1
|
Shamshirgaran MA, Golchin M. Necrotic enteritis in chickens: a comprehensive review of vaccine advancements over the last two decades. Avian Pathol 2025; 54:1-26. [PMID: 39190009 DOI: 10.1080/03079457.2024.2398028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
ABSTRACTNecrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to poultry, leading to progressive deterioration of the small intestine, reduced performance, and increased mortality rates, causing economic losses in the poultry industry. The elimination of antimicrobial agents from chicken feed has imposed a need to explore alternative approaches for NE control, with vaccination emerging as a promising strategy to counteract the detrimental consequences associated with NE. This comprehensive review presents an overview of the extensive efforts made in NE vaccination from 2004 to 2023. The review focuses on the development and evaluation of vaccine candidates designed to combat NE. Rigorous evaluations were conducted in both experimental chickens and broiler chickens, the target population, to assess the vaccines' capacity to elicit an immune response and provide substantial protection against toxin challenges and experimental NE infections. The review encompasses the design of vaccine candidates, the antigens employed, in vivo immune responses, and the efficacy of these vaccines in protecting birds from experimental NE infection. This review contributes to the existing knowledge of NE vaccination strategies, offering valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Huang M, Liu M, Liu J, Wang M, Jia R, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Gao Q, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Evaluation of the immunoprotection efficacy of Riemerella anatipestifer fur-deficient mutant as an attenuated vaccine. Poult Sci 2022; 102:102450. [PMID: 36621099 PMCID: PMC9841290 DOI: 10.1016/j.psj.2022.102450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Riemerella anatipestifer (R. anatipestifer, RA) is an infectious pathogen that causes septicemia and polyserositis in ducks. Our previous studies showed that RA CH-1 ∆fur was significantly attenuated in ducklings, which highlights the potential of this strain as a live attenuated vaccine. In this study, it was shown that infection with 109 CFU of the fur mutant did not cause any clinical symptoms or significant histological lesions in 3-day-old ducklings and that the bacteria were readily cleared by the host within 3 d. Compared with the nonvaccinated group, the group inoculated with the mutant strain RA CH-1 ∆fur exhibited protection of ducklings against a high-dose (2.28 × 1010 CFU) challenge with the wild-type strain RA CH-1. Moreover, the average body weights and body weight gains of the Δfur-inoculated group were not significantly affected by the challenge. Further analysis revealed that RA CH-1 ∆fur elicited higher IgY titers and that the serum antibody levels persisted for at least 49 d after immunization. Overall, our study showed that RA CH-1 ∆fur is a safe and effective vaccine candidate that is expected to play an important role in RA CH-1 infection prevention in the duck industry.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Jiajun Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Zhang F, Meng Y, Xu L, Tian Y, Lu H, Xie J, Ma R, Li M, Li B. KbvR mutant of Klebsiella pneumoniae affects the synthesis of type 1 fimbriae and provides protection to mice as a live attenuated vaccine. Vet Res 2022; 53:97. [DOI: 10.1186/s13567-022-01116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractKlebsiella pneumoniae is a leading cause of severe infections in humans and animals, and the emergence of multidrug-resistant strains highlights the need to develop effective vaccines for preventing such infections. Live attenuated vaccines are attractive vaccine candidates available in the veterinary field. We recently characterized that the K. pneumoniae kbvR (Klebsiella biofilm and virulence regulator) mutant was a highly attenuated strain in the mice model. In the present study, the characterization, safety, and protective efficacy of ΔkbvR strain as a live attenuated vaccine were evaluated. The synthesis and activity of type 1 fimbriae were increased in the ΔkbvR strain. All mice inoculated by the subcutaneous route with 105, 106, and 107 colony-forming units (CFU) doses of the ΔkbvR strain survived. Subcutaneous immunization with two doses of 105 or 107 CFU ΔkbvR elicited a robust humoral immune response, and provided protection against the following K. pneumoniae intraperitoneal infection. The antisera of mice immunized with 105 CFU dose improved the opsonophagocytic ability and complement-mediated lysis not only to the same serotype strain but also to the different serotype strain. The passive transfer of antisera from 105 CFU dose-immunized mice provided protection against K. pneumoniae infection. Overall, our results suggest the great potential of the ΔkbvR strain as a novel vaccine candidate against K. pneumoniae infections in herds or humans.
Collapse
|
5
|
Broto A, Gaspari E, Miravet-Verde S, Dos Santos VAPM, Isalan M. A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Nat Commun 2022; 13:1910. [PMID: 35393441 PMCID: PMC8991246 DOI: 10.1038/s41467-022-29574-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications.
Collapse
Affiliation(s)
- Alicia Broto
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Erika Gaspari
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- European & Developing Countries Clinical Trials Partnership (EDCTP), The Hague, The Netherlands
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Bedekar MK, Kole S. Fundamentals of Fish Vaccination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:147-173. [PMID: 34816404 DOI: 10.1007/978-1-0716-1888-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fish health management has become a critical component of disease control and is invaluable for improved harvests and sustainable aquaculture. Vaccination is generally accepted as the most effective prophylactic measure for fish disease prevention, on environmental, social, and economic grounds. Although the historical approach for developing fish vaccines was based on the principle of Louis Pasteur's "isolate, inactivate and inject," but their weak immunogenicity and low efficacies in many cases, have shifted the focus of fish vaccine development from traditional to next-generation technologies. However, before any fish vaccine can be successfully commercialized, several hurdles need to be overcome regarding the production cost, immunogenicity, effectiveness, mode of administration, environmental safety, and associated regulatory concerns. In this context, the chapter summarises the basic aspects of fish vaccination such as type of vaccine, modalities of vaccine delivery, the immunological basis of fish immunization as well as different challenges associated with the development process and future opportunities.
Collapse
Affiliation(s)
- Megha Kadam Bedekar
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| | - Sajal Kole
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.,Department of Aqualife Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Ariawan AD, van Eersel J, Martin AD, Ke YD, Ittner LM. Recent progress in synthetic self-adjuvanting vaccine development. Biomater Sci 2022; 10:4037-4057. [DOI: 10.1039/d2bm00061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is a proven way to protect individuals against many infectious diseases, as currently highlighted in the global COVID-19 pandemic. Peptides- or small molecule antigen-based vaccination offer advantages over the...
Collapse
|
8
|
Swain B, Powell CT, Curtiss R. Virulence, immunogenicity and live vaccine potential of aroA and phoP mutants of Edwardsiella piscicida in zebrafish. Microb Pathog 2021; 162:105355. [PMID: 34902537 DOI: 10.1016/j.micpath.2021.105355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
Vaccination remains the most effective approach for prevention and control of infectious diseases in aquaculture. Edwardsiella piscicida is a causative agent of edwardsiellosis leading to mass mortality in a variety of fish species, leading to huge economic losses in the aquaculture industry. In this study, we have deleted the aroA and phoP genes in E. piscicida and investigated the phenotype, degrees of attenuation, immunogenicity, and ability to confer immune protection in zebrafish host. Our vaccine strain χ16028 with genotype ΔaroA11 ΔphoP12, showed significantly reduced growth, motility, biofilm formation and intracellular replication compared to the wild-type strain J118. In this regard, χ16028 exhibited retarded colonization and attenuation phenotype in zebrafish. Studies showed that χ16028 induced TLR4 and TLR5 mediated NF-kB pathway and upregulated cytokine gene expression i.e., TNF-α, IL-1β, IL-6, IL-8 and type-I IFN in zebrafish. Zebrafish immunized by intracoelomic injection (i.c.) with χ16028 showed systemic and mucosal IgM responses and protection against the wild-type E. piscicida i.c. injection challenge. However, the protection was only 25% in zebrafish following i.c. challenge. We speculate that our vaccine strain might be very attenuated; a booster dose may trigger better immune response and increase the percentage of survival to a more significant level.
