1
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
2
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
3
|
Delavari S, Sohrabi M, Ardestani MS, Faezi S, Tebianian M, Taghizadeh M, Shajiei A, Hosseini SY, Moghaddampour M, Mahdavi M. Pseudomonas aeruginosa flagellin as an adjuvant: superiority of a conjugated form of flagellin versus a mixture with a human immunodeficiency virus type 1 vaccine candidate in the induction of immune responses. J Med Microbiol 2015; 64:1361-1368. [PMID: 26404477 DOI: 10.1099/jmm.0.000174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present study, the adjuvant activity of flagellin was compared, in the conjugated and mixed forms, against a peptide vaccine from human immunodeficiency virus type 1 (HIV-1) p24-Nef vaccine candidate. Mice were immunized with the HIV-1 p24-Nef peptide with flagellin in both conjugated and mixed forms. Lymphocyte proliferation, CTL activity, and IL-4 and IFN-γ cytokines were evaluated by bromodeoxyuridine, carboxyfluorescein succinimidyl ester and ELISA methods, respectively. At the same time, the frequency of IFN-γ-producing T-lymphocytes, as well as total and isotype-specific antibodies, were assessed by ELISPOT and indirect ELISA, respectively. Our experimental results showed that the immunized mice with the HIV-1 p24-Nef conjugated or mixed forms of flagellin led to increases in the proliferative responses and Th1 cytokine pattern. The conjugated form of vaccine led to increased CTL activity and a Th1 cytokine pattern of immune responses, as well as an IgM isotype of humoral responses in comparison with the mixed form. The flagellin-conjugated vaccine seems to be more potent in increasing vaccine immunogenicity.
Collapse
Affiliation(s)
- Safura Delavari
- Department of Biology, Faculty of Sciences, Qom branch of Islamic Azad University, Qom, Iran
| | - Mojtaba Sohrabi
- Department of Biology, Faculty of Sciences, Qom branch of Islamic Azad University, Qom, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Faezi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Morteza Taghizadeh
- Department of Medical Virology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Arezoo Shajiei
- Molecular Pathology Laboratory, Cancer Molecular Pathology Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Moghaddampour
- Department of Medical Virology, Razi Vaccine and Serum Research Institute, Karaj, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Garrod T, Grubor-Bauk B, Yu S, Gargett T, Gowans EJ. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency. Hum Vaccin Immunother 2014; 10:2679-83. [PMID: 25483501 DOI: 10.4161/hv.29527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.
Collapse
Affiliation(s)
- Tamsin Garrod
- a Discipline of Surgery ; the University of Adelaide; Basil Hetzel Institute ; Adelaide , SA Australia
| | | | | | | | | |
Collapse
|
5
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|
6
|
Wang R, Freywald A, Chen Y, Xu J, Tan X, Xiang J. Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44(+)CD62L(high) IL-7R(+) CTLs with up- and downregulation of anti- and pro-apoptosis genes. Cell Mol Immunol 2014; 12:456-65. [PMID: 25195511 DOI: 10.1038/cmi.2014.72] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 02/04/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-specific dendritic cell (DC) vaccines have been used in clinical trials. However, they have been found to only induce some degree of immune responses in these studies. We previously demonstrated that the HIV-1 Gag-specific Gag-Texo vaccine stimulated Gag-specific effector CD8(+) cytotoxic T lymphocyte (CTL) responses, leading to completely protective, but very limited, therapeutic immunity. In this study, we constructed a recombinant adenoviral vector, adenovirus (AdV)4-1BBL, which expressed mouse 4-1BB ligand (4-1BBL), and generated transgenic 4-1BBL-engineered OVA-Texo/4-1BBL and Gag-Texo/4-1BBL vaccines by transfecting ovalbumin (OVA)-Texo and Gag-Texo cells with AdV4-1BBL, respectively. We demonstrate that the OVA-specific OVA-Texo/4-1BBL vaccine stimulates more efficient OVA-specific CTL responses (3.26%) compared to OVA-Texo-activated responses (1.98%) in wild-type C57BL/6 mice and the control OVA-Texo/Null vaccine without transgenic 4-1BBL expression, leading to enhanced therapeutic immunity against 6-day established OVA-expressing B16 melanoma BL6-10OVA cells. OVA-Texo/4-1BBL-stimulated CTLs, which have a CD44(+)CD62L(high) IL-7R(+) phenotype, are likely memory CTL precursors, demonstrating prolonged survival and enhanced differentiation into memory CTLs with functional recall responses and long-term immunity against BL6-10OVA melanoma. In addition, we demonstrate that OVA-Texo/4-1BBL-stimulated CTLs up- and downregulate the expression of anti-apoptosis (Bcl2l10, Naip1, Nol3, Pak7 and Tnfrsf11b) and pro-apoptosis (Casp12, Trp63 and Trp73) genes, respectively, by RT(2) Profiler PCR array analysis. Importantly, the Gag-specific Gag-Texo/4-1BBL vaccine also stimulates more efficient Gag-specific therapeutic and long-term immunity against HLA-A2/Gag-expressing B16 melanoma BL6-10Gag/A2 cells than the control Gag-Texo/Null vaccine in transgenic HLA-A2 mice. Taken together, our novel Gag-Texo/4-1BBL vaccine, which is capable of stimulating potent Gag-specific therapeutic and long-term immunity, may represent a new immunotherapeutic vaccine for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Rong Wang
