1
|
Choi K. The Role of Macrophages in Airway Disease Focusing on Porcine Reproductive and Respiratory Syndrome Virus and the Treatment with Antioxidant Nanoparticles. Viruses 2024; 16:1563. [PMID: 39459897 PMCID: PMC11512392 DOI: 10.3390/v16101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Lung macrophage cells play a critical role in various lung diseases, and their state can change depending on the progression of the disease by inducing either an inflammatory or anti-inflammatory state. In this review, the potential therapeutic effects of treatment with antioxidant nanoparticles in air-borne diseases focusing on porcine reproductive and respiratory virus (PRRSV), considering reactive oxygen species (ROS) as one of the factors that regulate M1 and M2 macrophages in the inflammatory and anti-inflammatory states, respectively, was described. In addition, the author examines the status of protein structure research on CD163 (one of the markers of anti-inflammatory M2 macrophages) in human and veterinary lung diseases.
Collapse
MESH Headings
- Animals
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Antioxidants/pharmacology
- Swine
- Nanoparticles/chemistry
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/virology
- Porcine Reproductive and Respiratory Syndrome/drug therapy
- Humans
- Reactive Oxygen Species/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/drug effects
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/drug effects
- Receptors, Cell Surface/metabolism
- Antigens, CD/metabolism
- Antigens, CD/immunology
Collapse
Affiliation(s)
- Kyuhyung Choi
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
- Bundang New York Animal Hospital, Seongnam 13637, Republic of Korea
| |
Collapse
|
2
|
Jang H, Matsuoka M, Freire M. Oral mucosa immunity: ultimate strategy to stop spreading of pandemic viruses. Front Immunol 2023; 14:1220610. [PMID: 37928529 PMCID: PMC10622784 DOI: 10.3389/fimmu.2023.1220610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Global pandemics are most likely initiated via zoonotic transmission to humans in which respiratory viruses infect airways with relevance to mucosal systems. Out of the known pandemics, five were initiated by respiratory viruses including current ongoing coronavirus disease 2019 (COVID-19). Striking progress in vaccine development and therapeutics has helped ameliorate the mortality and morbidity by infectious agents. Yet, organism replication and virus spread through mucosal tissues cannot be directly controlled by parenteral vaccines. A novel mitigation strategy is needed to elicit robust mucosal protection and broadly neutralizing activities to hamper virus entry mechanisms and inhibit transmission. This review focuses on the oral mucosa, which is a critical site of viral transmission and promising target to elicit sterile immunity. In addition to reviewing historic pandemics initiated by the zoonotic respiratory RNA viruses and the oral mucosal tissues, we discuss unique features of the oral immune responses. We address barriers and new prospects related to developing novel therapeutics to elicit protective immunity at the mucosal level to ultimately control transmission.
Collapse
Affiliation(s)
- Hyesun Jang
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Michele Matsuoka
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Marcelo Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, Taghavizadeh Yazdi ME, Jaafari MR, Alavizadeh SH. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J Control Release 2023; 362:278-296. [PMID: 37640110 DOI: 10.1016/j.jconrel.2023.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.
Collapse
Affiliation(s)
- Vahideh Mohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023; 64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Mittal D, Ali SA. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microb Drug Resist 2022; 28:670-697. [PMID: 35696335 DOI: 10.1089/mdr.2021.0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Globally, viral illness propagation is the leading cause of morbidity and death, causing wreaking havoc on socioeconomic development and health care systems. The rise of infected individuals has outpaced the existing critical care facilities. Early and sophisticated methods are desperately required in this respect to halt the spread of the infection. Therefore, early detection of infectious agents and an early treatment approach may help minimize viral outbreaks. Conventional point-of-care diagnostic techniques such as computed tomography scan, quantitative real time polymerase chain reaction (qRT-PCR), X-ray, and immunoassay are still deemed valuable. However, the labor demanding, low sensitivity, and complex infrastructure needed for these methods preclude their use in distant areas. Nanotechnology has emerged as a potentially transformative technology due to its promise as an effective theranostic platform for diagnosing and treating viral infection, circumventing the limits of traditional techniques. Their unique physical and chemical characteristics make nanoparticles (NPs) advantageous for drug delivery platforms due to their size, encapsulation efficiency, improved bioavailability, effectiveness, immunogenicity, and antiviral response. This study discusses the recent research on nanotechnology-based treatments designed to combat new viruses.
Collapse
Affiliation(s)
- Deepti Mittal
- Nanosafety Lab, Division of Biochemistry, ICAR-NDRI, Karnal, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, Haryana, India
| |
Collapse
|
6
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Sun HC, Huang J, Fu Y, Hao LL, Liu X, Shi TY. Enhancing Immune Responses to a DNA Vaccine Encoding Toxoplasma gondii GRA7 Using Calcium Phosphate Nanoparticles as an Adjuvant. Front Cell Infect Microbiol 2022; 11:787635. [PMID: 34976863 PMCID: PMC8716823 DOI: 10.3389/fcimb.2021.787635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Toxoplasma gondii infects almost all warm-blooded animals, including humans. DNA vaccines are an effective strategy against T. gondii infection, but these vaccines have often been poorly immunogenic due to the poor distribution of plasmids or degradation by lysosomes. It is necessary to evaluate the antigen delivery system for optimal vaccination strategy. Nanoparticles (NPs) have been shown to modulate and enhance the cellular humoral immune response. Here, we studied the immunological properties of calcium phosphate nanoparticles (CaPNs) as nanoadjuvants to enhance the protective effect of T. gondii dense granule protein (GRA7). BALB/c mice were injected three times and then challenged with T. gondii RH strain tachyzoites. Mice vaccinated with GRA7-pEGFP-C2+nano-adjuvant (CaPNs) showed a strong cellular immune response, as monitored by elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), a higher IgG2a-to-IgG1 ratio, elevated interleukin (IL)-12 and interferon (IFN)-γ production, and low IL-4 levels. We found that a significantly higher level of splenocyte proliferation was induced by GRA7-pEGFP-C2+nano-adjuvant (CaPNs) immunization, and a significantly prolonged survival time and decreased parasite burden were observed in vaccine-immunized mice. These data indicated that CaPN-based immunization with T. gondii GRA7 is a promising approach to improve vaccination.
Collapse
Affiliation(s)
- Hong-Chao Sun
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jing Huang
- Department of Animal Epidemic Surveillance, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, China
| | - Yuan Fu
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Li-Li Hao
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xin Liu
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Tuan-Yuan Shi
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
8
|
Ftouh M, Kalboussi N, Abid N, Sfar S, Mignet N, Bahloul B. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Res 2021; 2021:6741290. [PMID: 34721558 PMCID: PMC8550859 DOI: 10.1155/2021/6741290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Center for Disease Control and Prevention (CDC), the coronavirus disease 2019, a respiratory viral illness linked to significant morbidity, mortality, production loss, and severe economic depression, was the third-largest cause of death in 2020. Respiratory viruses such as influenza, respiratory syncytial virus, SARS-CoV-2, and adenovirus, are among the most common causes of respiratory illness in humans, spreading as pandemics or epidemics throughout all continents. Nanotechnologies are particles in the nanometer range made from various compositions. They can be lipid-based, polymer-based, protein-based, or inorganic in nature, but they are all bioinspired and virus-like. In this review, we aimed to present a short review of the different nanoparticles currently studied, in particular those which led to publications in the field of respiratory viruses. We evaluated those which could be beneficial for respiratory disease-based viruses; those which already have contributed, such as lipid nanoparticles in the context of COVID-19; and those which will contribute in the future either as vaccines or antiviral drug delivery systems. We present a short assessment based on a critical selection of evidence indicating nanotechnology's promise in the prevention and treatment of respiratory infections.
