1
|
Knuutila A, Dalby T, Ahvenainen N, Barkoff AM, Jørgensen CS, Fuursted K, Mertsola J, He Q. Antibody avidity to pertussis toxin after acellular pertussis vaccination and infection. Emerg Microbes Infect 2023; 12:e2174782. [PMID: 36715361 PMCID: PMC9936998 DOI: 10.1080/22221751.2023.2174782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pertussis toxin (PT) is a unique virulence factor of Bordetella pertussis, and therefore a key component of acellular pertussis vaccines. Although immunity after infection seems to persist longer than after vaccination, the exact mechanisms are not fully known. In this study the overall binding strength (avidity) of anti-PT IgG antibodies was compared after acellular booster vaccination and infection, as a parameter to evaluate long-lasting protection.Danish and Finnish serum samples from a total of 134 serologically confirmed patients and 112 children who received acellular booster vaccines were included in this study. The concentration of anti-PT IgG was first determined by ELISA, followed by two separate ELISAs to evaluate antibody avidity: either with a dilution series of urea as a bond-breaking agent of antibody and antigen binding and a constant anti-PT IgG concentration between the samples or with a constant dilution ratio of sera and detergent. In addition to urea, the use of diethylamine and ammonium thiocyanate as disruptive agents were first compared between each other.A strong Spearman correlation (R > 0.801) was noted between avidity and concentration of anti-PT IgG antibodies if a constant serum dilution method was used, and avidity was noted to be higher in patients in comparison to vaccinees in Denmark, but not in Finland. However, no correlation between antibody concentration and avidity was found if a constant anti-PT IgG concentration was used (R = -0.157). With this method, avidity after vaccination was significantly higher in comparison to that after infection in both Danish and Finnish subjects (p < 0.01). A shorter time since the latest booster vaccination was found to affect avidity positively on the next PT-antigen exposure with either vaccination or infection.
Collapse
Affiliation(s)
- Aapo Knuutila
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tine Dalby
- Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | - Jussi Mertsola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku, Turku, Finland, Qiushui He
| |
Collapse
|
2
|
Prior exposure to B. pertussis shapes the mucosal antibody response to acellular pertussis booster vaccination. Nat Commun 2022; 13:7429. [PMID: 36460655 PMCID: PMC9716536 DOI: 10.1038/s41467-022-35165-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Bordetella pertussis (Bp), the causative agent of pertussis, continues to circulate despite widespread vaccination programs. An important question is whether and how (sub)clinical infections shape immune memory to Bp, particularly in populations primed with acellular pertussis vaccines (aP). Here, we examine the prevalence of mucosal antibodies against non-vaccine antigens in aP-primed children and adolescents of the BERT study (NCT03697798), using antibody binding to a Bp mutant strain lacking aP antigens (Bp_mut). Our study identifies increased levels of mucosal IgG and IgA binding to Bp_mut in older aP-primed individuals, suggesting different Bp exposure between aP-primed birth cohorts, in line with pertussis disease incidence data. To examine whether Bp exposure influences vaccination responses, we measured mucosal antibody responses to aP booster vaccination as a secondary study outcome. Although booster vaccination induces significant increases in mucosal antibodies to Bp in both cohorts, the older age group that had higher baseline antibodies to Bp_ mut shows increased persistence of antibodies after vaccination.
Collapse
|
3
|
Valeri V, Sochon A, Cousu C, Chappert P, Lecoeuche D, Blanc P, Weill JC, Reynaud CA. The whole-cell pertussis vaccine imposes a broad effector B cell response in mouse heterologous prime-boost settings. JCI Insight 2022; 7:157034. [PMID: 36136586 PMCID: PMC9675447 DOI: 10.1172/jci.insight.157034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
ÍSince the introduction of new generation pertussis vaccines, resurgence of pertussis has been observed in many developed countries. Former whole-cell pertussis (wP) vaccines are able to protect against disease and transmission but have been replaced in several industrialized countries because of their reactogenicity and adverse effects. Current acellular pertussis (aP) vaccines, made of purified proteins of Bordetella pertussis, are efficient at preventing disease but fail to induce long-term protection from infection. While the systemic and mucosal T cell immunity induced by the 2 types of vaccines has been well described, much less is known concerning B cell responses. Taking advantage of an inducible activation-induced cytidine deaminase fate-mapping mouse model, we compared effector and memory B cells induced by the 2 classes of vaccines and showed that a stronger and broader memory B cell and plasma cell response was achieved by a wP prime. We also observed that homologous or heterologous vaccine combinations that include at least 1 wP administration, even as a booster dose, were sufficient to induce this broad effector response, thus highlighting its dominant imprint on the B cell profile. Finally, we describe the settlement of memory B cell populations in the lung following subcutaneous wP prime vaccination.
Collapse
Affiliation(s)
- Viviana Valeri
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Akhésa Sochon
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clara Cousu
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pascal Chappert
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Damiana Lecoeuche
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Thomas D, Dillaerts D, Cockx M, Ampofo L, She J, Desombere I, Geukens N, Bossuyt X. Development and validation of a microfluidic multiplex immunoassay for the determination of levels and avidity of serum antibodies to tetanus, diphtheria and pertussis antigens. J Immunol Methods 2022; 503:113245. [DOI: 10.1016/j.jim.2022.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
|
5
|
Gillard J, Blok BA, Garza DR, Venkatasubramanian PB, Simonetti E, Eleveld MJ, Berbers GAM, van Gageldonk PGM, Joosten I, de Groot R, de Bree LCJ, van Crevel R, de Jonge MI, Huynen MA, Netea MG, Diavatopoulos DA. BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial. NPJ Vaccines 2022; 7:21. [PMID: 35177621 PMCID: PMC8854388 DOI: 10.1038/s41541-022-00438-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
Acellular pertussis (aP) booster vaccines are central to pertussis immunization programs, although their effectiveness varies. The Bacille Calmette-Guérin (BCG) vaccine is a prototype inducer of trained immunity, which enhances immune responses to subsequent infections or vaccinations. While previous clinical studies have demonstrated that trained immunity can protect against heterologous infections, its effect on aP vaccines in humans is unknown. We conducted a clinical study in order to determine the immunological effects of trained immunity on pertussis vaccination. Healthy female volunteers were randomly assigned to either receive BCG followed by a booster dose of tetanus-diphteria-pertussis inactivated polio vaccine (Tdap-IPV) 3 months later (BCG-trained), BCG + Tdap-IPV concurrently, or Tdap-IPV followed by BCG 3 months later. Primary outcomes were pertussis-specific humoral, T- and B-cell responses and were quantified at baseline of Tdap-IPV vaccination and 2 weeks thereafter. As a secondary outcome in the BCG-trained cohort, ex vivo leukocyte responses were measured in response to unrelated stimuli before and after BCG vaccination. BCG vaccination 3 months prior to, but not concurrent with, Tdap-IPV improves pertussis-specific Th1-cell and humoral responses, and also increases total memory B cell responses. These responses were correlated with enhanced IL-6 and IL-1β production at the baseline of Tdap-IPV vaccination in the BCG-trained cohort. Our study demonstrates that prior BCG vaccination potentiates immune responses to pertussis vaccines and that biomarkers of trained immunity are the most reliable correlates of those responses.
Collapse
Affiliation(s)
- Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands.,Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Bastiaan A Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, DK-2300, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, DK-5000, Odense, Denmark
| | - Daniel R Garza
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands
| | | | - Elles Simonetti
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Marc J Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Pieter G M van Gageldonk
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Irma Joosten
- Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Ronald de Groot
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 GA, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands. .,Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands. .,Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Barkoff AM, Knuutila A, Mertsola J, He Q. Evaluation of Anti-PT Antibody Response after Pertussis Vaccination and Infection: The Importance of Both Quantity and Quality. Toxins (Basel) 2021; 13:toxins13080508. [PMID: 34437379 PMCID: PMC8402585 DOI: 10.3390/toxins13080508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Pertussis toxin (PT) is considered the main virulence factor causing whooping cough or pertussis. The protein is widely studied and its composition was revealed and sequenced already during the 1980s. The human immune system creates a good response against PT when measured in quantity. However, the serum anti-PT antibodies wane rapidly, and only a small amount of these antibodies are found a few years after vaccination/infection. Therefore, multiple approaches to study the functionality (quality) of these antibodies, e.g., avidity, neutralizing capacity, and epitope specificity, have been investigated. In addition, the long-term B cell memory (Bmem) to PT is crucial for good protection throughout life. In this review, we summarize the findings from functional PT antibody and Bmem studies. These results are discussed in line with the quantity of serum anti-PT antibodies. PT neutralizing antibodies and anti-PT antibodies with proper avidity are crucial for good protection against the disease, and certain epitopes have been identified to have multiple functions in the protection. Although PT-specific Bmem responses are detectable at least five years after vaccination, long-term surveillance is lacking. Variation of the natural boosting of circulating Bordetella pertussis in communities is an important confounding factor in these memory studies.
Collapse
Affiliation(s)
- Alex-Mikael Barkoff
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
| | - Aapo Knuutila
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
| | - Jussi Mertsola
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Qiushui He
- Research Center for Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (A.-M.B.); (A.K.); (J.M.)
