1
|
Desalegn G, Abrahamson C, Ross Turbyfill K, Pill-Pepe L, Bautista L, Tamilselvi CS, Dunn D, Kapoor N, Sullinger B, Herrera M, Oaks EV, Fairman J, Pasetti MF. A broad spectrum Shigella vaccine based on VirG 53-353 multiepitope region produced in a cell-free system. NPJ Vaccines 2025; 10:6. [PMID: 39805874 PMCID: PMC11731012 DOI: 10.1038/s41541-025-01064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.e., O-polysaccharide (OPS)-based conjugates, have limited coverage-only against the immunizing serotype. Vaccines based on Shigella conserved proteins are sought for their simplicity and capacity to prevent disease caused by multiple serotypes. We previously reported the broad protective capacity of VirGα, a conserved surface-exposed domain of Shigella virulence factor. Seeking to refine the vaccine antigenic target and achieve scalable manufacturing compatible with Good Manufacturing Practices, we mapped linear B-cell epitopes spanning the entire VirG protein sequence by probing the immune reactivity of 10-mer peptides (overlapping 4-8 aa) with sera from Shigella-infected rhesus monkeys. The surface-exposed VirG53-353 subregion of the passenger α-domain demonstrated the highest and strongest immunoreactivity. VirG53-353 was produced efficiently at a large scale (>150 mg/L) using cell-free protein synthesis. When administered to mice intramuscularly, VirG53-353 elicited robust antibody responses and conferred high levels of protection against the three most prevalent Shigella serotypes (S. flexneri 2a, 3a, and S. sonnei). VirG53-353 evoked the production of Th2-type cytokines by spleen cells from vaccinated mice. A new universal Shigella vaccine based on VirG53-353 meets the World Health Organization's preferred product specifications. The target antigen refinement and production improvement described here will facilitate the first-in-human studies.
Collapse
Affiliation(s)
- Girmay Desalegn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - K Ross Turbyfill
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | - Chitradevi S Tamilselvi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dylan Dunn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - Edwin V Oaks
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Patuxent Research and Consulting Group, Gambrills, MD, USA
| | | | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Roozen GVT, Sukwa N, Chirwa M, White JA, Estrada M, Maier N, Turbyfill KR, Laird RM, Suvarnapunya AE, Sayeh A, D’Alessio F, Marion C, Pattacini L, Hoogerwerf MA, Murugan R, Terrinoni M, Holmgren JR, Sirima SB, Houard S, Simuyandi M, Roestenberg M. Safety, Tolerability, and Immunogenicity of the Invaplex AR-DetoxShigella Vaccine Co-Administered with the dmLT Adjuvant in Dutch and Zambian Adults: Study Protocol for a Multi-Center, Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Phase Ia/b Clinical Trial. Vaccines (Basel) 2025; 13:48. [PMID: 39852827 PMCID: PMC11769217 DOI: 10.3390/vaccines13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Shigella infections remain endemic in places with poor sanitation and are a leading cause of diarrheal mortality globally, as well as a major contributor to gut enteropathy and stunting. There are currently no licensed vaccines for shigellosis but it has been estimated that an effective vaccine could avert 590,000 deaths over a 20-year period. A challenge to effective Shigella vaccine development has been the low immunogenicity and protective efficacy of candidate Shigella vaccines in infants and young children. Additionally, a new vaccine might be less immunogenic in a highly endemic setting compared to a low endemic setting ("vaccine hyporesponsiveness"). The use of a potent adjuvant enhancing both mucosal and systemic immunity might overcome these problems. InvaplexAR-Detox is an injectable Shigella vaccine that uses a novel combination of conserved invasion plasmid antigen proteins and a serotype-specific bacterial lipopolysaccharide attenuated for safe intramuscular administration. The adjuvant dmLT has been shown to enhance Shigella immune responses in mice, has safely been administered intramuscularly, and was shown to enhance immune responses in healthy volunteers when given in combination with other antigens in phase I trials. This article describes the protocol of a study that will be the first to assess the safety, tolerability, and immunogenicity of InvaplexAR-Detox co-administered with dmLT in healthy adults in low-endemic and high-endemic settings. METHODS In a multi-center, randomized, double-blind, and placebo-controlled dose-escalation phase Ia/b trial, the safety, tolerability, and immunogenicity of three intramuscular vaccinations administered 4 weeks apart with 2.5 µg or 10 µg of InvaplexAR-Detox vaccine, alone or in combination with 0.1 µg of the dmLT adjuvant, will first be assessed in a total of 50 healthy Dutch adults (phase Ia) and subsequently in 35 healthy Zambian adults (phase Ib) aged 18-50 years. The primary outcome is safety, and secondary outcomes are humoral and cellular immune responses to the adjuvanted or non-adjuvanted vaccine. DISCUSSION This trial is part of the ShigaPlexIM project that aims to advance the early clinical development of an injectable Shigella vaccine and to make the vaccine available for late-stage clinical development. This trial addresses the issue of hyporesponsiveness in an early stage of clinical development by testing the vaccine and adjuvant in an endemic setting (Zambia) after the first-in-human administration and the dose-escalation has proven safe and tolerable in a low-endemic setting (Netherlands). Besides strengthening the vaccine pipeline against a major diarrheal disease, another goal of the ShigaPlexIM project is to stimulate capacity building and strengthen global North-South relations in clinical research. TRIAL REGISTRATION EU CT number: 2023-506394-35-02, ClinicalTrials.gov identifier: NCT05961059.
Collapse
Affiliation(s)
- Geert V. T. Roozen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (L.P.); (R.M.)
| | - Nsofwa Sukwa
- Centre for Infectious Disease Research Zambia, Lusaka P.O. Box 34681, Zambia; (N.S.)
| | - Masuzyo Chirwa
- Centre for Infectious Disease Research Zambia, Lusaka P.O. Box 34681, Zambia; (N.S.)
| | | | | | | | - Kevin R. Turbyfill
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (A.E.S.)
| | - Renee M. Laird
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (A.E.S.)
| | | | - Aicha Sayeh
- European Vaccine Initiative, 69115 Heidelberg, Germany (S.H.)
| | | | - Candice Marion
- European Vaccine Initiative, 69115 Heidelberg, Germany (S.H.)
| | - Laura Pattacini
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (L.P.); (R.M.)
| | - Marie-Astrid Hoogerwerf
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (L.P.); (R.M.)
| | - Rajagopal Murugan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (L.P.); (R.M.)
| | - Manuela Terrinoni
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jan R. Holmgren
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé, Ouagadougou 06 BP 10248, Burkina Faso
| | - Sophie Houard
- European Vaccine Initiative, 69115 Heidelberg, Germany (S.H.)
| | - Michelo Simuyandi
- Centre for Infectious Disease Research Zambia, Lusaka P.O. Box 34681, Zambia; (N.S.)
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (L.P.); (R.M.)
| |
Collapse
|
3
|
Kelly M, Janardhanan J, Wagh C, Verma S, Charles RC, Leung DT, Kamruzzaman M, Pansuriya RK, Chowdhury F, Vann WF, Kaminski RW, Khan AI, Bhuiyan TR, Qadri F, Kováč P, Xu P, Ryan ET. Development of a Shigella conjugate vaccine targeting Shigella flexneri 6 that is immunogenic and provides protection against virulent challenge. Vaccine 2024; 42:126263. [PMID: 39217775 PMCID: PMC11409015 DOI: 10.1016/j.vaccine.2024.126263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Immunity protective against shigella infection targets the bacterial O-specific polysaccharide (OSP) component of lipopolysaccharide. A multivalent shigella vaccine would ideally target the most common global Shigella species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. We previously reported development of shigella conjugate vaccines (SCVs) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using a platform squaric acid chemistry conjugation approach and carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. Here we report development of a SCV targeting S. flexneri 6 (SCV-Sf6) using the same platform approach. We demonstrated that SCV-Sf6 was recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG and IgM responses, as well as rTTHc-specific IgG responses. Immune responses were increased when administered with aluminum phosphate adjuvant. Vaccination induced bactericidal antibody responses against S. flexneri 6, and vaccinated animals were protected against lethal challenge with virulent S. flexneri 6. Our results assist in the development of a multivalent vaccine protective against shigellosis.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeshina Janardhanan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Chanchal Wagh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Smriti Verma
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA.