- 1] Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada [2] Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yue Chen
- Department of Epidemiology and Community Health, University of Ottawa, Canada
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Tan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jim Xiang
- 1] Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada [2] Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Diniz MO, Cariri FAMO, Aps LRMM, Ferreira LCS. Enhanced therapeutic effects conferred by an experimental DNA vaccine targeting human papillomavirus-induced tumors. Hum Gene Ther 2014; 24:861-70. [PMID: 24007495 DOI: 10.1089/hum.2013.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV) infection is responsible for all cervical cancer cases, other anogenital cancers, and head and neck tumors. The epidemiological relevance of HPV-induced tumors reinforces the need for the development of therapeutic antitumor vaccines. Clinical trials with different vaccine formulations, particularly DNA vaccines, have provided promising results but have still been unable to achieve the immunogenicity required for use in infected patients. In experimental conditions, anticancer HPV-specific vaccines induced E7-specific CD8(+) T-cell responses but did not confer full therapeutic antitumor protection in mice with transplanted HPV-expressing TC-1 cells, which are the most frequently used nonclinical protection correlate for antitumor effects. Our group has developed a DNA vaccine strategy based on the fusion of HPV oncoproteins to the herpes virus gD protein. This vaccine promoted the induction of antigen-specific cytotoxic CD8(+) T-cell responses and partial antitumor therapeutic effects based on the blockade of coinhibitory signals and the enhancement of coactivation mechanisms. In the present study, we report conditions leading to full therapeutic antitumor effects using the TC-1 cell murine model after a single vaccine dose. The combination of a coadministered plasmid encoding IL-2, optimization of the coding sequence for mammalian cells, and the use of different delivery routes resulted in enhancements of the E7-specific cytotoxic CD8(+) T-cell responses and full therapeutic protection under experimental conditions. The combination of these strategies augmented the potency of the DNA vaccine formulation to levels not previously achieved by other therapeutic antitumor vaccines under similar experimental conditions, including some that have been taken to clinical trials.
Collapse
Affiliation(s)
- Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, SP, 05508-900 Brazil
| | | | | | | |
Collapse
|
8
|
Su LK, Yu F, Li ZF, Zeng C, Xu QA, Fan MW. Intranasal co-delivery of IL-6 gene enhances the immunogenicity of anti-caries DNA vaccine. Acta Pharmacol Sin 2014; 35:592-8. [PMID: 24705100 DOI: 10.1038/aps.2013.184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the effects of co-delivering IL-6 expressing plasmid pCI-IL-6 on the immunogenicity of the anti-caries DNA vaccine pCIA-P, which encodes the surface protein antigen PAc of Streptococcus mutans. METHODS Plasmid pCI-IL-6 was constructed by inserting the murine IL-6 gene into the pCI vector. Expression of IL-6 in vitro was assessed using Western blot analysis. BALB/c mice were intranasally co-immunized with pCIA-P plus pCI-IL-6 on d 0 and 14. Anti-PAc IgG and secretory IgA (sIgA) were assessed by ELISA. Splenocytes from the mice were re-stimulated with the PAc protein, and IFN-γ and IL-4 production was measured using ELISA. Splenocyte proliferation was analyzed with flow cytometry. Rats were similarly immunized, and dental caries scores were determined using the Keyes method. RESULTS Marked expression of IL-6 was found in COS-7 cells transfected with pCI-IL-6. In the pCI-IL-6 co-immunized mice, the specific IgG antibodies in serum and sIgA antibodies in saliva were significantly higher than those in the control mice at weeks 4 and 8. Moreover, the secretion of IFN-γ from splenocytes in response to re-stimulation with PAc protein was significantly higher in the pCI-IL-6 co-immunized mice than that in the control mice, whereas the secretion of IL-4 had no significant difference. The proliferation of splenocytes from the pCI-IL-6 co-immunized mice was significantly higher than that from the mice immunized with pCIA-P and pCI vector. In the rat caries model, the pCI-IL-6 co-immunization rats displayed lower caries scores than the control rats. CONCLUSION Intranasal co-delivery of IL-6 gene significantly enhances the immunogenicity of the anti-caries DNA vaccine.
