1
|
Roe SK, Zhu T, Slepenkin A, Berges A, Fairman J, de la Maza LM, Massari P. Structural Assessment of Chlamydia trachomatis Major Outer Membrane Protein (MOMP)-Derived Vaccine Antigens and Immunological Profiling in Mice with Different Genetic Backgrounds. Vaccines (Basel) 2024; 12:789. [PMID: 39066427 PMCID: PMC11281497 DOI: 10.3390/vaccines12070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infections (STIs) worldwide. Ct infections are often asymptomatic in women, leading to severe reproductive tract sequelae. Development of a vaccine against Chlamydia is crucial. The Chlamydia major outer membrane protein (MOMP) is a prime vaccine antigen candidate, and it can elicit both neutralizing antibodies and protective CD4+ T cell responses. We have previously designed chimeric antigens composed of immunogenic variable regions (VDs) and conserved regions (CDs) of MOMP from Chlamydia muridarum (Cm) expressed into a carrier protein (PorB), and we have shown that these were protective in a mouse model of Cm respiratory infection. Here, we generated corresponding constructs based on MOMP from Ct serovar F. Preliminary structure analysis of the three antigens, PorB/VD1-3, PorB/VD1-4 and PorB/VD1-2-4, showed that they retained structure features consistent with those of PorB. The antigens induced robust humoral and cellular responses in mice with different genetic backgrounds. The antibodies were cross-reactive against Ct, but only anti-PorB/VD1-4 and anti-PorB/VD1-2-4 IgG antibodies were neutralizing, likely due to the antigen specificity. The cellular responses included proliferation in vitro and production of IFN-γ by splenocytes following Ct re-stimulation. Our results support further investigation of the PorB/VD antigens as potential protective candidates for a Chlamydia subunit vaccine.
Collapse
Affiliation(s)
- Shea K. Roe
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.)
| | - Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.)
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA (L.M.d.l.M.)
| | - Aym Berges
- Vaxcyte Inc., 825 Industrial Road, Suite 300, San Carlos, CA 94070, USA (J.F.)
| | - Jeff Fairman
- Vaxcyte Inc., 825 Industrial Road, Suite 300, San Carlos, CA 94070, USA (J.F.)
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA (L.M.d.l.M.)
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.)
| |
Collapse
|
2
|
Lu C, Wang J, Zhong G. Preclinical screen for protection efficacy of chlamydial antigens that are immunogenic in humans. Infect Immun 2023; 91:e0034923. [PMID: 37889004 PMCID: PMC10652899 DOI: 10.1128/iai.00349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
To search for subunit vaccine candidates, immunogenic chlamydial antigens identified in humans were evaluated for protection against both infection and pathology in a mouse genital tract infection model under three different immunization regimens. The intramuscular immunization regimen was first used to evaluate 106 chlamydial antigens, which revealed that two antigens significantly reduced while 11 increased genital chlamydial burden. The two infection-reducing antigens failed to prevent pathology and 23 additional antigens even exacerbated pathology. Thus, intranasal mucosal immunization was tested next since intranasal inoculation with live Chlamydia muridarum prevented both genital infection and pathology. Two of the 29 chlamydial antigens evaluated were found to prevent genital infection but not pathology and three exacerbate pathology. To further improve protection efficacy, a combinational regimen (intranasal priming + intramuscular boosting + a third intraperitoneal/subcutaneous boost) was tested. This regimen identified four infection-reducing antigens, but only one of them prevented pathology. Unfortunately, this protective antigen was not advanced further due to its amino acid sequence homology with several human molecules. Two pathology-exacerbating antigens were also found. Nevertheless, intranasal mucosal priming with viable C. muridarum in control groups consistently prevented both genital infection and pathology regardless of the subsequent boosters. Thus, screening 140 different chlamydial antigens with 21 repeated multiple times in 17 experiments failed to identify a subunit vaccine candidate but demonstrated the superiority of viable chlamydial organisms in inducing immunity against both genital infection and pathology, laying the foundation for developing a live-attenuated Chlamydia vaccine.
Collapse
Affiliation(s)
- Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jie Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
3
|
Obeidat RM, Al-Omari MM, Bataineh NM, Barukba MM, Okour MA, Al-Qaoud KM. Production of Monoclonal antibodies to membrane components of human colorectal cancer HCT-116 cell line for diagnostic purposes. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
4
|
Epitope-Based Vaccines against the Chlamydia trachomatis Major Outer Membrane Protein Variable Domain 4 Elicit Protection in Mice. Vaccines (Basel) 2022; 10:vaccines10060875. [PMID: 35746483 PMCID: PMC9227494 DOI: 10.3390/vaccines10060875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the most common bacterial sexual transmitted pathogen, yet a vaccine is not currently available. Here, we used the immunogenic bacteriophage MS2 virus-like particle (VLP) technology to engineer vaccines against the Ct major outer membrane protein variable domain 4 (MOMP-VD4), which contains a conserved neutralizing epitope (TTLNPTIAG). A previously described monoclonal antibody to the MOMP-VD4 (E4 mAb) is capable of neutralizing all urogenital Ct serovars and binds this core epitope, as well as several non-contiguous amino acids. This suggests that this core epitope may require conformational context in order to elicit neutralizing antibodies to Ct. In order to identify immunogens that could elicit neutralizing antibodies to the TTLNPTIAG epitope, we used two approaches. First, we used affinity selection with a bacteriophage MS2-VLP library displaying random peptides in a constrained, surface-exposed loop to identify potential E4 mAb mimotopes. After four rounds of affinity selection, we identified a VLP-displayed peptide (HMVGSTKWTN) that could bind to the E4 mAb and elicited serum IgG that bound weakly to Ct elementary bodies by ELISA. Second, two versions of the core conserved TTLNPTIAG epitope (TTLNPTIAG and TTLNPTIAGA) were recombinantly expressed on the coat protein of the MS2 VLP in a constrained, surface-exposed loop. Mouse immune sera IgG bound to Ct elementary bodies by ELISA. Immunization with these MS2 VLPs provided protection from vaginal Chlamydia infection in a murine challenge model. These data suggest that short peptide epitopes targeting the MOMP-VD4 could be appropriate for Ct vaccine design when displayed on an immunogenic bacteriophage VLP vaccine platform.
Collapse
|
5
|
Olsen AW, Rosenkrands I, Holland MJ, Andersen P, Follmann F. A Chlamydia trachomatis VD1-MOMP vaccine elicits cross-neutralizing and protective antibodies against C/C-related complex serovars. NPJ Vaccines 2021; 6:58. [PMID: 33875654 PMCID: PMC8055873 DOI: 10.1038/s41541-021-00312-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022] Open
Abstract
Ocular and urogenital infections with Chlamydia trachomatis (C.t.) are caused by a range of different serovars. The first C.t. vaccine in clinical development (CTH522/CAF®01) induced neutralizing antibodies directed to the variable domain 4 (VD4) region of major outer membrane protein (MOMP), covering predominantly B and intermediate groups of serovars. The VD1 region of MOMP contains neutralizing B-cell epitopes targeting serovars of the C and C-related complex. Using an immuno-repeat strategy, we extended the VD1 region of SvA and SvJ to include surrounding conserved segments, extVD1A and extVD1J, and repeated this region four times. The extVD1A*4 was most immunogenic with broad cross-surface and neutralizing reactivity against representative members of the C and C-related complex serovars. Importantly, in vitro results for extVD1A*4 translated into in vivo biological effects, demonstrated by in vivo neutralization of SvA and protection/cross-protection against intravaginal challenge with both SvA and the heterologous SvIa strain.