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | | | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | | | - Ashraful Islam Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA.
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA.
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Chen GW, Guo L, Huang J, Ma H, Fernandez-Castillo S, Soubal-Mora JP, Valdes-Balbin Y, Verez-Bencomo V. Synthesis of oligosaccharides from terminal B. pertussis LPS pentasaccharide and definition of the minimal epitope recognized by anti-pertussis antibodies. Glycoconj J 2024; 41:241-254. [PMID: 39046578 DOI: 10.1007/s10719-024-10160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Pertussis vaccines have been very effective in controlling whooping-cough epidemics but are ineffective in controlling circulation in older children and adults, thus facilitating the onset of future outbreaks. Antibodies against the lipopolysaccharide could reduce the carriage of the bacteria, its circulation, and transmission. The oligosaccharide fragments from the lipopolysaccharide may become a potential complement to existing vaccines in the form of protein glycoconjugates. An important step in the development of this type of vaccine is defining the minimal oligosaccharide epitope recognized by B. pertussis anti-lipopolysaccharide antibodies. This paper describes the complete synthesis of oligosaccharides containing two to five monosaccharide units corresponding to the pentasaccharide at the nonreducing end of the lipooligosaccharide and their recognition by mice and rabbit antibodies elicited against whole-cell B. pertussis. For the first time, we report that the terminal disaccharide, α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp acid is the minimal structure recognized by antibodies induced by B. pertussis.
Collapse
Affiliation(s)
- Guang-Wu Chen
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lina Guo
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiasheng Huang
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Haijun Ma
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Boerth EM, Gong J, Roffler B, Hancock Z, Berger L, Song B, Malley SF, MacLennan CA, Zhang F, Malley R, Lu YJ. Evaluation of a Quadrivalent Shigella flexneri Serotype 2a, 3a, 6, and Shigella sonnei O-Specific Polysaccharide and IpaB MAPS Vaccine. Vaccines (Basel) 2024; 12:1091. [PMID: 39460258 PMCID: PMC11510904 DOI: 10.3390/vaccines12101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Shigellosis is the leading cause of diarrheal deaths worldwide and is particularly dangerous in children under 5 years of age in low- and middle-income countries. Additionally, the rise in antibiotic resistance has highlighted the need for an effective Shigella vaccine. Previously, we have used the Multiple Antigen-Presenting System (MAPS) technology to generate monovalent and quadrivalent Salmonella MAPS vaccines that induce functional antibodies against Salmonella components. METHODS In this work, we detail the development of several monovalent vaccines using O-specific polysaccharides (OSPs) from four dominant serotypes, S. flexneri 2a, 3a, and 6, and S. sonnei. We tested several rhizavidin (rhavi) fusion proteins and selected a Shigella-specific protein IpaB. Quadrivalent MAPS were made with Rhavi-IpaB protein and tested in rabbits for immunogenicity. RESULTS Individual MAPS vaccines generated robust, functional antibody responses against both IpaB and the individual OSP component. Antibodies to IpaB were effective across Shigella serotypes. We also demonstrate that the OSP antibodies generated are specific to each homologous Shigella O type by performing ELISA and bactericidal assays. We combined the components of each MAPS vaccine to formulate a quadrivalent MAPS vaccine which elicited similar antibody and bactericidal responses compared to their monovalent counterparts. Finally, we show that the quadrivalent MAPS immune sera are functional against several clinical isolates of the serotypes used in the vaccine. CONCLUSIONS This quadrivalent MAPS Shigella vaccine is immunogenicity and warrants further study.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Hancock
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Berger
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Bernshtein B, Zhiteneva JA, Janardhanan J, Wagh C, Kelly M, Verma S, Jung W, Basher SR, Amin MA, Mahamud S, Rajib NH, Chowdhury F, Khan AI, Charles RC, Xu P, Kováč P, Chakraborty S, Kaminski RW, Alter G, Bhuiyan TR, Qadri F, Ryan ET. Limited O-specific polysaccharide (OSP)-specific functional antibody responses in young children with Shigella infection in Bangladesh. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611236. [PMID: 39345393 PMCID: PMC11429955 DOI: 10.1101/2024.09.04.611236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Shigellosis is the second leading cause of diarrheal death in children younger than five years of age globally. At present, there is no broadly licensed vaccine against shigella infection. Previous vaccine candidates have failed at providing protection for young children in endemic settings. Improved understanding of correlates of protection against Shigella infection and severe shigellosis in young children living in endemic settings is needed. Here, we applied a functional antibody profiling approach to define Shigella-specific antibody responses in young children versus older individuals with culture-confirmed shigellosis in Bangladesh, a Shigella endemic area. We analyzed Shigella-specific antibody isotypes, FcR binding and antibody-mediated innate immune cell activation in longitudinal serum samples collected at clinical presentation and up to 1 year later. We found that higher initial Shigella O-specific polysaccharide (OSP)-specific and protein-specific IgG and FcγR binding levels correlated with less severe disease regardless of patient age, but that individuals under 5 years of age developed a less prominent class switched, FcR-binding, functional and durable antibody response against both OSP and protein Shigella antigens than older individuals. Focusing on the largest cohort, we found that functional S. flexneri 2a OSP-specific responses were significantly induced only in individuals over age 5 years, and that these responses promoted monocyte phagocytosis and activation. Our findings suggest that in a Shigella endemic region, young children with shigellosis harbor a functional antibody response that fails to maximally activate monocytes; such a response may be important in facilitating subsequent innate cell clearance of Shigella, especially via recruitment and activation of polymorphonuclear cells capable of directly killing Shigella.
Collapse
|
7
|
Lu T, Das S, Howlader DR, Picking WD, Picking WL. Shigella Vaccines: The Continuing Unmet Challenge. Int J Mol Sci 2024; 25:4329. [PMID: 38673913 PMCID: PMC11050647 DOI: 10.3390/ijms25084329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.
