complex antigens or how to redesign the surface of an immunogen in order to induce only relevant neutralizing antibodies against a broad range of serotypes. Structure - based vaccines with reduced complexity and broad efficacy could greatly enhance the number of people that might benefit from the therapies that are developed.
Collapse
Affiliation(s)
- Jaap W Back
- Pepscan Therapeutics, Lelystad, The Netherlands
| | | |
Collapse
|
8
|
Rubio-Infante N, Govea-Alonso DO, Alpuche-Solís ÁG, García-Hernández AL, Soria-Guerra RE, Paz-Maldonado LMT, Ilhuicatzi-Alvarado D, Varona-Santos JT, Verdín-Terán L, Korban SS, Moreno-Fierros L, Rosales-Mendoza S. A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. PLANT MOLECULAR BIOLOGY 2012; 78:337-49. [PMID: 22228408 DOI: 10.1007/s11103-011-9870-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/10/2011] [Indexed: 05/23/2023]
Abstract
Although the human immunodeficiency virus (HIV) causes one of the most important infectious diseases worldwide, attempts to develop an effective vaccine remain elusive. Designing recombinant proteins capable of eliciting significant and protective mammalian immune responses remain a priority. Moreover, large-scale production of proteins of interest at affordable cost remains a challenge for modern biotechnology. In this study, a synthetic gene encoding a C4V3 recombinant protein, known to induce systemic and mucosal immune responses in mammalian systems, has been introduced into tobacco chloroplasts to yield high levels of expression. Integration of the transgene into the tobacco plastome has been verified by Southern blot hybridization. The recombinant C4V3 protein is also detected in tobacco chloroplasts by confocal microscopy. Reactivity of the heterologous protein with both an anti-C4V3 rabbit serum as well as sera from HIV positive patients have been assayed using Western blots. When administered by the oral route in a four-weekly dose immunization scheme, the plant-derived C4V3 has elicited both systemic and mucosal antibody responses in BALB/c mice, as well as CD4+ T cell proliferation responses. These findings support the viability of using plant chloroplasts as biofactories for HIV candidate vaccines, and could serve as important vehicles for the development of a plant-based candidate vaccine against HIV.
Collapse
Affiliation(s)
- Néstor Rubio-Infante
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
10
|
Dennison SM, Sutherland LL, Jaeger FH, Anasti KM, Parks R, Stewart S, Bowman C, Xia SM, Zhang R, Shen X, Scearce RM, Ofek G, Yang Y, Kwong PD, Santra S, Liao HX, Tomaras G, Letvin NL, Chen B, Alam SM, Haynes BF. Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. PLoS One 2011; 6:e27824. [PMID: 22140469 PMCID: PMC3227606 DOI: 10.1371/journal.pone.0027824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022] Open
Abstract
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope ⁶⁶⁴DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.
Collapse
Affiliation(s)
- S. Moses Dennison
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Laura L. Sutherland
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Frederick H. Jaeger
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kara M. Anasti
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert Parks
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shelley Stewart
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cindy Bowman
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shi-Mao Xia
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruijun Zhang
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Richard M. Scearce
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sampa Santra
- Department of Medicine, Beth Israel Deaconess Medical Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia Tomaras
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Department of Medicine, Beth Israel Deaconess Medical Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - S. Munir Alam
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SMA); (BFH)
| | - Barton F. Haynes
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SMA); (BFH)
| |
Collapse
|
11
|
Abstract
A major hurdle in the development of a global HIV-1 vaccine is viral diversity. For close to three decades, HIV vaccine development has focused on either the induction of T cell immune responses or antibody responses, and only rarely on both components. After the failure of the STEP trial, the scientific community concluded that a T cell-based vaccine would likely not be protective if the T cell immune responses were elicited against only a few dominant epitopes. Similarly, for vaccines focusing on antibody responses, one of the main criticisms after VaxGen's failed Phase III trials was on the limited antigen breadth included in the two formulations used. The successes of polyvalent vaccine approaches against other antigenically variable pathogens encourage implementation of the same approach for the design of HIV-1 vaccines. A review of the existing HIV-1 vaccination approaches based on the polyvalent principle is included here to provide a historical perspective for the current effort of developing a polyvalent HIV-1 vaccine. Results summarized in this review provide a clear indication that the polyvalent approach is a viable one for the future development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
12
|
Abstract
Elicitation of antibodies against targets that are immunorecessive, cryptic, or transient in their native context has been a challenge for vaccine design. Here we demonstrate the elicitation of structure-specific antibodies against the HIV-1 gp41 epitope of the broadly neutralizing antibody 2F5. This conformationally flexible region of gp41 assumes mostly helical conformations but adopts a kinked, extended structure when bound by antibody 2F5. Computational techniques were employed to transplant the 2F5 epitope into select acceptor scaffolds. The resultant "2F5-epitope scaffolds" possessed nanomolar affinity for antibody 2F5 and a range of epitope flexibilities and antigenic specificities. Crystallographic characterization of the epitope scaffold with highest affinity and antigenic discrimination confirmed good to near perfect attainment of the target conformation for the gp41 molecular graft in free and 2F5-bound states, respectively. Animals immunized with 2F5-epitope scaffolds showed levels of graft-specific immune responses that correlated with graft flexibility (p < 0.04), while antibody responses against the graft-as dissected residue-by-residue with alanine substitutions-resembled more closely those of 2F5 than sera elicited with flexible or cyclized peptides, a resemblance heightened by heterologous prime-boost. Lastly, crystal structures of a gp41 peptide in complex with monoclonal antibodies elicited by the 2F5-epitope scaffolds revealed that the elicited antibodies induce gp41 to assume its 2F5-recognized shape. Epitope scaffolds thus provide a means to elicit antibodies that recognize a predetermined target shape and sequence, even if that shape is transient in nature, and a means by which to dissect factors influencing such elicitation.