Collapse
Affiliation(s)
- Anja Weinreich Olsen
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Ida Rosenkrands
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Martin J Holland
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Peter Andersen
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Frank Follmann
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
6
|
Pal S, Mirzakhanyan Y, Gershon P, Tifrea DF, de la Maza LM. Induction of protection in mice against a respiratory challenge by a vaccine formulated with exosomes isolated from Chlamydia muridarum infected cells. NPJ Vaccines 2020; 5:87. [PMID: 33014435 PMCID: PMC7501220 DOI: 10.1038/s41541-020-00235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The goal of this study was to determine if exosomes, isolated from Chlamydia muridarum infected HeLa cells (C. muridarum-exosomes), induce protective immune responses in mice following vaccination using CpG plus Montanide as adjuvants. Exosomes, collected from uninfected HeLa cells and PBS, formulated with the same adjuvants, were used as negative controls. Mass spectrometry analyses identified 113 C. muridarum proteins in the C. muridarum-exosome preparation including the major outer membrane protein and the polymorphic membrane proteins. Vaccination with C. muridarum-exosomes elicited robust humoral and cell-mediated immune responses to C. muridarum elementary bodies. Following vaccination, mice were challenged intranasally with C. muridarum. Compared to the negative controls, mice immunized with C. muridarum-exosomes were significantly protected as measured by changes in body weight, lungs' weight, and number of inclusion forming units recovered from lungs. This is the first report, of a vaccine formulated with Chlamydia exosomes, shown to elicit protection against a challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
| | - Paul Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
7
|
Xie L, He C, Chen J, Tang L, Zhou Z, Zhong G. Suppression of Chlamydial Pathogenicity by Nonspecific CD8 + T Lymphocytes. Infect Immun 2020; 88:e00315-20. [PMID: 32747602 PMCID: PMC7504968 DOI: 10.1128/iai.00315-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis, a leading infectious cause of tubal infertility, induces upper genital tract pathology, such as hydrosalpinx, which can be modeled with Chlamydia muridarum infection in mice. Following C. muridarum inoculation, wild-type mice develop robust hydrosalpinx, but OT1 mice fail to do so because their T cell receptors are engineered to recognize a single ovalbumin epitope (OVA457-462). These observations have demonstrated a critical role of Chlamydia-specific T cells in chlamydial pathogenicity. In the current study, we have also found that OT1 mice can actively inhibit chlamydial pathogenicity. First, depletion of CD8+ T cells from OT1 mice led to the induction of significant hydrosalpinx by Chlamydia, indicating that CD8+ T cells are necessary to inhibit chlamydial pathogenicity. Second, adoptive transfer of CD8+ T cells from OT1 mice to CD8 knockout mice significantly reduced chlamydial induction of hydrosalpinx, demonstrating that OT1 CD8+ T cells are sufficient for attenuating chlamydial pathogenicity in CD8 knockout mice. Finally, CD8+ T cells from OT1 mice also significantly inhibited hydrosalpinx development in wild-type mice following an intravaginal inoculation with Chlamydia Since T cells in OT1 mice are engineered to recognize only the OVA457-462 epitope, the above observations have demonstrated a chlamydial antigen-independent immune mechanism for regulating chlamydial pathogenicity. Further characterization of this mechanism may provide information for developing strategies to reduce infertility-causing pathology induced by infections.
Collapse
Affiliation(s)
- Lingxiang Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Conghui He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jianlin Chen
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lingli Tang
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Zhou Z, Liu N, Wang Y, Emmanuel AW, You X, Liu J, Li Z, Wu Y, Zhong G. A primary study on genes with selected mutations by in vitro passage of Chlamydia muridarum strains. Pathog Dis 2020; 77:5518358. [PMID: 31197357 DOI: 10.1093/femspd/ftz017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/04/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE This study is to investigate the functions of newly discovered genes in Chlamydia muridarum (C. muridarum) strains with single gene differences. METHODS Using whole genome sequencing and plaque formation assays, C. muridarum parental and passaging strains were established, and the isogenic clones expressing certain genotypes were isolated. Strains with single gene differences were obtained. Based on prediction, the valuable strains with single gene differences of tc0412, tc0668 or tc0237 were subjected to the in vitro and in vivo experiments for biological characterization and virulence analysis. RESULTS Insertional -472840T mutation of the tc0412 gene (T28T/B3 type) matching with the nonmutant tc0668 gene and tc0237 gene with point mutations G797659T (Q117E) might slow the growth of Chlamydia due to the lack of a plasmid. The nonmutant tc0668 in the strain might induce a high incidence of hydrosalpinx in mice, while tc0668 with a G797659T point mutation was significantly attenuated. Compared with the nonmutant tc0237, the strains containing mutant tc0237 were characterized by reduced centrifugation dependence during infection. CONCLUSION The identification and characterization of these genes might contribute to the comprehensive understanding of the pathogenic mechanism of Chlamydia.
Collapse
Affiliation(s)
- Zhou Zhou
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Na Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Yingzi Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Arthur Wirekoh Emmanuel
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Jiulin Liu
- Outstanding Physician Class in Grade 2016, Medical College, University of South China, Hengyang 421001, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang 421001, Hunan, China
| | - Guangming Zhong
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, Hunan, China.,Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
9
|
Gitsels A, Van Lent S, Sanders N, Vanrompay D. Chlamydia: what is on the outside does matter. Crit Rev Microbiol 2020; 46:100-119. [PMID: 32093536 DOI: 10.1080/1040841x.2020.1730300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah Van Lent
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Boddicker MA, Kaufhold RM, Cox KS, Lucas BJ, Xie J, Nahas DD, Touch S, Espeseth AS, Vora KA, Skinner JM. A Novel LNP-Based <i>Chlamydia</i> Subunit Vaccine Formulation That Induces Th1 Responses without Upregulating IL-17 Provides Equivalent Protection in Mice as Formulations That Induced IL-17 and Th1 Cytokines. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/wjv.2020.104005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Darville T, Albritton HL, Zhong W, Dong L, O'Connell CM, Poston TB, Quayle AJ, Goonetilleke N, Wiesenfeld HC, Hillier SL, Zheng X. Anti-chlamydia IgG and IgA are insufficient to prevent endometrial chlamydia infection in women, and increased anti-chlamydia IgG is associated with enhanced risk for incident infection. Am J Reprod Immunol 2019; 81:e13103. [PMID: 30784128 DOI: 10.1111/aji.13103] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Chlamydia infections in women can ascend to the upper genital tract, and repeated infections are common, placing women at risk for sequelae. The protective role of anti-chlamydia antibodies to surface exposed antigens in ascending and incident infection is unclear. METHOD OF STUDY A whole-bacterial ELISA was used to quantify chlamydia-specific IgG and IgA in serum and cervical secretions of 151 high-risk women followed longitudinally. Correlations were determined between antibody and cervical burden, and causal mediation analysis investigated the effect of antibody on ascension. We examined the relationship of antibody to incident infection using the marginal Cox model. RESULTS Serum and cervical anti-chlamydia IgG and cervical IgA levels correlated inversely with cervical burden. While lower burden was associated with reduced ascension, causal mediation analysis revealed that the indirect effects of antibody mediated through reductions in bacterial burden were insufficient to prevent ascension. Analysis of women uninfected at enrollment revealed that serum and cervical anti-chlamydia IgG were associated with increased risk of incident infection; hazard ratio increased 3.6-fold (95% CI, 1.3-10.3), and 22.6-fold (95% CI, 3.1-165.2) with each unit of serum and cervical IgG, respectively. CONCLUSION Although anti-chlamydia IgG and IgA correlated with reduced cervical chlamydia burden, they failed to prevent ascension and increased levels of anti-chlamydia IgG were associated with increased risk for incident infection.