Collapse
Affiliation(s)
- Mahdi Ftouh
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nesrine Kalboussi
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
- Sahloul University Hospital, Pharmacy Department, Sousse, Tunisia
| | - Nabil Abid
- Department of Biotechnology, High Institute of Biotechnology of Sidi Thabet, University of Manouba, BP-66, 2020 Ariana, Tunis, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia
| | - Souad Sfar
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nathalie Mignet
- University of Paris, INSERM, CNRS, UTCBS, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Badr Bahloul
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|
9
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
10
|
Serag E, El-Zeftawy M. Environmental aspect and applications of nanotechnology to eliminate COVID-19 epidemiology risk. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021. [PMCID: PMC7917956 DOI: 10.1007/s41204-021-00108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we discuss fast development of the new coronavirus disease COVID-19, emerged in late 2019 in Wuhan, Hubei Province, China, the ground zero of the coronavirus pandemic, and associated with relatively high mortality rate. COVID-19 risk originates from its ability to transmit easily from person to person through the respiratory droplets released during sneezing, breathing, talking, singing, or coughing within a range of nearly 1.5–2 m. The review begins with an overview of COVID-19 origin and symptoms that range from common cold to severe respiratory illnesses and death. Then, it sheds light on the role of nanotechnology as an effective tool for fighting COVID-19 via contributions in diagnosis, treatment, and manufacture of protective equipment for people and healthcare workers. Emergency-approved therapeutics for clinical trial and prospective vaccines are discussed. Additionally, the present work addresses the risk of severe acute respiratory syndrome coronavirus transmission via wastewater and means of wastewater treatment and disinfection via nanoscale materials. The review concludes with a brief assessment of the government's efforts and contemporary propositions to minimize COVID-19 hazard and spreading.
Collapse
Affiliation(s)
- Eman Serag
- Marine Pollution Department, Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley Egypt
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Rashidzadeh H, Danafar H, Rahimi H, Mozafari F, Salehiabar M, Rahmati MA, Rahamooz-Haghighi S, Mousazadeh N, Mohammadi A, Ertas YN, Ramazani A, Huseynova I, Khalilov R, Davaran S, Webster TJ, Kavetskyy T, Eftekhari A, Nosrati H, Mirsaeidi M. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): diagnosis, treatment, therapy and future perspectives. Nanomedicine (Lond) 2021; 16:497-516. [PMID: 33683164 PMCID: PMC7938776 DOI: 10.2217/nnm-2020-0441] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19, as an emerging infectious disease, has caused significant mortality and morbidity along with socioeconomic impact. No effective treatment or vaccine has been approved yet for this pandemic disease. Cutting-edge tools, especially nanotechnology, should be strongly considered to tackle this virus. This review aims to propose several strategies to design and fabricate effective diagnostic and therapeutic agents against COVID-19 by the aid of nanotechnology. Polymeric, inorganic self-assembling materials and peptide-based nanoparticles are promising tools for battling COVID-19 as well as its rapid diagnosis. This review summarizes all of the exciting advances nanomaterials are making toward COVID-19 prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Hossein Rahimi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faezeh Mozafari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Salehiabar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Mohammad Amin Rahmati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Rahamooz-Haghighi
- Department of Plant Production & Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research & Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku AZ 1073, Azerbaijan
| | - Rovshan Khalilov
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Department of Biophysics & Biochemistry, Baku State University, Baku, Azerbaijan
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow 119991, Russian Federation
| | - Soodabeh Davaran
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Aziz Eftekhari
- Maragheh University of Medical Sciences, Maragheh 78151-55158, Iran
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow 119991, Russian Federation
- Polymer Institute of SAS, Dúbravská cesta 9, Bratislava 845 41, Slovakia
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Mehdi Mirsaeidi
- Department of Public Health Sciences, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
12
|
Kumari S, Chatterjee K. Biomaterials-based formulations and surfaces to combat viral infectious diseases. APL Bioeng 2021; 5:011503. [PMID: 33598595 PMCID: PMC7881627 DOI: 10.1063/5.0029486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Rapidly growing viral infections are potent risks to public health worldwide. Accessible virus-specific antiviral vaccines and drugs are therapeutically inert to emerging viruses, such as Zika, Ebola, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, discovering ways to prevent and control viral infections is among the foremost medical challenge of our time. Recently, innovative technologies are emerging that involve the development of new biomaterial-based formulations and surfaces endowed with broad-spectrum antiviral properties. Here, we review emerging biomaterials technologies for controlling viral infections. Relevant advances in biomaterials employed with nanotechnology to inactivate viruses or to inhibit virus replication and further their translation in safe and effective antiviral formulations in clinical trials are discussed. We have included antiviral approaches based on both organic and inorganic nanoparticles (NPs), which offer many advantages over molecular medicine. An insight into the development of immunomodulatory scaffolds in designing new platforms for personalized vaccines is also considered. Substantial research on natural products and herbal medicines and their potential in novel antiviral drugs are discussed. Furthermore, to control contagious viral infections, i.e., to reduce the viral load on surfaces, current strategies focusing on biomimetic anti-adhesive surfaces through nanostructured topography and hydrophobic surface modification techniques are introduced. Biomaterial surfaces functionalized with antimicrobial polymers and nanoparticles against viral infections are also discussed. We recognize the importance of research on antiviral biomaterials and present potential strategies for future directions in applying these biomaterial-based approaches to control viral infections and SARS-CoV-2.
Collapse
Affiliation(s)
- Sushma Kumari
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Park SB, Sung MH, Uyama H, Han DK. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101341] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
15
|
Jastrzębska AM, Vasilchenko AS. Smart and Sustainable Nanotechnological Solutions in a Battle against COVID-19 and Beyond: A Critical Review. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:601-622. [PMID: 34192094 PMCID: PMC7805306 DOI: 10.1021/acssuschemeng.0c06565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Indexed: 05/05/2023]
Abstract
The variety of available biocidal features make nanomaterials promising for fighting infections. To effectively battle COVID-19, categorized as a pandemic by the World Health Organization (WHO), materials scientists and biotechnologists need to combine their knowledge to develop efficient antiviral nanomaterials. By design, nanostructured materials (spherical, two-dimensional, hybrid) can express a diverse bioactivity and unique combination of specific, nonspecific, and mixed mechanisms of antiviral action. It can be related to the material's specific features and their multiple functionalization strategies. This is a complex guiding approach in which an interaction target is constantly moving and quickly changing. On the other hand, in such a rush, sustainability may be put aside. Therefore, to elucidate the most promising nanotechnological solutions, we critically review available data within the frame of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other types of viruses. We highlight solutions that are, or could be, more sustainable and less toxic. In this regard, reduction of the number of synthetic routes, organic solvents, byproducts, and residues is highly recommended. Such efficient, green solutions may be further used for the prevention of virion-host interactions, treatment of the already developed infection, reducing inflammation, and finally, protecting healthcare professionals with masks, fabrics, equipment, and in other associated areas. Further translation into the market needs putting on the fast track with respect to principles of green chemistry, feasibility, safety, and the environment.