Collapse
Affiliation(s)
- Banikalyan Swain
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Cole T Powell
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Roy Curtiss
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| |
Collapse
|
9
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
10
|
Serine Metabolism Tunes Immune Responses To Promote Oreochromis niloticus Survival upon Edwardsiella tarda Infection. mSystems 2021; 6:e0042621. [PMID: 34427522 PMCID: PMC8407201 DOI: 10.1128/msystems.00426-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Overactive immune response is a critical factor triggering host death upon bacterial infection. However, the mechanism behind the regulation of excessive immune responses is still largely unknown, and the corresponding control and preventive measures are still to be explored. In this study, we find that Nile tilapia, Oreochromis niloticus, that died from Edwardsiella tarda infection had higher levels of immune responses than those that survived. Such immune responses are strongly associated with metabolism that was altered at 6 h postinfection. By gas chromatography-mass spectrometry-based metabolome profiling, we identify glycine, serine, and threonine metabolism as the top three of the most impacted pathways, which were not properly activated in the fish that died. Serine is one of the crucial biomarkers. Exogenous serine can promote O. niloticus survival both as a prophylactic and therapeutic upon E. tarda infection. Our further analysis revealed exogenous serine flux into the glycine, serine, and threonine metabolism and, more importantly, the glutathione metabolism via glycine. The increased glutathione synthesis could downregulate reactive oxygen species. Therefore, these data together suggest that metabolic modulation of immune responses is a potential preventive strategy to control overactive immune responses. IMPORTANCE Bacterial virulence factors are not the only factors responsible for host death. Overactive immune responses, such as cytokine storm, contribute to tissue injury that results in organ failure and ultimately the death of the host. Despite the recent development of anti-inflammation strategies, the way to tune immune responses to an appropriate level is still lacking. We propose that metabolic modulation is a promising approach in tuning immune responses. We find that the metabolomic shift at as early as 6 h postinfection can be predictive of the consequences of infection. Serine is a crucial biomarker whose administration can promote host survival upon bacterial infection either in a prophylactic or therapeutic way. Further analysis demonstrated that exogenous serine promotes the synthesis of glutathione, which downregulates reactive oxygen species to dampen immune responses. Our study exemplifies that the metabolite(s) is a potential therapeutic reagent for overactive immune response during bacterial infection.
Collapse
|
11
|
A Multivalent Vaccine Containing Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae Antigens Elicits Strong Immune Responses and Promising Protection in Pigs. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus pleuropneumoniae (App) and Mycoplasma hyopneumoniae (Mhp) cause porcine pleuropneumonia and mycoplasmal pneumonia, respectively, and have serious impacts on the swine industry because they retard the growth of pigs. To protect pigs against these diseases, we have developed a multivalent vaccine consisting of App bacterins, APP RTX toxins (Apx toxins), and Mhp bacterin and adhesin protein. This vaccine induced the production of higher levels of antibodies against App and Mhp than the commercial vaccine (Nisseiken Swine APM Inactivated Vaccine). Furthermore, the vaccine efficiently protected pigs against virulent App challenge, showing promise as an efficient vaccine for the prevention of two important respiratory diseases, porcine pleuropneumonia and mycoplasmal pneumonia.
Collapse
|
12
|
Wang Y, Huang C, Tang J, Liu G, Hu M, Kang X, Zhang J, Zhang Y, Pan Z, Jiao X, Geng S. Salmonella Pullorum spiC mutant is a desirable LASV candidate with proper virulence, high immune protection and easy-to-use oral administration. Vaccine 2021; 39:1383-1391. [PMID: 33551301 DOI: 10.1016/j.vaccine.2021.01.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Live attenuated Salmonellavaccine (LASV) is considered to be an effective contributory measure during the control of Salmonella infection. A Salmonella Pullorum spiC mutant was evaluated comprehensively as a LASV candidate (LASV-p) for broilers in terms of safety and immunogenicity. LASV-p was adminstered to 3-day broilers by intramuscular injection. The LD50 increased 126 fold, and no tissue lesions were observed in the liver, spleen and cecum, in comparison with the control group inoculated with PBS and a passive group by wild-type Salmonella. Growth rates of all broilers were normal and not affected. LASV-p persisted in vivo until 21 days in liver, 28 days in spleen and 35 days in feces, and induced high levels of humoral IgG and mucosal IgA. Cellular immunity was also stimulated in the form of antigen-specific lymphocyte proliferation and higher counts of CD3+CD8+ T cells and increased expression of mRNA of Th1 cytokines, IFN-γ and IL-2, in the early stage, and Th2 cytokines, IL-4 and IL-10, in the later stages. LASV-p provided at least 90% immuneprotection against a wild-type Salmonella Pullorum and cross-protection in different degree against other Salmonella searovars. Oral vaccine could also offer high immune protection of 87.5%. These results indicated that LASV-p vaccine candidate had a high level of safety and immune protection and it might be developed as a novel easy-to-use oral vaccine to improve poultry health in the future.
Collapse
Affiliation(s)
- Yaonan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cuiying Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Juan Tang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guifeng Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Maozhi Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xilong Kang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jian Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Shizhong Geng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
13
|
Akter Z, Haque A, Hossain MS, Ahmed F, Islam MA. Aggregation Prone Regions in Antibody Sequences Raised Against Vibrio cholerae: A Bioinformatic Approach. Curr Bioinform 2021. [DOI: 10.2174/1574893615666200106120504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background:
Cholera, a diarrheal illness, causes millions of deaths worldwide due to
large outbreaks. The monoclonal antibody used as therapeutic purposes of cholera is prone to be
unstable due to various factors including self-aggregation.
Objectives:
In this bioinformatic analysis, we identified the aggregation prone regions (APRs) of
antibody sequences of different immunogens (i.e., CTB, ZnM-CTB, ZnP-CTB, TcpA-CT-CTB,
ZnM-TcpA-CT-CTB, ZnP-TcpA-CT-CTB, ZnM-TcpA, ZnP-TcpA, TcpA-CT-TcpA, ZnM-TcpACT-
TcpA, ZnP-TcpA-CT-TcpA, Ogawa, Inaba and ZnM-Inaba) raised against Vibrio cholerae.
Methods:
To determine APRs in antibody sequences that were generated after immunizing Vibrio
cholerae immunogens on Mus musculus, a total of 94 sequences were downloaded as FASTA
format from a protein database and the algorithms such as Tango, Waltz, PASTA 2.0, and
AGGRESCAN were followed to analyze probable APRs in all of the sequences.
Results:
A remarkably high number of regions in the monoclonal antibodies were identified to be
APRs which could explain a cause of instability/short term protection of the anticholera vaccine.
Conclusion:
To increase the stability, it would be interesting to eliminate the APR residues from
the therapeutic antibodies in such a way that the antigen-binding sites or the complementarity
determining region loops involved in antigen recognition are not disrupted.
Collapse
Affiliation(s)
- Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Anamul Haque
- Biomedical Data Science and Informatics Program, School of Computing, Clemson University, Clemson, SC, United States
| | - Md. Sabir Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Firoz Ahmed
- Molecular and Serodiagnostic Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
14
|
Byvalov AA, Konyshev IV, Uversky VN, Dentovskaya SV, Anisimov AP. Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague. Biomolecules 2020; 10:E1694. [PMID: 33353123 PMCID: PMC7766529 DOI: 10.3390/biom10121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models.