Collapse
Affiliation(s)
- Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Hannah L Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Wujuan Zhong
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Li Dong
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | | | - Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nilu Goonetilleke
- Departments of Microbiology & Immunology and Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Kaufhold RM, Boddicker MA, Field JA, Lucas BJ, Antonello JM, Espeseth AS, Skinner JM, Heinrichs JH, Smith JG. Evaluating Potential Vaccine Antigens in both the <i>Chlamydia trachomatis</i> and <i>Chlamydia muridarum</i> Intravaginal Mouse Challenge Models. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/wjv.2019.92004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Madico G, Gursky O, Fairman J, Massari P. Structural and Immunological Characterization of Novel Recombinant MOMP-Based Chlamydial Antigens. Vaccines (Basel) 2017; 6:vaccines6010002. [PMID: 29295593 PMCID: PMC5874643 DOI: 10.3390/vaccines6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/02/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022] Open
Abstract
Chlamydia is the most common cause of bacterial sexually transmitted infections worldwide. While infections resolve with antibiotic treatment, this is often neglected in women due to frequent asymptomatic infections, leading to disease progression and severe sequelae (pelvic inflammatory disease, ectopic pregnancy, infertility). Development of a vaccine against Chlamydia is crucial. Whole organism-based vaccines have short-lived activity, serovar/subgroup-specific immunity and can cause adverse reactions in vaccinated subjects. The Chlamydia major outer membrane protein (MOMP) is a prime candidate for a subunit vaccine. MOMP contains four regions of sequence variability (variable domains, VDs) with B-cell and T-cell epitopes that elicit protective immunity. However, barriers for developing a MOMP-based vaccine include solubility, yield and refolding. We have engineered novel recombinant antigens in which the VDs are expressed into a carrier protein structurally similar to MOMP and suitable for recombinant expression at a high yield in a correctly folded and detergent-free form. Using a carrier such as the PorB porin from the human commensal organism N. lactamica, we show that PorB/VD chimeric proteins are immunogenic, antigenic and cross-reactive with MOMP. VDs are unique for each serovar but if combined in a single vaccine, a broad coverage against the major Chlamydia serovars can be ensured.
Collapse
Affiliation(s)
- Guillermo Madico
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| | - Olga Gursky
- Department of Physiology & Biophysics and the Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
14
|
Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward". Vaccine 2017; 37:7346-7354. [PMID: 29097007 DOI: 10.1016/j.vaccine.2017.10.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert C Brunham
- Vaccine Research Laboratory, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC V5Z 4R4, Canada
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7509, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, NIAID, Bethesda, MD, USA
| |
Collapse
|
15
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
16
|
Hines CDG, Wang S, Meng X, Skinner JM, Heinrichs JH, Smith JG, Boddicker MA. MRI as a Novel In Vivo Approach for Assessing Structural Changes of Chlamydia Pathology in a Mouse Model. PLoS One 2016; 11:e0160055. [PMID: 27467585 PMCID: PMC4965011 DOI: 10.1371/journal.pone.0160055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
Chlamydia trachomatis is among the most prevalent of sexually transmitted diseases. While Chlamydia infection is a reportable event and screening has increased over time, enhanced surveillance has not resulted in a reduction in the rate of infections, and Chlamydia infections frequently recur. The development of a preventative vaccine for Chlamydia may be the only effective approach for reducing infection and the frequency of pathological outcomes. Current vaccine research efforts involve time consuming and/or invasive approaches for assessment of disease state, and MRI presents a clinically translatable method for assessing infection and related pathology both quickly and non-invasively. Longitudinal T2-weighted MRI was performed over 63 days on both control or Chlamydia muridarum challenged mice, either with or without elementary body (EB) immunization, and gross necropsy was performed on day 65. A scoring system was developed to assess the number of regions affected by Chlamydia pathology and was used to document pathology over time and at necropsy. The scoring system documented increasing incidence of pathology in the unimmunized and challenged mice (significantly greater compared to the control and EB immunized-challenged groups) by 21 days post-challenge. No differences between the unchallenged and EB immunized-challenged mice were observed. MRI scores at Day 63 were consistently higher than gross necropsy scores at Day 65, although two of the three groups of mice showed no significant differences between the two techniques. In this work we describe the application of MRI in mice for the potential evaluation of disease pathology and sequelae caused by C. muridarum infection and this technique’s potential for evaluation of vaccines for Chlamydia.
Collapse
Affiliation(s)
- Catherine D G Hines
- Department of Translational Imaging Biomarkers, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Shubing Wang
- Department of Biometrics Research, MRL (Rahway, NJ), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Xiangjun Meng
- Department of Translational Imaging Biomarkers, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Julie M Skinner
- Department of Vaccines Early Discovery, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jon H Heinrichs
- Global Project Leadership, Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Jeffrey G Smith
- Pharmaceutical Sciences Analytical Research & Development, Pfizer, Andover, Massachusetts, United States of America
| | - Melissa A Boddicker
- Department of Vaccines Early Discovery, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| |
Collapse
|
17
|
Quantitative In Vivo Detection of Chlamydia muridarum Associated Inflammation in a Mouse Model Using Optical Imaging. Mediators Inflamm 2015; 2015:264897. [PMID: 26663988 PMCID: PMC4667028 DOI: 10.1155/2015/264897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
Chlamydia trachomatis is a bacterial sexually transmitted disease with over 1.3 million cases reported to the CDC in 2010. While Chlamydia infection is easily treated with antibiotics, up to 70% of infections are asymptomatic and go untreated. The current mouse model relies on invasive upper genital tract gross pathology readouts at ~60-80 days postinfection. High throughput optical imaging through the use of biomarkers has been successfully used to quickly evaluate several disease processes. Here we evaluate Neutrophil Elastase 680 (Elastase680) for its ability to measure Chlamydia muridarum associated inflammation in live mice using fluorescence molecular tomography (FMT) and In Vivo Imaging System (IVIS). Optical imaging was able to distinguish with statistical significance between vaccinated and nonvaccinated mice as well as mock-challenged and challenged mice 2 weeks after challenge which was 9 weeks sooner than typical gross pathological assessment. Immunohistochemistry confirmed the presence of neutrophils and correlated well with both in vivo and ex vivo imaging. In this report we demonstrate that Elastase680 can be used as a molecular imaging biomarker for inflammation associated with chlamydial infection in a mouse model and that these biomarkers can significantly decrease the time for pathology evaluation and thus increase the rate of therapeutics discovery.