Collapse
Affiliation(s)
- Agnieszka M. Jastrzębska
- Warsaw
University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
| | - Alexey S. Vasilchenko
- Institute
of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| |
Collapse
|
16
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
17
|
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1072. [PMID: 32486364 PMCID: PMC7352498 DOI: 10.3390/nano10061072] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran;
| | - Ghazaleh Jamalipour Soufi
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran;
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, CZ-779 00 Olomouc, Czech Republic
| |
Collapse
|
18
|
Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS, Mitropoulos AC, Mokarrar MH, Kyzas GZ. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E852. [PMID: 32354113 PMCID: PMC7712148 DOI: 10.3390/nano10050852] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making the situation more dangerous and currently available medical care futile. This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.
Collapse
Affiliation(s)
| | - Akhilash M. Pillai
- Department of Chemistry, University College, Thiruvananthapuram, Kerala 695034, India;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98615538, Iran
| | - Anumol P. Sobha
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India;
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | | | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| |
Collapse
|
19
|
Abstract
Mucosal surfaces represent important routes of entry into the human body for the majority of pathogens, and they constitute unique sites for targeted vaccine delivery. Nanoparticle-based drug delivery systems are emerging technologies for delivering and improving the efficacy of mucosal vaccines. Recent studies have provided new insights into formulation and delivery aspects of importance for the design of safe and efficacious mucosal subunit vaccines based on nanoparticles. These include novel nanomaterials, their physicochemical properties and formulation approaches, nanoparticle interaction with immune cells in the mucosa, and mucosal immunization and delivery strategies. Here, we present recent progress in the application of nanoparticle-based approaches for mucosal vaccine delivery and discuss future research challenges and opportunities in the field.
Collapse
|
20
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int J Pharm 2019; 573:118850. [PMID: 31759993 DOI: 10.1016/j.ijpharm.2019.118850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
Cpl-1, an endolysin derived from Cp-1 phage has been found to be effective in a number of in-vitro and in-vivo pneumococcal infection models. However its lower bioavailability under in-vivo conditions limits its applicability as therapeutic agent. In this study, Cpl-1 loaded chitosan nanoparticles were set up in order to develop a novel therapeutic delivery system to counter antibiotic resistant S. pneumoniae infections. Interactions of chitosan and Cpl-1 were studied by in-silico docking analysis. Chitosan nanoparticles and Cpl-1 loaded chitosan nanoparticles were prepared by using ionic gelation method and the process was optimized by varying chitosan:TPP ratio, pH, stirring time, stirring rate and Cpl-1 concentration. Chitosan nanoparticles and Cpl-1 loaded chitosan nanoparticles were characterized to ascertain successful formation of nanoparticles and entrapment of Cpl-1 into nanoparticles. Chitosan nanoparticles and Cpl-1 loaded nanoparticles were also evaluated for nanoparticle yield, entrapment efficiency, in-vitro release, stability, structural integrity of Cpl-1, in-vitro bioassay, swelling studies, in-vitro biodegradation and heamolysis studies. Mucoadhesion behavior of chitosan nanoparticles and Cpl-1 loaded nanoparticles was explored using mucous glycoprotein assay and ex-vivo mucoadhesion assay, both preparations exhibited their mucoadhesive nature. Cellular cytotoxicity and immune stimulation studies revealed biocompatible nature of nanoparticles. The results of this study confirm that chitosan nanoparticles are a promising biocompatible candidate for Cpl-1 delivery with a significant potential to increase bioavailability of enzyme that in turn can increase its in-vivo half life to treat S. pneumoniae infections.
Collapse
|
22
|
Feng H, Yamashita M, Wu L, Jose da Silva Lopes T, Watanabe T, Kawaoka Y. Food Additives as Novel Influenza Vaccine Adjuvants. Vaccines (Basel) 2019; 7:E127. [PMID: 31554190 PMCID: PMC6963695 DOI: 10.3390/vaccines7040127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Influenza is a major threat to public health. Vaccination is an effective strategy to control influenza; however, the current inactivated influenza vaccine has mild immunogenicity and exhibits suboptimal efficacy in clinical use. Vaccine efficacy can be improved by the addition of adjuvants, but few adjuvants have been approved for human use. To explore novel and effective adjuvants for influenza vaccines, here we screened 145 compounds from food additives approved in Japan. Of these 145 candidates, we identified 41 compounds that enhanced the efficacy of the split influenza hemagglutinin (HA) vaccine against lethal virus challenge in a mouse model. These 41 compounds included 18 novel adjuvant candidates and 15 compounds with previously reported adjuvant effects for other antigens but not for the influenza vaccine. Our results are of value to the development of novel and effective adjuvanted influenza or other vaccines for human use.
Collapse
Affiliation(s)
- Huapeng Feng
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Li Wu
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Tiago Jose da Silva Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
23
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
24
|
Sanchez-Guzman D, Le Guen P, Villeret B, Sola N, Le Borgne R, Guyard A, Kemmel A, Crestani B, Sallenave JM, Garcia-Verdugo I. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials 2019; 217:119308. [PMID: 31279103 DOI: 10.1016/j.biomaterials.2019.119308] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
Most of current influenza virus vaccines fail to develop a strong immunity at lung mucosae (site of viral entry) due to sub-optimal vaccination protocols (e.g. inactivated virus administered by parenteral injections). Mucosal immunity could be improved by using locally-delivered vaccines containing appropriate adjuvants. Here we show, in a mouse model, that inclusion of silver nanoparticles (AgNPs) in virus-inactivated flu vaccine resulted in reduction of viral loads and prevention of excessive lung inflammation following influenza infection. Concomitantly, AgNPs enhanced specific IgA secreting plasma cells and antibodies titers, a hallmark of successful mucosal immunity. Moreover, vaccination in the presence of AgNPs but not with gold nanoparticles, protected mice from lethal flu. Compared with other commercial adjuvants (squalene/oil-based emulsion) or silver salts, AgNPs stimulated stronger antigen specific IgA production with lower toxicity by promoting bronchus-associated lymphoid tissue (BALT) neogenesis, and acted as a bona fide mucosal adjuvant.
Collapse
Affiliation(s)
- Daniel Sanchez-Guzman
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Pierre Le Guen
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France; Department of Pneumology A, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Berengere Villeret
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Nuria Sola
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Remi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205, Cedex 13, Paris, France
| | - Alice Guyard
- Department of Pathology, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Alix Kemmel
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Bruno Crestani
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France; Department of Pneumology A, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Jean-Michel Sallenave
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France.