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-40-472-2255
| |
Collapse
|
7
|
Kroes MM, Miranda-Bedate A, Hovingh ES, Jacobi R, Schot C, Pupo E, Raeven RHM, van der Ark AAJ, van Putten JPM, de Wit J, Mariman R, Pinelli E. Naturally circulating pertactin-deficient Bordetella pertussis strains induce distinct gene expression and inflammatory signatures in human dendritic cells. Emerg Microbes Infect 2021; 10:1358-1368. [PMID: 34132167 PMCID: PMC8259873 DOI: 10.1080/22221751.2021.1943537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Respiratory infections caused by Bordetella pertussis are reemerging despite high pertussis vaccination coverage. Since the introduction of the acellular pertussis vaccine in the late twentieth century, circulating B. pertussis strains increasingly lack expression of the vaccine component pertactin (Prn). In some countries, up to 90% of the circulating B. pertussis strains are deficient in Prn. To better understand the resurgence of pertussis, we investigated the response of human monocyte-derived dendritic cells (moDCs) to naturally circulating Prn-expressing (Prn-Pos) and Prn-deficient (Prn-Neg) B. pertussis strains from 2016 in the Netherlands. Transcriptome analysis of moDC showed enriched IFNα response-associated gene expression after exposure to Prn-Pos B. pertussis strains, whereas the Prn-Neg strains induced enriched expression of interleukin- and TNF-signaling genes, as well as other genes involved in immune activation. Multiplex immune assays confirmed enhanced proinflammatory cytokine secretion by Prn-Neg stimulated moDC. Comparison of the proteomes from the Prn-Pos and Prn-Neg strains revealed, next to the difference in Prn, differential expression of a number of other proteins including several proteins involved in metabolic processes. Our findings indicate that Prn-deficient B. pertussis strains induce a distinct and stronger immune activation of moDCs than the Prn-Pos strains. These findings highlight the role of pathogen adaptation in the resurgence of pertussis as well as the effects that vaccine pressure can have on a bacterial population.
Collapse
Affiliation(s)
- Michiel M Kroes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alberto Miranda-Bedate
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Elise S Hovingh
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ronald Jacobi
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Corrie Schot
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Bilthoven, Netherlands
| | - René H M Raeven
- Institute for Translational Vaccinology (Intravacc), Bilthoven, Netherlands
| | | | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rob Mariman
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Elena Pinelli
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
8
|
Versteegen P, Valente Pinto M, Barkoff AM, van Gageldonk PGM, van de Kassteele J, van Houten MA, Sanders EAM, de Groot R, Diavatopoulos DA, Bibi S, Luoto R, He Q, Buisman AM, Kelly DF, Mertsola J, Berbers GAM. Responses to an acellular pertussis booster vaccination in children, adolescents, and young and older adults: A collaborative study in Finland, the Netherlands, and the United Kingdom. EBioMedicine 2021; 65:103247. [PMID: 33647770 PMCID: PMC7920834 DOI: 10.1016/j.ebiom.2021.103247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
Background Pertussis can lead to serious disease and even death
in infants. Older adults are more vulnerable to complications as well. In
high-income countries, acellular pertussis vaccines are used for priming
vaccination. In the administration of booster vaccinations to different age
groups and target populations there is a substantial between-country variation.
We investigated the effect of age on the response to acellular pertussis booster
vaccination in three European countries. Methods This phase IV longitudinal intervention study
performed in Finland, the Netherlands and the United Kingdom between October
2017 and January 2019 compared the vaccine responses between healthy
participants of four age groups: children (7–10y), adolescents (11–15y), young
adults (20–34y), and older adults (60–70y). All participants received a
three-component acellular pertussis vaccine. Serum IgG and IgA antibody
concentrations to pertussis antigens at day 0, 28, and 1 year were measured with
a multiplex immunoassay, using pertussis toxin concentrations at day 28 as
primary outcome. This trial is registered with ClinicalTrialsRegister.eu
(2016–003,678–42). Findings Children (n = 109), adolescents
(n = 121), young adults
(n = 74), and older adults
(n = 75) showed high IgG antibody concentrations to
pertussis toxin at day 28 with GMCs of 147 (95% CI 120–181), 161 (95% CI
132–196), 103 (95% CI 80–133), and 121 IU/ml (95% CI 94–155), respectively. A
significant increase in GMCs for vaccine antigens in all age groups by 28 days
was found which had decreased by 1 year. Differences in patterns of IgG GMCs at
28 days and 1 year post-vaccination did not have a consistent relationship to
age. In contrast, IgA antibodies for all antigens increased with age at all
timepoints. Interpretation Acellular pertussis booster vaccination induces
significant serum IgG responses to pertussis antigens across the age range which
are not uniformly less in older adults. Acellular boosters could be considered
for older adults to reduce the health and economic burden of
pertussis.
Collapse
Affiliation(s)
- Pauline Versteegen
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, Netherlands
| | - Marta Valente Pinto
- University of Oxford, Department of Paediatrics, Oxford Vaccine Group, Oxford OX3 7LE, United Kingdom
| | - Alex M Barkoff
- University of Turku, Institute of Biomedicine, Microbiology, Virology and Immunology, and Turku University Hospital, Turku 20500, Finland
| | - Pieter G M van Gageldonk
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, Netherlands
| | - Jan van de Kassteele
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, Netherlands
| | | | - Elisabeth A M Sanders
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, Netherlands; Wilhelmina Children's Hospital, Department of Paediatric Immunology and Infectious Diseases, Lundlaan 6, 3584 EA Utrecht, Netherlands
| | - Ronald de Groot
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Nijmegen 6525 GA, Netherlands
| | - Dimitri A Diavatopoulos
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Nijmegen 6525 GA, Netherlands
| | - Sagida Bibi
- University of Oxford, Department of Paediatrics, Oxford Vaccine Group, Oxford OX3 7LE, United Kingdom
| | - Raakel Luoto
- University of Turku, Institute of Biomedicine, Microbiology, Virology and Immunology, and Turku University Hospital, Turku 20500, Finland
| | - Qiushui He
- University of Turku, Institute of Biomedicine, Microbiology, Virology and Immunology, and Turku University Hospital, Turku 20500, Finland
| | - Anne-Marie Buisman
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, Netherlands
| | - Dominic F Kelly
- University of Oxford, Department of Paediatrics, Oxford Vaccine Group, Oxford OX3 7LE, United Kingdom; Oxford University Hospitals NHS Foundation Trust, Headington, Oxford OX3 9DU, United Kingdom
| | - Jussi Mertsola
- University of Turku, Institute of Biomedicine, Microbiology, Virology and Immunology, and Turku University Hospital, Turku 20500, Finland
| | - Guy A M Berbers
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Antonie van Leeuwenhoeklaan 9, Bilthoven 3720 BA, Netherlands.
| |
Collapse
|
9
|
Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev 2020; 158:91-115. [PMID: 32598970 PMCID: PMC7318960 DOI: 10.1016/j.addr.2020.06.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Vaccines are one of the most powerful technologies supporting public health. The adaptive immune response induced by immunization arises following appropriate activation and differentiation of T and B cells in lymph nodes. Among many parameters impacting the resulting immune response, the presence of antigen and inflammatory cues for an appropriate temporal duration within the lymph nodes, and further within appropriate subcompartments of the lymph nodes- the right timing and location- play a critical role in shaping cellular and humoral immunity. Here we review recent advances in our understanding of how vaccine kinetics and biodistribution impact adaptive immunity, and the underlying immunological mechanisms that govern these responses. We discuss emerging approaches to engineer these properties for future vaccines, with a focus on subunit vaccines.
Collapse
Affiliation(s)
- Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Auderset F, Ballester M, Mastelic-Gavillet B, Fontannaz P, Chabaud-Riou M, Reveneau N, Garinot M, Mistretta N, Liu Y, Lambert PH, Ochs M, Siegrist CA. Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circulating Antibodies: Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation. Front Immunol 2019; 10:1520. [PMID: 31333656 PMCID: PMC6618515 DOI: 10.3389/fimmu.2019.01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Pertussis is still observed in many countries despite of high vaccine coverage. Acellular pertussis (aP) vaccination is widely implemented in many countries as primary series in infants and as boosters in school-entry/adolescents/adults (including pregnant women in some). One novel strategy to improve the reactivation of aP-vaccine primed immunity could be to include genetically- detoxified pertussis toxin and novel adjuvants in aP vaccine boosters. Their preclinical evaluation is not straightforward, as it requires mimicking the human situation where T and B memory cells may persist longer than vaccine-induced circulating antibodies. Toward this objective, we developed a novel murine model including two consecutive adoptive transfers of the memory cells induced by priming and boosting, respectively. Using this model, we assessed the capacity of three novel aP vaccine candidates including genetically-detoxified pertussis toxin, pertactin, filamentous hemagglutinin, and fimbriae adsorbed to aluminum hydroxide, supplemented—or not—with Toll-Like-Receptor 4 or 9 agonists (TLR4A, TLR9A), to reactivate aP vaccine-induced immune memory and protection, reflected by bacterial clearance. In the conventional murine immunization model, TLR4A- and TLR9A-containing aP formulations induced similar aP-specific IgG antibody responses and protection against bacterial lung colonization as current aP vaccines, despite IL-5 down-modulation by both TLR4A and TLR9A and IL-17 up-modulation by TLR4A. In the absence of serum antibodies at time of boosting or exposure, TLR4A- and TLR9A-containing formulations both enhanced vaccine antibody recall compared to current aP formulations. Unexpectedly, however, protection was only increased by the TLR9A-containing vaccine, through both earlier bacterial control and accelerated clearance. This suggests that TLR9A-containing aP vaccines may better reactivate aP vaccine-primed pertussis memory and enhance protection than current or TLR4A-adjuvanted aP vaccines.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Marie Ballester
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paola Fontannaz
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | | | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Esposito S, Stefanelli P, Fry NK, Fedele G, He Q, Paterson P, Tan T, Knuf M, Rodrigo C, Weil Olivier C, Flanagan KL, Hung I, Lutsar I, Edwards K, O'Ryan M, Principi N. Pertussis Prevention: Reasons for Resurgence, and Differences in the Current Acellular Pertussis Vaccines. Front Immunol 2019; 10:1344. [PMID: 31333640 PMCID: PMC6616129 DOI: 10.3389/fimmu.2019.01344] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Pertussis is an acute respiratory disease caused by Bordetella pertussis. Due to its frequency and severity, prevention of pertussis has been considered an important public health issue for many years. The development of the whole-cell pertussis vaccine (wPV) and its introduction into the pediatric immunization schedule was associated with a marked reduction in pertussis cases in the vaccinated cohort. However, due to the frequency of local and systemic adverse events after immunization with wPV, work on a less reactive vaccine was undertaken based on isolated B. pertussis components that induced protective immune responses with fewer local and systemic reactions. These component vaccines were termed acellular vaccines and contained one or more pertussis antigens, including pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN), and fimbrial proteins 2 (FIM2) and 3 (FIM3). Preparations containing up to five components were developed, and several efficacy trials clearly demonstrated that the aPVs were able to confer comparable short-term protection than the most effective wPVs with fewer local and systemic reactions. There has been a resurgence of pertussis observed in recent years. This paper reports the results of a Consensus Conference organized by the World Association for Infectious Disease and Immunological Disorders (WAidid) on June 22, 2018, in Perugia, Italy, with the goal of evaluating the most important reasons for the pertussis resurgence and the role of different aPVs in this resurgence.