Collapse
|
13
|
Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference. THE LANCET. INFECTIOUS DISEASES 2010; 10:305-16. [PMID: 20417413 DOI: 10.1016/s1473-3099(10)70069-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines.
Collapse
|
14
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review attempts to acquaint the reader with the molecular epidemiology of HIV-1 and to describe some of the more promising approaches to vaccine development in the light of this diversity. RECENT FINDINGS The primary genetic forms of HIV-1 in the world today are subtypes A, B, C, CRF01-AE and CRF02-AG. In sub-Saharan Africa, subtypes A and C and CRF02-AG account for most of the infections. In Asia, there are subtypes B, C and CRF01 AE. Europe, the Americas and the Caribbean are dominated by subtype B, and subtype A is in the former Soviet Union. While the genetic diversity of HIV-1 in the world can seem daunting, the vast majority of infections are actually caused by one of these five genetic forms. Approaches to dealing with this in the development of vaccines include targeting conserved regions of the genome, creating ancestral forms of the virus or putting many different forms together into a cocktail. Each of these approaches shows promise. To optimize the chances of initially showing efficacy in HIV vaccine trials, the genetic form of the vaccine strains will resemble those of the circulating strains in the target population. Once efficacy is demonstrated, however, it will be possible to determine whether genetic subtype is at all predictive of vaccine protection. SUMMARY Although the genetic diversity of HIV-1 is impressive, it is not limitless. Most of the infections worldwide are actually due to a handful of strains. It should be possible for a few vaccine strategies to conquer HIV-1 definitively.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review will discuss the current challenges facing the development of a successful AIDS vaccine and approaches being pursued to overcome them, with an emphasis on vaccines designed to elicit primarily cellular, rather than humoral, antiviral immune responses. RECENT FINDINGS Recent insights into the biology of mucosal virus transmission, CD4 T-cell depletion dynamics, the character of virus-specific CD8 T-cell responses, and the dynamic effects that CD8 T cells exert on virus evolution and genetic diversity manifest during lentivirus infections have engendered an improved understanding of the anatomical, physiological, and immunological aspects of HIV infection. These advances help frame the key scientific hurdles to development of a safe and effective AIDS vaccine that an expanding number and diversity of experimental approaches in vaccine design, administration, and evaluation are now seeking to overcome. SUMMARY The development of an effective AIDS vaccine remains elusive. Our increasing knowledge regarding the biology of HIV infection, mechanisms of AIDS pathogenesis, and correlates of protective immunity, however, suggest new hypotheses which, when critically evaluated, should bring us closer to the realization of an AIDS vaccine - or at least an improved understanding of the true nature and magnitude of the obstacles ahead.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW HIV-1 neutralizing antibodies are directed to the Envelope glycoprotein trimer on the surface of the virion and block entry into target cells in vitro. During infection, closely related but distinct variants arise in infected individuals, and the interplay of Envelope and neutralizing antibodies is a dynamic process. Vaccines that generate neutralizing antibodies and drugs that inhibit entry must address the issue of variation of subtypes worldwide. The purpose of this review is to summarize major advances in the neutralizing antibody field published during 2005 and early 2006. RECENT FINDINGS The main themes that are covered in this review include new findings in the development of neutralizing antibodies during natural and experimental infection, characterization of monoclonal antibodies with neutralizing activity, Envelope structural data, the development of novel Envelope constructs, and novel approaches designed to generate neutralizing antibodies by vaccination. SUMMARY Advances leading to a better understanding of the structure of the Envelope and the character of neutralizing antibodies that develop during the course of infection have provided important clues to guide the design of better immunogens and drugs to block attachment. These findings have implications for prophylactic and therapeutic vaccine approaches, drugs, and antibody-based therapies to reduce HIV transmission.
Collapse
|
18
|
McBurney SP, Ross TM. Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 2009; 27:4337-49. [PMID: 19389453 PMCID: PMC9707700 DOI: 10.1016/j.vaccine.2009.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Envelope (Env) sequences from human immunodeficiency virus (HIV) strains can vary by 15-20% within a single clade and as much as 35% between clades. Previous AIDS vaccines based upon a single isolate often could not elicit protective immune responses against heterologous viral challenges. In order to address the vast sequence diversity in Env sequences, consensus sequences were constructed for clade B and clade C envelopes and delivered to the mouse lung mucosa on the surface of virus-like particles (VLP). Consensus sequences decrease the genetic difference between the vaccine strain and any given viral isolate. The elicited immune responses were compared to a mixture of VLPs with Envs from primary viral isolates. This polyvalent vaccine approach contains multiple, diverse Envs to increase the breadth of epitopes recognized by the immune response and thereby increase the potential number of primary isolates recognized. Both consensus and polyvalent clade B Env VLP vaccines elicited cell-mediated immune responses that recognized a broader number of clade B Env peptides than a control monovalent Env VLP vaccine in both the systemic and the mucosal immune compartments. All three clade C Env vaccine strategies elicited similar responses to clade C peptides. However, both the consensus B and C Env VLP vaccines were more effective at eliciting cross-reactive cellular immune responses to epitopes in other clades. This is the first study to directly compare the breadth of cell-mediated immune responses elicited by consensus and polyvalent Env vaccines.