| |
Collapse
|
25
|
Ukawa M, Tanishita S, Yagi H, Yoshida Y, Tomono T, Shigeno K, Tobita E, Uto T, Baba M, Sakuma S. Biodegradable Hyaluronic Acid Modified with Tetraglycine-l-octaarginine as a Safe Adjuvant for Mucosal Vaccination. Mol Pharm 2019; 16:1105-1118. [PMID: 30715891 DOI: 10.1021/acs.molpharmaceut.8b01110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have been investigating the potential use of polymers modified with cell-penetrating peptides as an adjuvant for mucosal vaccination and have already developed nondegradable poly( N-vinylacetamide- co-acrylic acid) (PNVA- co-AA) with which d-octaarginine, a typical cell-penetrating peptide, was grafted. Our previous murine infection experiments demonstrated that immunoglobulin G (IgG) and immunoglobulin A (IgA) were induced in systemic circulation and secreted on nasal mucosa, respectively, through 4-time nasal inoculations with a mixture of influenza viral antigens and d-octaarginine-linked PNVA- co-AA at 7-day intervals, and that immunized mice were perfectly protected from homologous virus infection. In the present study, we designed novel biodegradable polymers bearing cell-penetrating peptides from a perspective of clinical application. Hyaluronic acid whose glucuronic acid was modified with tetraglycine-l-octaarginine at a monosaccharide unit ratio of 30% was successfully developed. The hyaluronic acid derivative exhibited adjuvant activities identical to PNVA- co-AA bearing either d-octaarginine or tetraglycine-d-octaarginine under the above-mentioned inoculation schedule. We further found that there was no difference in humoral immunity between the 4-time inoculations at 7-day intervals and the 2-time inoculations at 28-day intervals. Intranasal IgA induced through the latter schedule with a smaller number of inoculations, which is clinically practical, exhibited cross-reactivity beyond the subtype of viral strains. In vitro toxicity studies demonstrated that the hyaluronic acid derivative was much less toxic than the corresponding PNVA- co-AA derivatives, and that both the polymers and their metabolites did not exhibit genotoxicity. Our results suggested that tetraglycine-l-octaarginine-linked hyaluronic acid would be a clinically valuable and safe adjuvant for mucosal vaccination.
Collapse
Affiliation(s)
- Masami Ukawa
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata , Osaka 573-0101 , Japan
| | - Sohei Tanishita
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata , Osaka 573-0101 , Japan
| | - Haruya Yagi
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata , Osaka 573-0101 , Japan
| | - Yuki Yoshida
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata , Osaka 573-0101 , Japan
| | - Takumi Tomono
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata , Osaka 573-0101 , Japan
| | - Koichi Shigeno
- Life Science Materials Laboratory , ADEKA Co. , 7-2-34, Higashiogu , Arakawa-ku , Tokyo 116-8553 , Japan
| | - Etsuo Tobita
- Life Science Materials Laboratory , ADEKA Co. , 7-2-34, Higashiogu , Arakawa-ku , Tokyo 116-8553 , Japan
| | - Tomofumi Uto
- Faculty of Medicine , University of Miyazaki , Kihara 5200, Kiyotake , Miyazaki 889-1692 , Japan
| | - Masanori Baba
- Center for Chronic Viral Diseases , Kagoshima University , 8-35-1, Sakuragaoka , Kagoshima 890-8544 , Japan
| | - Shinji Sakuma
- Faculty of Pharmaceutical Sciences , Setsunan University , 45-1, Nagaotoge-cho , Hirakata , Osaka 573-0101 , Japan
| |
Collapse
|
26
|
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019; 10:22. [PMID: 30733717 PMCID: PMC6353795 DOI: 10.3389/fimmu.2019.00022] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The respiratory mucosa is the primary portal of entry for numerous viruses such as the respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes the strategy of choice to fight against infections, including those leading to pulmonary diseases. Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines were developed to overcome these issues. However, these vaccines may suffer from a limited immunogenicity and, in most cases, the protection induced is only partial. A new generation of vaccines based on nanoparticles has shown great potential to address most of the limitations of conventional and subunit vaccines. This is due to recent advances in chemical and biological engineering, which allow the design of nanoparticles with a precise control over the size, shape, functionality and surface properties, leading to enhanced antigen presentation and strong immunogenicity. This short review provides an overview of the advantages associated with the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and highlights relevant examples demonstrating their potential as safe, effective and affordable vaccines.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
| | - Laurie Gauthier
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Dominic Arpin
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
27
|
Ikeda M, Akagi T, Nagao M, Akashi M. Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly(γ-glutamic acid) nanoparticles. Anal Bioanal Chem 2018; 410:4445-4457. [PMID: 29931574 DOI: 10.1007/s00216-018-1099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023]
Abstract
A quantitative method of analyzing nanoparticles (NPs) for drug delivery is urgently required by researchers and industry. Therefore, we developed new quantitative analytical methods for biodegradable and amphiphilic NPs consisting of polymeric γ-PGA-Phe [phenylalanine attached to poly(γ-glutamic acid)] molecules. These γ-PGA-Phe NPs were completely dissociated into separate γ-PGA-Phe molecules by adding sodium dodecyl sulfate (SDS). The dissociated NPs were chromatographically separated to analyze parameters such as the γ-PGA-Phe content in the NPs, the impurities present [using reverse-phase (RP) HPLC with an ultraviolet (UV) detector], and the absolute MW [using size-exclusion chromatography (SEC) with refractive index detection (RI) and multiangle light scattering (MALS) detection, i.e., SEC-RI/MALS]. The chromatographic patterns of the NPs were equivalent to those of the component polymer (γ-PGA-Phe), and excellent chromatographic separation for the quantitative evaluation of NPs was achieved. To the best of our knowledge, this is the first report of the quantitative evaluation of NPs in the field of NP-based delivery systems. Furthermore, these methods were applied to optimize and evaluate the NP manufacturing process. The results showed that impurities were effectively removed from the γ-PGA-Phe during the manufacturing process, so the purity of the final γ-PGA-Phe NPs was enhanced. In addition, the appearance, clarity of solution, particle size, zeta potential, particle matter, osmolarity, and pH of the product were evaluated to ensure that the NPs were of the required quality. Our approach should prove useful for product and process characterization and quality control in the manufacture of NPs. γ-PGA-Phe NPs are known to be a powerful vaccine adjuvant, so they are expected to undergo clinical development into a practical drug-delivery system. The analytical methods established in this paper should facilitate the reliable and practical quality testing of NP products, thus aiding the clinical development of γ-PGA-Phe-based drug-delivery systems. Moreover, since these analytical methods employ commonly used reagents and chromatographic systems, the methods are expected to be applicable to other NP-based drug-delivery products too. Graphical abstract NPs were completely dissociated into separate γ-PGA-Phe polymeric molecules, which yielded a similar chromatogram to that seen for the NPs.
Collapse
Affiliation(s)
- Mayumi Ikeda
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka, 532-8686, Japan.,Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Takami Akagi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Masao Nagao
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka, 532-8686, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
28
|
Abstract
Most pathogens gain access to the human body and initiate systemic infections through mucosal sites. A large number of currently marketed licensed vaccines are parenterally administered; they generate strong systemic immunity but not mucosal immunity. Nasal vaccination is an appealing strategy for the induction of mucosal-specific immunity; however, its development is mostly challenged by several factors, such as inefficient antigen uptake, its rapid mucociliary clearance, size-restricted permeation across epithelial barriers and absence of safe human mucosal adjuvants. Therefore, a safer mucosal-adjuvanting strategy or efficient mucosal delivery platform is much warranted. This review summarizes challenges and the rationale for nasal vaccine development with a special focus on the use of nanoparticles based on polymers and lipids for mucosal vaccine delivery.