Collapse
Affiliation(s)
- Susanna Esposito
- Department of Surgical and Biomedical Sciences, Paediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Norman K. Fry
- Immunisation and Countermeasures Division, Public Health England–National Infection Service, London, United Kingdom
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Pauline Paterson
- Department of Infectious Disease Epidemiology, The Vaccine Confidence Project TM, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tina Tan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Markus Knuf
- Children's Hospital, Helios HSk, Wiesbaden, Germany
- Department of Pediatrics, University Medicine, Mainz, Germany
| | - Carlos Rodrigo
- Department of Pediatrics, Vall d'Hebron University Hospital, Barcelona, Spain
- School of Medicine-Germans Trias i Pujol University Hospita, Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | - Katie L. Flanagan
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Ivan Hung
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Iria Lutsar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathryn Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Miguel O'Ryan
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
12
|
Akinola F, Muloiwa R, Hussey GD, Dirix V, Kagina B, Amponsah-Dacosta E. Assessment of humoral and cell-mediated immune responses to pertussis vaccination: a systematic review protocol. BMJ Open 2019; 9:e028109. [PMID: 31182449 PMCID: PMC6561409 DOI: 10.1136/bmjopen-2018-028109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Globally, some studies show a resurgence of pertussis. The risks and benefits of using whole-cell pertussis (wP) or acellular pertussis (aP) vaccines in the control of the disease have been widely debated. Better control of pertussis will require improved understanding of the immune response to pertussis vaccines. Improved understanding and assessment of the immunity induced by pertussis vaccines is thus imperative. Several studies have documented different immunological outcomes to pertussis vaccination from an array of assays. We propose to conduct a systematic review of the different immunological assays and outcomes used in the assessment of the humoraland cell-mediated immune response following pertussis vaccination. METHODS AND ANALYSIS The primary outcomes for consideration are quality and quantity of immune responses (humoral and cell-mediated) post-pertussis vaccination. Of interest as secondary outcomes are types of immunoassays used in assessing immune responses post-pertussis vaccination, types of biological samples used in assessing immune responses post-pertussis vaccination, as well as the types of antigens used to stimulate these samples during post-pertussis vaccination immune response assessments. Different electronic databases (including PubMed, Cochrane, EBSCO Host, Scopus and Web of Science) will be accessed for peer-reviewed published and grey literature evaluating immune responses to pertussis vaccines between 1990 and 2019. The quality of included articles will be assessed using standardised risk and quality assessment tools specific to the study design used in each article. Data extraction will be done using a data extraction form. The extracted data will be analysed using STATA V.14.0 and RevMan V.5.3 software. A subgroup analysis will be conducted based on the study population, type of vaccine (wP or aP) and type of immune response (cell-mediated or humoral). Guidelines for reporting systematic reviews in the revised 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement will be used in this study. ETHICS AND DISSEMINATION Ethics approval is not required for this study as it is a systematic review. We will only make use of data already available in the public space. Findings will be reported via publication in a peer-reviewed journal and presented at scientific meetings and workshops. TRIAL REGISTRATION NUMBER CRD42018102455.
Collapse
Affiliation(s)
- Funbi Akinola
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rudzani Muloiwa
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Gregory D Hussey
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Kagina
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Edina Amponsah-Dacosta
- Vaccines for Africa Initiative, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
van der Lee S, van Rooijen DM, de Zeeuw-Brouwer ML, Bogaard MJM, van Gageldonk PGM, Marinovic AB, Sanders EAM, Berbers GAM, Buisman AM. Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination. Front Immunol 2018; 9:681. [PMID: 29670634 PMCID: PMC5893963 DOI: 10.3389/fimmu.2018.00681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022] Open
Abstract
Introduction To reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age. Methods In 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model. Results Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years. Conclusion The Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy.
Collapse
Affiliation(s)
- Saskia van der Lee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, Netherlands
| | - Debbie M van Rooijen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marjan J M Bogaard
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Pieter G M van Gageldonk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Axel Bonacic Marinovic
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
14
|
van der Lee S, Hendrikx LH, Sanders EAM, Berbers GAM, Buisman AM. Whole-Cell or Acellular Pertussis Primary Immunizations in Infancy Determines Adolescent Cellular Immune Profiles. Front Immunol 2018; 9:51. [PMID: 29416544 PMCID: PMC5787539 DOI: 10.3389/fimmu.2018.00051] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/09/2018] [Indexed: 11/26/2022] Open
Abstract
Introduction Pertussis is re-emerging worldwide, despite effective immunization programs for infants and children. Epidemiological studies show a more limited duration of protection against clinical pertussis in adolescents primed with acellular pertussis (aP) vaccines during infancy than those who have been primed with whole-cell pertussis (wP) vaccines. This study aimed to determine whether memory immune responses to aP, diphtheria, and tetanus vaccine antigens following booster vaccinations at 4 and 9 years of age differ between wP- versus aP-primed children. Methods In a cross-sectional study, blood was collected of DTwP- or diphtheria, tetanus, and aP (DTaP)-primed children before, 1 month, and 2 years after the preschool DTaP booster administered at 4 years of age (n = 41–63 per time point). In a longitudinal study, blood was sampled of DTwP- or DTaP-primed children before, 1 month, and 1 year after a preadolescent Tdap booster at 9 years of age (n = 79–83 per time point). Pertussis, diphtheria, and tetanus vaccine antigen-specific IgG levels, B-cell and T-cell responses were determined. Results After the preschool booster vaccination, IgG levels were significantly higher in aP-primed as compared with wP-primed children until 6 years of age. Before the preadolescent Tdap booster vaccination, humoral and cellular immune responses were similar in aP- and wP-primed children. However, the Tdap booster vaccination induced lower vaccine antigen-specific humoral, B-cell, and T-helper 1 (Th1) cell responses resulting in significantly lower Th1/Th2 ratios in aP-primed compared with wP-primed children. Conclusion The memory immune profiles at preadolescent age to all DTaP vaccine antigens are already determined by the wP or aP combination vaccines given in infancy, showing a beneficial Th1-dominated response after wP-priming. These immunological data corroborate epidemiological data showing that DTaP-primed adolescents are less protected against clinical pertussis than DTwP-primed children.
Collapse
Affiliation(s)
- Saskia van der Lee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, Netherlands
| | - Lotte H Hendrikx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Research Centre Linnaeus Institute, Spaarne Hospital, Hoofddorp, Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
15
|
Boef AGC, van der Klis FRM, Berbers GAM, Buisman AM, Sanders EAM, Kemmeren JM, van der Ende A, de Melker HE, Rots NY, Knol MJ. Differences by sex in IgG levels following infant and childhood vaccinations: An individual participant data meta-analysis of vaccination studies. Vaccine 2017; 36:400-407. [PMID: 29223483 DOI: 10.1016/j.vaccine.2017.11.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND If immune responses to vaccination differ between males and females, sex-specific vaccination schedules may be indicated. We systematically reanalysed childhood vaccination studies conducted in The Netherlands for sex-differences in IgG-responses. To assess the impact of potential sex-differences in IgG-responses, we explored sex-differences in vaccine failure/effectiveness and reactogenicity. METHODS Six studies with IgG-measurements for 1577 children following infant pneumococcal (PCV7/PCV10/PCV13) and/or DTaP-IPV-Hib(-HepB) vaccinations, or the pre-school DTaP-IPV booster were included. We performed one-stage individual participant data meta-analyses per time-point of the effect of sex on IgG levels against pneumococcal serotypes, diphtheria toxoid, tetanus toxoid, pertussis Ptx/FHA/Prn and Hib-PRP using linear mixed models. Using existing study data, we compared reactogenicity after PCV7/PCV10 and DTaP-IPV-Hib(-HepB) vaccination in girls and boys. Vaccine failure/effectiveness was compared between girls and boys for invasive pneumococcal disease (IPD), invasive Hib disease and pertussis using notification data. RESULTS For pneumococcal vaccination, the geometric mean concentration ratio of IgG levels in girls versus boys pooled across serotypes was 1.15 (95%CI 0.91-1.45) 1 month following the primary series, 1.16 (1.02-1.32) at age 8 months, 1.12 (1.02-1.23) pre-booster (age 11 months) and 0.99 (0.89-1.10) post-booster (age 12 months). Diphtheria toxoid, tetanus toxoid, pertussis Ptx/FHA/Prn and Hib-PRP IgG levels did not differ between girls and boys, except for Hib post-booster (1.24; 95%CI 1.01-1.52) and tetanus before pre-school booster (0.71; 0.53-0.95). We found no difference between boys and girls in reactogenicity at age 4 or 11 months or in vaccine failure/effectiveness for IPD, invasive Hib disease or pertussis. CONCLUSION For most vaccine antigens investigated, there were no consistent differences in vaccine-induced IgG levels. Vaccine-induced pneumococcal IgG levels were slightly higher in girls, but only between the primary series and the 11-month booster. These results, along with similar reactogenicity and vaccine failure/effectiveness, support the uniform infant vaccination schedule in the Dutch national immunisation programme.