Collapse
|
18
|
Vasilevsky S, Stojanov M, Greub G, Baud D. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 2015; 7:11-22. [PMID: 26580416 DOI: 10.1080/21505594.2015.1111509] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pmps (Polymorphic Membrane Proteins) are a group of membrane bound surface exposed chlamydial proteins that have been characterized as autotransporter adhesins and are important in the initial phase of chlamydial infection. These proteins all contain conserved GGA (I, L, V) and FxxN tetrapeptide motifs in the N-terminal portion of each protein. All chlamydial species express Pmps. Even in the chlamydia-related bacteria Waddlia chondrophila, a Pmp-like adhesin has been identified, demonstrating the importance of Pmps in Chlamydiales biology. Chlamydial species vary in the number of pmp genes and their differentially regulated expression during the infectious cycle or in response to stress. Studies have also demonstrated that Pmps are able to induce innate immune functional responses in infected cells, including production of IL-8, IL-6 and MCP-1, by activating the transcription factor NF-κB. Human serum studies have indicated that although anti-Pmp specific antibodies are produced in response to a chlamydial infection, the response is variable depending on the Pmp protein. In C. trachomatis, PmpB, PmpC, PmpD and PmpI were the proteins eliciting the strongest immune response among adolescents with and without pelvic inflammatory disease (PID). In contrast, PmpA and PmpE elicited the weakest antibody response. Interestingly, there seems to be a gender bias for Pmp recognition with a stronger anti-Pmp reactivity in male patients. Furthermore, anti-PmpA antibodies might contribute to adverse pregnancy outcomes, at least among women with PID. In vitro studies indicated that dendritic cells infected with C. muridarum were able to present PmpG and PmpF on their MHC class II receptors and T cells were able to recognize the MHC class-II bound peptides. In addition, vaccination with PmpEFGH and Major Outer Membrane Protein (MOMP) significantly protected mice against a genital tract C. muridarum infection, suggesting that Pmps may be an important component of a multi-subunit chlamydial vaccine. Thus, Pmps might be important not only for the pathogenesis of chlamydial infection, but also as potential candidate vaccine proteins.
Collapse
Affiliation(s)
- Sam Vasilevsky
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Milos Stojanov
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Gilbert Greub
- b Center for Research on Intracellular Bacteria; Institute of Microbiology; Faculty of Biology and Medicine; University of Lausanne and University Hospital ; Lausanne , Switzerland
| | - David Baud
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| |
Collapse
|
19
|
Comparison of subcutaneous versus intranasal immunization of male koalas (Phascolarctos cinereus) for induction of mucosal and systemic immunity against Chlamydia pecorum. Vaccine 2015; 33:855-60. [PMID: 25562793 DOI: 10.1016/j.vaccine.2014.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 01/04/2023]
Abstract
Chlamydia pecorum infections are debilitating in the koala, contributing significantly to morbidity and mortality, with current antibiotic treatments having minimal success and adversely affecting gut microflora. This, combined with the sometimes-asymptomatic nature of the infection, suggests that an efficacious anti-chlamydial vaccine is required to control chlamydial infections in the koala. To date vaccination studies have focused primarily on female koalas, however, given the physiological differences between male and female reproductive tracts, we tested the efficacy of a vaccine in 12 captive male koalas. We evaluated the potential of both subcutaneous and intranasal vaccine delivery to elicit mucosal immunity in male koalas. Our results showed that both intranasal and subcutaneous delivery of a vaccine consisting of C. pecorum major outer membrane protein (MOMP) and the adjuvant immunostimulating complex (ISC) induced significant immune responses in male koalas. Subcutaneous immunization elicited stronger cell-mediated responses in peripheral blood lymphocytes (PBL), and greater plasma antibody levels whereas the intranasal immunization elicited stronger humoral responses in urogenital tract (UGT) secretions. This is the first time a Chlamydia vaccine has been tested in the male koala and the first assessment of a mucosal vaccination route in this species. Our results suggest that vaccination of male koalas can elicit mucosal immunity and could contribute to the long-term survivability of wild populations of the koala.
Collapse
|
20
|
Kollipara A, Polkinghorne A, Beagley KW, Timms P. Vaccination of koalas with a recombinant Chlamydia pecorum major outer membrane protein induces antibodies of different specificity compared to those following a natural live infection. PLoS One 2013; 8:e74808. [PMID: 24086379 PMCID: PMC3783496 DOI: 10.1371/journal.pone.0074808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/06/2013] [Indexed: 01/08/2023] Open
Abstract
Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.
Collapse
Affiliation(s)
- Avinash Kollipara
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Adam Polkinghorne
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kenneth W. Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- * E-mail:
| |
Collapse
|
21
|
Hafner LM, Wilson DP, Timms P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine 2013; 32:1563-71. [PMID: 23973245 DOI: 10.1016/j.vaccine.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/04/2013] [Accepted: 08/11/2013] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis continues to be the most commonly reported sexually transmitted bacterial infection in many countries with more than 100 million new cases estimated annually. These acute infections translate into significant downstream health care costs, particularly for women, where complications can include pelvic inflammatory disease and other disease sequelae such as tubal factor infertility. Despite years of research, the immunological mechanisms responsible for protective immunity versus immunopathology are still not well understood, although it is widely accepted that T cell driven IFN-g and Th17 responses are critical for clearing infection. While antibodies are able to neutralize infections in vitro, alone they are not protective, indicating that any successful vaccine will need to elicit both arms of the immune response. In recent years, there has been an expansion in the number and types of antigens that have been evaluated as vaccines, and combined with the new array of mucosal adjuvants, this aspect of chlamydial vaccinology is showing promise. Most recently, the opportunities to develop successful vaccines have been given a significant boost with the development of a genetic transformation system for Chlamydia, as well as the identification of the key role of the chlamydial plasmid in virulence. While still remaining a major challenge, the development of a successful C. trachomatis vaccine is starting to look more likely.
Collapse
Affiliation(s)
- Louise M Hafner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - David P Wilson
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
22
|
Manam S, Chaganty BKR, Evani SJ, Zafiratos MT, Ramasubramanian AK, Arulanandam BP, Murthy AK. Intranasal vaccination with Chlamydia pneumoniae induces cross-species immunity against genital Chlamydia muridarum challenge in mice. PLoS One 2013; 8:e64917. [PMID: 23741420 PMCID: PMC3669087 DOI: 10.1371/journal.pone.0064917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/21/2013] [Indexed: 01/14/2023] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the world and specifically in the United States, with the highest incidence in age-groups 14-19 years. In a subset of females, the C. trachomatis genital infection leads to serious pathological sequelae including pelvic inflammatory disease, ectopic pregnancy, and infertility. Chlamydia pneumoniae, another member of the same genus, is a common cause of community acquired respiratory infection with significant number of children aged 5-14 yr displaying sero-conversion. Since these bacteriae share several antigenic determinants, we evaluated whether intranasal immunization with live C. pneumoniae (1×10(6) inclusion forming units; IFU) in 5 week old female C57BL/6 mice would induce cross-species protection against subsequent intravaginal challenge with Chlamydia muridarum (5×10(4) IFU), which causes a similar genital infection and pathology in mice as C. trachomatis in humans. Mice vaccinated intranasally with live C. pneumoniae, but not mock (PBS) immunized animals, displayed high levels of splenic cellular antigen-specific IFN-γ production and serum antibody response against C. muridarum and C. trachomatis. Mice vaccinated with C. pneumoniae displayed a significant reduction in the vaginal C. muridarum shedding as early as day 12 after secondary i.vag. challenge compared to PBS (mock) immunized mice. At day 19 after C. muridarum challenge, 100% of C. pneumoniae vaccinated mice had cleared the infection compared to none (0%) of the mock immunized mice, which cleared the infection by day 27. At day 80 after C. muridarum challenge, C. pneumoniae vaccinated mice displayed a significant reduction in the incidence (50%) and degree of hydrosalpinx compared to mock immunized animals (100%). These results suggest that respiratory C. pneumoniae infection induces accelerated chlamydial clearance and reduction of oviduct pathology following genital C. muridarum challenge, and may have important implications to the C. trachomatis-induced reproductive disease in humans.