Collapse
|
29
|
Ikeda M, Akagi T, Yasuoka T, Nagao M, Akashi M. Characterization and analytical development for amphiphilic poly(γ-glutamic acid) as raw material of nanoparticle adjuvants. J Pharm Biomed Anal 2017; 150:460-468. [PMID: 29294451 DOI: 10.1016/j.jpba.2017.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/24/2022]
Abstract
Amphiphilic graft copolymer consisting of poly(γ-glutamic acid) (γ-PGA) as the hydrophilic backbone and L-phenylalanine ethyl ester (Phe) as the hydrophobic side chain is an important biodegradable polymer with great potential in medical applications. In this research, we established analytical methods for the characterization and quality control of γ-PGA-graft-Phe (γ-PGA-Phe), which forms nanoparticles in aqueous solution, as a deployment platform in practical applications for vaccine adjuvants. The SEC-RI/MALS system, which uses size exclusion chromatography (SEC) coupled with a multi_angle light scattering (MALS) detector and refractive index (RI) detector, was developed to evaluate the characteristics of various types of polymers. By this method, it was indicated that absolute molecular weight (MW) should be used to measure the branch polymer. A gradient reversed phase HPLC (RP-HPLC) method was developed for the content of γ-PGA-Phe and the impurity levels to control product quality and safety. This quantitative approach could become key elements for identifying and characterizing γ-PGA-Phe. In addition, the degradation mechanism of γ-PGA-Phe was also identified as cleavage of main-chain of γ-PGA-Phe based on the stability study of γ-PGA-Phe in buffer solution with various pH values. The analytical developments described above will be important for use in both characterization and formulation design of biopolymers. Nanoparticles (NPs) composed of well-characterized biodegradable γ-PGA-Phe are expected to have a variety of potential clinical applications such as their use as drug and vaccine carriers.
Collapse
Affiliation(s)
- Mayumi Ikeda
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan; Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Takami Akagi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Tatsuya Yasuoka
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan
| | - Masao Nagao
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
30
|
Suzuki T, Ainai A, Hasegawa H. Functional and structural characteristics of secretory IgA antibodies elicited by mucosal vaccines against influenza virus. Vaccine 2017; 35:5297-5302. [PMID: 28780981 DOI: 10.1016/j.vaccine.2017.07.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/14/2017] [Indexed: 02/04/2023]
Abstract
Mucosal tissues are major targets for pathogens. The secretions covering mucosal surfaces contain several types of molecules that protect the host from infection. Among these, mucosal immunoglobulins, including secretory IgA (S-IgA) antibodies, are the major contributor to pathogen-specific immune responses. IgA is the primary antibody class found in many external secretions and has unique structural and functional features not observed in other antibody classes. Recently, extensive efforts have been made to develop novel vaccines that induce immunity via the mucosal route. S-IgA is a key molecule that underpins the mechanism of action of these mucosal vaccines. Thus, precise characterization of S-IgA induced by mucosal vaccines is important, if the latter are to be used successfully in a clinical setting. Intensive studies identified the fundamental characteristics of S-IgA, which was first discovered almost half a century ago. However, S-IgA itself has not gained much attention of late, despite its importance to mucosal immunity; therefore, some important questions remain. This review summarizes the current understanding of the molecular characteristics of S-IgA and its role in intranasal mucosal vaccines against influenza virus infection.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
31
|
Chekh BOC, Ferens MV, Ostapiv DD, Samaryk VY, Varvarenko SM, Vlizlo VV. Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600: binding of albumin, biocompatibility, biodistribution and potential crossing the blood-brain barrier in rats. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Ainai A, Suzuki T, Tamura SI, Hasegawa H. Intranasal Administration of Whole Inactivated Influenza Virus Vaccine as a Promising Influenza Vaccine Candidate. Viral Immunol 2017. [PMID: 28650274 DOI: 10.1089/vim.2017.0022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of the current influenza vaccine, an inactivated virus vaccine administered by subcutaneous/intramuscular injection, is limited to reducing the morbidity and mortality associated with seasonal influenza outbreaks. Intranasal vaccination, by contrast, mimics natural infection and induces not only systemic IgG antibodies but also local secretory IgA (S-IgA) antibodies found on the surface of the mucosal epithelium in the upper respiratory tract. S-IgA antibodies are highly effective at preventing virus infection. Although the live attenuated influenza vaccine (LAIV) administered intranasally can induce local antibodies, this vaccine is restricted to healthy populations aged 2-49 years because of safety concerns associated with using live viruses in a vaccine. Instead of LAIV, an intranasal vaccine made with inactivated virus could be applied to high-risk populations, including infants and elderly adults. Normally, a mucosal adjuvant would be required to enhance the effect of intranasal vaccination with an inactivated influenza vaccine. However, we found that intranasal administration of a concentrated, whole inactivated influenza virus vaccine without any mucosal adjuvant was enough to induce local neutralizing S-IgA antibodies in the nasal epithelium of healthy individuals with some immunological memory for seasonal influenza viruses. This intranasal vaccine is a novel candidate that could improve on the current injectable vaccine or the LAIV for the prevention of seasonal influenza epidemics.
Collapse
Affiliation(s)
- Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Shin-Ichi Tamura
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
33
|
Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine. Sci Rep 2017; 7:44839. [PMID: 28322289 PMCID: PMC5359587 DOI: 10.1038/srep44839] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
In 2009, the global outbreak of an influenza pandemic emphasized the need for an effective vaccine adjuvant. In this study, we examined the efficacy of poly-γ-glutamic acid/chitosan (PC) nanogel as an adjuvant for the influenza vaccine. PC nanogel significantly enhanced antigen-specific cross-presentation and cytotoxic T lymphocyte (CTL) activity. Compared with alum, the protective efficacy of the pandemic H1N1 influenza (pH1N1) vaccine was substantially increased by PC nanogel, with increased hemagglutination-inhibition titers, CTL activity, and earlier virus clearance after homologous and heterosubtypic [A/Philippines/2/82 (H3N2)] virus challenges. However, CD8+ T cell-depleted mice displayed no protection against the heterosubtypic virus challenge after immunization with PC nanogel-adjuvanted pH1N1 vaccine. We also observed that using PC nanogel as a vaccine adjuvant had a dose-sparing effect and significantly enhanced the long-lasting protection of the pH1N1 vaccine. Together, these results suggest that PC nanogel is a promising vaccine adjuvant that could broadly prevent influenza virus infection.
Collapse
|
34
|
Chowdhury MYE, Kim TH, Uddin MB, Kim JH, Hewawaduge CY, Ferdowshi Z, Sung MH, Kim CJ, Lee JS. Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes. Vet Microbiol 2017; 201:240-251. [PMID: 28284616 DOI: 10.1016/j.vetmic.2017.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
To develop a safe and effective mucosal vaccine that broad cross protection against seasonal or emerging influenza A viruses, we generated a mucosal influenza vaccine system combining the highly conserved matrix protein-2 (sM2), fusion peptide of hemagglutinin (HA2), the well-known mucosal adjuvant cholera toxin subunit A1 (CTA1) and poly-γ-glutamic acid (γ-PGA)-chitosan nanoparticles (PC NPs), which are safe, natural materials that are able to target the mucosal membrane as a mucosal adjuvant. The mucosal administration of sM2HA2CTA1/PC NPs could induce a high degree of systemic immunity (IgG and IgA) at the site of inoculation as well as at remote locations and also significantly increase the levels of sM2- or HA2-specific cell-mediated immune response. In challenge tests in BALB/c mice with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005 (H7N3) or A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant sM2HA2CTA1/PC NPs provided cross protection against divergent lethal influenza subtypes and also the protection was maintained up to six months after vaccination. Thus, sM2HA2CTA1/PC NPs could be a promising strategy for a universal influenza vaccine.