Collapse
|
9
|
Rodrigues L, Bonorino C. Role of IL-15 and IL-21 in viral immunity: applications for vaccines and therapies. Expert Rev Vaccines 2014; 8:167-77. [DOI: 10.1586/14760584.8.2.167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Wang R, Xie Y, Zhao T, Tan X, Xu J, Xiang J. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Zhou J, Cheung AKL, Tan Z, Wang H, Yu W, Du Y, Kang Y, Lu X, Liu L, Yuen KY, Chen Z. PD1-based DNA vaccine amplifies HIV-1 GAG-specific CD8+ T cells in mice. J Clin Invest 2013; 123:2629-42. [PMID: 23635778 DOI: 10.1172/jci64704] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 02/22/2013] [Indexed: 02/02/2023] Open
Abstract
Viral vector-based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on dendritic cells (DCs) by fusing soluble PD1 with HIV-1 GAG p24 antigen. As compared with non-DC-targeting vaccines, intramuscular immunization via electroporation (EP) of the fusion DNA in mice elicited consistently high frequencies of GAG-specific, broadly reactive, polyfunctional, long-lived, and cytotoxic CD8+ T cells and robust anti-GAG antibody titers. Vaccination conferred remarkable protection against mucosal challenge with vaccinia GAG viruses. Soluble PD1-based vaccination potentiated CD8+ T cell responses by enhancing antigen binding and uptake in DCs and activation in the draining lymph node. It also increased IL-12-producing DCs and engaged antigen cross-presentation when compared with anti-DEC205 antibody-mediated DC targeting. The high frequency of durable and protective GAG-specific CD8+ T cell immunity induced by soluble PD1-based vaccination suggests that PD1-based DNA vaccines could potentially be used against HIV-1 and other pathogens.
Collapse
Affiliation(s)
- Jingying Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kurle S, Thakar M, Shete A, Paranjape R. In vitro sensitization of T cells with DC-associated/delivered HIV constructs can induce a polyfunctional CTL response, memory T-cell response, and virus suppression. Viral Immunol 2012; 25:45-54. [PMID: 22233251 PMCID: PMC3271377 DOI: 10.1089/vim.2011.0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/28/2011] [Indexed: 01/19/2023] Open
Abstract
The absence of a suitable animal model for HIV infection is one of the major obstacles to the development of a preventive HIV vaccine. Vaccines showing good response in animal studies may fail in human efficacy trials. We have demonstrated DC-mediated in vitro sensitization of autologous T cells against three HIV constructs. The in vitro sensitized T cells were able to demonstrate a polyfunctional T-cell response, as well as central and effector memory T cells, and virus lysis in a virus inhibition assay, three potentially protective responses. However, none of the constructs could induce all three responses. Also there were variations from volunteer to volunteer. These may be due to genetic and other factors. This study provides evidence of an in vitro system that can be used to assess the immune response against a candidate vaccine, and may also provide the opportunity to modify vaccine constructs to achieve the goal of developing an ideal vaccine.
Collapse
Affiliation(s)
- Swarali Kurle
- Department of Immunology, National AIDS Research Institute, Bhosari, Pune, India
| | | | | | | |
Collapse
|
13
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
14
|
|
15
|
Li S, Qi X, Gao Y, Hao Y, Cui L, Ruan L, He W. IL-15 increases the frequency of effector memory CD8+ T cells in rhesus monkeys immunized with HIV vaccine. Cell Mol Immunol 2010; 7:491-4. [PMID: 20871629 DOI: 10.1038/cmi.2010.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several studies have suggested that interleukin (IL)-15 is a promising adjuvant that promotes cellular immunity when administered with human immunodeficiency virus (HIV) vaccine. Here we evaluated the effect of IL-15 plasmid on HIV-specific immune responses, especially cellular immunity, in eight rhesus monkeys. These monkeys were immunized three times with HIV DNA vaccine with or without IL-15 plasmid and boosted with recombinant Tiantan strain vaccinia virus-based HIV vaccine (rTV) 22 weeks after the first immunization. Although we did not detect any significant differences in the HIV-specific CD8(+) T-cell response between monkeys with IL-15 coimmunization and monkeys with HIV vaccine alone, our results showed that the frequency of effector CD8(+) memory T cells in the peripheral blood was significantly higher in monkeys with IL-15 coimmunization than those with HIV vaccine alone at almost all of the time points examined. Furthermore, the titers of anti-HIV antibodies were higher in Group T than those in Group C after rTV boosting. These findings in rhesus monkeys suggest that IL-15 may be useful as a cytokine adjuvant for HIV vaccine.