Collapse
Affiliation(s)
- Sean P. McBurney
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Burke B, Gómez-Román VR, Lian Y, Sun Y, Kan E, Ulmer J, Srivastava IK, Barnett SW. Neutralizing antibody responses to subtype B and C adjuvanted HIV envelope protein vaccination in rabbits. Virology 2009; 387:147-56. [PMID: 19249806 PMCID: PMC2705626 DOI: 10.1016/j.virol.2009.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/08/2008] [Accepted: 02/03/2009] [Indexed: 11/30/2022]
Abstract
Improving the potency, breadth, and durability of neutralizing antibody responses to HIV are major challenges for HIV vaccine development. To address these challenges, the studies described evaluate in rabbits the titers, breadth, and epitope specificities of antibody responses elicited by HIV envelope subunit vaccines adjuvanted with MF59 with or without CpG oligodeoxynucleotide (ODN). Animals were immunized with trimeric o-gp140DeltaV2 derived from subtype B HIV-1(SF162) or subtype C HIV-1(TV1), or proteins from both strains. Immunization with SF162 or TV1 with MF59/CpG elicited higher titers of binding and neutralizing antibodies to SF162 than monovalent immunization with MF59 alone (P<0.01). Bivalent immunization increased binding and neutralizing antibody titers over single envelope immunization in MF59 (P<0.01). Bivalent immunization also improved neutralization breadth. Epitope mapping indicated neutralizing activity in rabbits was directed to V3 and V4. Overall, our data suggests that a multivalent vaccination approach with MF59 and CpG can enhance humoral responses to HIV-1.
Collapse
Affiliation(s)
- Brian Burke
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| | | | - Ying Lian
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| | - Yide Sun
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| | - Elaine Kan
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| | - Jeffrey Ulmer
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| | - Indresh K. Srivastava
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, 4560 Horton Street, Emeryville, California 94608, USA
| |
Collapse
|
20
|
Sealy R, Slobod KS, Flynn P, Branum K, Surman S, Jones B, Freiden P, Lockey T, Howlett N, Hurwitz JL. Preclinical and clinical development of a multi-envelope, DNA-virus-protein (D-V-P) HIV-1 vaccine. Int Rev Immunol 2009; 28:49-68. [PMID: 19241253 DOI: 10.1080/08830180802495605] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human immune system has evolved to recognize antigenic diversity, a strength that has been harnessed by vaccine developers to combat numerous pathogens (e.g., pneumococcus, influenza virus, rotavirus). In each case, vaccine cocktails were formulated to include antigenic variants of the target. To combat HIV-1 diversity, we assembled a cocktail vaccine comprising dozens of envelopes, delivered as recombinant DNA, vaccinia virus, and protein for testing in a clinical trial. One vaccinee has now completed vaccinations with no serious adverse events. Preliminary analyses demonstrate early proof-of-principle that a multi-envelope vaccine can elicit neutralizing antibody responses toward heterologous HIV-1 in humans.
Collapse
Affiliation(s)
- Robert Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines 2008; 7:1405-17. [PMID: 18980542 DOI: 10.1586/14760584.7.9.1405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
22
|
Wu X, Sambor A, Nason MC, Yang ZY, Wu L, Zolla-Pazner S, Nabel GJ, Mascola JR. Soluble CD4 broadens neutralization of V3-directed monoclonal antibodies and guinea pig vaccine sera against HIV-1 subtype B and C reference viruses. Virology 2008; 380:285-95. [PMID: 18804254 PMCID: PMC3739291 DOI: 10.1016/j.virol.2008.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/02/2008] [Accepted: 07/09/2008] [Indexed: 11/22/2022]
Abstract
To better understand the limits of antigenic reactivity and epitope accessibility of the V3 domain of primary HIV-1 isolates, we evaluated three human anti-V3 monoclonal antibodies (mAbs) and selected guinea pig vaccine sera for neutralization against reference panels of subtype B and C pseudoviruses derived from early stage infections. The mAbs and vaccine sera potently neutralized several prototype viruses, but displayed substantially less neutralization of most reference strains. In the presence of soluble CD4 (sCD4), the breadth of V3-mediated neutralization was increased; up to 80% and 77% of the subtype B and C viruses respectively were sensitive to V3-mediated neutralization. Unlike sCD4, the reaction of CD4-binding site mAbs b12 and F105 with native virus did not lead to full exposure of the V3 domain. These findings confirm that V3 antibodies recognize most primary viral strains, but that the epitope often has limited accessibility in the context of native envelope spike.
Collapse
Affiliation(s)
- Xueling Wu
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Anna Sambor
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Martha C. Nason
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD 20892
| | - Zhi-Yong Yang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Lan Wu
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | - Susan Zolla-Pazner
- New York Veterans Affairs Medical Center and School of Medicine, New York University, New York, NY 10016
| | - Gary J. Nabel
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892
| | | |
Collapse
|
23
|
HIV-1/AIDS vaccine development: are we in the darkness before the dawn? Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200805020-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
Perspectives for a protective HIV-1 vaccine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:423-52. [PMID: 18086420 DOI: 10.1016/s1054-3589(07)56014-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Zolla-Pazner S, Cohen SS, Krachmarov C, Wang S, Pinter A, Lu S. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology 2007; 372:233-46. [PMID: 18061228 DOI: 10.1016/j.virol.2007.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 09/20/2007] [Indexed: 11/28/2022]
Abstract
Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.