Collapse
Affiliation(s)
- Mohammed Y E Chowdhury
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet -3100, Bangladesh
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - C Y Hewawaduge
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Zannatul Ferdowshi
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | | | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Cho SH, Hong JH, Noh YW, Lee E, Lee CS, Lim YT. Raspberry-like poly(γ-glutamic acid) hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs. Int J Nanomedicine 2016; 11:5621-5632. [PMID: 27822040 PMCID: PMC5089826 DOI: 10.2147/ijn.s117862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this research, we synthesized bioderived poly(amino acid) hydrogel particles that showed pH-dependent membrane-disrupting properties and controlled cytosolic delivery of antitumor drugs. Poly(γ-glutamic acid) (γ-PGA) that has been produced extensively using bacteria, especially those of Bacillus subtilis species, was modified with cholesterol (γ-PGA/Chol), and the γ-PGA/Chol conjugates were used to form polymeric nanoparticles the size of 21.0±1.1 nm in aqueous solution. When the polymeric nanoparticles were mixed with doxorubicin (Dox), raspberry-like hydrogel particles (RBHPs) were formed by the electrostatic interaction between the cationically charged Dox and the anionically charged nanoparticles. The average size and surface charge of the RBHPs in aqueous solution were 444.9±122.5 nm and -56.44 mV, respectively. The loaded amount of Dox was approximately 63.9 μg/mg of RBHPs. The RBHPs showed controlled drug release behavior in both in vitro and ex vivo cell-based experiments. Through fluorescence microscopy and fluorescence-activated cell sorting, the cellular uptake of RBHPs into human cervical cancer cells (HeLa) was analyzed. The cytotoxic effect, evaluated by the methyl tetrazolium salt assay, was dependent on both the concentration of RBHPs and the treatment time. The pH-dependent membrane-disrupting properties of the RBHPs and the subsequent cytosolic delivery of Dox were evaluated using a standard hemolysis assay. Upon an increase in hydrophobicity at the lysosomal acidic pH, RBHPs could easily interact, penetrate cell membranes, and destabilize them. Taken together, the data suggested that RBHPs could be used as drug delivery carriers after loading with other therapeutic drugs, such as proteins or small interfering RNA for cancer therapy.
Collapse
Affiliation(s)
- Sun-Hee Cho
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do
| | - Ji Hyeon Hong
- Graduate School of Analytical Science and Technology, Chungnam National University
| | - Young-Woock Noh
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do
| | - Eunji Lee
- Graduate School of Analytical Science and Technology, Chungnam National University
| | - Chang-Soo Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do
| |
Collapse
|
36
|
Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Rev Vaccines 2015; 14:1609-21. [PMID: 26467840 DOI: 10.1586/14760584.2015.1098539] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii, a significant public health risk, is able to infect almost all warm-blooded animals including humans, and it results in economic losses in production animals. In the last three years, a large number of vaccination experiments have been performed to control T. gondii infection, with the target of limiting the acute infection and reducing or eliminating tissue cysts in the intermediate hosts. In this paper, we summarize the latest results of the veterinary vaccines against T. gondii infection since 2013. Immunization with live-attenuated whole organisms of non-reverting mutants has been shown to induce remarkably potent immune responses associated with control of acute and chronic toxoplasmosis. The non-cyst-forming mutants are promising new tools for the development of veterinary vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Meng Wang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Ying Xu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China.,b Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine , China Agricultural University , Beijing , PR China
| | - Eskild Petersen
- c Department of Infectious Diseases, Clinical Institute, Faculty of Health Sciences , Aarhus University , Aarhus , Denmark
| | - Xing-Quan Zhu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| |
Collapse
|
37
|
Kim EH, Choi YK, Kim CJ, Sung MH, Poo H. Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection. Virol J 2015; 12:160. [PMID: 26437715 PMCID: PMC4595321 DOI: 10.1186/s12985-015-0387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The global outbreak of a novel swine-origin strain of the 2009 H1N1 influenza A virus and the sudden, worldwide increase in oseltamivir-resistant H1N1 influenza A viruses highlight the urgent need for novel antiviral therapy. METHODS Here, we investigated the antiviral efficacy of poly-gamma glutamate (γ-PGA), a safe and edible biomaterial that is naturally synthesized by Bacillus subtilis, against A/Puerto Rico/8/1934 (PR8) and A/California/04/2009 (CA04) H1N1 influenza A virus infections in C57BL/6 mice. RESULTS Intranasal administration of γ-PGA for 5 days post-infection improved survival, increased production of antiviral cytokines including interferon-beta (IFN-β) and interleukin-12 (IL-12), and enhanced activation of natural killer (NK) cells and influenza antigen-specific cytotoxic T lymphocytes (CTL) activity. CONCLUSIONS These results suggest that γ-PGA protects mice against H1N1 influenza A virus by enhancing antiviral immune responses.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Viral Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. .,College of Medicine, Chungbuk National University, Chengju, Republic of Korea.
| | - Young-Ki Choi
- College of Medicine, Chungbuk National University, Chengju, Republic of Korea.
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Moon-Hee Sung
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea.
| | - Haryoung Poo
- Viral Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. .,Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea.
| |
Collapse
|
38
|
Dimier-Poisson I, Carpentier R, N'Guyen TTL, Dahmani F, Ducournau C, Betbeder D. Porous nanoparticles as delivery system of complex antigens for an effective vaccine against acute and chronic Toxoplasma gondii infection. Biomaterials 2015; 50:164-75. [DOI: 10.1016/j.biomaterials.2015.01.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|
39
|
Sakuma S, Morimoto N, Nishida K, Murakami T, Egawa T, Endo R, Kataoka M, Yamashita S, Miyata K, Mohri K, Ochiai K, Hiwatari KI, Koike S, Tobita E, Uto T, Baba M. Cross-reactivity of immunoglobulin A secreted on the nasal mucosa in mice nasally inoculated with inactivated H1N1 influenza A viruses in the presence of D-octaarginine-linked polymers. Eur J Pharm Biopharm 2015; 92:56-64. [PMID: 25720816 DOI: 10.1016/j.ejpb.2015.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/26/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
We evaluated cross-reactivity of immunoglobulin A (IgA) secreted on the nasal mucosa in mice that were nasally inoculated 4 times with a mixture of inactivated H1N1 influenza A viruses and poly(N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) bearing d-octaarginine at 7-day intervals. Three viral strains (A/Puerto Rico/8/34, A/New Caledonia/20/99 IVR116, and A/Solomon Islands/03/2006) and D-octaarginine-linked polymers with different molecular weights were used as antigens and their carriers, respectively. Secretion of intranasal IgA was barely observed when the inactivated virus alone was administered. The polymer induced the production of intranasal IgA specific to the inoculated viruses, irrespective of the viral strain and molecular weight of the polymer. The respective antibodies cross-reacted to recombinant hemagglutinin proteins of not only the viral strain used for immunization but also other H1N1 strains, including A/Puerto Rico/8/34 strain whose hemagglutinin proteins are diverse from those of other strains. Mice with high reactivity of IgA to the inoculated viruses tended to acquire clear cross-reactivity to other viral strains. Notably, IgA induced by inactivated H1N1 A/New Caledonia/20/99 IVR116 strain with the strongest immunogenicity between 3 antigens in the presence of the polymer cross-reacted to recombinant hemagglutinin proteins of the A/Brisbane/10/2007 and A/Viet Nam/1194/2004 strains, which are categorized into H3N2 and H5N1, respectively. Our polymer is a potential candidate for an efficient antigen carrier that induces mucosal IgA having cross-reactivity to antigenically drifted variants, irrespective of the subtype of viral strains.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | - Naoki Morimoto
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Kazuhiro Nishida
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Tomofumi Murakami
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Tomomi Egawa
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kohei Miyata
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan; Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Kohta Mohri
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Kyohei Ochiai
- Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | | | - Seiji Koike
- Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Etsuo Tobita
- Life Science Materials Laboratory, ADEKA Co., Arakawa-ku, Tokyo, Japan
| | - Tomofumi Uto
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masanori Baba
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
40
|
Nilsson JS, Broos S, Akagi T, Akashi M, Hermansson A, Cayé-Thomasen P, Lindstedt M, Greiff L. Amphiphilic γ-PGA nanoparticles administered on rat middle ear mucosa produce adjuvant-like immunostimulation in vivo. Acta Otolaryngol 2014; 134:1034-41. [PMID: 25220726 DOI: 10.3109/00016489.2014.918278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Amphiphilic biodegradable nanoparticles (NPs) composed of poly(γ-glutamic acid) conjugated with L-phenylalanine ethylester (γ-PGA-Phe NPs) applied on the rat middle ear mucosa produce an inflammatory type 1 response. The observation is of relevance for the use of γ-PGA-Phe NPs as a concomitant antigen delivery system and adjuvant measure in the context of vaccinations. OBJECTIVES To examine effects of topical mucosal administration of γ-PGA-Phe NPs as a potentially combined antigen delivery system and adjuvant. METHODS γ-PGA-Phe NPs were administered on rat middle ear mucosa in a sham-controlled design and the response was monitored, focusing on soluble markers in mucosal surface liquids and on overall histopathology. RESULTS γ-PGA-Phe NPs produced a dose- and time-dependent inflammatory response characterized by generation of proinflammatory cytokines (IL-1α, IL-1β, IL-6, MIP-1α, and TNF-α) and associated histopathological changes.