Collapse
Affiliation(s)
- Anna G C Boef
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanet M Kemmeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arie van der Ende
- Netherlands Reference Laboratory of Bacterial Meningitis, Academic Medical Center, Amsterdam, The Netherlands
| | - Hester E de Melker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam J Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
16
|
van der Lee S, Sanders EAM, Berbers GAM, Buisman AM. Whole-cell or acellular pertussis vaccination in infancy determines IgG subclass profiles to DTaP booster vaccination. Vaccine 2017; 36:220-226. [PMID: 29199041 DOI: 10.1016/j.vaccine.2017.11.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duration of protection against pertussis is shorter in adolescents who have been immunized with acellular pertussis (aP) in infancy compared with adolescents who received whole-cell pertussis (wP) vaccines in infancy, which is related to immune responses elicited by these priming vaccines. To better understand differences in vaccine induced immunity, we determined pertussis, diphtheria, and tetanus (DTaP) vaccine antigen-specific IgG subclass responses in wP- and aP-primed children before and after two successive DTaP booster vaccinations. METHODS Blood samples were collected in a cross-sectional study from wP- or aP-primed children before and 1 month after the pre-school DTaP booster vaccination at age 4 years. Blood samples were collected from two different wP- and aP-primed groups of children before, 1 month and 1 year after an additional pre-adolescent Tdap booster at age 9 years. IgG subclass levels against the antigens included in the DTaP vaccine have been determined with fluorescent-bead-based multiplex immunoassays. RESULTS At 4 years of age, the IgG4 proportion and concentration for pertussis, diphtheria and tetanus vaccine antigens were significantly higher in aP-primed children compared with wP-primed children. IgG4 concentrations further increased upon the two successive booster vaccinations at 4 and 9 years of age in both wP- and aP-primed children, but remained significantly higher in aP-primed children. CONCLUSIONS The pertussis vaccinations administered in the primary series at infancy determine the vaccine antigen-specific IgG subclass profiles, not only against the pertussis vaccine antigens, but also against the co-administered diphtheria and tetanus vaccine antigens. These profiles did not change after DTaP booster vaccinations later in childhood. The different immune response with high proportions of specific IgG4 in some aP-primed children may contribute to a reduced protection against pertussis. ISRCTN65428640; ISRCTN64117538; NTR4089.
Collapse
Affiliation(s)
- Saskia van der Lee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Peadiatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Peadiatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
17
|
Diavatopoulos DA, Edwards KM. What Is Wrong with Pertussis Vaccine Immunity? Why Immunological Memory to Pertussis Is Failing. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029553. [PMID: 28289059 DOI: 10.1101/cshperspect.a029553] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Memory responses seen after whole-cell pertussis (wP) and acellular pertussis (aP) vaccine priming are different and reflect better long-term protection against pertussis disease seen with the whole-cell vaccines. Although acellular vaccines generate higher levels of antigen-specific IgG to the antigens included in the aP vaccines, there are many more pertussis antigens included in whole-cell vaccines. Acellular vaccine priming is associated with skewing of the immune response to a more Th2-like response, whereas whole-cell priming is associated with a Th1/Th17 response. Repeated booster doses of acellular vaccine in children primed with acellular vaccine has been shown to result in progressively shorter duration of protection against disease. This may be explained by the generation of higher levels of antigen-specific IgG4, which does not bind complement and leads to a suboptimal inflammatory response and impaired phagocytosis and antimicrobial defense. In contrast, whole-cell priming followed by aP vaccine boosters results in better opsonization, phagocytosis, and complement mediated killing through the preferential induction of IgG1.
Collapse
Affiliation(s)
- Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Kathryn Margaret Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.,Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee 37332
| |
Collapse
|
18
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2017; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
19
|
Rice T, Kampmann B, Holder B. One size fits all? Antibody avidity measurement against multiple antigens in maternal vaccination studies. Virulence 2017; 8:1066-1068. [PMID: 28441089 DOI: 10.1080/21505594.2017.1321192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Thomas Rice
- a Paediatrics, Division of Infectious Diseases , Centre for International Child Health, Imperial College London , London , UK
| | - Beate Kampmann
- a Paediatrics, Division of Infectious Diseases , Centre for International Child Health, Imperial College London , London , UK
| | - Beth Holder
- a Paediatrics, Division of Infectious Diseases , Centre for International Child Health, Imperial College London , London , UK
| |
Collapse
|
20
|
Elevated Immune Response Among Children 4 Years of Age With Pronounced Local Adverse Events After the Fifth Diphtheria, Tetanus, Acellular Pertussis Vaccination. Pediatr Infect Dis J 2017; 36:e223-e229. [PMID: 28430750 DOI: 10.1097/inf.0000000000001620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND In the Netherlands, acellular pertussis vaccines replaced the more reactogenic whole-cell pertussis vaccines. This replacement in the primary immunization schedule of infants coincided with a significant increase in pronounced local adverse events (AEs) in 4 years old children shortly after the administration of a fifth diphtheria, tetanus, acellular pertussis and inactivated polio (DTaP-IPV) vaccine. The objective of this study was to investigate possible differences in vaccine antigen-specific immune responses between children with and without a pronounced local AE after the fifth DTaP-IPV vaccination. METHODS Blood was sampled in 2 groups of 4-year-olds: a case group reporting pronounced local swelling and/or erythema up to extensive limb swelling at the injection site (n = 30) and a control group (n = 30). Peripheral blood mononuclear cells were stimulated with individual vaccine antigens. Plasma antigen-specific IgG, IgG subclass and total IgE concentrations and T-cell cytokine [interferon-gamma, interleukin (IL)-13, IL-17 and IL-10] production by stimulated peripheral blood mononuclear cells were determined by multiplex bead-based fluorescent multiplex immunoassays. RESULTS In children with AEs, significantly higher total IgE and vaccine antigen-specific IgG and IgG4 responses as well as levels of the T-helper 2 (Th2) cytokine IL-13 were found after pertussis, tetanus and diphtheria stimulation compared with controls. CONCLUSIONS Children with pronounced local reactions show higher humoral and cellular immune responses. Acellular vaccines are known to skew toward more Th2 responses. The pronounced local AEs may be associated with more Th2 skewing after the fifth DTaP-IPV vaccination, but other biologic factors may also impact the occurrence of these pronounced local reactions.
Collapse
|
21
|
Chen Z, He Q. Immune persistence after pertussis vaccination. Hum Vaccin Immunother 2017; 13:744-756. [PMID: 28045580 PMCID: PMC5404361 DOI: 10.1080/21645515.2016.1259780] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
Pertussis is one of the most prevalent vaccine-preventable diseases worldwide. The true infection rate is significantly higher than the reported incidence rate. An increased prevalence of pertussis in older populations has been found, mainly caused by waning immunity after vaccination. Vaccine-induced immunity differs due to variation in vaccine content, schedule and coverage. Protection following acellular pertussis vaccines has been suggested to wane faster than whole cell pertussis vaccines. However, long-term immune persistence of whole cell pertussis vaccines may be confounded by a progressive acquisition of natural immunity. The World Health Organization has recommended that a switch from whole cell to acellular pertussis vaccines for primary immunization in infants should only be considered if additional periodic boosters or maternal immunization can be ensured and sustained in the national immunization schedules. In this review, we present data on immune persistence after different pertussis vaccinations and compare the findings from countries with different vaccination strategies. Future aspects in serological studies are briefly discussed.
Collapse
Affiliation(s)
- Zhiyun Chen
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing, China
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Caboré RN, Maertens K, Dobly A, Leuridan E, Van Damme P, Huygen K. Influence of maternal vaccination against diphtheria, tetanus, and pertussis on the avidity of infant antibody responses to a pertussis containing vaccine in Belgium. Virulence 2017; 8:1245-1254. [PMID: 28277900 DOI: 10.1080/21505594.2017.1296998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Maternal antibodies induced by vaccination during pregnancy cross the placental barrier and can close the susceptibility gap to pertussis in young infants up to the start of primary immunization. As not only the quantity but also the quality of circulating antibodies is important for protection, we assessed whether maternal immunization affects the avidity of infant vaccine-induced IgG antibodies, in the frame of a prospective clinical trial on pregnancy vaccination in Belgium. Infants born from Tdap (Boostrix®) vaccinated (N = 55) and unvaccinated (N = 26) mothers were immunized with a hexavalent pertussis containing vaccine (Infanrix Hexa®) at 8, 12 and 16 weeks, followed by a fourth dose at 15 months of age. Right before and one month after this fourth vaccine dose, the avidity of IgG antibodies against diphtheria toxin (DT), tetanus toxin (TT), pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn) was determined using 1.5 M ammonium thiocyanate as dissociating agent. In both groups, antibody avidity was moderate for TT, PT, FHA and Prn and low for DT after priming. After a fourth dose, antibody avidity increased significantly to high avidity for TT and PT, whereas it remained moderate for FHA and Prn and low for DT. The avidity correlated positively with antibody level in both study groups, yet not significantly for PT. When comparing both study groups, only PT-specific antibodies showed significantly lower avidity in infants born from vaccinated than from unvaccinated mothers after the fourth vaccine dose. The clinical significance of lower avidity of vaccine induced infant antibodies after maternal vaccination, if any, needs further investigation.