Collapse
Affiliation(s)
- Ti Lu
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Debaki R. Howlader
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - William D. Picking
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - Wendy L. Picking
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| |
Collapse
|
8
|
Kapulu MC, Muthumbi E, Otieno E, Rossi O, Ferruzzi P, Necchi F, Acquaviva A, Martin LB, Orindi B, Mwai K, Kibet H, Mwanzu A, Bigogo GM, Verani JR, Mbae C, Nyundo C, Agoti CN, Nakakana UN, Conti V, Bejon P, Kariuki S, Scott JAG, Micoli F, Podda A. Age-dependent acquisition of IgG antibodies to Shigella serotypes-a retrospective analysis of seroprevalence in Kenyan children with implications for infant vaccination. Front Immunol 2024; 15:1340425. [PMID: 38361949 PMCID: PMC10867106 DOI: 10.3389/fimmu.2024.1340425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Background Shigellosis mainly affects children under 5 years of age living in low- and middle-income countries, who are the target population for vaccination. There are, however, limited data available to define the appropriate timing for vaccine administration in this age group. Information on antibody responses following natural infection, proxy for exposure, could help guide vaccination strategies. Methods We undertook a retrospective analysis of antibodies to five of the most prevalent Shigella serotypes among children aged <5 years in Kenya. Serum samples from a cross-sectional serosurvey in three Kenyan sites (Nairobi, Siaya, and Kilifi) were analyzed by standardized ELISA to measure IgG against Shigella sonnei and Shigella flexneri 1b, 2a, 3a, and 6. We identified factors associated with seropositivity to each Shigella serotype, including seropositivity to other Shigella serotypes. Results A total of 474 samples, one for each participant, were analyzed: Nairobi (n = 169), Siaya (n = 185), and Kilifi (n = 120). The median age of the participants was 13.4 months (IQR 7.0-35.6), and the male:female ratio was 1:1. Geometric mean concentrations (GMCs) for each serotype increased with age, mostly in the second year of life. The overall seroprevalence of IgG antibodies increased with age except for S. flexneri 6 which was high across all age subgroups. In the second year of life, there was a statistically significant increase of antibody GMCs against all five serotypes (p = 0.01-0.0001) and a significant increase of seroprevalence for S. flexneri 2a (p = 0.006), S. flexneri 3a (p = 0.006), and S. sonnei (p = 0.05) compared with the second part of the first year of life. Among all possible pairwise comparisons of antibody seropositivity, there was a significant association between S. flexneri 1b and 2a (OR = 6.75, 95% CI 3-14, p < 0.001) and between S. flexneri 1b and 3a (OR = 23.85, 95% CI 11-54, p < 0.001). Conclusion Children living in low- and middle-income settings such as Kenya are exposed to Shigella infection starting from the first year of life and acquire serotype-specific antibodies against multiple serotypes. The data from this study suggest that Shigella vaccination should be targeted to infants, ideally at 6 or at least 9 months of age, to ensure children are protected in the second year of life when exposure significantly increases.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Muthumbi
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | | | | | | - Kennedy Mwai
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Godfrey M. Bigogo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jennifer R. Verani
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | | | - Philip Bejon
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - J. Anthony G. Scott
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
9
|
Desalegn G, Tamilselvi CS, Lemme-Dumit JM, Heine SJ, Dunn D, Ndungo E, Kapoor N, Oaks EV, Fairman J, Pasetti MF. Shigella virulence protein VirG is a broadly protective antigen and vaccine candidate. NPJ Vaccines 2024; 9:2. [PMID: 38167387 PMCID: PMC10761965 DOI: 10.1038/s41541-023-00797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Diarrhea caused by Shigella has been associated with high morbidity and mortality in young children worldwide. There are no licensed vaccines, and those clinically advanced have restricted coverage as they elicit serotype-specific immunity while disease is caused by multiple circulating serotypes. Our group had previously reported a close association between serum antibodies to the Shigella virulence factor VirG (or IcsA) and clinical protection in infected individuals. VirG is highly conserved among Shigella strains and appealing as a broad-spectrum vaccine candidate. In this study, we investigated the immunogenicity and protective capacity of VirG as a subunit vaccine in mice. The surface-exposed alpha (α) domain of VirG (VirGα) was produced as a recombinant protein. This region has almost identical immune reactivity to full-length VirG. Administered intramuscularly with alum, VirGα elicited robust immune responses and high protective efficacy against S. flexneri 2a and S. sonnei. Almost complete protection was afforded by VirGα given intranasally with the E. coli double mutant heat-labile toxin (dmLT). VirGα-specific antibodies recognized VirG expressed on live Shigella, and blocked Shigella adhesion and invasion to human colonic cells. These results show for the first time that VirGα is a promising cross-protective vaccine candidate to prevent Shigella infection.
Collapse
Affiliation(s)
- Girmay Desalegn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Chitradevi S Tamilselvi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Jose M Lemme-Dumit
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Shannon J Heine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Dylan Dunn
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Neeraj Kapoor
- Vaxcyte, Inc., 825 Industrial Road, San Carlos, CA, 94070, USA
| | - Edwin V Oaks
- Patuxent Research and Consulting Group, 3106 Arrowhead Farm Rd, Gambrills, MD, 21054, USA
| | - Jeff Fairman
- Vaxcyte, Inc., 825 Industrial Road, San Carlos, CA, 94070, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685W. Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Clarkson KA, Porter CK, Talaat KR, Kapulu MC, Chen WH, Frenck RW, Bourgeois AL, Kaminski RW, Martin LB. Shigella-Controlled Human Infection Models: Current and Future Perspectives. Curr Top Microbiol Immunol 2024; 445:257-313. [PMID: 35616717 PMCID: PMC7616482 DOI: 10.1007/82_2021_248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.
Collapse
Affiliation(s)
- Kristen A Clarkson
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway Street Hampton House, Baltimore, MD, 21205, USA
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi County Hospital, Off Bofa Road, Kilifi, 80108, Kenya
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Robert W Frenck
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - A Louis Bourgeois
- PATH Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
11
|
Di Benedetto R, Mancini F, Caradonna V, Aruta MG, Giannelli C, Rossi O, Micoli F. Comparison of Shigella GMMA and glycoconjugate four-component formulations in animals. Front Mol Biosci 2023; 10:1284515. [PMID: 38046812 PMCID: PMC10690372 DOI: 10.3389/fmolb.2023.1284515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Shigellosis is leading bacterial cause of diarrhea with high prevalence in children younger than 5 years in low- and middle-income countries, and increasing number of reports of Shigella cases associated to anti-microbial resistance. No vaccines against Shigella are still licensed, but different candidates based on the O-antigen portion of lipopolysaccharides are in clinic. Generalized Modules for Membrane Antigens (GMMA) have been proposed as an alternative delivery system for the O-antigen, and a 4-component vaccine candidate (altSonflex1-2-3), containing GMMA from S. sonnei and S. flexneri 1b, 2a and 3a is being tested in a phase 1/2 clinical trial, with the aim to elicit broad protection against the most prevalent Shigella serotypes. Here, the 4-component GMMA vaccine candidate has been compared to a more traditional glycoconjugate formulation for the ability to induce functional antibodies in mice and rabbits. In mice, in the absence of Alhydrogel, GMMA induce higher IgG antibodies than glycoconjugates and stronger bactericidal titers against all Shigella serotypes. In the presence of Alhydrogel, GMMA induce O-antigen specific IgG levels similar to traditional glycoconjugates, but with a broader range of IgG subclasses, resulting in stronger bactericidal activity. In rabbits, GMMA elicit higher functional antibodies than glycoconjugates against S. sonnei, and similar responses to S. flexneri 1b, 2a and 3a, independently from the presence of Alhydrogel. Different O-antigen based vaccines against Shigella are now in clinical stage and it will be of particular interest to understand how the preclinical findings in the different animal models translate in humans.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | |
Collapse
|
12
|
Hausdorff WP, Anderson JD, Bagamian KH, Bourgeois AL, Mills M, Sawe F, Scheele S, Talaat K, Giersing BK. Vaccine value profile for Shigella. Vaccine 2023; 41 Suppl 2:S76-S94. [PMID: 37827969 DOI: 10.1016/j.vaccine.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 10/14/2023]
Abstract
Shigella is the leading bacterial cause of diarrhoea and the second leading cause of diarrhoeal mortality among all ages. It also exhibits increasing levels of antibiotic resistance. The greatest burden is among children under five in low- and middle-income countries (LMICs). As such, a priority strategic goal of the World Health Organization (WHO) is the development of a safe, effective and affordable vaccine to reduce morbidity and mortality from Shigella-attributable dysentery and diarrhea, including long term outcomes associated with chronic inflammation and growth faltering, in children under 5 years of age in LMICs. In addition, a safe and effective Shigella vaccine is of potential interest to travellers and military both to prevent acute disease and rarer, long-term sequelae. An effective Shigella vaccine is also anticipated to reduce antibiotic use and thereby help diminish further emergence of enteric pathogens resistant to antimicrobials. The most advanced vaccine candidates are multivalent, parenteral formulations in Phase 2 and Phase 3 clinical studies. They rely on O-antigen-polysaccharide protein conjugate technologies or, alternatively, outer membrane vesicles expressing penta-acylated lipopolysaccharide that has been detoxified. Other parenteral and oral formulations, many delivering a broader array of Shigella antigens, are at earlier stages of clinical development. These formulations are being assessed in alignment with the WHO Preferred Product Characteristics, which call for a 1 to 2 dose primary immunization series given during the first 12 months of life, ideally starting at 6 months of age. This 'Vaccine Value Profile' (VVP) for Shigella is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, government agencies and multi-lateral organizations. All contributors have extensive expertise on various elements of the Shigella VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- William P Hausdorff
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA; Faculty of Medicine, Université de Bruxelles, Brussels 1070, Belgium.