Collapse
Affiliation(s)
- Johan S Nilsson
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital , Lund , Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech 2014; 15:317-25. [PMID: 24343789 DOI: 10.1208/s12249-013-0058-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
Collapse
|
42
|
An MDCK cell culture-derived formalin-inactivated influenza virus whole-virion vaccine from an influenza virus library confers cross-protective immunity by intranasal administration in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:998-1007. [PMID: 23637045 DOI: 10.1128/cvi.00024-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is currently impossible to predict the next pandemic influenza virus strain. We have thus established a library of influenza viruses of all hemagglutinin and neuraminidase subtypes and their genes. In this article, we examine the applicability of a rapid production model for the preparation of vaccines against emerging pandemic influenza viruses. This procedure utilizes the influenza virus library, cell culture-based vaccine production, and intranasal administration to induce a cross-protective immune response. First, an influenza virus reassortant from the library, A/duck/Hokkaido/Vac-3/2007 (H5N1), was passaged 22 times (P22) in Madin-Darby canine kidney (MDCK) cells. The P22 virus had a titer of >2 ×10(8) PFU/ml, which was 40 times that of the original strain, with 4 point mutations, which altered amino acids in the deduced protein sequences encoded by the PB2 and PA genes. We then produced a formalin-inactivated whole-virion vaccine from the MDCK cell-cultured A/duck/Hokkaido/Vac-3/2007 (H5N1) P22 virus. Intranasal immunization of mice with this vaccine protected them against challenges with lethal influenza viruses of homologous and heterologous subtypes. We further demonstrated that intranasal immunization with the vaccine induced cross-reactive neutralizing antibody responses against the homotypic H5N1 influenza virus and its antigenic variants and cross-reactive cell-mediated immune responses to the homologous virus, its variants within a subtype, and even an influenza virus of a different subtype. These results indicate that a rapid model for emergency vaccine production may be effective for producing the next generation of pandemic influenza virus vaccines.
Collapse
|
43
|
Okamoto S. [Study of next generation influenza vaccine focused on "cross-protection by mucosal immunization" and "seed virus strains"]. YAKUGAKU ZASSHI 2013; 133:313-21. [PMID: 23449407 DOI: 10.1248/yakushi.12-00237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endemic infection by seasonal influenza virus usually occurs every winter season. Inside the host, human influenza viruses frequently undergo various point mutations at antigenic regions, in response to antibody pressure. Furthermore, the influenza virus has undergone frequent antigenic shifts for at least 100 years, some of which have caused influenza pandemics. In Japan, intramuscular immunization with influenza split-virion vaccines has been used to prevent seasonal influenza virus infections. Unfortunately, the efficacy of the current influenza vaccine immunization method is limited, even against viruses belonging to the same clade. Furthermore, the current vaccines are not expected to be protective against antigenically shifted viruses. Therefore, new approaches to vaccine development are needed to protect human populations against a potential pandemic virus. We are studying novel influenza vaccine designs to resolve the above weaknesses of the current influenza vaccines. I will describe our vaccine studies, "Cross-protection by mucosal immunization," and, "Preparation of seed virus strains to produce vaccines for possible pandemic influenza," in this symposium.
Collapse
Affiliation(s)
- Shigefumi Okamoto
- National Institute of Biomedical Innovation, Laboratory of Virology and Vaccinology, Ibaraki, Osaka, Japan.
| |
Collapse
|
44
|
Polymeric nanogels as vaccine delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:159-73. [DOI: 10.1016/j.nano.2012.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/11/2012] [Accepted: 06/18/2012] [Indexed: 01/22/2023]
|
45
|
Uto T, Toyama M, Nishi Y, Akagi T, Shima F, Akashi M, Baba M. Uptake of biodegradable poly(γ-glutamic acid) nanoparticles and antigen presentation by dendritic cells in vivo. RESULTS IN IMMUNOLOGY 2012; 3:1-9. [PMID: 24600553 DOI: 10.1016/j.rinim.2012.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 12/31/2022]
Abstract
Poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) carrying antigens have been shown to induce potent antigen-specific immune responses. However, in vivo delivery of γ-PGA NPs to dendritic cells (DCs), a key regulator of immune responses, still remains unclear. In this study, γ-PGA NPs were examined for their uptake by DCs and subsequent migration from the skin to the regional lymph nodes (LNs) in mice. After subcutaneous injection of fluorescein 5-isothiocyanate (FITC)-labeled NPs or FITC-ovalbumin (OVA)-carrying NPs (FITC-OVA-NPs), DCs migrated from the skin to the LNs and maturated, resulting in the upregulation of the costimulatory molecules CD80 and CD86 and the chemokine receptor CCR7. However, the migrated DCs were not detected in the spleen. FITC-OVA-NPs were found to be taken up by skin-derived CD103(+) DCs, and the processed antigen peptides were cross-presented by the major histocompatibility complex (MHC) class I molecule of DCs. Furthermore, significant activation of antigen-specific CD8(+) T cells was observed in mice immunized with OVA-carrying NPs (OVA-NPs) but not with OVA alone or OVA with an aluminum adjuvant. The antigen-specific CD8(+) T cells were induced within 7 days after immunization with OVA-NPs. Thus, γ-PGA NPs carrying various antigens may have great potential as an antigen-delivery system and vaccine adjuvant in vivo.