Collapse
Affiliation(s)
- Raïssa Nadège Caboré
- a National Reference Centre for Bordetella & National Reference Centre for Toxigenic Corynebacteria , Scientific Service Immunology, Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| | - Kirsten Maertens
- b Centre for the Evaluation of Vaccination , Vaccine & Infectious Diseases Institute, University of Antwerp , Antwerp , Belgium
| | - Alexandre Dobly
- c Scientific Service Biological Standardisation , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| | - Elke Leuridan
- b Centre for the Evaluation of Vaccination , Vaccine & Infectious Diseases Institute, University of Antwerp , Antwerp , Belgium
| | - Pierre Van Damme
- b Centre for the Evaluation of Vaccination , Vaccine & Infectious Diseases Institute, University of Antwerp , Antwerp , Belgium
| | - Kris Huygen
- a National Reference Centre for Bordetella & National Reference Centre for Toxigenic Corynebacteria , Scientific Service Immunology, Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| |
Collapse
|
23
|
Saadatian-Elahi M, Plotkin S, Mills KHG, Halperin SA, McIntyre PB, Picot V, Louis J, Johnson DR. Pertussis: Biology, epidemiology and prevention. Vaccine 2016; 34:5819-5826. [PMID: 27780629 DOI: 10.1016/j.vaccine.2016.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/14/2022]
Abstract
Despite long-standing vaccination programs, substantial increases in reported cases of pertussis have been described in several countries during the last 5years. Cases among very young infants who are at greatest risk of pertussis-related hospitalizations and mortality are the most alarming. Multiple hypotheses including but not limited to the availability of more sensitive diagnostic tests, greater awareness, and waning vaccine-induced immunity over time have been posited for the current challenges with pertussis. The conference "Pertussis: biology, epidemiology and prevention" held in Annecy-France (November 11-13, 2015) brought together experts and interested individuals to examine these issues and to formulate recommendations for optimal use of current vaccines, with a particular focus on strategies to minimize severe morbidity and mortality among infants during the first months of life. The expert panel concluded that improving vaccination strategies with current vaccines and development of new highly immunogenic and efficacious pertussis vaccines that have acceptable adverse event profiles are currently the two main areas of investigation for the control of pertussis. Some possible pathways forward to address these main challenges are discussed in this report.
Collapse
Affiliation(s)
- Mitra Saadatian-Elahi
- Pôle Santé, Recherche, Risques et Vigilances Groupement Hospitalier Edouard Herriot, Unité d'Hygiène, Epidémiologie et Prévention, 5 Place d'Arsonval, 69437 Lyon cedex 03, France.
| | | | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Scott A Halperin
- Canadian Centre for Vaccinology, Dalhousie University, The IWK Health Centre and Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Peter B McIntyre
- National Centre for Immunisation Research and Surveillance, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France
| | | |
Collapse
|
24
|
van Twillert I, Han WGH, van Els CACM. Waning and aging of cellular immunity to Bordetella pertussis. Pathog Dis 2015; 73:ftv071. [PMID: 26371178 DOI: 10.1093/femspd/ftv071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 02/04/2023] Open
Abstract
While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| |
Collapse
|
25
|
Acosta AM, DeBolt C, Tasslimi A, Lewis M, Stewart LK, Misegades LK, Messonnier NE, Clark TA, Martin SW, Patel M. Tdap vaccine effectiveness in adolescents during the 2012 Washington State pertussis epidemic. Pediatrics 2015; 135:981-9. [PMID: 25941309 PMCID: PMC5736389 DOI: 10.1542/peds.2014-3358] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acellular pertussis vaccines replaced whole-cell vaccines for the 5-dose childhood vaccination series in 1997. A sixth dose of pertussis-containing vaccine, tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis, adsorbed (Tdap), was recommended in 2005 for adolescents and adults. Studies examining Tdap vaccine effectiveness (VE) among adolescents who have received all acellular vaccines are limited. METHODS To assess Tdap VE and duration of protection, we conducted a matched case-control study during the 2012 pertussis epidemic in Washington among adolescents born during 1993-2000. All pertussis cases reported from January 1 through June 30, 2012, in 7 counties were included; 3 controls were matched by primary provider clinic and birth year to each case. Vaccination histories were obtained through medical records, the state immunization registry, and parent interviews. Participants were classified by type of pertussis vaccine received on the basis of birth year: a mix of whole-cell and acellular vaccines (1993-1997) or all acellular vaccines (1998-2000). We used conditional logistic regression to calculate odds ratios comparing Tdap receipt between cases and controls. RESULTS Among adolescents who received all acellular vaccines (450 cases, 1246 controls), overall Tdap VE was 63.9% (95% confidence interval [CI]: 50% to 74%). VE within 1 year of vaccination was 73% (95% CI: 60% to 82%). At 2 to 4 years postvaccination, VE declined to 34% (95% CI: -0.03% to 58%). CONCLUSIONS Tdap protection wanes within 2 to 4 years. Lack of long-term protection after vaccination is likely contributing to increases in pertussis among adolescents.
Collapse
Affiliation(s)
- Anna M. Acosta
- Epidemic Intelligence Service, Scientific Education and Professional Development Program Office, Atlanta, Georgia,Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Chas DeBolt
- Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington
| | - Azadeh Tasslimi
- Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington
| | - Melissa Lewis
- Biostatistics Office, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laurie K. Stewart
- Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington
| | - Lara K. Misegades
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Nancy E. Messonnier
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Thomas A. Clark
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Stacey W. Martin
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Manisha Patel
- Meningitis and Vaccine Preventable Disease Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
26
|
Identification of pertussis-specific effector memory T cells in preschool children. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:561-9. [PMID: 25787136 DOI: 10.1128/cvi.00695-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/11/2015] [Indexed: 02/07/2023]
Abstract
Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4(+) and CD8(+) T-cell fractions (CFSE(dim)) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4(+) effector memory cells (CD45RA(-) CCR7(-)) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4(+) and CD8(+) effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age.
Collapse
|
27
|
Patel JM, Kim MC, Vartabedian VF, Lee YN, He S, Song JM, Choi HJ, Yamanaka S, Amaram N, Lukacher A, Montemagno CD, Compans RW, Kang SM, Selvaraj P. Protein transfer-mediated surface engineering to adjuvantate virus-like nanoparticles for enhanced anti-viral immune responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1097-107. [PMID: 25752855 DOI: 10.1016/j.nano.2015.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Recombinant virus-like nanoparticles (VLPs) are a promising nanoparticle platform to develop safe vaccines for many viruses. Herein, we describe a novel and rapid protein transfer process to enhance the potency of enveloped VLPs by decorating influenza VLPs with exogenously added glycosylphosphatidylinositol-anchored immunostimulatory molecules (GPI-ISMs). With protein transfer, the level of GPI-ISM incorporation onto VLPs is controllable by varying incubation time and concentration of GPI-ISMs added. ISM incorporation was dependent upon the presence of a GPI-anchor and incorporated proteins were stable and functional for at least 4weeks when stored at 4°C. Vaccinating mice with GPI-granulocyte macrophage colony-stimulating factor (GM-CSF)-incorporated-VLPs induced stronger antibody responses and better protection against a heterologous influenza virus challenge than unmodified VLPs. Thus, VLPs can be enriched with ISMs by protein transfer to increase the potency and breadth of the immune response, which has implications in developing effective nanoparticle-based vaccines against a broad spectrum of enveloped viruses. FROM THE CLINICAL EDITOR The inherent problem with current influenza vaccines is that they do not generate effective cross-protection against heterologous viral strains. In this article, the authors described the development of virus-like nanoparticles (VLPs) as influenza vaccines with enhanced efficacy for cross-protection, due to an easy protein transfer modification process.
Collapse
Affiliation(s)
- Jaina M Patel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Vincent F Vartabedian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sara He
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jae-Min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Satoshi Yamanaka
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikhil Amaram
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Lukacher
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Carlo D Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
28
|
Aase A, Herstad TK, Jørgensen SB, Leegaard TM, Berbers G, Steinbakk M, Aaberge I. Anti-pertussis antibody kinetics following DTaP-IPV booster vaccination in Norwegian children 7-8 years of age. Vaccine 2014; 32:5931-6. [PMID: 25218299 DOI: 10.1016/j.vaccine.2014.08.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/26/2022]
Abstract
At the age of 7-8 years a booster of diphtheria, tetanus, acellular pertussis and polio vaccine is recommended for children in Norway. In this cross-sectional study we have analysed the antibody levels against pertussis vaccine antigens in sera from 498 children aged 6-12 years. The purposes of this study were to investigate the duration of the booster response against the pertussis vaccine antigens pertussis toxin (PT) and filamentous haemagglutinin (FHA); to determine the presence of high levels of pertussis antibodies in absence of recent vaccination; and to analyse how booster immunisation may interfere with the serological pertussis diagnostics. Prior to the booster the IgG antibody levels against PT revealed a geometric mean of 7.3IU/ml. After the booster the geometric mean peak anti-PT IgG response reached to 45.6IU/ml, followed by a steady decline in antibody levels over the next few years. The IgG anti-FHA levels followed the anti-PT IgG profiles. Three years after the booster the geometric mean IgG levels were only slightly above pre-booster levels. Prior to the booster 44% of the sera contained ≤5IU/ml of anti-PT IgG compared to18% 3 years after and 30% 4 years after the booster. When recently vaccinated children were excluded, 6.2% of the children had anti-PT IgG levels above 50IU/ml which may indicate pertussis infection within the last 2 years. This study indicates that the currently used acellular pertussis vaccines induce moderate immune responses to the pertussis antigens and that the antibodies wane within few years after the booster. This lack of sustained immune response may partly be responsible for the increased number of pertussis cases observed in this age group during the last years.