Collapse
Affiliation(s)
- Andrey A. Byvalov
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Ilya V. Konyshev
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| |
Collapse
|
15
|
Wait LF, Dobson AP, Graham AL. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine 2020; 38:5582-5590. [DOI: 10.1016/j.vaccine.2020.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022]
|
16
|
Mannose-Modified Chitosan-Nanoparticle-Based Salmonella Subunit OralVaccine-Induced Immune Response and Efficacy in a Challenge Trial in Broilers. Vaccines (Basel) 2020; 8:vaccines8020299. [PMID: 32545295 PMCID: PMC7349978 DOI: 10.3390/vaccines8020299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023] Open
Abstract
Controlling Salmonella enterica serovar Enteritidis (SE) infection in broilers is a huge challenge. In this study, our objective was to improve the efficacy of a chitosan nanoparticle (CS)-based Salmonella subunit vaccine for SE, containing immunogenic outer membrane proteins (OMP) and flagellin (FLA), called the CS(OMP+FLA) vaccine, by surface conjugating it with mannose to target dendritic cells, and comparing the immune responses and efficacy with a commercial live Salmonella vaccine in broilers. The CS(OMP+FLA)-based vaccines were administered orally at age 3 days and as a booster dose after three weeks, and the broilers were challenged with SE at 5 weeks of age. Birds were sacrificed 10 days post-challenge and it was observed that CS(OMP+FLA) vaccine surface conjugated with both mannose and FLA produced the greatest SE reduction, by over 1 log10 colony forming unit per gram of the cecal content, which was comparable to a commercial live vaccine. Immunologically, specific mucosal antibody responses were enhanced by FLA-surface-coated CS(OMP+FLA) vaccine, and mannose-bound CS(OMP+FLA) improved the cellular immune response. In addition, increased mRNA expression of Toll-like receptors and cytokine was observed in CS(OMP+FLA)-based-vaccinated birds. The commercial live vaccine failed to induce any such substantial immune response, except that they had a slightly improved T helper cell frequency. Our data suggest that FLA-coated and mannose-modified CS(OMP+FLA) vaccine induced robust innate and adaptive cell-mediated immune responses and substantially reduced the Salmonella load in the intestines of broilers.
Collapse
|
17
|
Ivanov K, Garanina E, Rizvanov A, Khaiboullina S. Inflammasomes as Targets for Adjuvants. Pathogens 2020; 9:E252. [PMID: 32235526 PMCID: PMC7238254 DOI: 10.3390/pathogens9040252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are an essential part of the innate immune system. They are necessary for the development of a healthy immune response against infectious diseases. Inflammasome activation leads to the secretion of pro-inflammatory cytokines such as IL-1β and IL-18, which stimulate the adaptive immune system. Inflammasomes activators can be used as adjuvants to provide and maintain the strength of the immune response. This review is focused on the mechanisms of action and the effects of adjuvants on inflammasomes. The therapeutic and prophylaxis significance of inflammasomes in infectious diseases is also discussed.
Collapse
Affiliation(s)
- Konstantin Ivanov
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
| | - Ekaterina Garanina
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Albert Rizvanov
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
| | - Svetlana Khaiboullina
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
- University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
18
|
Berbers B, Saltykova A, Garcia-Graells C, Philipp P, Arella F, Marchal K, Winand R, Vanneste K, Roosens NHC, De Keersmaecker SCJ. Combining short and long read sequencing to characterize antimicrobial resistance genes on plasmids applied to an unauthorized genetically modified Bacillus. Sci Rep 2020; 10:4310. [PMID: 32152350 PMCID: PMC7062872 DOI: 10.1038/s41598-020-61158-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/24/2020] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat. Plasmids are able to transfer AMR genes among bacterial isolates. Whole genome sequencing (WGS) is a powerful tool to monitor AMR determinants. However, plasmids are difficult to reconstruct from WGS data. This study aimed to improve the characterization, including the localization of AMR genes using short and long read WGS strategies. We used a genetically modified (GM) Bacillus subtilis isolated as unexpected contamination in a feed additive, and therefore considered unauthorized (RASFF 2014.1249), as a case study. In GM organisms, AMR genes are used as selection markers. Because of the concern of spread of these AMR genes when present on mobile genetic elements, it is crucial to characterize their location. Our approach resulted in an assembly of one chromosome and one plasmid, each with several AMR determinants of which five are against critically important antibiotics. Interestingly, we found several plasmids, containing AMR genes, integrated in the chromosome in a repetitive region of at least 53 kb. Our findings would have been impossible using short reads only. We illustrated the added value of long read sequencing in addressing the challenges of plasmid reconstruction within the context of evaluating the risk of AMR spread.
Collapse
Affiliation(s)
- Bas Berbers
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | - Assia Saltykova
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
| | | | - Patrick Philipp
- Service Commun des Laboratoires, Illkirch-Graffenstaden, France
| | - Fabrice Arella
- Service Commun des Laboratoires, Illkirch-Graffenstaden, France
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Raf Winand
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Nancy H C Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | |
Collapse
|
19
|
Derbise A, Guillas C, Gerke C, Carniel E, Pizarro-Cerdà J, Demeure CE. Subcutaneous vaccination with a live attenuated Yersinia pseudotuberculosis plague vaccine. Vaccine 2020; 38:1888-1892. [PMID: 31964555 DOI: 10.1016/j.vaccine.2020.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
A single oral inoculation to mice of the live attenuated Yersinia pseudotuberculosis VTnF1 strain producing an F1 pseudocapsule protects against bubonic and pneumonic plague. However oral vaccination can fail in humans exposed to frequent intestinal infections. We evaluated in mice the efficacy of subcutaneous vaccine injection as an alternative way to induce protective immunity, while reducing the dose and avoiding strain release in nature. A single subcutaneous dose of up to 108 CFU induced dose-dependent antibody production. At the dose of 107 CFU, i.e. 10 times less than via the oral route, it caused a modest skin reaction and protected 100% against bubonic and 80% against pneumonic plague, caused by high doses of Yersinia pestis. Bacteria migrating to lymph nodes and spleen, but not feces, were rapidly eliminated. Thus, subcutaneous injection of VTnF1 would represent a good alternative when dissemination in nature and human intestinal responsiveness are limitations.
Collapse
Affiliation(s)
- Anne Derbise
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Chloé Guillas
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Christiane Gerke
- Vaccine Programs, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Elisabeth Carniel
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Javier Pizarro-Cerdà
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Christian E Demeure
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
20
|
Mohd-Aris A, Muhamad-Sofie MHN, Zamri-Saad M, Daud HM, Ina-Salwany MY. Live vaccines against bacterial fish diseases: A review. Vet World 2019; 12:1806-1815. [PMID: 32009760 PMCID: PMC6925058 DOI: 10.14202/vetworld.2019.1806-1815] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/11/2019] [Indexed: 01/24/2023] Open
Abstract
Fish diseases are often caused either by bacteria, viruses, fungi, parasites, or a combination of these pathogens. Of these, bacterial fish diseases are considered to be a major problem in the aquaculture industry. Hence, the prevention of such diseases by proper vaccination is one of the integral strategies in fish health management, aimed at reducing the fish mortality rate in the aquaculture farms. Vaccination offers an effective yet low-cost solution to combat the risk of disease in fish farming. An appropriate vaccination regime to prevent bacterial diseases offers a solution against the harmful effects of antibiotic applications. This review discusses the role of live-attenuated vaccine in controlling bacterial diseases and the development of such vaccines and their vaccination strategy. The current achievements and potential applications of live-attenuated and combined vaccines are also highlighted. Vaccine development is concluded to be a demanding process, as it must satisfy the requirements of the aquaculture industry.
Collapse
Affiliation(s)
- Aslizah Mohd-Aris
- Department of Biology, School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Malaysia.,Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Mohd Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hassan Mohd Daud
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Md Yasin Ina-Salwany
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Cohen ML, Mashanova EV, Rosen NM, Soto W. Adaptation to temperature stress by Vibrio fischeri facilitates this microbe's symbiosis with the Hawaiian bobtail squid (Euprymna scolopes). Evolution 2019; 73:1885-1897. [PMID: 31397886 DOI: 10.1111/evo.13819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
For microorganisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether adaptation to stress during the free-living stage can impact microbial fitness in the host. To address this topic, the mutualism between the Hawaiian bobtail squid (Euprymna scolopes) and the marine bioluminescent bacterium Vibrio fischeri was utilized. Using microbial experimental evolution, V. fischeri was selected to low (8°C), high (34°C), and fluctuating temperature stress (8°C/34°C) for 2000 generations. The temperatures 8°C and 34°C were the lower and upper growth limits, respectively. V. fischeri was also selected to benign temperatures (21°C and 28°C) for 2000 generations, which served as controls. V. fischeri demonstrated significant adaptation to low, high, and fluctuating temperature stress. V. fischeri did not display significant adaptation to the benign temperatures. Adaptation to stressful temperatures facilitated V. fischeri's ability to colonize the squid host relative to the ancestral lines. Bioluminescence levels also increased. Evolution to benign temperatures did not manifest these results. In summary, microbial adaptation to stress during the free-living stage can promote coevolution between hosts and microorganisms.