Collapse
Affiliation(s)
- Srikanth Manam
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Bharat K. R. Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Shankar Jaikishan Evani
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mark T. Zafiratos
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Anand K. Ramasubramanian
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ashlesh K. Murthy
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, Dixit S, Taha MA, Cambridge CD, Dennis VA. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine 2013; 8:2085-99. [PMID: 23785233 PMCID: PMC3682632 DOI: 10.2147/ijn.s44155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide)
potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant
major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a
promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by
encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its
immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice,
which are desirable prerequisites for a C. trachomatis candidate nanovaccine.
Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta
potential (−14.30 mV), apparent spherical smooth morphology, and continuous slow release
pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and
chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from
BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell
subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40
(Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum
immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from
PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized
with rMOMP in Freund’s adjuvant had only a four-fold higher Th1 than Th2 antibody titer,
suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data
underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The
capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly
desirable candidate nanovaccine against C. trachomatis.
Collapse
Affiliation(s)
- Stacie J Fairley
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kollipara A, Wan C, Rawlinson G, Brumm J, Nilsson K, Polkinghorne A, Beagley K, Timms P. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus). Vaccine 2013; 31:1217-23. [DOI: 10.1016/j.vaccine.2012.12.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
25
|
Darville T. Recognition and Treatment of Chlamydial Infections from Birth to Adolescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 764:109-22. [DOI: 10.1007/978-1-4614-4726-9_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Picard MD, Cohane KP, Gierahn TM, Higgins DE, Flechtner JB. High-throughput proteomic screening identifies Chlamydia trachomatis antigens that are capable of eliciting T cell and antibody responses that provide protection against vaginal challenge. Vaccine 2012; 30:4387-93. [PMID: 22682294 DOI: 10.1016/j.vaccine.2012.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/24/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022]
Abstract
A comprehensive proteomic screening technology was previously used to characterize T cell responses to Chlamydia trachomatis infection. In this study, we demonstrated that T cells specific for protein antigens identified through this comprehensive technology home to the site of infection after mucosal challenge with C. trachomatis. In addition, T cell responses to these proteins were elicited in multiple genetic backgrounds. Two protein antigens, CT823 and CT144, were evaluated as vaccine candidates. When administered with AbISCO-100 adjuvant, these antigens stimulated potent CD8(+) T cell responses, polyfunctional T(H)1-polarized CD4(+) T cell responses, and high titer protein-specific T(H)1-skewed antibody responses. Vaccination with either antigen with AbISCO-100 provided long-lived protection against intravaginal challenge with C. trachomatis. Adoptive transfer of immune T cells also conferred protection in the challenge model whereas passive transfer of immune serum did not, indicating the critical role for T cell responses in control of this infection. The ability of these antigens to induce potent immune responses and provide long-lived protection in response to challenge provides a basis for the rational design of a C. trachomatis subunit vaccine.
Collapse
Affiliation(s)
- Michele D Picard
- Genocea Biosciences, Inc., 161 First Street, Cambridge, MA 02142, United States
| | | | | | | | | |
Collapse
|
27
|
Taha MA, Singh SR, Dennis VA. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. NANOTECHNOLOGY 2012; 23:325101. [PMID: 22824940 DOI: 10.1088/0957-4484/23/32/325101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml(-1) maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 μg ml (-1) to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml (-1) of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml(-1)) and IL-12p40 (674 pg ml(-1)) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Murtada A Taha
- Center for NanoBiotechnology and Life Science Research (CNBR), Alabama State University, Montgomery, AL 36104, USA
| | | | | |
Collapse
|
28
|
Huston WM, Harvie M, Mittal A, Timms P, Beagley KW. Vaccination to protect against infection of the female reproductive tract. Expert Rev Clin Immunol 2012; 8:81-94. [PMID: 22149343 DOI: 10.1586/eci.11.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infection of the female genital tract can result in serious morbidities and mortalities from reproductive disability, pelvic inflammatory disease and cancer, to impacts on the fetus, such as infant blindness. While therapeutic agents are available, frequent testing and treatment is required to prevent the occurrence of the severe disease sequelae. Hence, sexually transmitted infections remain a major public health burden with ongoing social and economic barriers to prevention and treatment. Unfortunately, while there are two success stories in the development of vaccines to protect against HPV infection of the female reproductive tract, many serious infectious agents impacting on the female reproductive tract still have no vaccines available. Vaccination to prevent infection of the female reproductive tract is an inherently difficult target, with many impacting factors, such as appropriate vaccination strategies/mechanisms to induce a suitable protective response locally in the genital tract, variation in the local immune responses due to the hormonal cycle, selection of vaccine antigen(s) that confers effective protection against multiple variants of a single pathogen (e.g., the different serovars of Chlamydia trachomatis) and timing of the vaccine administration prior to infection exposure. Despite these difficulties, there are numerous ongoing efforts to develop effective vaccines against these infectious agents and it is likely that this important human health field will see further major developments in the next 5 years.
Collapse
Affiliation(s)
- Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, 60 Musk Avenue, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | | | |
Collapse
|
29
|
Chlamydia muridarum T cell antigens and adjuvants that induce protective immunity in mice. Infect Immun 2012; 80:1510-8. [PMID: 22290151 DOI: 10.1128/iai.06338-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major impediments to a Chlamydia vaccine lie in discovering T cell antigens and polarizing adjuvants that stimulate protective immunity. We previously reported the discovery of three T cell antigens (PmpG, PmpF, and RplF) via immunoproteomics that elicited protective immunity in the murine genital tract infection model against Chlamydia infection after adoptive transfer of antigen-pulsed dendritic cells. To expand the T cell antigen repertoire necessary for a Chlamydia vaccine, we evaluated 10 new Chlamydia T cell antigens discovered via immunoproteomics in addition to the 3 antigens reported earlier as a molecular subunit vaccine. We first tested five adjuvants, including three cationic liposome formulations (dimethyldioctadecylammonium bromide-monophosphoryl lipid A [DDA-MPL], DDA-trehalose 6,6'-dibehenate [DDA-TDB {CAF01}], and DDA-monomycolyl glycerol [DDA-MMG {CAF04}]), Montanide ISA720-CpG-ODN1826, and alum using the PmpG protein as a model T cell antigen in the mouse genital tract infection model. The results showed that the cationic liposomal adjuvants DDA-MPL and DDA-TDB elicited the best protective immune responses, characterized by multifunctional CD4(+) T cells coexpressing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), and reduced infection by more than 3 logs. Using DDA-MPL as an adjuvant, we found that 7 of 13 Chlamydia T cell antigens (PmpG, PmpE, PmpF, Aasf, RplF, TC0420, and TC0825) conferred protection better than or equal to that of the reference vaccine antigen, major outer membrane protein (MOMP). Pools of membrane/secreted proteins, cytoplasmic proteins, and hypothetical proteins were tested individually or in combination. Immunization with combinations protected as well as the best individual protein in that combination. The T cell antigens and adjuvants discovered in this study are of further interest in the development of a molecularly defined Chlamydia vaccine.