| | - John D Anderson
- Office of Health Affairs, West Virginia University, Morgantown, WV 26505, USA; Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA
| | - Karoun H Bagamian
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL 32603, USA
| | - A Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Melody Mills
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Frederick Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Suzanne Scheele
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Kawsar Talaat
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Birgitte K Giersing
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| |
Collapse
|
13
|
Giersing BK, Isbrucker R, Kaslow DC, Cavaleri M, Baylor N, Maiga D, Pavlinac PB, Riddle MS, Kang G, MacLennan CA. Clinical and regulatory development strategies for Shigella vaccines intended for children younger than 5 years in low-income and middle-income countries. Lancet Glob Health 2023; 11:e1819-e1826. [PMID: 37858591 PMCID: PMC10603611 DOI: 10.1016/s2214-109x(23)00421-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Shigellosis causes considerable public health burden, leading to excess deaths as well as acute and chronic consequences, particularly among children living in low-income and middle-income countries (LMICs). Several Shigella vaccine candidates are advancing in clinical trials and offer promise. Although multiple target populations might benefit from a Shigella vaccine, the primary strategic goal of WHO is to accelerate the development and accessibility of safe, effective, and affordable Shigella vaccines that reduce mortality and morbidity in children younger than 5 years living in LMICs. WHO consulted with regulators and policy makers at national, regional, and global levels to evaluate pathways that could accelerate regulatory approval in this priority population. Special consideration was given to surrogate efficacy biomarkers, the role of controlled human infection models, and the establishment of correlates of protection. A field efficacy study in children younger than 5 years in LMICs is needed to ensure introduction in this priority population.
Collapse
Affiliation(s)
- Birgitte K Giersing
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| | - Richard Isbrucker
- Norms and Standards for Biologicals, World Health Organization, Geneva, Switzerland
| | - David C Kaslow
- Essential Medicines and PATH Center for Vaccines Innovation and Access, PATH, Seattle, WA, USA
| | - Marco Cavaleri
- Office of Health Threats and Vaccine Strategy, European Medicines Agency, Amsterdam, Netherlands
| | | | - Diadié Maiga
- Vaccine Regulation, World Health Organization, Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Patricia B Pavlinac
- Global Center for Integrated Health of Women, Adolescents, and Children (Global WACh), Department of Global Health and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mark S Riddle
- Department of Internal Medicine (Community Faculty), University of Nevada, Reno, NV, USA
| | - Gagandeep Kang
- Department of Gastrointestinal Sciences, CMC Vellore, Vellore, India
| | - Calman A MacLennan
- Enterics, Diagnostics, Genomics & Epidemiology, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
14
|
Toapanta FR, Hu J, Meron-Sudai S, Mulard LA, Phalipon A, Cohen D, Sztein MB. Further characterization of Shigella-specific (memory) B cells induced in healthy volunteer recipients of SF2a-TT15, a Shigella flexneri 2a synthetic glycan-based vaccine candidate. Front Immunol 2023; 14:1291664. [PMID: 38022674 PMCID: PMC10653583 DOI: 10.3389/fimmu.2023.1291664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Shigellosis is common worldwide, and it causes significant morbidity and mortality mainly in young children in low- and middle- income countries. To date, there are not broadly available licensed Shigella vaccines. A novel type of conjugate vaccine candidate, SF2a-TT15, was developed against S. flexneri serotype 2a (SF2a). SF2a-TT15 is composed of a synthetic 15mer oligosaccharide, designed to act as a functional mimic of the SF2a O-antigen and covalently linked to tetanus toxoid (TT). SF2a-TT15 was recently shown to be safe and immunogenic in a Phase 1 clinical trial, inducing specific memory B cells and sustained antibody response up to three years after the last injection. In this manuscript, we advance the study of B cell responses to parenteral administration of SF2a-TT15 to identify SF2a LPS-specific B cells (SF2a+ B cells) using fluorescently labeled bacteria. SF2a+ B cells were identified mainly within class-switched B cells (SwB cells) in volunteers vaccinated with SF2a-TT15 adjuvanted or not with aluminium hydroxide (alum), but not in placebo recipients. These cells expressed high levels of CXCR3 and low levels of CD21 suggesting an activated phenotype likely to represent the recently described effector memory B cells. IgG SF2a+ SwB cells were more abundant than IgA SF2a + SwB cells. SF2a+ B cells were also identified in polyclonally stimulated B cells (antibody secreting cells (ASC)-transformed). SF2a+ ASC-SwB cells largely maintained the activated phenotype (CXCR3 high, CD21 low). They expressed high levels of CD71 and integrin α4β7, suggesting a high proliferation rate and ability to migrate to gut associated lymphoid tissues. Finally, ELISpot analysis showed that ASC produced anti-SF2a LPS IgG and IgA antibodies. In summary, this methodology confirms the ability of SF2a-TT15 to induce long-lived memory B cells, initially identified by ELISpots, which remain identifiable in blood up to 140 days following vaccination. Our findings expand and complement the memory B cell data previously reported in the Phase 1 trial and provide detailed information on the immunophenotypic characteristics of these cells. Moreover, this methodology opens the door to future studies at the single-cell level to better characterize the development of B cell immunity to Shigella.
Collapse
Affiliation(s)
- Franklin R. Toapanta
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jingping Hu
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiri Meron-Sudai
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laurence A. Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité Chimie des Biomolécules, Paris, France
| | - Armelle Phalipon
- Institut Pasteur, Université Paris Cité, Laboratoire Innovation: Vaccins, Paris, France
| | - Dani Cohen
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo B. Sztein
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Rossi O, Citiulo F, Giannelli C, Cappelletti E, Gasperini G, Mancini F, Acquaviva A, Raso MM, Sollai L, Alfini R, Aruta MG, Vitali CG, Pizza M, Necchi F, Rappuoli R, Martin LB, Berlanda Scorza F, Colucci AM, Micoli F. A next-generation GMMA-based vaccine candidate to fight shigellosis. NPJ Vaccines 2023; 8:130. [PMID: 37670042 PMCID: PMC10480147 DOI: 10.1038/s41541-023-00725-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.
Collapse
Affiliation(s)
- Omar Rossi
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | | | | | | | - Gianmarco Gasperini
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- GSK Vaccines Srl, Siena, Italy
| | | | | | | | - Luigi Sollai
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | - Renzo Alfini
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | | | | | - Mariagrazia Pizza
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- GSK Vaccines Srl, Siena, Italy
- Imperial College, London, United Kingdom
| | | | - Rino Rappuoli
- GSK Vaccines Srl, Siena, Italy
- Fondazione Biotecnopolo, Siena, Italy
| | - Laura B Martin
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- US Pharmacopoeia, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
16
|
Turbyfill KR, Clarkson KA, Oaks EV, Zurawski DV, Vortherms AR, Kaminski RW. Development of the Shigella flexneri 2a, 3a, 6, and S. sonnei artificial Invaplex (Invaplex AR) vaccines. mSphere 2023; 8:e0007323. [PMID: 37389412 PMCID: PMC10449495 DOI: 10.1128/msphere.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
The Shigella artificial invasin complex (InvaplexAR) vaccine is a subunit approach that effectively induces robust immunogenicity directed to serotype-specific lipopolysaccharide and the broadly conserved IpaB and IpaC proteins. One advantage of the vaccine approach is the ability to adjust the constituents to address suboptimal immunogenicity and to change the Shigella serotype targeted by the vaccine. As the vaccine moves through the product development pipeline, substantial modifications have been made to address manufacturing feasibility, acceptability to regulatory authorities, and developing immunogenic and effective products for an expanded list of Shigella serotypes. Modifications of the recombinant clones used to express affinity tag-free proteins using well-established purification methods, changes to detergents utilized in the assembly process, and in vitro and in vivo evaluation of different Invaplex formulations have led to the establishment of a scalable, reproducible manufacturing process and enhanced immunogenicity of Invaplex products designed to protect against four of the most predominant Shigella serotypes responsible for global morbidity and mortality. These adjustments and improvements provide the pathway for the manufacture and clinical testing of a multivalent Invaplex vaccine. IMPORTANCE Shigella species are a major global health concern that cause severe diarrhea and dysentery in children and travelers to endemic areas of the world. Despite significant advancements in access to clean water, the increases in antimicrobial resistance and the risk of post-infection sequelae, including cognitive and physical stunting in children, highlight the urgent need for an efficacious vaccine. One promising vaccine approach, artificial Invaplex, delivers key antigens recognized by the immune system during infection, which results in increased resistance to re-infection. The work presented here describes novel modifications to a previously described vaccine approach resulting in improved methods for manufacturing and regulatory approvals, expansion of the breadth of coverage to all major Shigella serotypes, and an increase in the potency of artificial Invaplex.