Collapse
Affiliation(s)
- Tomofumi Uto
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-0544, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| | - Masaaki Toyama
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-0544, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| | - Yosuke Nishi
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-0544, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| | - Takami Akagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| | - Fumiaki Shima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| | - Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-0544, Japan ; Core Research for Evolutional Science and Technology (CREST), the Japan Science and Technology Agency (JST), Tokyo 150-0002, Japan
| |
Collapse
|
46
|
Moon HJ, Lee JS, Talactac MR, Chowdhury MY, Kim JH, Park ME, Choi YK, Sung MH, Kim CJ. Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet Microbiol 2012; 160:277-89. [DOI: 10.1016/j.vetmic.2012.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 12/09/2022]
|
47
|
Sakuma S, Suita M, Inoue S, Marui Y, Nishida K, Masaoka Y, Kataoka M, Yamashita S, Nakajima N, Shinkai N, Yamauchi H, Hiwatari KI, Tachikawa H, Kimura R, Uto T, Baba M. Cell-penetrating peptide-linked polymers as carriers for mucosal vaccine delivery. Mol Pharm 2012; 9:2933-41. [PMID: 22953762 DOI: 10.1021/mp300329r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We evaluated the potential of poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, as a carrier for mucosal vaccine delivery. Mice were nasally inoculated four times every seventh day with PBS containing ovalbumin with or without the d-octaarginine-linked polymer. The polymer enhanced the production of ovalbumin-specific immunoglobulin G (IgG) and secreted immunoglobulin A (IgA) in the serum and the nasal cavity, respectively. Ovalbumin internalized into nasal epithelial cells appeared to stimulate IgA production. Ovalbumin transferred to systemic circulation possibly enhanced IgG production. An equivalent dose of the cholera toxin B subunit (CTB), which was used as a positive control, was superior to the polymer in enhancing antibody production; however, dose escalation of the polymer overcame this disadvantage. A similar immunization profile was also observed when ovalbumin was replaced with influenza virus HA vaccines. The polymer induced a vaccine-specific immune response identical to that induced by CTB, irrespective of the antibody type, when its dose was 10 times that of CTB. Our cell-penetrating peptide-linked polymer is a potential candidate for antigen carriers that induce humoral immunity on the mucosal surface and in systemic circulation when nasally coadministered with antigens.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University , 45-1 Nagaotoge-cho, Hirakata, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tanimoto T, Haredy AM, Takenaka N, Tamura SI, Okuno Y, Mori Y, Yamanishi K, Okamoto S. Comparison of the cross-reactive anti-influenza neutralizing activity of polymeric and monomeric IgA monoclonal antibodies. Viral Immunol 2012; 25:433-9. [PMID: 22985289 DOI: 10.1089/vim.2012.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we examined whether polymeric IgA (pIgA) and monomeric IgA (mIgA) antibodies differ in their ability to neutralize drift viruses within the same subtype. We used an IgA monoclonal antibody (mAb; H1-21) against influenza virus strain A/Hiroshima/52/2005 (A/Hiroshima; H3N2). The mAb was obtained after immunizing mice mucosally with a split-virion (SV) vaccine. The mAb contained both mIgA and pIgA forms. It reacted with the homologous virus and cross-reacted with drift viruses A/New York/55/2004 (H3N2) and A/Wyoming/3/2003 (H3N2) in hemagglutinin-inhibition (HI) and neutralizing Ab assays. The mAb also cross-reacted with A/Panama/2007/99 (H3N2) in an ELISA. We separated the mAb into pIgA and mIgA fractions by gel filtration, and then tested them for neutralizing Ab activity. The neutralizing activity for the A/Hiroshima/52/2005, A/New York/55/2004, and A/Wyoming/3/2003 viruses was lower for the mIgA than the pIgA fraction. However, the neutralizing efficiency for drift variants relative to that for the homotype did not differ between pIgA and mIgA, and pIgA only neutralized variants that could also be neutralized by mIgA. These results suggest that the polymerization of IgA enhances its antiviral immune responses, but does not increase the number of influenza virus strains neutralized by the IgA.
Collapse
Affiliation(s)
- Takeshi Tanimoto
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuo YC, Chang YH. Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials. Colloids Surf B Biointerfaces 2012; 102:405-11. [PMID: 23010124 DOI: 10.1016/j.colsurfb.2012.08.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
Regeneration of nerve tissue is one of the most significant challenges in contemporary surgical therapy for nervous system injury. This study presents the neuronal differentiation of induced pluripotent stem (iPS) cells in hydrogels comprising alginate and poly(γ-glutamic acid) (γ-PGA) with surface neuron growth factor (NGF). Differentiating iPS cells in NGF-grafted alginate/γ-PGA constructs were identified by immunochemical staining of anti-SSEA-1 and anti-β III tubulin. The results revealed that the pore diameter of hydrogels increased with an increasing weight ratio of alginate to γ-PGA. The porosity slightly decreased with an increasing weight ratio of alginate to hydrogel. In addition, an increase in the weight ratio of alginate to hydrogel raised the swelling ratio. Morphological images of differentiating iPS cells in NGF-grafted alginate/γ-PGA constructs exhibited neuronal characteristics. The surface NGF enhanced the intensity of β III tubulin and inhibited the intensity of SSEA-1 expressed by differentiating iPS cells in cultured constructs, indicating the differentiation of iPS cells toward neurons. NGF-grafted alginate/γ-PGA hydrogels can be efficient biomaterials in the production of neurons from iPS cells for animal study and preclinical trial.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | | |
Collapse
|
50
|
Intranasal immunization with a formalin-inactivated human influenza A virus whole-virion vaccine alone and intranasal immunization with a split-virion vaccine with mucosal adjuvants show similar levels of cross-protection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:979-90. [PMID: 22552600 DOI: 10.1128/cvi.00016-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antigenicity of seasonal human influenza virus changes continuously; thus, a cross-protective influenza vaccine design needs to be established. Intranasal immunization with an influenza split-virion (SV) vaccine and a mucosal adjuvant induces cross-protection; however, no mucosal adjuvant has been assessed clinically. Formalin-inactivated intact human and avian viruses alone (without adjuvant) induce cross-protection against the highly pathogenic H5N1 avian influenza virus. However, it is unknown whether seasonal human influenza formalin-inactivated whole-virion (WV) vaccine alone induces cross-protection against strains within a subtype or in a different subtype of human influenza virus. Furthermore, there are few reports comparing the cross-protective efficacy of the WV vaccine and SV vaccine-mucosal adjuvant mixtures. Here, we found that the intranasal human influenza WV vaccine alone induced both the innate immune response and acquired immune response, resulting in cross-protection against drift variants within a subtype of human influenza virus. The cross-protective efficacy conferred by the WV vaccine in intranasally immunized mice was almost the same as that conferred by a mixture of SV vaccine and adjuvants. The level of cross-protective efficacy was correlated with the cross-reactive neutralizing antibody titer in the nasal wash and bronchoalveolar fluids. However, neither the SV vaccine with adjuvant nor the WV vaccine induced cross-reactive virus-specific cytotoxic T-lymphocyte activity. These results suggest that the intranasal human WV vaccine injection alone is effective against variants within a virus subtype, mainly through a humoral immune response, and that the cross-protection elicited by the WV vaccine and the SV vaccine plus mucosal adjuvants is similar.
Collapse
|