Collapse
|
30
|
Marks E, Helgeby A, Andersson JO, Schön K, Lycke NY. CD4⁺ T-cell immunity in the female genital tract is critically dependent on local mucosal immunization. Eur J Immunol 2011; 41:2642-53. [PMID: 21681740 DOI: 10.1002/eji.201041297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Immunizations via the i.n. and intravaginal (ivag) routes effectively generate strong genital tract antibody-mediated immunity. To what extent the same is true for T-cell responses is incompletely known. Therefore, we set out to investigate optimal conditions for stimulation of genital tract CD4(+) T-cell responses, using adoptive transfer of mouse DO11.10 TCR transgenic T cells specific for OVA and OVA conjugated to cholera toxin (CT) as an immunogen. We observed that progesterone was required for a T-cell response following ivag immunization, whereas estradiol prevented a response. Although i.n. immunization stimulated OVA-specific CD4(+) T-cell responses in the draining LNs, it was substantially less effective compared to ivag. More importantly, an ivag booster immunization was absolutely required to attract T cells to the genital tract mucosa itself. While clinical use of CT is precluded because of its toxicity, we developed a combined adjuvant vector based on a non-toxic derivative of CT and immune-stimulating complexes. The CTA1-DD/immune-stimulating complexes (ISCOMs) adjuvant together with major outer membrane protein was effective at stimulating genital tract CD4(+) T-cell immunity and protection against a live chlamydial infection, which holds promise for the development of mucosal vaccines against sexually transmitted infections.
Collapse
Affiliation(s)
- Ellen Marks
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
31
|
Slepenkin A, Chu H, Elofsson M, Keyser P, Peterson EM. Protection of mice from a Chlamydia trachomatis vaginal infection using a Salicylidene acylhydrazide, a potential microbicide. J Infect Dis 2011; 204:1313-20. [PMID: 21933873 DOI: 10.1093/infdis/jir552] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The salicylidene acylhydrazide INP0341 inhibits growth of Chlamydia in HeLa cells, has negligible cell toxicity, and does not inhibit the growth of lactobacilli. The antichlamydial activity of INP0341 was retained when tested in vaginal and semen simulants. Vaginal tissue from INP0341-treated mice appeared similar to control sham-treated mice. To determine whether INP0341 can protect mice from a vaginal challenge, C3H/HeJ mice were either sham or INP0341 treated intravaginally pre- and postinoculation with 5 × 10(2) inclusion-forming units (IFUs) of Chlamydia trachomatis serovar D. Vaginal cultures taken over a month-long period showed a significant difference in the number of control mice that were culture positive versus the number in the INP0341-treated group, 100% (25/25) and 31% (8/26), respectively (P < .05). The quantity of IFUs shed and antibody titers to Chlamydia were significantly higher for the control group (P < .05). In summary, INP0341 is a promising compound to be considered for formulation as a vaginal microbicide.
Collapse
Affiliation(s)
- Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
32
|
Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc Natl Acad Sci U S A 2011; 108:9969-74. [PMID: 21628568 DOI: 10.1073/pnas.1101756108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4(+)/IFN-γ(+) T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4(+)/IFN-γ(+)-inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4(+) T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens.
Collapse
|
33
|
El Sahly H. MF59™ as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev Vaccines 2011; 9:1135-41. [PMID: 20923265 DOI: 10.1586/erv.10.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Approximately 70 years passed between the licensing of alum salts as vaccine adjuvants and that of MF59™ MF59, an oil-in-water emulsion, is currently licensed for use in the elderly as an adjuvant in seasonal influenza vaccines. Its mechanism of action is not fully understood, but enhancement of the interaction between the antigen and the dendritic cell seems to be involved. When used with seasonal influenza vaccines, an increase occurs in the hemagglutination inhibition antibody titers against some, but not all, seasonal vaccine influenza strains. The adjuvant effect is more pronounced when MF59 is combined with novel influenza antigens such as H9 and H5. The use of the adjuvant is associated with an increase in the frequency of local and systemic early post-vaccine adverse events (3-7 days), but no increase in adverse events was observed thereafter. Currently, MF59 is under evaluation as an adjuvant with other antigens such as pandemic influenza antigens and cytomegalovirus antigens.
Collapse
Affiliation(s)
- Hana El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Taylor BD, Haggerty CL. Management of Chlamydia trachomatis genital tract infection: screening and treatment challenges. Infect Drug Resist 2011; 4:19-29. [PMID: 21694906 PMCID: PMC3108753 DOI: 10.2147/idr.s12715] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis is a prevalent sexually transmitted infection that can lead to serious reproductive morbidity. Management and control of C. trachomatis is a challenge, largely due to its asymptomatic nature and our incomplete understanding of its natural history. Although chlamydia screening programs have been implemented worldwide, several countries have observed increasing rates of reported chlamydia cases. We reviewed the literature relating to the long-term complications of C. trachomatis, as well as screening strategies, treatment, and prevention strategies for reducing chlamydia in the population. Articles from 1950-2010 were identified through a Medline search using the keyword "Chlamydia trachomatis" combined with "screening", "pelvic inflammatory disease", "endometritis", "salpingitis", "infertility", "ectopic pregnancy", "urethritis", "epididymitis", "proctitis", "prostatitis", "reinfection", "cost-effectiveness", "treatment", "vaccines", or "prevention". Progression of C. trachomatis varies, and recurrent infections are common. Currently, there is limited evidence on the effectiveness of chlamydia screening. Higher quality studies are needed to determine the efficacy of more frequent screening, on a broader range of sequelae, including infertility and ectopic pregnancy, in addition to pelvic inflammatory disease. Studies should focus on delineating the natural history of recurrent infections, paying particular attention to treatment failures. Furthermore, alternatives to screening, such as vaccines, should continue to be explored.
Collapse
Affiliation(s)
- Brandie D Taylor
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Vaccination against Chlamydia genital infection utilizing the murine C. muridarum model. Infect Immun 2010; 79:986-96. [PMID: 21078844 DOI: 10.1128/iai.00881-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chlamydia trachomatis genital infection is a worldwide public health problem, and considerable effort has been expended on developing an efficacious vaccine. The murine model of C. muridarum genital infection has been extremely useful for identification of protective immune responses and in vaccine development. Although a number of immunogenic antigens have been assessed for their ability to induce protection, the majority of studies have utilized the whole organism, the major outer membrane protein (MOMP), or the chlamydial protease-like activity factor (CPAF). These antigens, alone and in combination with a variety of immunostimulatory adjuvants, have induced various levels of protection against infectious challenge, ranging from minimal to nearly sterilizing immunity. Understanding of the mechanisms of natural infection-based immunity and advances in adjuvant biology have resulted in studies that are increasingly successful, but a vaccine licensed for use in humans has not yet been brought to fruition. Here we review immunity to chlamydial genital infection and vaccine development using the C. muridarum model.