Collapse
Affiliation(s)
- Audun Aase
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Norway.
| | - Tove Karin Herstad
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Norway
| | - Silje Bakken Jørgensen
- Department of Microbiology and Infection Control, Akershus University Hospital and Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Truls Michael Leegaard
- Department of Microbiology and Infection Control, Akershus University Hospital and Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Guy Berbers
- Center for Infectious Diseases Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Martin Steinbakk
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Norway
| | - Ingeborg Aaberge
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Norway
| |
Collapse
|
29
|
Barlow RS, Reynolds LE, Cieslak PR, Sullivan AD. Vaccinated Children and Adolescents With Pertussis Infections Experience Reduced Illness Severity and Duration, Oregon, 2010–2012. Clin Infect Dis 2014; 58:1523-9. [DOI: 10.1093/cid/ciu156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
van Twillert I, van Gaans-van den Brink JAM, Poelen MCM, Helm K, Kuipers B, Schipper M, Boog CJP, Verheij TJM, Versteegh FGA, van Els CACM. Age related differences in dynamics of specific memory B cell populations after clinical pertussis infection. PLoS One 2014; 9:e85227. [PMID: 24454823 PMCID: PMC3890308 DOI: 10.1371/journal.pone.0085227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
For a better understanding of the maintenance of immune mechanisms to Bordetella pertussis (Bp) in relation to age, we investigated the dynamic range of specific B cell responses in various age-groups at different time points after a laboratory confirmed pertussis infection. Blood samples were obtained in a Dutch cross sectional observational study from symptomatic pertussis cases. Lymphocyte subpopulations were phenotyped by flowcytometry before and after culture. Memory B (Bmem) cells were differentiated into IgG antibody secreting cells (ASC) by polyclonal stimulation and detected by an ELISPOT assay specific for pertussis antigens pertussis toxin (Ptx), filamentous haemagglutinin (FHA) and pertactin (Prn). Bp antigen specific IgG concentrations in plasma were determined using multiplex technology. The majority of subjects having experienced a clinical pertussis episode demonstrated high levels of both Bp specific IgG and Bmem cell levels within the first 6 weeks after diagnosis. Significantly lower levels were observed thereafter. Waning of cellular and humoral immunity to maintenance levels occurred within 9 months after antigen encounter. Age was found to determine the maximum but not base-line frequencies of Bmem cell populations; higher levels of Bmem cells specific for Ptx and FHA were reached in adults and (pre-) elderly compared to under-fours and schoolchildren in the first 6 weeks after Bp exposure, whereas not in later phases. This age effect was less obvious for specific IgG levels. Nonetheless, subjects' levels of specific Bmem cells and specific IgG were weakly correlated. This is the first study to show that both age and closeness to last Bp encounter impacts the size of Bp specific Bmem cell and plasma IgG levels.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Martien C. M. Poelen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Betsy Kuipers
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Maarten Schipper
- Department of Statistics, Mathematical Modelling and Data Logistics, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Theo J. M. Verheij
- Julius Center Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cécile A. C. M. van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Hara M, Okada K, Yamaguchi Y, Uno S, Otsuka Y, Shimanoe C, Nanri H, Horita M, Ozaki I, Nishida Y, Tanaka K. Immunogenicity and safety after booster vaccination of diphtheria, tetanus, and acellular pertussis in young adults: an open randomized controlled trial in Japan. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1799-804. [PMID: 24108779 PMCID: PMC3889508 DOI: 10.1128/cvi.00490-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022]
Abstract
The recent increase of pertussis in young adults in Japan is hypothesized to be due in part to waning protection from the acellular pertussis vaccine. While a booster immunization may prevent an epidemic of pertussis among these young adults, little is known about the safety and immunogenicity of such a booster with the diphtheria, tetanus, and acellular pertussis vaccine (DTaP), which is currently available in Japan. One hundred and eleven medical students with a mean age of 19.4 years were randomly divided into 2 groups of 55 and 56 subjects and received, respectively, 0.2 or 0.5 ml of DTaP. Immunogenicity was assessed by performing the immunoassay using serum, and the geometric mean concentration (GMC), GMC ratio (GMCR), seropositive rate, and booster response rate were calculated. Adverse reactions and adverse events were monitored for 7 days after vaccination. After booster vaccination in the two groups, significant increases were found in the antibodies against pertussis toxin, filamentous hemagglutinin, diphtheria toxoid, and tetanus toxoid, and the booster response rates for all subjects reached 100%. The GMCs and GMCRs against all antigens were significantly higher in the 0.5-ml group than in the 0.2-ml group. No serious adverse events were observed. Frequencies of local reactions were similar in the 2 groups, although the frequency of severe local swelling was significantly higher in the 0.5-ml group. These data support the acceptability of booster immunization using both 0.2 and 0.5 ml of DTaP for young adults for controlling pertussis. (This study was registered at UMIN-CTR under registration number UMIN000010672.).
Collapse
Affiliation(s)
- Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| | - Kenji Okada
- Department of Pediatrics, Fukuoka Dental College, Fukuoka City, Fukuoka, Japan
| | - Yuko Yamaguchi
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Kumamoto City, Kumamoto, Japan
| | - Shingo Uno
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Kumamoto City, Kumamoto, Japan
| | - Yasuko Otsuka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| | - Hinako Nanri
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| | - Mikako Horita
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| | - Iwata Ozaki
- Health Care Center, Saga University, Saga City, Saga, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga City, Japan
| |
Collapse
|
32
|
Abstract
In this article we discuss the following: (1) acellular vaccines are immunogenic, but responses vary by vaccine; (2) pertussis antibody levels rapidly wane but promptly increase after vaccination; (3) whole-cell vaccines vary in immunogenicity and efficacy; (4) whole-cell vaccines and naturally occurring pertussis generate predominantly T-helper 1 (Th1) responses, whereas acellular vaccines generate mixed Th1/Th2 responses; (5) active transplacental transport of pertussis antibody is documented; (6) neonatal immunization with diphtheria toxoid, tetanus toxoid, and acellular pertussis vaccine has been associated with some suppression of pertussis antibody, but suppression has been seen less often with acellular vaccines; (7) memory B cells persist in both acellular vaccine- and whole cell vaccine-primed children; and (8) in acellular vaccine-primed children, T-cell responses remain elevated and do not increase with vaccine boosters, whereas in whole-cell vaccine-primed children, these responses can be increased by vaccine boosting and natural exposure. Despite these findings, challenges remain in understanding the immune response to pertussis vaccines.
Collapse
Affiliation(s)
- Kathryn M Edwards
- Sarah H. Sell and Cornelius Vanderbilt Chair in Pediatrics, School of Medicine, and
| | | |
Collapse
|
33
|
Abstract
SUMMARY The last report on pertussis seroprevalence in Belgium concerned samples collected during 1993-1994. In the context of the Eupert-Labnet WP6 seroprevalence study (comparing sera from 16 European member states), 1500 anonymized leftover diagnostic samples were collected randomly during the second semester of 2012 by the clinical chemistry laboratories of six participating Belgian centres, distributed equally between Flanders, Wallonia and Brussels Capital Region. As suggested by the WP6 organizers, a total of 750 samples (125/centre) were selected from subjects in the 20-29 years age group and 750 samples (125/centre) from subjects in the 30-39 years age group. Anti-PT IgG levels were measured using Virion-Serion ELISA and analysed using predefined cut-off levels. Sixty-one (4%) sera were indicative of an infection in the past 2 years (between 50 and 100 IU/ml) and another 61 (4%) sera had anti-PT IgG antibodies reflecting acute infection (>100 IU/ml). These results highlight the presence of a Bordetella pertussis reservoir in the adult 'healthy' Belgian population.
Collapse
|
34
|
van der Maas NAT, Mooi FR, de Greeff SC, Berbers GAM, Spaendonck MAECV, de Melker HE. Pertussis in the Netherlands, is the current vaccination strategy sufficient to reduce disease burden in young infants? Vaccine 2013; 31:4541-7. [PMID: 23933365 DOI: 10.1016/j.vaccine.2013.07.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/02/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pertussis has resurged in the Netherlands since 1996. Several measures, i.e. acceleration of the schedule, introduction of a preschool acellular pertussis booster and change from an infant whole cell to an acellular pertussis combination vaccine were implemented in the National Immunisation Programme to decrease disease burden, in particular among very young infants who have the highest morbidity and mortality of pertussis. Nevertheless, a large outbreak occurred in 2011-2012. METHODS 1996-2010 was divided in 3-year-periods to assess the impact of the measures taken, using notifications and hospitalisations. These results were compared with 2011-2012. Mean Incidence rates (IRs) per 100,000 were calculated. RESULTS Although the measures taken resulted in decreased IRs among the targeted age groups after implementation, overall mean IRs of notifications increased from 32 (1996-2004) to 37 (2005-2010) and 63 (2011-2012). Young infants, not yet vaccinated, did not benefit; during the 2011-2012 outbreak, IR in 0-2-month-olds amounted to 259.6. IR among persons over 9 years of age increased from 6.8 (1996-1999) to 59.1 (2011-2012) For hospitalisations overall mean IRs decreased from 1.95 per 100,000 (1997-2004) to 0.88 (2005-2010) and 0.76 (2011). CONCLUSION The measures taken reduced IRs of notifications and hospitalisations among groups eligible for vaccination, but had no effect on the increasing IRs in adolescents and adults. This trend is also observed in other countries. The high IRs in 2012 in adolescents and adults probably resulted in increased transmission to infants, who are at risk for contracting severe pertussis. Therefore, additional measures to protect this group should be considered.