Collapse
Affiliation(s)
- Shirui Li
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The activity of several potent adjuvants, including incomplete Freund's adjuvant, CpG oligodeoxynucleotides, and alum, has been shown to be due at least in part to the induction of cytokines, including type I interferons (IFNs), IFN-gamma, interleukin-2 (IL-2), and IL-12, that play key roles in the regulation of innate and adaptive immunity. The relatively short half-life of recombinant homologues of cytokines has limited their use as vaccine adjuvants. These difficulties have been overcome by encapsulation into liposomes and the use of cytokine expression vectors co-administered with DNA vaccines. Although a number of cytokines including IFN-alpha, IFN-gamma, IL-2, IL-12, IL-15, IL-18, IL-21, GM-CSF, and Flt-3 ligand have been shown to potentiate the immune response to vaccination in various experimental models, the full potential of cytokines as vaccine adjuvants remains to be established.
Collapse
|
17
|
Kraynyak KA, Kutzler MA, Cisper NJ, Laddy DJ, Morrow MP, Waldmann TA, Weiner DB. Plasmid-encoded interleukin-15 receptor alpha enhances specific immune responses induced by a DNA vaccine in vivo. Hum Gene Ther 2009; 20:1143-56. [PMID: 19530914 PMCID: PMC2829284 DOI: 10.1089/hum.2009.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/16/2009] [Indexed: 11/12/2022] Open
Abstract
Plasmid-encoded DNA vaccines appear to be a safe and effective method for delivering antigen; however, the immunogenicity of such vaccines is often suboptimal. Cytokine adjuvants including interleukin (IL)-12, RANTES, granulocyte-macrophage colony-stimulating factor, IL-15, and others have been used to augment the immune response against DNA vaccines. In particular, IL-15 binds to a unique high-affinity receptor, IL-15R alpha; is trans-presented to CD8(+) T cells expressing the common betagamma chain; and has been shown to play a role in the generation, maintenance, and proliferation of antigen-specific CD8(+) T cells. In this study, we took the unique approach of using both a cytokine and its receptor as an adjuvant in an HIV-1 vaccine strategy. To study IL-15R alpha expression, a unique monoclonal antibody (KK1.23) was generated to confirm receptor expression in vitro. Coimmunization of IL-15 and IL-15R alpha plasmids with HIV-1 antigenic plasmids in mice enhanced the antigen-specific immune response 2-fold over IL-15 immunoadjuvant alone. Furthermore, plasmid-encoded IL-15R alpha augments immune responses in the absence of IL-15, suggesting its role as a novel adjuvant. Moreover, pIL-15R alpha enhanced the cellular, but not the humoral, immune response as measured by antigen-specific IgG antibody. This is the first report describing that IL-15R alpha itself can act as an adjuvant by enhancing an antigen-specific T cell response. Uniquely, pIL-15 and pIL-15R alpha adjuvants combined, but not the receptor alpha chain alone, may be useful as a strategy for generating and maintaining memory CD8(+) T cells in a DNA vaccine.
Collapse
Affiliation(s)
- Kimberly A. Kraynyak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michele A. Kutzler
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Neil J. Cisper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Dominick J. Laddy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Matthew P. Morrow
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Thomas A. Waldmann
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
18
|
Moaeen-ud-Din M, Malik N, Guo YL, Ali A, Babar ME. Cortistatin vaccination--a solution to growth hormone deficiency. Med Hypotheses 2009; 73:1053-4. [PMID: 19560289 DOI: 10.1016/j.mehy.2009.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/17/2009] [Accepted: 05/20/2009] [Indexed: 11/15/2022]
Abstract
Cortistatin and somatostatin are neuropeptides which have inhibitory effects on growth hormone through common five receptors. Although, both have inhibitory effects but, only cortistatin has direct inhibitory effects on growth hormone secretagogue and is more potent inhibitor of growth hormone than somatostatin. This control of growth hormone can be manipulated through immunoneutralization of cortistatin through cortistatin DNA vaccine rather than antibodies application. A DNA vaccine of cortistatin can be produced using recombinant DNA technology in a eukaryotic expression system and will serve as a tool not to only alleviate the growth hormone deficiency problems in human but, can also be used to improve growth rate in farm animals.
Collapse
Affiliation(s)
- M Moaeen-ud-Din
- Functional Genomics Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | | | | | | | | |
Collapse
|