Collapse
|
36
|
Zhu S, Chen J, Zheng M, Gong W, Xue X, Li W, Zhang L. Identification of immunodominant linear B-cell epitopes within the major outer membrane protein of Chlamydia trachomatis. Acta Biochim Biophys Sin (Shanghai) 2010; 42:771-8. [PMID: 20923859 DOI: 10.1093/abbs/gmq087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx-His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analysis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.
Collapse
Affiliation(s)
- Shanli Zhu
- Department of Microbiology and Immunology, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|
37
|
CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun 2010; 78:4374-83. [PMID: 20660610 DOI: 10.1128/iai.00622-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite effective antimicrobial chemotherapy, control of Chlamydia trachomatis urogenital infection will likely require a vaccine. We have assessed the protective effect of an outer membrane protein-based vaccine by using a murine model of chlamydial genital infection. Female mice were first vaccinated with Chlamydia muridarum major outer membrane protein (MOMP) plus the adjuvants CpG-1826 and Montanide ISA 720; then they were challenged with C. muridarum. Vaccinated mice shed 2 log(10) to 3 log(10) fewer inclusion-forming units (IFU) than ovalbumin-vaccinated or naïve animals, resolved infection sooner, and had a lower incidence of hydrosalpinx. To determine the relative contribution of T cells to vaccine-induced protection, mice were vaccinated, depleted of CD4(+) or CD8(+) T cells, and then challenged vaginally with C. muridarum. Depletion of CD4(+) T cells, but not depletion of CD8(+) T cells, diminished vaccine-induced protection, with CD4-depleted mice shedding 2 log(10) to 4 log(10) more IFU than CD8-depleted or nondepleted mice. The contribution of antibodies to vaccine-induced protection was demonstrated by the absence of protective immunity in vaccinated B-cell-deficient mice and by a 2 log(10) to 3 log(10) decrease in bacterial shedding by mice passively administered an anti-MOMP serum. Thus, optimal protective immunity in this model of vaccine-induced protection depends on contributions from both CD4(+) T cells and antibody.
Collapse
|
38
|
Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infect Immun 2010; 78:2272-82. [PMID: 20231405 DOI: 10.1128/iai.01374-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Major impediments to developing a Chlamydia vaccine lie in identifying immunologically relevant T-cell antigens and delivery in a manner to stimulate protective immunity. Using an immunoproteomic approach, we previously identified three immunodominant Chlamydia T-cell antigens (PmpG-1, PmpE/F-2, and RplF). Because RplF has high homology to a human ortholog, it may not be suitable for human vaccine development. Therefore, in this study, we evaluated protection against Chlamydia infection in the genital tract in C57BL/6 mice immunized with Chlamydia-specific membrane proteins PmpG-1, PmpE/F-2, and major outer membrane protein (MOMP; as a reference) or a combination of them formulated with one of three adjuvants, CpG oligodeoxynucleotide (CpG-ODN), AbISCO-100 (AbISCO), or DDA/TDB (dimethyldioctadecylammonium bromide/D-(+)-trehalose 6,6'-dibehenate). The results show that immunization with the CpG-ODN formulation failed to provide protection against Chlamydia infection; the AbISCO formulation conferred moderate protection, and the DDA/TDB formulation showed the highest degree of protective efficacy. The combination of PmpG-1, PmpE/F-2, and MOMP proteins formulated with DDA/TDB exhibited the greatest degree of protection among all vaccine groups studied. Moreover, this vaccine combination also engendered significant protection in BALB/c mice, which have a different major histocompatibility complex (MHC) background. We measured cell-mediated immune cytokine responses in mice immunized with PmpG-1 mixed with each of the three adjuvants. The results demonstrate that mice immunized with the DDA/TDB formulation induced the strongest gamma interferon (IFN-gamma) and interleukin-17 (IL-17) responses, characterized by the highest frequency of IFN-gamma/tumor necrosis factor alpha (TNF-alpha) and IFN-gamma/IL-17 double-positive CD4(+) T cells. In conclusion, a Chlamydia vaccine based on the recombinant proteins PmpG-1, PmpE/F-2, and MOMP delivered in a DDA/TDB adjuvant conferred protection against infection that correlated with IFN-gamma/TNF-alpha and IFN-gamma/IL-17 double-positive CD4(+) T cells.
Collapse
|
39
|
Carey AJ, Beagley KW. Chlamydia trachomatis, a hidden epidemic: effects on female reproduction and options for treatment. Am J Reprod Immunol 2010; 63:576-86. [PMID: 20192953 DOI: 10.1111/j.1600-0897.2010.00819.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The number of genital tract Chlamydia trachomatis infections is steadily increasing worldwide, with approximately 50-70% of infections asymptomatic. There is currently no uniform screening practice, current antibiotic treatment has failed to prevent the increased incidence, and there is no vaccine available. We examined studies on the epidemiology of C. trachomatis infections, the effects infections have on the female reproductive tract and subsequent reproductive health and what measures are being taken to reduce these problems. Undetected or multiple infections in women can lead to the development of severe reproductive sequelae, including pelvic inflammatory disease and tubal infertility. There are two possible paradigms of chlamydial pathogenesis, the cellular and immunological paradigms. While many vaccine candidates are being extensively tested in animal models, they are still years from clinical trials. With no vaccine available and antibiotic treatment unable to halt the increased incidence, infection rates will continue to increase and cause a significant burden on health care systems.
Collapse
Affiliation(s)
- Alison J Carey
- Institute of Health & Biomedical Innovation, School of Life Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Qld, Australia
| | | |
Collapse
|
40
|
Rockey DD, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev Vaccines 2009; 8:1365-77. [PMID: 19803759 DOI: 10.1586/erv.09.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.
Collapse
Affiliation(s)
- Daniel D Rockey
- Associate Professor, College of Veterinary Medicine, Oregon State University, 211 Dryden Hall, Corvallis, OR 97331-4804, USA.