Collapse
Affiliation(s)
- Meagan Leah Cohen
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| |
Collapse
|
22
|
Adams A. Progress, challenges and opportunities in fish vaccine development. FISH & SHELLFISH IMMUNOLOGY 2019; 90:210-214. [PMID: 31039441 DOI: 10.1016/j.fsi.2019.04.066] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In 2014 the contribution of aquaculture to supply food for human consumption overtook wild-caught fish for the first time. Despite improvements in the aquaculture industry, it has been estimated that as much as 10% of all cultured aquatic animals are lost because of infectious diseases, amounting to >10 billion USD in losses annually on a global scale. Vaccination to prevent disease is used routinely in finfish aquaculture, especially for Atlantic salmon (Salmo salar), while in a limited capacity (or not at all) in many other fish species due to lack of vaccines, poor performance or cost. There has, nevertheless, been impressive progress in fish vaccine development over the last 4 decades with 24 licenced fish vaccines now commercially available for use in a variety of fish species. These comprise whole killed, peptide subunit, recombinant protein, DNA and live attenuated vaccines. Challenges do, however, still exist as the majority of commercial vaccines are killed whole cell pathogen preparations administered by intraperitoneal injection. This may not be the optimal route to deliver some vaccines, but lack of effective adjuvants and basic knowledge on immune response has hindered progress in the development of mucosal vaccines. The cost of injecting fish may also be prohibitive in some countries leading to disease treatment (e.g. with antibiotics) rather than using preventative measures. It is important that these issues are addressed as the industry continues to grow globally. Exciting opportunities exist for rapid development of fish vaccines in the future, with continued reduction in cost of technologies (e.g. of whole genome sequencing), regulations changing (e.g. DNA vaccines can now authorised in Europe), the introduction of novel antigen expression and delivery systems (such as virus-like particles, VLPs), development of novel adjuvants and advancements in the elucidation of basic mechanisms of mucosal immunity. Development of effective mucosal vaccines and optimisation of their delivery will facilitate novel vaccine development, and enable the aquaculture industries in LMIC to use vaccination routinely in the future. In addition, effective use of emergency (autogenous) vaccines will assist in tackling emerging disease challenges.
Collapse
Affiliation(s)
- Alexandra Adams
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| |
Collapse
|
23
|
Rashid MI, Rehman S, Ali A, Andleeb S. Fishing for vaccines against Vibrio cholerae using in silico pan-proteomic reverse vaccinology approach. PeerJ 2019; 7:e6223. [PMID: 31249730 PMCID: PMC6589079 DOI: 10.7717/peerj.6223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cholera, an acute enteric infection, is a serious health challenge in both the underdeveloped and the developing world. It is caused by Vibrio cholerae after ingestion of fecal contaminated food or water. Cholera outbreaks have recently been observed in regions facing natural calamities (i.e., earthquake in Haiti 2010) or war (i.e., ongoing civil war in Yemen 2016) where healthcare and sanitary setups have been disrupted as a consequence. Whole-cell oral cholera vaccines (OCVs) have been in market but their regimen efficacy has been questioned. A reverse vaccinology (RV) approach has been applied as a successful anti-microbial measure for many infectious diseases. METHODOLOGY With the aim of finding new protective antigens for vaccine development, the V. cholerae O1 (biovar eltr str. N16961) proteome was computationally screened in a sequential prioritization approach that focused on determining the antigenicity of potential vaccine candidates. Essential, accessible, virulent and immunogenic proteins were selected as potential candidates. The predicted epitopes were filtered for effective binding with MHC alleles and epitopes binding with greater MHC alleles were selected. RESULTS In this study, we report lipoprotein NlpD, outer membrane protein OmpU, accessory colonization factor AcfA, Porin, putative and outer membrane protein OmpW as potential candidates qualifying all the set criteria. These predicted epitopes can offer a potential for development of a reliable peptide or subunit vaccine for V. cholerae.
Collapse
Affiliation(s)
- Muhammad I. Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Sammia Rehman
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
24
|
Liu L, Lu DQ, Xu J, Luo HL, Li AX. Development of attenuated erythromycin-resistant Streptococcus agalactiae vaccine for tilapia (Oreochromis niloticus) culture. JOURNAL OF FISH DISEASES 2019; 42:693-701. [PMID: 30893488 DOI: 10.1111/jfd.12977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Streptococcus agalactiae is an important pathogen in fish, causing great losses of intensive tilapia farming. To develop a potential live attenuated vaccine, a re-attenuated S. agalactiae (named TFJ-ery) was developed from a natural low-virulence S. agalactiae strain TFJ0901 through selection of resistance to erythromycin. The biological characteristics, virulence, stability and the immunization protective efficacy to tilapia of TFJ-ery were determined. The results indicated that TFJ-ery grew at a slower rate than TFJ0901. The capsule thickness of TFJ-ery was significantly less (p < 0.05) than TFJ0901. When Nile tilapia were intraperitoneally (IP) injected with TFJ-ery, the mortality of fish was decreased than that injected with TFJ0901. The RPS of fish immunized with TFJ-ery at a dose of 5.0 × 107 CFU was 95.00%, 93.02% and 100.00% at 4, 8 and 16 weeks post-vaccination, respectively. ELISA results showed that the vaccinated fish produced significantly higher (p < 0.05) antibody titres compared to those of control at 2 or 4 weeks post-vaccination. Taken together, our results suggest that erythromycin could be used to attenuate S. agalactiae, and TFJ-ery is a potent attenuated vaccine candidate to protect tilapia against S. agalactiae infections.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Dan-Qi Lu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Jun Xu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Heng-Li Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
25
|
Huang T, Li LP, Liu Y, Luo YJ, Wang R, Tang JY, Chen M. Spatiotemporal distribution of Streptococcus agalactiae attenuated vaccine strain YM001 in the intestinal tract of tilapia and its effect on mucosal associated immune cells. FISH & SHELLFISH IMMUNOLOGY 2019; 87:714-720. [PMID: 30738148 DOI: 10.1016/j.fsi.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, the tilapia was orally vaccinated by the attenuated Streptococcus agalactiae(S. agalactiae) strain YM001, and the distribution and the pathological effect of strain YM001 in different intestinal segments of tilapia were evaluated by real-time PCR(qPCR), immunohistochemistry(IHC) and histomorphology. The qPCR results showed that the number of bacteria was the highest in the intestinal tracts at 12 h post oral gavage in the YM001 group, then began to decrease sharply and eliminated at 7 d. And the number of bacteria was highest in the foregut, hindgut, and rectum at 12 h, 24 h, and 3 d, respectively. IHC indicated that bacteria mainly distributed in the margin epithelium and the goblet cells at 12 h - 24 h, and in the submucosa and muscle layer in the YM001 group in 3 d post gavage, then almost disappeared at 7 d. Histological examination of intestines post gavage displayed that an inflammation was observed at 7 d in the YM001 group and the intestinal structure was fully recovered at 15 d. and the intestinal structure was fully recovered at 15 d. Conclusion: The attenuated S. agalactiae vaccine strain YM001 could enter the intestinal tissue after oral gavage and had a strong spatial and temporal selectivity in the intestinal tract, which could cause obvious mucosal immune response and mild pathological reaction, but the pathological change could be gradually repaired with the extinction of bacteria in the body.