Collapse
|
26
|
Manrique A, Rusert P, Joos B, Fischer M, Kuster H, Leemann C, Niederöst B, Weber R, Stiegler G, Katinger H, Günthard HF, Trkola A. In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5, and 4E10. J Virol 2007; 81:8793-808. [PMID: 17567707 PMCID: PMC1951363 DOI: 10.1128/jvi.00598-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 03/28/2007] [Indexed: 02/07/2023] Open
Abstract
Recently, passive immunization of human immunodeficiency virus (HIV)-infected individuals with monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 provided evidence of the in vivo activity of 2G12 but raised concerns about the function of the two membrane-proximal external region (MPER)-specific MAbs (A. Trkola, H. Kuster, P. Rusert, B. Joos, M. Fischer, C. Leemann, A. Manrique, M. Huber, M. Rehr, A. Oxenius, R. Weber, G. Stiegler, B. Vcelar, H. Katinger, L. Aceto, and H. F. Gunthard, Nat. Med. 11:615-622, 2005). In the light of MPER-targeting vaccines under development, we performed an in-depth analysis of the emergence of mutations conferring resistance to these three MAbs to further elucidate their activity. Clonal analysis of the MPER of plasma virus samples derived during antibody treatment confirmed that no changes in this region had occurred in vivo. Sequence analysis of the 2G12 epitope relevant N-glycosylation sites of viruses derived from 13 patients during the trial supported the phenotypic evaluation, demonstrating that mutations in these sites are associated with resistance. In vitro selection experiments with isolates of four of these individuals corroborated the in vivo finding that virus strains rapidly escape 2G12 pressure. Notably, in vitro resistance mutations differed, in most cases, from those found in vivo. Importantly, in vitro selection with 2F5 and 4E10 demonstrated that resistance to these MAbs can be difficult to achieve and can lead to selection of variants with impaired infectivity. This remarkable vulnerability of the virus to interference within the MPER calls for a further evaluation of the safety and efficacy of MPER-targeting therapeutic and vaccination strategies.
Collapse
Affiliation(s)
- Amapola Manrique
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J Virol 2007; 81:10209-19. [PMID: 17634242 PMCID: PMC2045484 DOI: 10.1128/jvi.00872-07] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- L Buonaguro
- Laboratory of Viral Oncogenesis and Immunotherapy & AIDS Reference Center, Ist. Naz. Tumori Fond. G. Pascale, Via Mariano Semmola, 1, 80131 Naples, Italy.
| | | | | |
Collapse
|
28
|
Young KR, McBurney SP, Karkhanis LU, Ross TM. Virus-like particles: designing an effective AIDS vaccine. Methods 2007; 40:98-117. [PMID: 16997718 DOI: 10.1016/j.ymeth.2006.05.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 05/05/2006] [Indexed: 01/10/2023] Open
Abstract
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. The mammalian immune system is highly attuned to recognizing and attacking these viral particles following infection. The use of particle-based immunogens, often delivered as live-attenuated viruses, has been an effective vaccination strategy for a variety of viruses. The development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge, since HIV infects cells of the immune system causing severe immunodeficiency resulting in the syndrome known as AIDS. In addition, the ability of the virus to adapt to immune pressure and reside in an integrated form in host cells presents hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes against different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immune responses. However, while these vaccines stimulate immunity, challenged animals rarely clear the viral infection and the degree of attenuation directly correlates with protection from disease. Further, a live-attenuated vaccine has the potential to revert to a pathogenic form. Alternatively, virus-like particles (VLPs) mimic the viral particle without causing an immunodeficiency disease. VLPs are self-assembling, non-replicating, non-pathogenic particles that are similar in size and conformation to intact virions. A variety of VLPs for lentiviruses are currently in preclinical and clinical trials. This review focuses on our current status of VLP-based AIDS vaccines, regarding issues of purification and immune design for animal and clinical trials.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Recent experimental observations suggest approaches to immunization that might finally result in at least a partially effective vaccine against infection with HIV-1. In particular, advances in our understanding of the contribution of vaccine-elicited cellular immunity to protecting memory CD4(+) T cells from virus-mediated destruction provide rational strategies for the development of this vaccine. This is therefore an ideal time to review our current understanding of HIV-1 and its control by the immune system, as well as the remaining problems that must be solved to facilitate the development of an effective vaccine against AIDS.
Collapse
Affiliation(s)
- Norman L Letvin
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
30
|
Santos K, Duke CMP, Rodriguez-Colon SM, Dakwar A, Fan S, Keefer MC, Federoff HJ, Frelinger JG, Bowers WJ, Dewhurst S. Effect of promoter strength on protein expression and immunogenicity of an HSV-1 amplicon vector encoding HIV-1 Gag. Vaccine 2006; 25:1634-46. [PMID: 17145123 PMCID: PMC1851942 DOI: 10.1016/j.vaccine.2006.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/24/2006] [Accepted: 11/02/2006] [Indexed: 01/03/2023]
Abstract
Helper-free herpes simplex virus type-1 (HSV-1) amplicon vectors elicit robust immune responses to encoded proteins, including human immunodeficiency virus type-1 (HIV-1) antigens. To improve this vaccine delivery system, seven amplicon vectors were constructed, each encoding HIV-1 Gag under the control of a different promoter. Gag expression levels were analyzed in murine and human cell lines, as well as in biopsied tissue samples from injected mice; these data were then compared with Gag-specific T cell responses in BALB/c mice. The magnitude of the amplicon-induced immune response was found to correlate strongly with the level of Gag production both in vitro and in vivo. Interestingly, the best correlation of the strength of the amplicon-induced immune response was with antigen expression in cultured DC rather than expression at the tissue site of injection or in cultured cell lines. These findings may have implications for the generation of improved HSV-1 amplicon vectors for HIV-1 vaccine delivery.