Collapse
Affiliation(s)
- K. Ross Turbyfill
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kristen A. Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Edwin V. Oaks
- Patuxent Research and Consulting Group, Gambrills, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony R. Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
17
|
Kelly M, Mandlik A, Charles RC, Verma S, Calderwood SB, Leung DT, Biswas R, Islam K, Kamruzzaman M, Chowdhury F, Khanam F, Vann WF, Khan AI, Bhuiyan TR, Qadri F, Vortherms AR, Kaminski R, Kováč P, Xu P, Ryan ET. Development of Shigella conjugate vaccines targeting Shigella flexneri 2a and S. flexneri 3a using a simple platform-approach conjugation by squaric acid chemistry. Vaccine 2023; 41:4967-4977. [PMID: 37400283 PMCID: PMC10529421 DOI: 10.1016/j.vaccine.2023.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Smriti Verma
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, USA
| | - Rajib Biswas
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kamrul Islam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Farhana Khanam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashraful Islam Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anthony R Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Robert Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Micoli F, Stefanetti G, MacLennan CA. Exploring the variables influencing the immune response of traditional and innovative glycoconjugate vaccines. Front Mol Biosci 2023; 10:1201693. [PMID: 37261327 PMCID: PMC10227950 DOI: 10.3389/fmolb.2023.1201693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Vaccines are cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The rapid evolution of pneumococcal conjugate vaccines, the introduction of tetravalent meningococcal conjugate vaccines, mass vaccination campaigns in Africa with a meningococcal A conjugate vaccine, and the recent licensure and introduction of glycoconjugates against S. Typhi underlie the continued importance of research on glycoconjugate vaccines. More innovative ways to produce carbohydrate-based vaccines have been developed over the years, including bioconjugation, Outer Membrane Vesicles (OMV) and the Multiple antigen-presenting system (MAPS). Several variables in the design of these vaccines can affect the induced immune responses. We review immunogenicity studies comparing conjugate vaccines that differ in design variables, such as saccharide chain length and conjugation chemistry, as well as carrier protein and saccharide to protein ratio. We evaluate how a better understanding of the effects of these different parameters is key to designing improved glycoconjugate vaccines.
Collapse
Affiliation(s)
| | - Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Calman A. MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, United States
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
20
|
MacLennan CA, Stanaway J, Grow S, Vannice K, Steele AD. Salmonella Combination Vaccines: Moving Beyond Typhoid. Open Forum Infect Dis 2023; 10:S58-S66. [PMID: 37274529 PMCID: PMC10236507 DOI: 10.1093/ofid/ofad041] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
There is now a robust pipeline of licensed and World Health Organization (WHO)-prequalified typhoid conjugate vaccines with a steady progression of national introductions. However, typhoid fever is responsible for less than half the total global burden of Salmonella disease, and even less among children aged <5 years. Invasive nontyphoidal Salmonella disease is the dominant clinical presentation of Salmonella in Africa, and over a quarter of enteric fever in Asia is due to paratyphoid A. In this article, we explore the case for combination Salmonella vaccines, review the current pipeline of these vaccines, and discuss key considerations for their development, including geographies of use, age of administration, and pathways to licensure. While a trivalent typhoid/nontyphoidal Salmonella vaccine is attractive for Africa, and a bivalent enteric fever vaccine for Asia, a quadrivalent vaccine covering the 4 main disease-causing serovars of Salmonella enterica would provide a single vaccine option for global Salmonella coverage.
Collapse
Affiliation(s)
- Calman A MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Stanaway
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Stephanie Grow
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Kirsten Vannice
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
21
|
Gao J, Huang L, Luo S, Qiao R, Liu F, Li X. A novel vaccine formulation candidate based on lipooligosaccharides and pertussis toxin against Bordetella pertussis. Front Immunol 2023; 14:1124695. [PMID: 37187761 PMCID: PMC10176092 DOI: 10.3389/fimmu.2023.1124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Pertussis is a severe human respiratory tract infectious disease caused by Bordetella pertussis that primarily affects infants and young children. However, the acellular pertussis vaccine currently administered can induce antibody and Th2 immune responses but fails to prevent the nasal colonization and transmission of B. pertussis, causing a resurgence of pertussis, so improved pertussis vaccines are urgently needed. In this study, we created a two-component pertussis vaccine candidate containing a conjugate prepared from oligosaccharides and pertussis toxin. After demonstrating the ability of the vaccine to induce a mixed Th1/Th2/Th17 profile in a mouse model, the strong in vitro bactericidal activity and IgG response of the vaccine were further demonstrated. In addition, the vaccine candidate further induced efficient prophylactic effects against B. pertussis in a mouse aerosol infection model. In summary, the vaccine candidate in this paper induces antibodies with bactericidal activity to provide high protection, shorten the duration of bacterial existence, and further reduce disease outbreaks. Therefore, the vaccine has the potential to be the next generation of pertussis vaccines.
Collapse
Affiliation(s)
- Jingjing Gao
- The First R&D Laboratory, Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Linlin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Shuquan Luo
- The First R&D Laboratory, Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Ruijie Qiao
- The First R&D Laboratory, Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Fanglei Liu
- The First R&D Laboratory, Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Xin Li
- The First R&D Laboratory, Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Meron-Sudai S, Asato V, Adler A, Bialik A, Goren S, Ariel-Cohen O, Reizis A, Mulard LA, Phalipon A, Cohen D. A Shigella flexneri 2a synthetic glycan-based vaccine induces a long-lasting immune response in adults. NPJ Vaccines 2023; 8:35. [PMID: 36894570 PMCID: PMC9998260 DOI: 10.1038/s41541-023-00624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Shigella is a leading cause of moderate to severe diarrhea worldwide and of diarrhea-associated deaths in children under 5 years of age in low-and middle-income countries. A vaccine against shigellosis is in high demand. SF2a-TT15, a synthetic carbohydrate-based conjugate vaccine candidate against Shigella flexneri 2a (SF2a) was found safe and strongly immunogenic in adult volunteers. Here, SF2a-TT15 at 10 µg oligosaccharide (OS) vaccine dose is shown to induce a sustained immune response in magnitude and functionality in the majority of volunteers followed up 2 and 3 years post-vaccination. High levels of either one of the humoral parameters as well as the number of specific-IgG memory B-cells determined 3 months after vaccination were good predictors of the durability of the immune response. This study is the first to examine the long-term durability of antibody functionality and memory B-cell response induced by a Shigella vaccine candidate.