Collapse
Affiliation(s)
- Nicoline A T van der Maas
- Epidemiology and Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720BA Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Differential T- and B-cell responses to pertussis in acellular vaccine-primed versus whole-cell vaccine-primed children 2 years after preschool acellular booster vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1388-95. [PMID: 23825195 DOI: 10.1128/cvi.00270-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated long-term cellular and humoral immunity against pertussis after booster vaccination of 4-year-old children who had been vaccinated at 2, 3, 4, and 11 months of age with either whole-cell pertussis (wP) or acellular pertussis (aP) vaccine. Immune responses were evaluated until 2 years after the preschool booster aP vaccination. In a cross-sectional study (registered trial no. ISRCTN65428640), blood samples were taken from wP- and aP-primed children prebooster and 1 month and 2 years postbooster. Pertussis vaccine antigen-specific IgG levels, antibody avidities, and IgG subclasses, as well as T-cell cytokine levels, were measured by fluorescent bead-based multiplex immunoassays. The numbers of pertussis-specific memory B cells and gamma interferon (IFN-γ)-producing T cells were quantified by enzyme-linked immunosorbent spot assays. Even 2 years after booster vaccination, memory B cells were still present and higher levels of pertussis-specific antibodies than prebooster were found in aP-primed children and, to a lesser degree, also in wP-primed children. The antibodies consisted mainly of the IgG1 subclass but also showed an increased IgG4 portion, primarily in the aP-primed children. The antibody avidity indices for pertussis toxin and pertactin in aP-primed children were already high prebooster and remained stable at 2 years, whereas those in wP-primed children increased. All measured prebooster T-cell responses in aP-primed children were already high and remained at similar levels or even decreased during the 2 years after booster vaccination, whereas those in wP-primed children increased. Since the Dutch wP vaccine has been replaced by aP vaccines, the induction of B-cell and T-cell memory immune responses has been enhanced, but antibody levels still wane after five aP vaccinations. Based on these long-term immune responses, the Dutch pertussis vaccination schedule can be optimized, and we discuss here several options.
Collapse
|
36
|
|
37
|
Prelog M, Almanzar G, Rieber N, Ottensmeier B, Zlamy M, Liese J. Differences of IgG antibody avidity after an acellular pertussis (aP) booster in adolescents after a whole cell (wcP) or aP primary vaccination. Vaccine 2012; 31:387-93. [PMID: 23142306 DOI: 10.1016/j.vaccine.2012.10.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Compared to whole cell pertussis (wcP) vaccines, acellular pertussis vaccines (aP) have a better safety profile with lower reactogenicity, although their short and long-term efficacy was found to be slightly lower. Up to now, no established serological parameter to predict long-term protection exists. IgG-anti-pertussis avidity possibly determines the effect of different pertussis vaccines and boosting intervals on long-term immunity. Thus, the avidity of a tetanus-diphtheria-aP booster at 10-14 years was tested in three groups of adolescents who had been previously immunized with either five doses of aP (5aP) at 2, 4, 6, 15-18 months and 5-6 years of age, four doses of aP (4aP) or four doses of wcP (4wcP) at 2, 4, 6 and 15-18 months of age. Relative avidity index (RAI) of IgG-anti-pertussis toxin (PT) and IgG-anti-filamentous-hemagglutinin (FHA) was assessed by an adapted ELISA. RAI of IgG-anti-PT and of IgG-anti-FHA correlated positively with antibody concentrations in the pre-vaccination and in the post-vaccination analysis and significantly increased after adolescent booster with aP in all groups. Pre- and post-vaccination, the proportion of participants with IgG-anti-PT RAI>40% (moderate to high avidity) was significantly lower in the 4wcP group (52.9% and 88.9%) compared to the 5aP group (89.5% and 100.0%). In conclusion, TdaP in adolescence induces an increase of antibody avidity and, thus, is able to enhance the binding-quality of antibodies against pertussis. The study suggests including antibody avidity into serological studies on the humoral response to provide information about the long-term efficacy of the vaccine.
Collapse
Affiliation(s)
- M Prelog
- Department of Pediatrics, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Barkoff AM, Gröndahl-Yli-Hannuksela K, Vuononvirta J, Mertsola J, Kallonen T, He Q. Differences in avidity of IgG antibodies to pertussis toxin after acellular pertussis booster vaccination and natural infection. Vaccine 2012; 30:6897-902. [DOI: 10.1016/j.vaccine.2012.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/14/2012] [Accepted: 09/02/2012] [Indexed: 11/26/2022]
|
39
|
Assessment of IgG avidity against pertussis toxin and filamentous hemagglutinin via an adapted enzyme-linked immunosorbent assay (ELISA) using ammonium thiocyanate. J Immunol Methods 2012; 387:36-42. [PMID: 23022630 DOI: 10.1016/j.jim.2012.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023]
Abstract
Antibody avidity, defined as the strength of binding between antibody and antigen, represents a functional measure of affinity maturation of antibodies. Determination of the antibody avidity is usually performed separating high and low avidity antibodies by dissociating agents, but measurement of the antibody avidity in humans is rather complicated, due to the heterogeneity of the antibodies produced in response to complex antigens, e.g. after vaccinations. The purpose of the present study was to evaluate the experimental determinants of the assessment of avidities of IgG antibodies directed against pertussis toxin (IgG-anti-PT) and filamentous hemagglutinin (IgG-anti-FHA) produced after pertussis vaccination using an adapted ELISA and ammonium thiocyanate (NH(4)SCN) as dissociating agent. Our experiments revealed that the results of avidity testing depend very much on experimental conditions and may over- or underestimate the relative avidity of IgG-anti-PT and IgG-anti-FHA antibodies. Whereas in our findings avidity seems to be independent from the initial antibody concentration in a wide range of measures, RAI depends on NH(4)SCN concentration, time of incubation and temperature of the reaction. The presented method allows an accurate measurement of the IgG antibody avidity against both Bordetella pertussis antigens PT and FHA, using NH(4)SCN as chaotropic agent in concentrations lower than 3.0M for 20 min time of incubation at 37 °C. Different experimental conditions in testing pertussis-specific IgG antibody avidity should be considered in interpretation and comparability of data of different studies.
Collapse
|
40
|
T-cell responses before and after the fifth consecutive acellular pertussis vaccination in 4-year-old Dutch children. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1879-86. [PMID: 23015649 DOI: 10.1128/cvi.00277-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunization with acellular pertussis vaccine (aP) induces higher specific antibody levels and fewer adverse reactions than does immunization with the whole-cell vaccine (wP). However, antibody levels in infants induced by both types of pertussis vaccines wane already after 1 year. Therefore, long-term T-cell responses upon vaccination might play a role in protection against pertussis. In a cross-sectional study (ISRCTN65428640), we investigated T-helper (Th) cell immune responses in wP- or aP-vaccinated children before and after an aP low-dose or high-dose preschool booster at 4 years of age in The Netherlands. T cells were stimulated with pertussis vaccine antigens. The numbers of gamma interferon-producing cells and Th1, Th2, Th17, and interleukin-10 (IL-10) cytokine concentrations were determined. In addition, pertussis-specific IgE levels were measured in plasma. Children being vaccinated with aP vaccinations at 2, 3, 4, and 11 months of age still showed higher pertussis-specific T-cell responses at 4 years of age than did wP-vaccinated children. These T-cell responses failed to show a typical increase in cytokine production after a fifth aP vaccination but remained high after a low-dose booster and seemed to decline even after a high-dose booster. Importantly, elevated IgE levels were induced after this booster vaccination. In contrast, wP-vaccinated children had only low prebooster T-cell responses, and these children showed a clear postbooster T-cell memory response even after a low-dose booster vaccine. Four high-dose aP vaccinations in infancy induce high T-cell responses still present even 3 years after vaccination and enhanced IgE responses after preschool booster vaccination. Therefore, studies of changes in vaccine dosage, timing of pertussis (booster) vaccinations, and the possible association with local side effects are necessary.
Collapse
|
41
|
Schure RM, de Rond L, Öztürk K, Hendrikx L, Sanders E, Berbers G, Buisman AM. Pertussis circulation has increased T-cell immunity during childhood more than a second acellular booster vaccination in Dutch children 9 years of age. PLoS One 2012; 7:e41928. [PMID: 22860033 PMCID: PMC3409203 DOI: 10.1371/journal.pone.0041928] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION Controlled-Trials.com ISRCTN64117538.
Collapse
Affiliation(s)
- Rose-Minke Schure
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
- Department of Pediatric Immunology, University Medical Center/Wilhelmina Kinder Ziekenhuis, Utrecht, the Netherlands
| | - Lia de Rond
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Kemal Öztürk
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Lotte Hendrikx
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Elisabeth Sanders
- Department of Pediatric Immunology, University Medical Center/Wilhelmina Kinder Ziekenhuis, Utrecht, the Netherlands
| | - Guy Berbers
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Anne-Marie Buisman
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
- * E-mail:
| |
Collapse
|
42
|
van Tilburg CM, Bierings MB, Berbers GAM, Wolfs TFW, Pieters R, Bloem AC, Sanders EAM. Impact of treatment reduction for childhood acute lymphoblastic leukemia on serum immunoglobulins and antibodies against vaccine-preventable diseases. Pediatr Blood Cancer 2012; 58:701-7. [PMID: 21793184 DOI: 10.1002/pbc.23258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The consequences of current intensive chemotherapy for childhood acute lymphoblastic leukemia (ALL) for immune defense are a matter of concern. The purpose of this study was to examine the effect of reduced compared with intensive (conventional) ALL chemotherapy on serum immunoglobulin levels and specific antibody concentrations against vaccine-preventable diseases. PROCEDURE Patients treated according to Dutch Childhood Oncology Group ALL 10 protocol were stratified by minimal residual disease to receive reduced (standard risk; SR) or intensive (medium risk; MR) intensification/maintenance treatment. Between November 2004 and July 2009 we compared serum immunoglobulins of 110 patients and specific antibodies against diphtheria toxin, tetanus toxin, and Bordetella pertussis antigens of 41 patients of SR and MR groups during chemotherapy. RESULTS Immunoglobulin levels showed significantly different patterns between the SR and MR groups. In the MR group IgG, IgA, and IgM levels decreased towards the end of intensive treatment; in the SR group IgG levels increased while IgA and IgM stabilized. In both groups IgM and IgG levels were most affected. Specific antibody levels against vaccine-preventable diseases decreased in both groups, but more profound in MR group. CONCLUSIONS Although reduced chemotherapy is beneficial for immunoglobulin level recovery and might prevent susceptibility for infections, specific antibodies remain decreased.