Collapse
MESH Headings
- 3T3 Cells
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Animals
- Cell Line
- Cells, Cultured
- Dendritic Cells/metabolism
- Female
- Gene Expression Regulation, Viral
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genes, gag
- Genetic Vectors
- HIV-1/genetics
- HIV-1/metabolism
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Promoter Regions, Genetic
- T-Lymphocytes/immunology
- Transcription, Genetic
Collapse
Affiliation(s)
- Kathlyn Santos
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rollman E, Mathy N, Bråve A, Boberg A, Kjerrström A, van Wely C, Engström G, Johansson S, Aperia K, Eriksson LE, Benthin R, Ertl P, Heeney J, Hinkula J, Voss G, Wahren B. Evaluation of immunogenicity and efficacy of combined DNA and adjuvanted protein vaccination in a human immunodeficiency virus type 1/murine leukemia virus pseudotype challenge model. Vaccine 2006; 25:2145-54. [PMID: 17254672 DOI: 10.1016/j.vaccine.2006.10.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 10/17/2006] [Accepted: 10/31/2006] [Indexed: 12/01/2022]
Abstract
A DNA plasmid encoding human immunodeficiency virus type 1 (HIV-1) env, nef and tat genes was used in mice in a prime-boost immunization regimen with the corresponding recombinant proteins. The genetic immunogen was delivered with a gene gun and the proteins were injected intramuscularly together with the adjuvant AS02A. Immunizations were followed by experimental challenge with pseudotyped HIV-1 subtype A or B virus. In an initial experiment in which animals were challenged four weeks after the final immunization, all single modality and prime-boost vaccinations resulted in a significant level of protection as compared to control animals. There was a trend for DNA-alone immunization yielding the highest protection. In a subsequent study, a late challenge was performed 19 weeks after the final immunization. All groups having received the DNA vaccine, either alone or in combination with adjuvanted protein, exhibited strong protection against HIV replication. The subtype-specific protection against the experimental HIV challenge was significantly stronger than the cross-protection. Cellular and humoral immune responses were assessed during immunization and after challenge, but without clear correlation to protection against HIV replication. The data suggest that either DNA or protein antigens alone provide partial protection against an HIV-1/MuLV challenge and that DNA immunization is essential for achieving very high levels of efficacy in this murine HIV-1 challenge model. While prime-boost combinations were more immunogenic than DNA alone, they did not appear to provide any further enhancement over DNA vaccine mediated efficacy. The DNA immunogen might prime low levels of CD8+ T cells responsible for virus clearance or possibly a yet unidentified mechanism of protection.
Collapse
Affiliation(s)
- Erik Rollman
- Swedish Institute for Infectious Disease Control, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Graham BS, Koup RA, Roederer M, Bailer RT, Enama ME, Moodie Z, Martin JE, McCluskey MM, Chakrabarti BK, Lamoreaux L, Andrews CA, Gomez PL, Mascola JR, Nabel GJ. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 2006; 194:1650-60. [PMID: 17109336 PMCID: PMC2428069 DOI: 10.1086/509259] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/26/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gene-based vaccine delivery is an important strategy in the development of a preventive vaccine for acquired immunodeficiency syndrome (AIDS). Vaccine Research Center (VRC) 004 is the first phase 1 dose-escalation study of a multiclade HIV-1 DNA vaccine. METHODS VRC-HIVDNA009-00-VP is a 4-plasmid mixture encoding subtype B Gag-Pol-Nef fusion protein and modified envelope (Env) constructs from subtypes A, B, and C. Fifty healthy, uninfected adults were randomized to receive either placebo (n=10) or study vaccine at 2 mg (n=5), 4 mg (n=20), or 8 mg (n=15) by needle-free intramuscular injection. Humoral responses (measured by enzyme-linked immunosorbant assay, Western blotting, and neutralization assay) and T cell responses (measured by enzyme-linked immunospot assay and intracellular cytokine staining after stimulation with antigen-specific peptide pools) were measured. RESULTS The vaccine was well tolerated and induced cellular and humoral responses. The maximal CD4(+) and CD8(+) T cell responses occurred after 3 injections and were in response to Env peptide pools. The pattern of cytokine expression by vaccine-induced HIV-specific T cells evolved over time, with a diminished frequency of interferon- gamma -producing T cells and an increased frequency of interleukin-2-producing T cells at 1 year. CONCLUSIONS DNA vaccination induced antibody to and T cell responses against 3 major HIV-1 subtypes and will be further evaluated as a potential component of a preventive AIDS vaccine regimen.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Adolescent
- Adult
- Antibodies, Viral/blood
- Antibody Specificity
- Blotting, Western
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/analysis
- Cytokines/biosynthesis
- Double-Blind Method
- Enzyme-Linked Immunosorbent Assay
- Female
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors
- HIV Infections/blood
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Immunization Schedule
- Injections, Intramuscular
- Male
- Neutralization Tests
- Plasmids
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shu Y, Winfrey S, Yang ZY, Xu L, Rao SS, Srivastava I, Barnett SW, Nabel GJ, Mascola JR. Efficient protein boosting after plasmid DNA or recombinant adenovirus immunization with HIV-1 vaccine constructs. Vaccine 2006; 25:1398-408. [PMID: 17113201 PMCID: PMC1821094 DOI: 10.1016/j.vaccine.2006.10.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 01/13/2023]
Abstract
DNA plasmids and recombinant adenovirus serotype-5 (rAd5) vectors are being studied in human clinical trials as HIV-1 vaccine candidates. Each elicits robust T-cell responses and modest antibody levels. Since protein immunization alone elicits antibody but not CD8 T-cell responses, we studied protein boosting of DNA and rAd5 HIV-1 vaccine vectors. A single Env protein immunization provided a marked boost in antibody titer in guinea pigs primed with either DNA or rAd5 vaccines, and the resulting antibody binding and neutralization levels were similar to those attained after thee sequential protein immunizations. Since both T-cell immunity and neutralizing antibodies are thought to be required for protection against HIV-1, it may be possible to establish a balanced T-cell and antibody response with appropriate vectored vaccines and improve the neutralizing antibody titer with protein boosting.