Collapse
Affiliation(s)
- Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Valeria Asato
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Amos Adler
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.,Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, 6423906, Israel
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Sophy Goren
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Ortal Ariel-Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Arava Reizis
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, F-75015, Paris, France
| | - Armelle Phalipon
- Institut Pasteur, Innovation Lab. Vaccines, F-75015, Paris, France
| | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
23
|
Cohen D, Ashkenazi S, Schneerson R, Farzam N, Bialik A, Meron-Sudai S, Asato V, Goren S, Baran TZ, Muhsen K, Gilbert PB, MacLennan CA. Threshold protective levels of serum IgG to Shigella lipopolysaccharide: re-analysis of Shigella vaccine trials data. Clin Microbiol Infect 2023; 29:366-371. [PMID: 36243351 PMCID: PMC9993342 DOI: 10.1016/j.cmi.2022.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Establishing a correlate of protection is essential for the development and licensure of Shigella vaccines. We examined potential threshold levels of serum IgG to Shigella lipopolysaccharide (LPS) that could predict protection against shigellosis. METHODS We performed new analyses of serologic and vaccine efficacy (VE) data from two randomized vaccine-controlled trials of the Shigella sonnei-Pseudomonas aeruginosa recombinant exoprotein A (rEPA) conjugate conducted in young adults and children aged 1-4 years in Israel. Adults received either S. sonnei-rEPA (n = 183) or control vaccines (n = 277). Children received the S. sonnei-rEPA conjugate (n = 1384) or S. flexneri 2a-rEPA conjugate (n = 1315). VE against culture-proven shigellosis was determined. Sera were tested for IgG anti-S. sonnei LPS antibodies. We assessed the association of various levels of IgG anti-S. sonnei LPS antibodies with S. sonnei shigellosis risk using logistic regression models and the reverse cumulative distribution of IgG levels. RESULTS Among adults, four vaccinees and 23 controls developed S. sonnei shigellosis; the VE was 74% (95% CI, 28-100%). A threshold of ≥1:1600 IgG anti-S. sonnei LPS titre was associated with a reduced risk of S. sonnei shigellosis and a predicted VE of 73.6% (95% CI, 65-80%). The IgG anti-S. sonnei LPS correlated with serum bactericidal titres. In children, a population-based level of 4.5 ELISA Units (EU) corresponding to 1:1072 titre, predicted VE of 63%, versus 71% observed VE in children aged 3-4 years. The predicted VE in children aged 2-4 years was 49%, consistent with the 52% observed VE. CONCLUSION Serum IgG anti-S. sonnei LPS threshold levels can predict the degree of VE and can be used for the evaluation of new vaccine candidates.
Collapse
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel, Israel; Schneider Children's Medical Center, Petach Tikva, Israel
| | - Rachel Schneerson
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nahid Farzam
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Tel Aviv, Israel
| | - Anya Bialik
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Meron-Sudai
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valeria Asato
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Ziv Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Calman A MacLennan
- Bill and Melinda Gates Foundation, London, United Kingdom; Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Toward a Shigella Vaccine: Opportunities and Challenges to Fight an Antimicrobial-Resistant Pathogen. Int J Mol Sci 2023; 24:ijms24054649. [PMID: 36902092 PMCID: PMC10003550 DOI: 10.3390/ijms24054649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Shigellosis causes more than 200,000 deaths worldwide and most of this burden falls on Low- and Middle-Income Countries (LMICs), with a particular incidence in children under 5 years of age. In the last decades, Shigella has become even more worrisome because of the onset of antimicrobial-resistant strains (AMR). Indeed, the WHO has listed Shigella as one of the priority pathogens for the development of new interventions. To date, there are no broadly available vaccines against shigellosis, but several candidates are being evaluated in preclinical and clinical studies, bringing to light very important data and information. With the aim to facilitate the understanding of the state-of-the-art of Shigella vaccine development, here we report what is known about Shigella epidemiology and pathogenesis with a focus on virulence factors and potential antigens for vaccine development. We discuss immunity after natural infection and immunization. In addition, we highlight the main characteristics of the different technologies that have been applied for the development of a vaccine with broad protection against Shigella.
Collapse
|
25
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
26
|
MacLennan CA, Steele AD. Frontiers in Shigella Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10091536. [PMID: 36146614 PMCID: PMC9503259 DOI: 10.3390/vaccines10091536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, there has been a resurgence of interest in the development of vaccines against Shigella driven by the growing awareness of the impact of this pathogen on global health [...]
Collapse
|
27
|
MacLennan CA, Grow S, Ma LF, Steele AD. The Shigella Vaccines Pipeline. Vaccines (Basel) 2022; 10:vaccines10091376. [PMID: 36146457 PMCID: PMC9504713 DOI: 10.3390/vaccines10091376] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Shigella is the leading cause of global diarrheal deaths that currently lacks a licensed vaccine. Shigellosis drives antimicrobial resistance and leads to economic impact through linear growth faltering. Today, there is a robust pipeline of vaccines in clinical development which are broadly divided into parenteral glycoconjugate vaccines, consisting of O-antigen conjugated to carrier proteins, and oral live attenuated vaccines, which incorporate targeted genetic mutations seeking to optimize the balance between reactogenicity, immunogenicity and ultimately protection. Proof of efficacy has previously been shown with both approaches but for various reasons no vaccine has been licensed to date. In this report, we outline the requirements for a Shigella vaccine and describe the current pipeline in the context of the many candidates that have previously failed or been abandoned. The report refers to papers from individual vaccine developers in this special supplement of Vaccines which is focused on Shigella vaccines. Once readouts of safety and immunogenicity from current trials of lead candidate vaccines among the target population of young children in low- and middle-income countries are available, the likely time to licensure of a first Shigella vaccine will become clearer.
Collapse
|
28
|
Bernshtein B, Ndungo E, Cizmeci D, Xu P, Kováč P, Kelly M, Islam D, Ryan ET, Kotloff KL, Pasetti MF, Alter G. Systems approach to define humoral correlates of immunity to Shigella. Cell Rep 2022; 40:111216. [PMID: 35977496 PMCID: PMC9396529 DOI: 10.1016/j.celrep.2022.111216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella infection is the second leading cause of death due to diarrheal disease in young children worldwide. With the rise of antibiotic resistance, initiatives to design and deploy a safe and effective Shigella vaccine are urgently needed. However, efforts to date have been hindered by the limited understanding of immunological correlates of protection against shigellosis. We applied systems serology to perform a comprehensive analysis of Shigella-specific antibody responses in sera obtained from volunteers before and after experimental infection with S. flexneri 2a in a series of controlled human challenge studies. Polysaccharide-specific antibody responses are infrequent prior to infection and evolve concomitantly with disease severity. In contrast, pre-existing antibody responses to type 3 secretion system proteins, particularly IpaB, consistently associate with clinical protection from disease. Linked to particular Fc-receptor binding patterns, IpaB-specific antibodies leverage neutrophils and monocytes, and complement and strongly associate with protective immunity. IpaB antibody-mediated functions improve with a subsequent rechallenge resulting in complete clinical protection. Collectively, our systems serological analyses indicate protein-specific functional correlates of immunity against Shigella in humans. Serological profiling of Shigella human challenge studies indicates protective markers Pre-existing IpaB-specific functional antibodies associate with less severe disease OPS immune responses post challenge are linked to less severe disease Shigella rechallenge boosts IpaB but not OPS functional antibody responses
Collapse
Affiliation(s)
| | - Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dilara Islam
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
29
|
Duffy PE. The Virtues and Vices of Pfs230: From Vaccine Concept to Vaccine Candidate. Am J Trop Med Hyg 2022; 107:tpmd211337. [PMID: 35895391 DOI: 10.4269/ajtmh.21-1337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 02/18/2024] Open
Abstract
Among the Plasmodium falciparum surface antigens reported by Richard Carter and his colleagues decades ago, Pfs230 is currently the target of the most advanced candidate for a malaria transmission-blocking vaccine. First identified by its orthologue in the avian malaria parasite Plasmodium gallinaceum, the large cysteine-rich 14-domain Pfs230 antigen is displayed on the surface of gametes that emerge in the mosquito midgut. Gametes lacking Pfs230 cannot bind to red blood cells nor develop further into oocysts. Human antibodies against Pfs230 lyse gametes in the presence of complement, which largely explains serum transmission-blocking activity in Pfs230 antisera. A protein-protein conjugate vaccine that incorporates the first domain of the Pfs230 antigen induced greater serum transmission-reducing activity versus a similarly manufactured Pfs25 vaccine in U.S. trials, and is currently in phase II field trials in Mali.