Collapse
Affiliation(s)
- Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Li-Ping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Yong-Ju Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Jia-You Tang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China.
| |
Collapse
|
26
|
Kitagawa K, Gonoi R, Tatsumi M, Kadowaki M, Katayama T, Hashii Y, Fujisawa M, Shirakawa T. Preclinical Development of a WT1 Oral Cancer Vaccine Using a Bacterial Vector to Treat Castration-Resistant Prostate Cancer. Mol Cancer Ther 2019; 18:980-990. [PMID: 30824610 DOI: 10.1158/1535-7163.mct-18-1105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Previously, we constructed a recombinant Bifidobacterium longum displaying a partial mouse Wilms' tumor 1 (WT1) protein (B. longum 420) as an oral cancer vaccine using a bacterial vector and demonstrated that oral administration of B. longum 420 significantly inhibited tumor growth compared with the Db126 WT1 peptide vaccine in the TRAMP-C2, mouse castration-resistant prostate cancer (CRPC) syngeneic tumor model. The present study demonstrated that oral administration of 1.0×109 colony-forming units of B. longum 420 induced significantly higher cytotoxicity against TRAMP-C2 cells than intraperitoneal injection of 100 μg of Db126, and the in vivo antitumor activity of B. longum 420 in the TRAMP-C2 tumor model could be augmented by intraperitoneal injections of 250 μg of anti-PD-1 antibody. For the clinical development, we produced the B440 pharmaceutical formulation, which is lyophilized powder of inactivated B. longum 440 displaying the partially modified human WT1 protein. We confirmed that B. longum 440 could induce cellular immunity specific to multiple WT1 epitopes. In a preclinical dosage study, B440 significantly inhibited growth of the TRAMP-C2 tumors compared with that of the control groups (PBS and B. longum not expressing WT1) at all dosages (1, 5, and 10 mg/body of B440). These mouse doses were considered to correspond with practical oral administration doses of 0.2, 1, and 2 g/body for humans. Taken together, these results suggest that the B440 WT1 oral cancer vaccine can be developed as a novel oral immuno-oncology drug to treat CRPC as a monotherapy or as an adjunct to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan.,Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Reina Gonoi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Maho Tatsumi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Masahide Kadowaki
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan. .,Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
27
|
Morris C, Glennie SJ, Lam HS, Baum HE, Kandage D, Williams NA, Morgan DJ, Woolfson DN, Davidson AD. A Modular Vaccine Platform Combining Self-Assembled Peptide Cages and Immunogenic Peptides. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807357. [PMID: 32313545 PMCID: PMC7161841 DOI: 10.1002/adfm.201807357] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/18/2018] [Indexed: 05/11/2023]
Abstract
Subunit vaccines use delivery platforms to present minimal antigenic components for immunization. The benefits of such systems include multivalency, self-adjuvanting properties, and more specific immune responses. Previously, the design, synthesis, and characterization of self-assembling peptide cages (SAGEs) have been reported. In these, de novo peptides are combined to make hubs that assemble into nanoparticles when mixed in aqueous solution. Here it is shown that SAGEs are nontoxic particles with potential as accessible synthetic peptide scaffolds for the delivery of immunogenic components. To this end, SAGEs functionalized with the model antigenic peptides tetanus toxoid632-651 and ovalbumin323-339 drive antigen-specific responses both in vitro and in vivo, eliciting both CD4+ T cell and B cell responses. Additionally, SAGEs functionalized with the antigenic peptide hemagglutinin518-526 from the influenza virus are also able to drive a CD8+ T cell response in vivo. This work demonstrates the potential of SAGEs to act as a modular scaffold for antigen delivery, capable of inducing and boosting specific and tailored immune responses.
Collapse
Affiliation(s)
- Caroline Morris
- BrisSynBioUniversity of BristolBristolBS8 1TQUK
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Sarah J. Glennie
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | - Hon S. Lam
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | - Holly E. Baum
- BrisSynBioUniversity of BristolBristolBS8 1TQUK
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | - Dhinushi Kandage
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | - Neil A. Williams
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | - David J. Morgan
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | - Derek N. Woolfson
- BrisSynBioUniversity of BristolBristolBS8 1TQUK
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | - Andrew D. Davidson
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
28
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
29
|
Ma J, Bruce TJ, Sudheesh PS, Knupp C, Loch TP, Faisal M, Cain KD. Assessment of cross-protection to heterologous strains of Flavobacterium psychrophilum following vaccination with a live-attenuated coldwater disease immersion vaccine. JOURNAL OF FISH DISEASES 2019; 42:75-84. [PMID: 30370695 DOI: 10.1111/jfd.12902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live-attenuated immersion vaccine (F. psychrophilum; B.17-ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross-protective efficacy of this B.17-ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild-type virulent strain, CSF-259-93. To assess protection, 28-day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17-ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17-ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum-specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17-ILM vaccine strain appear to contribute to the cross-protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live-attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
| | - Timothy J Bruce
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
| | - Ponnerassery S Sudheesh
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
- Bronson Animal Disease Diagnostic Laboratory, Florida Department of Agriculture and Consumer Services, Kissimmee, Florida
| | - Christopher Knupp
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
| | - Thomas P Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Mohamed Faisal
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kenneth D Cain
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
| |
Collapse
|
30
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
31
|
Ziklo N, Colorni A, Gao LY, Du SJ, Ucko M. Humoral and Cellular Immune Response of European Seabass Dicentrarchus labrax Vaccinated with Heat-Killed Mycobacterium marinum (iipA::kan Mutant). JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:312-324. [PMID: 30120830 DOI: 10.1002/aah.10042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/12/2018] [Indexed: 05/19/2023]
Abstract
No vaccine is yet commercially available against Mycobacterium marinum, the etiological agent of fish mycobacteriosis (also known as "fish tuberculosis"). The mycobacterial gene responsible for invasion and intracellular persistence, iipA, is known to moderate M. marinum pathology in Zebrafish Danio rerio. Two doses of heat-killed, wild-type, virulent M. marinum and two doses of a heat-killed, avirulent M. marinum iipA::kan mutant strain were used in parallel to vaccinate European Seabass Dicentrarchus labrax. The fish were then challenged with live, virulent M. marinum, and the pathogenesis of the infection was monitored. High specific immunoglobulin M (IgM) response and an increase in cytokine tumor necrosis factor alpha (TNF-α) messenger RNA expression levels were observed in all vaccinated fish. At 1 month postchallenge, TNF-α expression levels increased in spleen tissues of fish vaccinated with the virulent type and in those of unvaccinated fish, whereas in the head kidney, expression was up-regulated only in unvaccinated fish. The expression then decreased, and at 2 months postchallenge, expression appeared similar in all vaccination types. The highest survival rate (75%) was recorded in the group of fish that were vaccinated with a high dose of avirulent iipA::kan mutant. The iipA::kan mutant induced a strong immune response accompanied by only modest tissue disruption. Coupled with an effective program of booster treatments, the iipA::kan mutant vaccine may be developed into a powerful preventive measure against fish mycobacteriosis.
Collapse
Affiliation(s)
- N Ziklo
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
- Eilat Campus, Marine Biology and Biotechnology Program, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - A Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - L-Y Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - S J Du
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, 21202, USA
| | - M Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| |
Collapse
|
32
|
Gómez L, Alvarez F, Betancur D, Oñate A. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus. Vaccine 2018; 36:2928-2936. [PMID: 29685597 DOI: 10.1016/j.vaccine.2018.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 01/18/2023]
Abstract
Brucella abortus is the etiological agent of brucellosis, a zoonotic disease affecting cattle and humans. This disease has been partially controlled in cattle by immunization with live attenuated B. abortus S19 and RB51 strains. However, use of these vaccine strains has been associated with safety issues in animals and humans. New vaccines have since emerged in the prevention of brucellosis, particularly DNA vaccines, which have shown effectiveness and a good safety profile. Their protection efficacy in mice is associated with the induction of Th1 type and cytotoxic T cell mediated immune response against structural antigens and virulence factors expressed during B. abortus infection. Some antigenic candidate for vaccine design against brucellosis (mainly DNA vaccines) have been obtained from genomic island 3 (GI-3) of B. abortus, which encodes several open reading frames (ORFs) involved in the intracellular survival and virulence of this pathogen. The immunogenicity and protection conferred by these DNA vaccines in a murine model is reviewed in this article, suggesting that some of them could be safe and effective vaccine candidates against to prevent B. abortus infection.