Collapse
Affiliation(s)
- Yuuei Shu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2006; 358:334-46. [PMID: 17011011 DOI: 10.1016/j.virol.2006.08.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/07/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
Virally regulated HIV-1 particles were expressed from DNA plasmids encoding Gag, protease, reverse transcriptase, Vpu, Tat, Rev, and Env. The sequences for integrase, Vpr, Vif, Nef, and the long terminal repeats (LTRs) were deleted. Mutations were engineered into the VLP genome to produce particles deficient in activities associated with viral reverse transcriptase, RNase H, and RNA packaging. Each plasmid efficiently secreted particles from primate cells in vitro and particles were purified from the supernatants and used as immunogens. Mice (BALB/c) were vaccinated intranasally (day 1 and weeks 3 and 6) with purified VLPs and the elicited immunity was compared to particles without Env (Gag(p55)), to soluble monomeric Env(gp120), or to soluble trimerized Env(gp140). Only mice vaccinated with VLPs had robust anti-Env cellular immunity. In contrast, all mice had high titer anti-Env serum antibody (IgG). However, VLP-vaccinated mice had antisera that detected a broader number of linear Env peptides, had anti-Env mucosal IgA and IgG, as well as higher titers of serum neutralizing antibodies. VLPs elicited high titer antibodies that recognized linear regions in V4-C5 and the ectodomain of gp41, but did not recognize V3. These lentiviral VLPs are effective mucosal immunogens that elicit broader immunity against Env determinants in both the systemic and mucosal immune compartments than soluble forms of Env.
Collapse
Affiliation(s)
- Sean P McBurney
- Center for Vaccine Research for Emerging Diseases and Biodefense, University of Pittsburgh School of Medicine, 9047 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
35
|
Derby NR, Kraft Z, Kan E, Crooks ET, Barnett SW, Srivastava IK, Binley JM, Stamatatos L. Antibody responses elicited in macaques immunized with human immunodeficiency virus type 1 (HIV-1) SF162-derived gp140 envelope immunogens: comparison with those elicited during homologous simian/human immunodeficiency virus SHIVSF162P4 and heterologous HIV-1 infection. J Virol 2006; 80:8745-62. [PMID: 16912322 PMCID: PMC1563892 DOI: 10.1128/jvi.00956-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.
Collapse
Affiliation(s)
- Nina R Derby
- Seattle Biomedical Research Institute, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kothe DL, Li Y, Decker JM, Bibollet-Ruche F, Zammit KP, Salazar MG, Chen Y, Weng Z, Weaver EA, Gao F, Haynes BF, Shaw GM, Korber BTM, Hahn BH. Ancestral and consensus envelope immunogens for HIV-1 subtype C. Virology 2006; 352:438-49. [PMID: 16780913 DOI: 10.1016/j.virol.2006.05.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/19/2006] [Accepted: 05/08/2006] [Indexed: 11/30/2022]
Abstract
Immunogens based on "centralized" (ancestral or consensus) HIV-1 sequences minimize the genetic distance between vaccine strains and contemporary viruses and should thus elicit immune responses that recognize a broader spectrum of viral variants. However, the biologic, antigenic and immunogenic properties of such inferred gene products have to be validated experimentally. Here, we report the construction and characterization of the first full-length ancestral (AncC) and consensus (ConC) env genes of HIV-1 (group M) subtype C. The codon-usage-optimized genes expressed high levels of envelope glycoproteins that were incorporated into HIV-1 virions, mediated infection via the CCR5 co-receptor and retained neutralizing epitopes as recognized by plasma from patients with chronic HIV-1 subtype C infection. Guinea pigs immunized with AncC and ConC env DNA developed high titer binding, but no appreciable homologous or heterologous neutralizing antibodies. When tested by immunoblot analysis, sera from AncC and ConC env immunized guinea pigs recognized a greater number of primary subtype C envelope glycoproteins than sera from guinea pigs immunized with a contemporary subtype C env control. Mice immunized with AncC and ConC env DNA developed gamma interferon T cell responses that recognized overlapping peptides from the cognate ConC and a heterologous subtype C Env control. Thus, both AncC and ConC env genes expressed functional envelope glycoproteins that were immunogenic in laboratory animals and elicited humoral and cellular immune responses of comparable breadth and magnitude. These results establish the utility of centralized HIV-1 subtype C Env immunogens and warrant their continued evaluation as potential components of future AIDS vaccines.