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- Department of Pediatric Hematology/Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Enhanced memory B-cell immune responses after a second acellular pertussis booster vaccination in children 9 years of age. Vaccine 2011; 30:51-8. [DOI: 10.1016/j.vaccine.2011.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/19/2011] [Indexed: 11/19/2022]
|
44
|
Hendrikx LH, Öztürk K, de Rond LGH, de Greeff SC, Sanders EAM, Berbers GAM, Buisman AM. Serum IgA responses against pertussis proteins in infected and Dutch wP or aP vaccinated children: an additional role in pertussis diagnostics. PLoS One 2011; 6:e27681. [PMID: 22110718 PMCID: PMC3215732 DOI: 10.1371/journal.pone.0027681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Whooping cough is a respiratory disease caused by Bordetella pertussis, which induces mucosal IgA antibodies that appear to be relevant in protection. Serum IgA responses are measured after pertussis infection and might provide an additional role in pertussis diagnostics. However, the possible interfering role for pertussis vaccinations in the induction of serum IgA antibodies is largely unknown. Methods/Principal Findings We compared serum IgA responses in healthy vaccinated children between 1 and 10 years of age with those in children who despite vaccinations recently were infected with Bordetella pertussis. All children have been vaccinated at 2, 3, 4 and 11 months of age with either the Dutch whole-cell pertussis (wP) vaccine or an acellular pertussis (aP) vaccine and additionally received an aP booster vaccination at 4 years of age. Serum IgA responses to pertussis toxin (PT), filamentous heamagglutinin (FHA) and pertactin (Prn) were measured with a fluorescent multiplex bead-based immuno-assay. An ELISPOT-assay was used for the detection of IgA-memory B-cells specific to these antigens. Serum IgA levels to all pertussis vaccine antigens were significantly higher in infected children compared with healthy children. High correlations between anti-PT, anti-FHA or anti-Prn IgA and IgG levels were found in infected children and to some degree in wP primed children, but not at all in aP primed children. Highest numbers of IgA-pertussis-specific memory B-cells were observed after infection and generally comparable numbers were found after wP and aP vaccination. Conclusions This study provides new insight in the diagnostic role for serum IgA responses against PT in vaccinated children. Since aP vaccines induce high serum IgG levels that interfere with pertussis diagnostics, serum IgA-PT levels will provide an additional diagnostic role. High levels of serum IgA for PT proved specific for recent pertussis infection with reasonable sensitivity, whereas the role for IgA levels against FHA and Prn in diagnosing pertussis remains controversial.
Collapse
Affiliation(s)
- Lotte H Hendrikx
- Centre for Infectious Disease and Control (Clb), National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Different IgG-subclass distributions after whole-cell and acellular pertussis infant primary vaccinations in healthy and pertussis infected children. Vaccine 2011; 29:6874-80. [DOI: 10.1016/j.vaccine.2011.07.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 12/24/2022]
|
46
|
Hendrikx LH, de Rond LGH, Oztürk K, Veenhoven RH, Sanders EAM, Berbers GAM, Buisman AM. Impact of infant and preschool pertussis vaccinations on memory B-cell responses in children at 4 years of age. Vaccine 2011; 29:5725-30. [PMID: 21669247 DOI: 10.1016/j.vaccine.2011.05.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
Whooping cough, caused by Bordetella pertussis, is reemerging in the vaccinated population. Antibody levels to pertussis antigens wane rapidly after both whole-cell (wP) and acellular pertussis (aP) vaccination and protection may largely depend on long-term B- and T-cell immunity. We studied the effect of wP and aP infant priming at 2, 3, 4 and 11 months according to the Dutch immunization program on pertussis-specific memory B-cell responses before and after a booster vaccination with either a high- or low-pertussis dose vaccine at 4 years of age. Purified B-cells were characterized by FACS-analysis and after polyclonal stimulation, memory B-cells were detected by ELISPOT-assays specific for pertussis toxin, filamentous haemagglutinin and pertactin. Before and after the booster, higher memory B-cell responses were measured in aP primed children compared with wP primed children. In contrast with antibody levels, no dose-effect was observed on the numbers of memory B-cell responses. In aP primed children a fifth high-dose aP vaccination tended to induce even lower memory B-cell responses than a low-dose aP booster. In both wP and aP primed children, the number of memory B-cells increased after the booster and correlated with the pertussis-specific antibody concentrations and observed affinity maturation. This study indicates that aP vaccinations in the first year of life induce higher pertussis-specific memory B-cell responses in children 4 years of age compared with Dutch wP primary vaccinations. Since infant aP vaccinations have improved protection against whooping cough in children despite waning antibody levels, this suggests that an enhanced memory B-cell pool induction may have an important role in protection. However, the pertussis-dose of the preschool booster needs to be considered depending on the vaccine used for priming to optimize long-term protection against whooping cough.
Collapse
Affiliation(s)
- Lotte H Hendrikx
- Centre for Infectious Disease and Control (Cib), National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Improved specificity of a multiplex immunoassay for quantitation of anti-diphtheria toxin antibodies with the use of diphtheria toxoid. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1183-6. [PMID: 21613460 DOI: 10.1128/cvi.05081-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A nonspecific binding of antibodies to diphtheria toxin, especially in adult serum samples, was observed in our diphtheria-tetanus-pertussis multiplex immunoassay (DTaP4 MIA). This can be significantly reduced by the use of diphtheria toxoid, achieving a good correlation with the Vero cell neutralization test and the toxin binding inhibition assay.
Collapse
|
48
|
Fast, antigen-saving multiplex immunoassay to determine levels and avidity of mouse serum antibodies to pertussis, diphtheria, and tetanus antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:595-603. [PMID: 21325488 DOI: 10.1128/cvi.00061-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To enhance preclinical evaluation of serological immune responses to the individual diphtheria, tetanus, and pertussis (DTP) components of DTP combination vaccines, a fast hexavalent bead-based method was developed. This multiplex immunoassay (MIA) can simultaneously determine levels of specific mouse serum IgG antibodies to P antigens P.69 pertactin (P.69 Prn), filamentous hemagglutinin (FHA), pertussis toxin (Ptx), and combined fimbria type 2 and 3 antigens (Fim2/3) and to diphtheria toxin (Dtx) and tetanus toxin (TT) in a single well. The mouse DTP MIA was shown to be specific and sensitive and to correlate with the six single in-house enzyme-linked immunosorbent assays (ELISAs) for all antigens. Moreover, the MIA was expanded to include avidity measurements of DTP antigens in a multivalent manner. The sensitivities of the mouse DTP avidity MIA per antigen were comparable to those of the six individual in-house avidity ELISAs, and good correlations between IgG concentrations obtained by both methods for all antigens tested were shown. The regular and avidity mouse DTP MIAs were reproducible, with good intra- and interassay coefficients of variability (CV) for all antigens. Finally, the usefulness of the assay was demonstrated in a longitudinal study of the development and avidity maturation of specific IgG antibodies in mice having received different DTP vaccines. We conclude that the hexaplex mouse DTP MIA is a specific, sensitive, and high-throughput alternative for ELISA to investigate the quantity and quality of serological responses to DTP antigens in preclinical vaccine studies.
Collapse
|
49
|
Hendrikx LH, Öztürk K, de Rond LG, Veenhoven RH, Sanders EA, Berbers GA, Buisman AM. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins. Vaccine 2011; 29:1431-7. [DOI: 10.1016/j.vaccine.2010.12.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/23/2010] [Accepted: 12/13/2010] [Indexed: 11/29/2022]
|
50
|
de Greeff SC, de Melker HE, van Gageldonk PGM, Schellekens JFP, van der Klis FRM, Mollema L, Mooi FR, Berbers GAM. Seroprevalence of pertussis in The Netherlands: evidence for increased circulation of Bordetella pertussis. PLoS One 2010; 5:e14183. [PMID: 21152071 PMCID: PMC2995730 DOI: 10.1371/journal.pone.0014183] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In many countries, the reported pertussis has increased despite high vaccination coverage. However, accurate determination of the burden of disease is hampered by reporting artifacts. The infection frequency is more reliably estimated on the basis of the prevalence of high IgG concentrations against pertussis toxin (IgG-Ptx). We determined whether the increase in reported pertussis in the last decade is associated with an increase in the number of infections. METHODOLOGY/PRINCIPAL FINDINGS In a cross-sectional population-based serosurveillance study conducted in 2006-07, from a randomly selected age-stratified sample of 7,903 persons, serum IgG-Ptx concentrations were analyzed using a fluorescent bead-based multiplex immuno assay. In 2006-07, 9.3% (95%CI 8.5-10.1) of the population above 9 years of age had an IgG-Ptx concentration above 62.5 EU/ml (suggestive for pertussis infection in the past year), which was more than double compared to 1995-96 (4.0%; 95%CI 3.3-4.7). The reported incidence showed a similar increase as the seroprevalence between both periods. CONCLUSIONS Although changes in the vaccination program have reduced pertussis morbidity in childhood, they have not affected the increased infection rate in adolescent and adult pertussis. Indeed, the high circulation of B. pertussis in the latter age-categories may limit the effectiveness of pediatric vaccination.
Collapse
Affiliation(s)
- Sabine C de Greeff
- Epidemiology and Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|