Collapse
Affiliation(s)
- Leonardo Gómez
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Francisco Alvarez
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Daniel Betancur
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile.
| |
Collapse
|
33
|
Moscoso M, García P, Cabral MP, Rumbo C, Bou G. A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus. Virulence 2018; 9:604-620. [PMID: 29297750 PMCID: PMC5955480 DOI: 10.1080/21505594.2017.1417723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus infections are becoming a major global health issue due to the rapid emergence of multidrug-resistant strains. Therefore, there is an urgent need to develop an effective vaccine to prevent and control these infections. In order to develop a universal immunization strategy, we constructed a mutant derivative of S. aureus 132 which lacks the genes involved in D-alanine biosynthesis, a structural component of cell wall peptidoglycan. This unmarked deletion mutant requires the exogenous addition of D-alanine for in vitro growth. The aim of this study was to examine the ability of this D-alanine auxotroph to induce protective immunity against staphylococcal infection. Our findings demonstrate that this deletion mutant is highly attenuated, elicits a protective immune response in mice and generates cross-reactive antibodies. Moreover, the D-alanine auxotroph was completely eliminated from the blood of mice after its intravenous or intraperitoneal injection. We determined that the protective effect was dependent on antibody production since the adoptive transfer of immune serum into naïve mice resulted in effective protection against S. aureus bacteremia. In addition, splenocytes from mice immunized with the D-alanine auxotroph vaccine showed specific production of IL-17A after ex vivo stimulation. We conclude that this D-alanine auxotroph protects mice efficiently against virulent staphylococcal strains through the combined action of antibodies and IL-17A, and therefore constitutes a promising vaccine candidate against staphylococcal disease, for which no licensed vaccine is available yet.
Collapse
Affiliation(s)
- Miriam Moscoso
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Patricia García
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Maria P Cabral
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Carlos Rumbo
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain.,b International Research Center in Critical Raw Materials-ICCRAM, University of Burgos , Burgos , Spain.,c Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology. Consolidated Research Unit UIC-154. Castilla y León. Spain. University of Burgos. Hospital del Rey s/n , Burgos , Spain
| | - Germán Bou
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| |
Collapse
|
34
|
Copland A, Diogo GR, Hart P, Harris S, Tran AC, Paul MJ, Singh M, Cutting SM, Reljic R. Mucosal Delivery of Fusion Proteins with Bacillus subtilis Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guérin. Front Immunol 2018; 9:346. [PMID: 29593708 PMCID: PMC5857916 DOI: 10.3389/fimmu.2018.00346] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) is the most deadly infectious disease in existence, and the only available vaccine, Bacillus Calmette-Guérin (BCG), is almost a century old and poorly protective. The immunological complexity of TB, coupled with rising resistance to antimicrobial therapies, necessitates a pipeline of diverse novel vaccines. Here, we show that Bacillus subtilis spores can be coated with a fusion protein 1 (“FP1”) consisting of Mycobacterium tuberculosis (Mtb) antigens Ag85B, ACR, and HBHA. The resultant vaccine, Spore-FP1, was tested in a murine low-dose Mtb aerosol challenge model. Mice were primed with subcutaneous BCG, followed by mucosal booster immunizations with Spore-FP1. We show that Spore-FP1 enhanced pulmonary control of Mtb, as evidenced by reduced bacterial burdens in the lungs. This was associated with elevated antigen-specific IgG and IgA titers in the serum and lung mucosal surface, respectively. Spore-FP1 immunization generated superior antigen-specific memory T-cell proliferation in both CD4+ and CD8+ compartments, alongside bolstered Th1-, Th17-, and Treg-type cytokine production, compared to BCG immunization alone. CD69+CD103+ tissue resident memory T-cells (Trm) were found within the lung parenchyma after mucosal immunization with Spore-FP1, confirming the advantages of mucosal delivery. Our data show that Spore-FP1 is a promising new TB vaccine that can successfully augment protection and immunogenicity in BCG-primed animals.
Collapse
Affiliation(s)
| | - Gil R Diogo
- St George's Medical School, London, United Kingdom
| | - Peter Hart
- St George's Medical School, London, United Kingdom
| | - Shane Harris
- St George's Medical School, London, United Kingdom
| | - Andy C Tran
- St George's Medical School, London, United Kingdom
| | | | | | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Rajko Reljic
- St George's Medical School, London, United Kingdom
| |
Collapse
|
35
|
Liu X, Jiao C, Ma Y, Wang Q, Zhang Y. A live attenuated Vibrio anguillarum vaccine induces efficient immunoprotection in Tiger puffer (Takifugu rubripes). Vaccine 2018; 36:1460-1466. [DOI: 10.1016/j.vaccine.2018.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
|
36
|
Fernandes da Costa SP, Mot D, Geeraerts S, Bokori-Brown M, Van Immerseel F, Titball RW. Variable protection against experimental broiler necrotic enteritis after immunization with the C-terminal fragment of Clostridium perfringens alpha-toxin and a non-toxic NetB variant. Avian Pathol 2017; 45:381-8. [PMID: 26743457 PMCID: PMC5044767 DOI: 10.1080/03079457.2015.1129663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Necrotic enteritis toxin B (NetB) is a pore-forming toxin produced by Clostridium perfringens and has been shown to play a key role in avian necrotic enteritis, a disease causing significant costs to the poultry production industry worldwide. The aim of this work was to determine whether immunization with a non-toxic variant of NetB (NetB W262A) and the C-terminal fragment of C. perfringens alpha-toxin (CPA247–370) would provide protection against experimental necrotic enteritis. Immunized birds with either antigen or a combination of antigens developed serum antibody levels against NetB and CPA. When CPA247–370 and NetB W262A were used in combination as immunogens, an increased protection was observed after oral challenge by individual dosing, but not after in-feed-challenge.
Collapse
Affiliation(s)
| | - Dorien Mot
- b Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases , Ghent University , Merelbeke , Belgium
| | - Sofie Geeraerts
- b Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases , Ghent University , Merelbeke , Belgium
| | - Monika Bokori-Brown
- a College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| | - Filip Van Immerseel
- b Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases , Ghent University , Merelbeke , Belgium
| | - Richard W Titball
- a College of Life and Environmental Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
37
|
Muniz EC, Verdi R, Leão JA, Back A, Nascimento VPD. Evaluation of the effectiveness and safety of a genetically modified live vaccine in broilers challenged with Salmonella Heidelberg. Avian Pathol 2017; 46:676-682. [PMID: 28660788 DOI: 10.1080/03079457.2017.1348598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Salmonellosis ranks among the major diseases of commercial poultry, and its presence in poultry flocks is responsible for economic losses and risks related to public health. Vaccines are an important tool within integrated programmes to control salmonellosis. The purpose of this study was to assess cross-protection provided by the Poulvac® ST vaccine in the control of Salmonella Heidelberg in experimentally challenged 3- and 21-day-old birds. Eighty birds were identified and separated into four treatments (T1: vaccinated and challenged at 3 days of age, T2: unvaccinated and challenged at 3 days of age, T3: vaccinated and challenged at 21 days of age, and T4: unvaccinated and challenged at 21 days of age). The inoculum was produced from a Brazilian field strain of SH. At the end of the experiment, caecum and liver/spleen samples were collected for quantitative and qualitative analysis of SH, respectively. Analysis of the liver/spleen showed that Poulvac® ST significantly (P ≤ 0.05) reduced the percentage of SH positivity in the group challenged at 3 days of age, while in the group challenged at 21 days this difference was almost considered significant (P = 0.1818). On the other hand, there was no statistically significant difference in SH count in the caecum (CFU/g) in the group challenged at 3 days, but for the group challenged at 21 days the SH counts were significantly (P ≤ 0.05) lower in the vaccinated group when compared to the positive control.