Collapse
Affiliation(s)
- Denise L Kothe
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weaver EA, Lu Z, Camacho ZT, Moukdar F, Liao HX, Ma BJ, Muldoon M, Theiler J, Nabel GJ, Letvin NL, Korber BT, Hahn BH, Haynes BF, Gao F. Cross-subtype T-cell immune responses induced by a human immunodeficiency virus type 1 group m consensus env immunogen. J Virol 2006; 80:6745-56. [PMID: 16809280 PMCID: PMC1489064 DOI: 10.1128/jvi.02484-05] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity among globally circulating human immunodeficiency virus type 1 (HIV-1) strains is a serious challenge for HIV-1 vaccine design. We have generated a synthetic group M consensus env gene (CON6) for induction of cross-subtype immune responses and report here a comparative study of T-cell responses to this and natural strain env immunogens in a murine model. Three different strains of mice were immunized with CON6 as well as subtype A, B, or C env immunogens, using a DNA prime-recombinant vaccinia virus boost strategy. T-cell epitopes were mapped by gamma interferon enzyme-linked immunospot analysis using five overlapping Env peptide sets from heterologous subtype A, B, and C viruses. The CON6-derived vaccine was immunogenic and induced a greater number of T-cell epitope responses than any single wild-type subtype A, B, and C env immunogen and similar T-cell responses to a polyvalent vaccine. The responses were comparable to within-clade responses but significantly more than between-clade responses. The magnitude of the T-cell responses induced by CON6 (measured by individual epitope peptides) was also greater than the magnitude of responses induced by individual wild-type env immunogens. Though the limited major histocompatibility complex repertoire in inbred mice does not necessarily predict responses in nonhuman primates and humans, these results suggest that synthetic centralized env immunogens represent a promising approach for HIV-1 vaccine design that merits further characterization.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- AIDS Vaccines/pharmacology
- Animals
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/pharmacology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/pharmacology
- Genetic Variation
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/pharmacology
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Histocompatibility Antigens/immunology
- Humans
- Interferon-gamma/immunology
- Mice
- Mice, Inbred BALB C
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- Species Specificity
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- Eric A Weaver
- Duke Human Vaccine Institute, Duke University Medical Center, 112 RPIII, Research Drive, Box 3347, DUMC, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The glycoprotein (gp) 120 subunit is an important part of the envelope spikes that decorate the surface of HIV-1 and a major target for neutralizing antibodies. However, immunization with recombinant gp120 does not elicit neutralizing antibodies against multiple HIV-1 isolates (broadly neutralizing antibodies), and gp120 failed to demonstrate vaccine efficacy in recent clinical trials. Ongoing crystallographic studies of gp120 molecules from HIV-1 and SIV increasingly reveal how conserved regions, which are the targets of broadly neutralizing antibodies, are concealed from immune recognition. Based on this structural insight and that from studies of antibody structures, a number of strategies are being pursued to design immunogens that can elicit broadly neutralizing antibodies to gp120. These include (a) the construction of mimics of the viral envelope spike and (b) the design of antigens specifically tailored to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
39
|
Rodriguez-Chavez IR, Allen M, Hill EL, Sheets RL, Pensiero M, Bradac JA, D'Souza MP. Current advances and challenges in HIV-1 vaccines. Curr HIV/AIDS Rep 2006; 3:39-47. [PMID: 16522258 DOI: 10.1007/s11904-006-0007-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in science, which have aided HIV-1 vaccine development, include an improved understanding of HIV-1 envelope structure and function, expansion of the pipeline with innovative vaccine strategies, promising multi-gene and multi-clade vaccines that elicit cellular immunity, conduct of clinical trials in a global network, and development of validated techniques that enable simultaneous measurement of multiple T cell vaccine-induced immune responses in humans. A common feature of several preventive vaccine strategies now in early clinical trials is their ability in nonhuman primates to attenuate clinical disease rather than completely prevent HIV-1 infection. One vaccine concept has been tested in large-scale clinical trials, two are currently in efficacy trials, and one more is poised to enter efficacy trial in the next few years. Simultaneously, expanded efforts continue to identify new designs that induce mucosal immunity as well as broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Isaac R Rodriguez-Chavez
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu L, Yang ZY, Xu L, Welcher B, Winfrey S, Shao Y, Mascola JR, Nabel GJ. Cross-clade recognition and neutralization by the V3 region from clade C human immunodeficiency virus-1 envelope. Vaccine 2006; 24:4995-5002. [PMID: 16690178 DOI: 10.1016/j.vaccine.2006.03.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/04/2006] [Accepted: 03/16/2006] [Indexed: 11/26/2022]
Abstract
To understand the cross-reactivity of antibodies directed against variable regions of human immunodeficiency virus-1 (HIV-1) envelope (Env), chimeric immunogens were prepared from different clades with modifications in variable regions, and the resulting neutralizing antibody response was evaluated. The V3-specific neutralization activity induced by a clade B immunogen was limited to clade B viruses and was blocked by a clade B V3 peptide, but not by analogous clade A or C V3 peptides. In contrast, the V3 response elicited by a clade C immunogen cross-reacted with sensitive clade B viruses. The V3 region from a clade C virus, when introduced into a clade B sequence, elicited cross-clade activity, which could be reversed by V3 peptides derived from clades A and C. Thus, the anti-V3 antibody response elicited by a clade C immunogen could cross-react with heterologous clade viruses. Additionally, we describe a V1-specific immune response that mediated neutralization limited to the homologous HIV IIIB isolate and may be partially responsible for the commonly observed strain-specific neutralization responses elicited by vaccine immunogens.
Collapse
Affiliation(s)
- Lan Wu
- Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Bldg. 40, MSC-3005, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bower JF, Li Y, Wyatt R, Ross TM. HIV-1 Envgp140 trimers elicit neutralizing antibodies without efficient induction of conformational antibodies. Vaccine 2006; 24:5442-51. [PMID: 16621193 DOI: 10.1016/j.vaccine.2006.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, no vaccine for human immunodeficiency virus (HIV-1) provides protection from virus infection. One reason for these disappointing results has been the difficulty of current vaccine candidates to elicit high-titer, broadly reactive immunity to a large number of viral proteins. Recently, our laboratory demonstrated that the coupling of C3d to a soluble trimerized HIV-1 envelope (Env(gp140(FT))) elicited higher titers of neutralizing antibodies than monomers of Env(gp120) coupled to C3d [Bower JF, Yang X, Sodroski J, Ross TM. Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d. J Virol 2004;78(9):4710-9]. To determine if the induction of conformational antibodies correlated with neutralization, mice (BALB/c) were primed (2x) with DNA plasmids expressing monomeric Env(gp120) or trimeric Env(gp140) alone or fused to mC3d(3) at one of two doses (2.0microg or 0.2microg), followed by a boost of recombinant uncleaved, trimeric Env(gp140). Regardless of the priming dose of DNA, all mice had high-titer anti-Env IgG antibodies. Interestingly, Env(gp140) trimers did not elicit higher titers of antibodies that recognized conformational Env epitopes compared to monomers of Env(gp120). Therefore, additional parameters were examined for correlation with neutralization. For neutralization-resistant HIV-1 isolates, ADA and YU-2, neutralization correlated with high-titer, high avidity antibodies, with Env(gp140) eliciting slightly higher neutralization titers than Env(gp120). In contrast, none of the measured parameters correlated with neutralization for the more neutralization-sensitive isolates, MN or 89.6. Therefore, even though soluble, uncleaved Env(gp140) trimers may be marginally more effective at eliciting neutralizing antibodies than Env(gp120), neutralization does not appear to correlate with the elicitation of conformationally dependent antibodies.