Collapse
|
30
|
Immunization of Rabbits with a Quadrivalent Shigella Bioconjugate Vaccine Induces Functional Antibodies Reactive with Shigella Isolates from Kenya. mSphere 2022; 7:e0102021. [PMID: 35611657 PMCID: PMC9241535 DOI: 10.1128/msphere.01020-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrheal diseases are a leading cause of global morbidity and mortality, disproportionately affecting children in resource-limited settings. Although improvements in hygiene and access to clean water are helpful, vaccines are considered essential due to the low infectious dose of Shigella species and increasing antibiotic resistance. Building on achievements with conjugate vaccines, a safe and immunogenic novel bioconjugate vaccine linking Shigella O-antigen to Pseudomonas aeruginosa exoprotein A has been developed to induce immunity against Shigella flexneri 2a, 3a, and 6 and S. sonnei. This study evaluated the breadth of reactivity and functionality of pooled serum from rabbits immunized with monovalent and quadrivalent Shigella bioconjugates formulated with or without an adjuvant against Shigella serotypes isolated in Kenya. Rabbit sera were assayed by colony blot for reactivity with 67 isolates of Shigella serotypes targeted by the vaccine, S. flexneri (2a, 3a, and 6) and S. sonnei, and 42 isolates of Shigella serotypes not targeted by the vaccine, S. flexneri (1b, 2b, 4a, and 4b), S. boydii, and S. dysenteriae. Shigella isolates testing positive in the colony blot assay were then used to assess functional activity using a bactericidal assay. Of the 41 Shigella isolates targeted by the vaccine, 22 were reactive with the adjuvanted quadrivalent and the respective monovalent rabbit sera. The S. flexneri 2a and 3a monovalent rabbit serum cross-reacted with S. flexneri 3a, 2b, and 2a, respectively. Immunization with the adjuvanted quadrivalent vaccine also induced cross-reactivity with isolates of S. flexneri 2b, 4a, and 4b. Collectively, these results suggest that the Shigella quadrivalent vaccine may be more broadly protective than designed, offering a promising solution to Shigella infections. IMPORTANCE Diarrheal diseases are the third leading cause of death globally, disproportionally affecting low- to middle-income countries like Kenya, with Shigella species being the leading cause of bacterial diarrhea, especially in children. The low infectious dose and high antibiotic resistance levels complicate treatment, leading to long-term sequelae that necessitate control measures such as vaccines to reduce morbidity and mortality rates, especially among children under 5 years of age. A quadrivalent bioconjugate Shigella vaccine was recently developed to safely and effectively induce immunity against four important Shigella spp. This study demonstrates the breadth of reactivity and functionality of the parenterally administered bioconjugate vaccine by evaluating the ability of rabbit sera to bind and kill Shigella isolates recently collected in Kenya. These results suggest that the Shigella quadrivalent vaccine may be more broadly protective than designed and may offer a promising solution to the morbidity and mortality associated with Shigella infections.
Collapse
|
31
|
MacLennan CA, Talaat KR, Kaminski RW, Cohen D, Riddle MS, Giersing BK. Critical Needs in Advancing Shigella Vaccines for Global Health. J Infect Dis 2022; 225:1500-1503. [PMID: 34558631 PMCID: PMC9071279 DOI: 10.1093/infdis/jiab462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Advancing new O-antigen-based Shigella vaccines is critically dependent on development of an international standard serum and harmonized ELISA, demonstration of field efficacy in young children in low- and middle-income countries, and early engagement with regulators and policy makers.
Collapse
Affiliation(s)
| | - Kawsar R Talaat
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Robert W Kaminski
- Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark S Riddle
- University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | | |
Collapse
|
32
|
van
der Put RMF, Smitsman C, de Haan A, Hamzink M, Timmermans H, Uittenbogaard J, Westdijk J, Stork M, Ophorst O, Thouron F, Guerreiro C, Sansonetti PJ, Phalipon A, Mulard LA. The First-in-Human Synthetic Glycan-Based Conjugate Vaccine Candidate against Shigella. ACS CENTRAL SCIENCE 2022; 8:449-460. [PMID: 35559427 PMCID: PMC9088300 DOI: 10.1021/acscentsci.1c01479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/12/2023]
Abstract
Shigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease.
Collapse
Affiliation(s)
| | | | - Alex de Haan
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Martin Hamzink
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | | | | | - Janny Westdijk
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michiel Stork
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Olga Ophorst
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Françoise Thouron
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Catherine Guerreiro
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe J. Sansonetti
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
- Chaire
de Microbiologie et Maladies Infectieuses, Collège de France, 11, place Marcelin Berthelot, 75005 Paris, France
| | - Armelle Phalipon
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
33
|
Cohen D, Meron-Sudai S, Bialik A, Asato V, Ashkenazi S. Detoxified O-Specific Polysaccharide (O-SP)-Protein Conjugates: Emerging Approach in the Shigella Vaccine Development Scene. Vaccines (Basel) 2022; 10:675. [PMID: 35632431 PMCID: PMC9145086 DOI: 10.3390/vaccines10050675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Shigella is the second most common cause of moderate to severe diarrhea among children worldwide and of diarrheal disease-associated mortality in young children in low-and middle-income countries. In spite of many years of attempts to develop Shigella vaccines, no licensed vaccines are yet available. Injectable conjugate vaccines made of the detoxified lipopolysaccharide (LPS) of S. flexneri 2a, S. sonnei, and S. dysenteriae type 1 covalently bound to protein carriers were developed in the early 1990s by John B. Robbins and Rachel Schneerson at the US National Institutes of Health. This approach was novel for a disease of the gut mucosa, at a time when live, rationally attenuated oral vaccine strains that intended to mimic Shigella infection and induce a protective local immune response were extensively investigated. Of keystone support to Shigella glycoconjugates development were the findings of a strong association between pre-existent serum IgG antibodies to S. sonnei or S. flexneri 2a LPS and a lower risk of infection with the homologous Shigella serotypes among Israeli soldiers serving in field units. In view of these findings and of the successful development of the pioneering Haemophilus influenzae type b conjugate vaccines, it was hypothesized that protective immunity may be conferred by serum IgG antibodies to the O-Specific Polysaccharide (O-SP) following parenteral delivery of the conjugates. S. sonnei and S. flexneri 2a glycoconjugates induced high levels of serum IgG against the homologous LPS in phase I and II studies in healthy volunteers. The protective efficacy of a S. sonnei detoxified LPS-conjugate was further demonstrated in field trials in young adults (74%) and in children older than three years of age (71%), but not in younger ones. The evaluation of the Shigella conjugates confirmed that IgG antibodies to Shigella LPS are correlates of protection and provided solid basis for the development of a new generation of glycoconjugates and other injectable LPS-based vaccines that are currently in advanced stages of clinical evaluation.
Collapse
Affiliation(s)
- Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Valeria Asato
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Schneider Children’s Medical Center, Petach Tikva 49202, Israel
| |
Collapse
|
34
|
Herrera CM, Schmitt JS, Chowdhry EI, Riddle MS. From Kiyoshi Shiga to Present-Day Shigella Vaccines: A Historical Narrative Review. Vaccines (Basel) 2022; 10:645. [PMID: 35632401 PMCID: PMC9145194 DOI: 10.3390/vaccines10050645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
We are at an exciting moment in time with the advancement of many vaccines, including a shigella vaccine for the world. It is instructive to look at the long road that some vaccines have traveled to recognize the remarkable accomplishments of those who were pioneers, appreciate the evolution of scientific and applied technology, and inform the future history of a vaccine that would have great potential for global health. To achieve this valuable retrospective, a narrative historical literature review was undertaken utilizing PubMed and Embase databases with relevant search terms. Retrieved articles were reviewed and information was organized into historical themes, landmark discoveries, and important vaccine development parallels. The literature reviewed was synthesized into major eras of shigella vaccine development from pathogen discovery and first attempts to empirical approaches of killed whole-cell and live-attenuated approaches, and a modern era that applied recombinant DNA engineering and structural vaccinology. The history of shigella vaccine development has largely followed the evolutionary path of vaccine development over the last 120 years, but with important lessons learned that should be considered as we embark on the future chapters of bringing to the world a safe and effective vaccine for global health.