Collapse
Affiliation(s)
| | - Renato Verdi
- a Zoetis Indústria de Produtos Veterinários Ltda , São Paulo , SP , Brazil
| | | | - Alberto Back
- b Mercolab Laboratórios Ltda , Cascavel , PR , Brazil
| | | |
Collapse
|
38
|
Cabral MP, García P, Beceiro A, Rumbo C, Pérez A, Moscoso M, Bou G. Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy. Nat Commun 2017; 8:15480. [PMID: 28548079 PMCID: PMC5458566 DOI: 10.1038/ncomms15480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 01/20/2023] Open
Abstract
Vaccine development is a priority for global health due to the growing multidrug resistance in bacteria. D-glutamate synthesis is essential for bacterial cell wall formation. Here we present a strategy for generating effective bacterial whole-cell vaccines auxotrophic for D-glutamate. We apply this strategy to generate D-glutamate auxotrophic vaccines for three major pathogens, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These bacterial vaccines show virulence attenuation and self-limited growth in mice, and elicit functional and cross-reactive antibodies, and cellular immunity. These responses correlate with protection against acute lethal infection with other strains of the same species, including multidrug resistant, virulent and/or high-risk clones such as A. baumannii AbH12O-A2 and Ab307-0294, P. aeruginosa PA14, and community-acquired methicillin-resistant S. aureus USA300LAC. This approach can potentially be applied for the development of live-attenuated vaccines for virtually any other bacterial pathogens, and does not require the identification of virulence determinants, which are often pathogen-specific.
Collapse
Affiliation(s)
- Maria P. Cabral
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Patricia García
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Alejandro Beceiro
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Carlos Rumbo
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Astrid Pérez
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Miriam Moscoso
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| | - Germán Bou
- Microbiology Department, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), 15006
A Coruña, Spain
| |
Collapse
|
39
|
Brown R, Lengeling A, Wang B. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0094-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016; 17:E1715. [PMID: 27754367 PMCID: PMC5085746 DOI: 10.3390/ijms17101715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Se Hee Park
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Ki-Beom Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jae-Heung Jeon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hye-Sun Cho
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hyun-Soon Kim
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
41
|
Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine 2016; 34:6529-6538. [PMID: 27349838 DOI: 10.1016/j.vaccine.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
Abstract
Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yunkai Yang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lexin Zhu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanxing Gu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Hongxia Shen
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoliang Li
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiusheng Wu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
42
|
Li LP, Wang R, Liang WW, Huang T, Huang Y, Luo FG, Lei AY, Chen M, Gan X. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro. FISH & SHELLFISH IMMUNOLOGY 2015; 45:955-963. [PMID: 26087276 DOI: 10.1016/j.fsi.2015.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P < 0.01), and 1 × 10(5) CFU/fish hardly displayed any protective effect. In addition, the efficacy of 2-3 times of immunization was significantly higher than that of single immunization (P < 0.01) while no significant difference in the efficacy between twice and thrice of immunization was seen (P > 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P < 0.01), and the antibody reached their maximum levels 14-21 days after the immunization but decreased significantly after 28 days of vaccination. YM001 bacteria were isolated from the brain, liver, kidney, and spleen tissues of fish after oral immunization and the bacteria existed for the longest time in the spleen (up to 15 days). Taken together, this study obtained a safe, stable, and highly immunogenic attenuated S. agalactiae strain YM001; oral immunization of tilapia with this strain produced a good immune protection.
Collapse
Affiliation(s)
- L P Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - R Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - W W Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - T Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Y Huang
- Guangxi Center for Disease Control and Prevention, Nanning 530021, China
| | - F G Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou 545006, China
| | - A Y Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - M Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - X Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| |
Collapse
|
43
|
Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis. Front Microbiol 2014; 5:593. [PMID: 25538686 PMCID: PMC4260504 DOI: 10.3389/fmicb.2014.00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.
Collapse
Affiliation(s)
- William Soto
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast Lansing, MI, USA
| | | |
Collapse
|
44
|
van Schaijk BCL, Ploemen IHJ, Annoura T, Vos MW, Foquet L, van Gemert GJ, Chevalley-Maurel S, van de Vegte-Bolmer M, Sajid M, Franetich JF, Lorthiois A, Leroux-Roels G, Meuleman P, Hermsen CC, Mazier D, Hoffman SL, Janse CJ, Khan SM, Sauerwein RW. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. eLife 2014; 3. [PMID: 25407681 PMCID: PMC4273440 DOI: 10.7554/elife.03582] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022] Open
Abstract
A highly efficacious pre-erythrocytic stage vaccine would be an important tool for the control and elimination of malaria but is currently unavailable. High-level protection in humans can be achieved by experimental immunization with Plasmodium falciparum sporozoites attenuated by radiation or under anti-malarial drug coverage. Immunization with genetically attenuated parasites (GAP) would be an attractive alternative approach. In this study, we present data on safety and protective efficacy using sporozoites with deletions of two genes, that is the newly identified b9 and slarp, which govern independent and critical processes for successful liver-stage development. In the rodent malaria model, PbΔb9ΔslarpGAP was completely attenuated showing no breakthrough infections while efficiently inducing high-level protection. The human PfΔb9ΔslarpGAP generated without drug resistance markers were infective to human hepatocytes in vitro and to humanized mice engrafted with human hepatocytes in vivo but completely aborted development after infection. These findings support the clinical development of a PfΔb9ΔslarpSPZ vaccine. DOI:http://dx.doi.org/10.7554/eLife.03582.001 Vaccines commonly contain a weakened or dead version of a disease-causing microorganism, or its toxins, or surface proteins. These prime the immune system to rapidly recognize, respond to, and eliminate the actual infectious pathogen if later encountered. While vaccines are currently available to help prevent a large number of diseases, vaccines for many deadly diseases, including malaria, do not yet exist. Malaria is caused by a group of parasites called Plasmodium, which are transferred to humans by mosquitoes. While measures to control mosquito populations and prevent mosquito bites have helped to reduce the incidence of malaria in some countries, the number of people—and especially children—that die of malaria every year remains very high. When a mosquito carrying Plasmodium in its salivary glands bites a human, the parasite is injected into the human's bloodstream and travels to the liver. The parasite reproduces in the liver cells until there are so many of them that the cells rupture, and the parasites are released back into the bloodstream. Any mosquito that then feeds on the blood of the infected individual may also suck up the parasite. The parasite then goes through a further stage of development in the mosquito, eventually migrating to the salivary glands, from where the parasite can be transmitted into a new human host. Recent work in rodents suggests that genetically altered or weakened Plasmodium falciparum sporozoites—the form of the parasite found in mosquito saliva—could be used to vaccinate humans against malaria caused by this parasite species. Now, van Schaijk, Ploemen et al. evaluate whether a safe and effective vaccine could be made from sporozoites that lack two genes, called b9 and slarp, which are critical for the parasites to develop inside liver cells. When mice were injected with the modified sporozoites, their immune cells were able to detect the parasites and respond against them. The mice subsequently did not develop malaria when they were infected with normal, unmodified parasites. Furthermore, none of the mice contracted malaria from the modified sporozoites. The modified sporozoites behaved similarly in human liver cells: after invading these cells, the parasites were unable to develop. Clinical testing and further development are now needed to see if a successful malaria vaccine can be made from these sporozoites. DOI:http://dx.doi.org/10.7554/eLife.03582.002
Collapse
Affiliation(s)
- Ben C L van Schaijk
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Ivo H J Ploemen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn W Vos
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Lander Foquet
- Center for Vaccinology, Ghent University and University Hospital, Ghent, Belgium
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Mohammed Sajid
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jean-Francois Franetich
- Centre d'Immunologie et des Maladies Infectieuses, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Audrey Lorthiois
- Centre d'Immunologie et des Maladies Infectieuses, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and University Hospital, Ghent, Belgium
| | - Philip Meuleman
- Center for Vaccinology, Ghent University and University Hospital, Ghent, Belgium
| | - Cornelius C Hermsen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Dominique Mazier
- Centre d'Immunologie et des Maladies Infectieuses, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| |
Collapse
|
45
|
A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 2014; 33:25-33. [PMID: 25444808 DOI: 10.1016/j.vaccine.2014.10.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/15/2023]
Abstract
This review provides an outlook of the medical applications of immunomodulatory compounds taken from Pleurotus and proposes this fungus as a convenient host for the development of innovative vaccines. Although some fungal species, such as Saccharomyces and Pichia, occupy a relevant position in the biopharmaceutical field, these systems are essentially limited to the production of conventional expensive vaccines. Formulations made with minimally processed biomass constitute the ideal approach for developing low cost vaccines, which are urgently needed by low-income populations. The use of edible fungi has not been explored for the production and delivery of low cost vaccines, despite these organisms' attractive features. These include the fact that edible biomass can be produced at low costs in a short period of time, its high biosynthetic capacity, its production of immunomodulatory compounds, and the availability of genetic transformation methods. Perspectives associated to this biotechnological application are identified and discussed.