Collapse
Affiliation(s)
- Joseph F Bower
- University of Pittsburgh, School of Medicine, Department of Medicine, Division of Infectious Diseases, Scaife Hall, Room S871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
42
|
Brown SA, Slobod KS, Surman S, Zirkel A, Zhan X, Hurwitz JL. Individual HIV type 1 envelope-specific T cell responses and epitopes do not segregate by virus subtype. AIDS Res Hum Retroviruses 2006; 22:188-94. [PMID: 16478402 DOI: 10.1089/aid.2006.22.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 vaccines are often designed to target one or several virus subtype(s). They therefore include antigens (e.g., env or env/gag/pol) from each targeted subtype to elicit subtype-directed immunity. To determine if individual T cells respond to HIV-1 antigens in a subtype-directed manner, we selected four T cell hybridomas, each representative of a different immunodominant response toward a subtype B envelope. Hybridomas were tested for responses toward 20 subtype B envelope proteins and one protein each from subtypes A, C, and D. None of the hybridomas cross-reacted with all subtype B envelopes, yet three responded to a non-B protein. Core epitopes and flanking regions affected responsiveness. This lack of subtype-directed activity was corroborated by analyses of the Los Alamos database; like immune responses, epitope distributions were not dictated by subtype. Results highlight the difficulty of predicting immune responses based on subtype alone and encourage considerations of antigenic disparity in addition to subtype disparity during HIV-1 vaccine design.
Collapse
Affiliation(s)
- S A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kong WP, Xu L, Stadler K, Ulmer JB, Abrignani S, Rappuoli R, Nabel GJ. Modulation of the immune response to the severe acute respiratory syndrome spike glycoprotein by gene-based and inactivated virus immunization. J Virol 2006; 79:13915-23. [PMID: 16254327 PMCID: PMC1280202 DOI: 10.1128/jvi.79.22.13915-13923.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the initial isolates of the severe acute respiratory syndrome (SARS) coronavirus (CoV) are sensitive to neutralization by antibodies through their spike (S) glycoprotein, variants of S have since been identified that are resistant to such inhibition. Optimal vaccine strategies would therefore make use of additional determinants of immune recognition, either through cellular or expanded, cross-reactive humoral immunity. Here, the cellular and humoral immune responses elicited by different combinations of gene-based and inactivated viral particles with various adjuvants have been assessed. The T-cell response was altered by different prime-boost immunizations, with the optimal CD8 immunity induced by DNA priming and replication-defective adenoviral vector boosting. The humoral immune response was enhanced most effectively through the use of inactivated virus with adjuvants, either MF59 or alum, and was associated with stimulation of the CD4 but not the CD8 response. The use of inactivated SARS virus with MF59 enhanced the CD4 and antibody response even after gene-based vaccination. Because both cellular and humoral immune responses are generated by gene-based vaccination and inactivated viral boosting, this strategy may prove useful in the generation of SARS-CoV vaccines.
Collapse
Affiliation(s)
- Wing-pui Kong
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bldg. 40, Room 4502, MSC-3005, 40 Convent Drive, Bethesda, Maryland 20892-3005, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Seaman MS, Xu L, Beaudry K, Martin KL, Beddall MH, Miura A, Sambor A, Chakrabarti BK, Huang Y, Bailer R, Koup RA, Mascola JR, Nabel GJ, Letvin NL. Multiclade human immunodeficiency virus type 1 envelope immunogens elicit broad cellular and humoral immunity in rhesus monkeys. J Virol 2005; 79:2956-63. [PMID: 15709015 PMCID: PMC548456 DOI: 10.1128/jvi.79.5.2956-2963.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of a human immunodeficiency virus type 1 (HIV-1) vaccine that elicits potent cellular and humoral immune responses recognizing divergent strains of HIV-1 will be critical for combating the global AIDS epidemic. The present studies were initiated to examine the magnitude and breadth of envelope (Env)-specific T-lymphocyte and antibody responses generated by vaccines containing either a single or multiple genetically distant HIV-1 Env immunogens. Rhesus monkeys were immunized with DNA prime-recombinant adenovirus boost vaccines encoding a Gag-Pol-Nef polyprotein in combination with either a single Env or a mixture of clade-A, clade-B, and clade-C Envs. Monkeys receiving the multiclade Env immunization developed robust immune responses to all vaccine antigens and, importantly, a greater breadth of Env recognition than monkeys immunized with vaccines including a single Env immunogen. All groups of vaccinated monkeys demonstrated equivalent immune protection following challenge with the pathogenic simian-human immunodeficiency virus 89.6P. These data suggest that a multicomponent vaccine encoding Env proteins from multiple clades of HIV-1 can generate broad Env-specific T-lymphocyte and antibody responses without antigenic interference. This study demonstrates that it is possible to generate protective immune responses by vaccination with genetically diverse isolates of HIV-1.
Collapse
Affiliation(s)
- Michael S Seaman
- Beth Israel Deaconess Medical Center, Division of Viral Pathogenesis, 330 Brookline Ave./RE-113, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|