| | | | | | | |
Collapse
|
41
|
Murthy AK, Guentzel MN, Zhong G, Arulanandam BP. Chlamydial protease-like activity factor--insights into immunity and vaccine development. J Reprod Immunol 2009; 83:179-84. [PMID: 19853923 DOI: 10.1016/j.jri.2009.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/24/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular pathogen that remains the leading cause of bacterial sexually transmitted disease worldwide, despite the availability of efficacious antimicrobial therapy. Given that chlamydial infections cause severe pathological sequelae in the upper genital tract, a licensed vaccine to prevent infection and disease would be an ideal solution. Chlamydial protease-like activity factor (CPAF) is a protein secreted in considerable amounts into the cytosol of infected cells and released into the extracellular milieu upon cellular lysis, which therefore is accessible to the host immune system. This is further substantiated by the observation that CPAF is immunodominant among other antigens in Chlamydia sero-positive humans. The efficacy of vaccination with CPAF against genital chlamydial challenge has been evaluated extensively in the murine model. This review will discuss important insights into the potential of CPAF as a component of an anti-chlamydial vaccine.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA circle, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
42
|
Cunningham KA, Carey AJ, Lycke N, Timms P, Beagley KW. CTA1-DD is an effective adjuvant for targeting anti-chlamydial immunity to the murine genital mucosa. J Reprod Immunol 2009; 81:34-8. [DOI: 10.1016/j.jri.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
|
43
|
News & Highlights. Mucosal Immunol 2009. [DOI: 10.1038/mi.2009.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Champion CI, Kickhoefer VA, Liu G, Moniz RJ, Freed AS, Bergmann LL, Vaccari D, Raval-Fernandes S, Chan AM, Rome LH, Kelly KA. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 2009; 4:e5409. [PMID: 19404403 PMCID: PMC2671841 DOI: 10.1371/journal.pone.0005409] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/01/2009] [Indexed: 11/18/2022] Open
Abstract
Background Generation of robust cell-mediated immune responses at mucosal surfaces while reducing overall inflammation is a primary goal for vaccination. Here we report the use of a recombinant nanoparticle as a vaccine delivery platform against mucosal infections requiring T cell-mediated immunity for eradication. Methodology/Principal Findings We encapsulated an immunogenic protein, the major outer membrane protein (MOMP) of Chlamydia muridarum, within hollow, vault nanocapsules (MOMP-vaults) that were engineered to bind IgG for enhanced immunity. Intranasal immunization (i.n) with MOMP-vaults induced anti-chlamydial immunity plus significantly attenuated bacterial burden following challenge infection. Vault immunization induced anti-chlamydial immune responses and inflammasome formation but did not activate toll-like receptors. Moreover, MOMP-vault immunization enhanced microbial eradication without the inflammation usually associated with adjuvants. Conclusions/Significance Vault nanoparticles containing immunogenic proteins delivered to the respiratory tract by the i.n. route can act as “smart adjuvants” for inducing protective immunity at distant mucosal surfaces while avoiding destructive inflammation.
Collapse
Affiliation(s)
- Cheryl I Champion
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zakri RH, DasGupta R, Dasgupta P, Khan MS. PREVENTING RECURRENT URINARY TRACT INFECTIONS: ROLE OF VACCINES. BJU Int 2008; 102:1055-6. [DOI: 10.1111/j.1464-410x.2008.07899.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Hansen J, Jensen K, Follmann F, Agger E, Theisen M, Andersen P. Liposome Delivery ofChlamydia muridarumMajor Outer Membrane Protein Primes a Th1 Response That Protects against Genital Chlamydial Infection in a Mouse Model1. J Infect Dis 2008; 198:758-67. [DOI: 10.1086/590670] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
47
|
Abstract
Chlamydia trachomatis causes genital tract infections that affect men, women, and children on a global scale. This review focuses on innate and adaptive immune responses in the female reproductive tract (FRT) to genital tract infections with C. trachomatis. It covers C. trachomatis infections and highlights our current knowledge of genital tract infections, serovar distribution, infectious load, and clinical manifestations of these infections in women. The unique features of the immune system of the FRT will be discussed and will include a review of our current knowledge of innate and adaptive immunity to chlamydial infections at this mucosal site. The use of animal models to study the pathogenesis of, and immunity to, Chlamydia infection of the female genital tract will also be discussed and a review of recent immunization and challenge experiments in the murine model of chlamydial FRT infection will be presented.
Collapse
|
48
|
In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine 2008; 26:1285-96. [DOI: 10.1016/j.vaccine.2007.12.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/12/2007] [Accepted: 12/28/2007] [Indexed: 01/11/2023]
|
49
|
O'Connell CM, Ingalls RR, Andrews CW, Scurlock AM, Darville T. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. THE JOURNAL OF IMMUNOLOGY 2007; 179:4027-34. [PMID: 17785841 DOI: 10.4049/jimmunol.179.6.4027] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection in the world. In women, genital infection can cause endometritis and pelvic inflammatory disease with the severe sequelae of ectopic pregnancy or infertility. Chlamydia sp. do not damage tissues directly, but induce an injurious host inflammatory response at the infected site. In the murine model of genital disease with Chlamydia muridarum, TLR2 plays a role in both early production of inflammatory mediators and development of chronic oviduct pathology. We report the results of studies with plasmid-cured C. muridarum mutants that retain the ability to infect the murine genital tract, but fail to cause disease in the oviduct. These mutants do not stimulate TLR2-dependent cytokine production in mice, nor in innate immune cells or epithelial cells in vitro. They induce an effective Th1 immune response, with no evidence for Th1-immune-mediated collateral tissue damage. Furthermore, mice previously infected with the plasmid-deficient strains are protected against oviduct disease upon challenge with virulent C. muridarum. If plasmid-cured derivatives of human C. trachomatis biovars exhibit similar phenotypic characteristics, they have the potential to serve as vaccines to prevent human disease.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA. Catherine.O'
| | | | | | | | | |
Collapse
|
50
|
Horvat JC, Beagley KW, Wade MA, Preston JA, Hansbro NG, Hickey DK, Kaiko GE, Gibson PG, Foster PS, Hansbro PM. Neonatal chlamydial infection induces mixed T-cell responses that drive allergic airway disease. Am J Respir Crit Care Med 2007; 176:556-64. [PMID: 17600276 DOI: 10.1164/rccm.200607-1005oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Chlamydial lung infection has been associated with asthma in children and adults. However, how chlamydial infection influences the development of immune responses that promote asthma remains unknown. OBJECTIVES To determine the effect of chlamydial infection at various ages on the development of allergic airway disease (AAD). METHODS Mouse models of chlamydial lung infection and ovalbumin-induced AAD were established in neonatal and adult BALB/c mice. Neonatal or adult mice were given a chlamydial infection and 6 weeks later were sensitized and subsequently challenged with ovalbumin. Features of AAD and inflammation were compared between uninfected or unsensitized controls. MEASUREMENTS AND MAIN RESULTS Mild Chlamydia-induced lung disease was observed 10-15 days after infection, as evidenced by increased bacterial numbers and histopathology in the lung and a reduction in weight gain. After 6 weeks, infection and histopathology had resolved and the rate of weight gain had recovered. Neonatal but not adult infection resulted in significant decreases in interleukin-5 production from helper T cells and by the numbers of eosinophils recruited to the lung in response to ovalbumin exposure. Remarkably, the effects of early-life infection were associated with the generation of both type 1 and 2 ovalbumin-specific helper T-cell cytokine and antibody responses. Furthermore, although neonatal infection significantly attenuated eosinophilia, the generation of the mixed T-cell response exacerbated other hallmark features of asthma: mucus hypersecretion and airway hyperresponsiveness. Moreover, infection prolonged the expression of AAD and these effects were restricted to early-life infection. CONCLUSIONS Early-life chlamydial infection induces a mixed type 1 and 2 T-cell response to antigen, which differentially affects the development of key features of AAD in the adult.
Collapse
Affiliation(s)
- Jay C Horvat
- Priority Research Centre for Asthma and Respiratory Disease, School of Biomedical Sciences, Faculty of Health, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|