Collapse
|
46
|
Wang J, Zou LL, Li AX. Construction of a Streptococcus iniae sortase A mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2014; 40:392-398. [PMID: 25090938 DOI: 10.1016/j.fsi.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus iniae is a major Gram-positive aquatic pathogen, which causes invasive diseases in cultured fish worldwide. The identification of potential virulence determinants of streptococcal infections will help to understand and control this disease, but only a few have been confirmed in S. iniae. Sortase A (srtA) is the key enzyme that anchors pre-mature cell wall-attached proteins to peptidoglycan and it can affect the correct positioning of surface proteins, as well as the course of Gram-positive bacterial infection, thereby making it a potential target in the study of virulence factors and disease control. In this study, the 759 bp srtA gene was cloned from pathogenic S. iniae TBY-1 strain and the mutant strain TBY-1ΔsrtA was constructed via allelic exchange mutagenesis. We found that srtA shares high similarities with sortase A from other Streptococcus spp. Direct survival rate assay and challenge experiments were performed, which showed that the mutant strain TBY-1ΔsrtA had a lower survival capacity in healthy tilapia blood and it was less virulent than the wild type strain in tilapia, thereby indicating that the deletion of sortase A affects the virulence and infectious capacity of S. iniae. The mutant strain TBY-1ΔsrtA was used as a live vaccine, which was administered via intraperitoneal injection, and it provided the relative percent survival value of 95.5% in Nile tilapia, thereby demonstrating its high potential as an effective attenuated live vaccine candidate.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Bio-control, Key Laboratory for Aquatic Products Safety of Ministry of Education, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| | - L L Zou
- Hubei Province Key Laboratory of Pathogenic Microorganism, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang 443002, Hubei Province, PR China.
| | - A X Li
- State Key Laboratory of Bio-control, Key Laboratory for Aquatic Products Safety of Ministry of Education, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
47
|
Krachler AM, Orth K. Targeting the bacteria-host interface: strategies in anti-adhesion therapy. Virulence 2014; 4:284-94. [PMID: 23799663 PMCID: PMC3710331 DOI: 10.4161/viru.24606] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and are increasingly problematic to treat due to the rise in antibiotic-resistant strains. It becomes more and more challenging to develop new antimicrobials that are able to withstand the ever-increasing repertoire of bacterial resistance mechanisms. This necessitates the development of alternative approaches to prevent and treat bacterial infections. One of the first steps during bacterial infection is adhesion of the pathogen to host cells. A pathogen’s ability to colonize and invade host tissues strictly depends on this process. Thus, interference with adhesion (anti-adhesion therapy) is an efficient way to prevent or treat bacterial infections. As a basis to present different strategies to interfere with pathogen adhesion, this review briefly introduces general concepts of bacterial attachment to host cells. We further discuss advantages and disadvantages of anti-adhesion treatments and issues that are in need of improvement so as to make anti-adhesion compounds a more broadly applicable alternative to conventional antimicrobials.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
48
|
Nandre RM, Lee JH. Construction of a recombinant-attenuated Salmonella Enteritidis strain secreting Escherichia coli heat-labile enterotoxin B subunit protein and its immunogenicity and protection efficacy against salmonellosis in chickens. Vaccine 2014; 32:425-31. [PMID: 24176491 DOI: 10.1016/j.vaccine.2013.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022]
Abstract
A live attenuated Salmonella Enteritidis (SE) strain secreting Escherichia coli heat-labile enterotoxin B subunit (LTB) protein was constructed as a new vaccine candidate. The comparative effect of this vaccine candidate was evaluated with a previously reported SE vaccine, JOL919. An asd+, p15A ori plasmid containing eltB-encoding LTB was introduced into a ΔlonΔcpxRΔasd SE strain, and designated as JOL1364. In a single immunization experiment, group A chickens were orally inoculated with phosphate-buffered saline as a control, group B chickens were orally immunized with JOL919, and group C chickens were orally immunized with JOL1364. The immunized groups B and C showed significantly higher systemic, mucosal and cellular immune responses as compared to those of the control group. In addition, the immunized group C showed significantly higher mucosal and cellular immune responses as compared to those of the immunized group B at the 1st week post-immunization. In the examination of protection efficacy, the immunized groups B and C showed lower gross lesion scores in the liver and spleen, and lower bacterial counts of SE challenge strain in the liver, spleen, and caeca as compared to those of the control group. The number of SE-positive birds was significantly lower in the immunized group C as compared to that of the control group at the 14th day post-challenge. In addition, the number of birds carrying the challenge strain in the caeca was significantly lower in the immunized group C than those in the immunized group B and control group at the 7th and 14th day post-challenge. These results indicate that immunization with the JOL1364 vaccine candidate can induce higher mucosal and cellular immune responses than those of the JOL919 for efficient protection against salmonellosis.
Collapse
Affiliation(s)
- Rahul M Nandre
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
49
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
50
|
Brudeseth BE, Wiulsrød R, Fredriksen BN, Lindmo K, Løkling KE, Bordevik M, Steine N, Klevan A, Gravningen K. Status and future perspectives of vaccines for industrialised fin-fish farming. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1759-68. [PMID: 23769873 DOI: 10.1016/j.fsi.2013.05.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 05/08/2023]
Abstract
Fin fish farming is developing from extensive to intensive high industrial scale production. Production of fish in high-density growth conditions requires effective vaccines in order to control persistent and emerging diseases. Vaccines can also have significant positive impact on the reduced usage of antibiotics. This was demonstrated when vaccines were introduced in Norway for Atlantic salmon (Salmo salar) in the late eighties and early nineties, resulting in a rapid decline of antibiotics consumption. The present review will focus on current vaccine applications for farmed industrialized fish species such as Atlantic salmon, coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), ayu (Plecoglossus altivelis), cod (Gadus morhua), sea bass (Dicentrarchus labrax), gilt-head sea bream (Sparus aurata), yellowtail (Seriola quinqueradiata), great amberjack (Seriola dumerili), barramundi (Lates calcarifer), japanese flounder (Paralichythys olivaceus), turbot (Scophthalmus maximus), red sea bream (Pagrus major), rock bream (Oplegnathus fasciatus), seven band grouper (Epinephelus septemfasciatus), striped catfish (Pangasianodon hypophthalmus), channel catfish (Ictalurus punctatus) and tilapia (Oreochromis niloticus). This paper will review the current use of licensed vaccines in fin fish farming and describe vaccine administration regimes including immersion, oral and injection vaccination. Future trends for inactivated-, live attenuated - and DNA - vaccines will also be discussed.
Collapse
Affiliation(s)
- Bjørn Erik Brudeseth
- PHARMAQ AS, Harbitzalléen 5, 0275 Oslo, P.O. Box 267 Skøyen, N-0213 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|