Collapse
Affiliation(s)
| | | | | | - Mark S. Riddle
- Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (C.M.H.); (J.S.S.); (E.I.C.)
| |
Collapse
|
35
|
Pavlinac PB, Rogawski McQuade ET, Platts-Mills JA, Kotloff KL, Deal C, Giersing BK, Isbrucker RA, Kang G, Ma LF, MacLennan CA, Patriarca P, Steele D, Vannice KS. Pivotal Shigella Vaccine Efficacy Trials-Study Design Considerations from a Shigella Vaccine Trial Design Working Group. Vaccines (Basel) 2022; 10:489. [PMID: 35455238 PMCID: PMC9032541 DOI: 10.3390/vaccines10040489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccine candidates for Shigella are approaching phase 3 clinical trials in the target population of young children living in low- and middle-income countries. Key study design decisions will need to be made to maximize the success of such trials and minimize the time to licensure and implementation. We convened an ad hoc working group to identify the key aspects of trial design that would meet the regulatory requirements to achieve the desired indication of prevention of moderate or severe shigellosis due to strains included in the vaccine. The proposed primary endpoint of pivotal Shigella vaccine trials is the efficacy of the vaccine against the first episode of acute moderate or severe diarrhea caused by the Shigella strains contained within the vaccine. Moderate or severe shigellosis could be defined by a modified Vesikari score with dysentery and molecular detection of vaccine-preventable Shigella strains. This report summarizes the rationale and current data behind these considerations, which will evolve as new data become available and after further review and consultation by global regulators and policymakers.
Collapse
Affiliation(s)
- Patricia B. Pavlinac
- Departments of Global Health and Epidemiology, University of Washington, Seattle, WA 98105, USA
| | | | - James A. Platts-Mills
- Department of Medicine, Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA;
| | - Karen L. Kotloff
- Department of Pediatrics, Medicine, Epidemiology, and Public Health, University of Maryland, Baltimore, MD 21201, USA;
| | - Carolyn Deal
- Enteric and Sexually Transmitted Infections Branch, National Institutes of Health, Rockvile, MD 20892, USA;
| | - Birgitte K. Giersing
- Immunization, Vaccines, and Biologicals Department, World Health Organization, 1211 Geneva, Switzerland; (B.K.G.); (R.A.I.)
| | - Richard A. Isbrucker
- Immunization, Vaccines, and Biologicals Department, World Health Organization, 1211 Geneva, Switzerland; (B.K.G.); (R.A.I.)
| | - Gagandeep Kang
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, Tamil Nadu, India;
| | - Lyou-Fu Ma
- Enteric and Diarrheal Diseases Program Strategy Team, Bill & Melinda Gates Foundation, Seattle, WA 98102, USA; (L.-F.M.); (C.A.M.); (D.S.); (K.S.V.)
| | - Calman A. MacLennan
- Enteric and Diarrheal Diseases Program Strategy Team, Bill & Melinda Gates Foundation, Seattle, WA 98102, USA; (L.-F.M.); (C.A.M.); (D.S.); (K.S.V.)
| | - Peter Patriarca
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139, USA;
| | - Duncan Steele
- Enteric and Diarrheal Diseases Program Strategy Team, Bill & Melinda Gates Foundation, Seattle, WA 98102, USA; (L.-F.M.); (C.A.M.); (D.S.); (K.S.V.)
| | - Kirsten S. Vannice
- Enteric and Diarrheal Diseases Program Strategy Team, Bill & Melinda Gates Foundation, Seattle, WA 98102, USA; (L.-F.M.); (C.A.M.); (D.S.); (K.S.V.)
| |
Collapse
|
36
|
Micoli F, Nakakana UN, Berlanda Scorza F. Towards a Four-Component GMMA-Based Vaccine against Shigella. Vaccines (Basel) 2022; 10:328. [PMID: 35214786 PMCID: PMC8880054 DOI: 10.3390/vaccines10020328] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Shigellosis remains a major public health problem around the world; it is one of the leading causes of diarrhoeal disease in low- and middle-income countries, particularly in young children. The increasing reports of Shigella cases associated with anti-microbial resistance are an additional element of concern. Currently, there are no licensed vaccines widely available against Shigella, but several vaccine candidates are in development. It has been demonstrated that the incidence of disease decreases following a prior Shigella infection and that serum and mucosal antibody responses are predominantly directed against the serotype-specific Shigella O-antigen portion of lipopolysaccharide membrane molecules. Many Shigella vaccine candidates are indeed O-antigen-based. Here we present the journey towards the development of a potential low-cost four-component Shigella vaccine, eliciting broad protection against the most prevalent Shigella serotypes, that makes use of the GMMA (Generalized Modules for Membrane Antigens) technology, a novel platform based on bacterial outer membranes for delivery of the O-antigen to the immune system.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (U.N.N.); (F.B.S.)
| | | | | |
Collapse
|
37
|
Hausdorff WP, Scheele S, Giersing BK. What Drives the Value of a Shigella Vaccine? Vaccines (Basel) 2022; 10:282. [PMID: 35214740 PMCID: PMC8874986 DOI: 10.3390/vaccines10020282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
The development and licensure of a safe and highly efficacious Shigella vaccine has been a priority in international public health circles for decades and would represent a great scientific achievement. Nonetheless, in the context of increasingly crowded and costly childhood immunization programs, and with a myriad of other new and improved vaccines currently or soon on the market, there is no guarantee that even a highly effective Shigella vaccine would become a priority for adoption and introduction by the low- and middle-income countries that could benefit from it the most. We discuss here some of the major determinants and questions regarding the introduction of Shigella vaccines and the importance of developing a succinct, compelling public health value proposition.
Collapse
Affiliation(s)
- William P. Hausdorff
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA;
- Faculty of Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Suzanne Scheele
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA;
| | - Birgitte K. Giersing
- Immunization, Vaccines and Biologicals Department, World Health Organization, 1211 Geneva, Switzerland;
| |
Collapse
|
38
|
Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS. Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 2022; 7:251-261. [PMID: 35102306 PMCID: PMC8813619 DOI: 10.1038/s41564-021-01054-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Shigella spp. are the leading bacterial cause of severe childhood diarrhoea in low- and middle-income countries (LMICs), are increasingly antimicrobial resistant and have no widely available licenced vaccine. We performed genomic analyses of 1,246 systematically collected shigellae sampled from seven countries in sub-Saharan Africa and South Asia as part of the Global Enteric Multicenter Study (GEMS) between 2007 and 2011, to inform control and identify factors that could limit the effectiveness of current approaches. Through contemporaneous comparison among major subgroups, we found that S. sonnei contributes ≥6-fold more disease than other Shigella species relative to its genomic diversity, and highlight existing diversity and adaptative capacity among S. flexneri that may generate vaccine escape variants in <6 months. Furthermore, we show convergent evolution of resistance against ciprofloxacin, the current WHO-recommended antimicrobial for the treatment of shigellosis, among Shigella isolates. This demonstrates the urgent need to integrate existing genomic diversity into vaccine and treatment plans for Shigella, providing a framework for the focused application of comparative genomics to guide vaccine development, and the optimization of control and prevention strategies for other pathogens relevant to public health policy considerations.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
| | - Adam J Simpkin
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK
- Gastrointestinal Infections and Food Safety (One Health), United Kingdom Health Security Agency, London, UK
| | - Ross Low
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Rigden
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Systems Biology, The University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
39
|
Martin P, Alaimo C. The Ongoing Journey of a Shigella Bioconjugate Vaccine. Vaccines (Basel) 2022; 10:vaccines10020212. [PMID: 35214671 PMCID: PMC8878964 DOI: 10.3390/vaccines10020212] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Shigellosis is a serious disease with a major impact, especially in low-income countries where mortality and morbidity are high. In addition, shigellosis among travelers and military personnel is a cause of significant morbidity and contributes to the increase in antimicrobial resistance. The World Health Organization (WHO) considers the development of a Shigella vaccine a priority for public health. Over the past 60 years, several efforts to develop a Shigella vaccine have been pursued, without success. The principle of preventing shigellosis with a conjugate vaccine was demonstrated in the 1990′s, but this vaccine was not further developed. Bioconjugation is an innovative technology that allows the production of conjugate vaccines in a biological environment to preserve native immunogenic structures. In this review, we describe the journey of the bioconjugate Shigella vaccine, one of the most advanced clinical programs for a Shigella vaccine.
Collapse
|
40
|
Safety and Immunogenicity of a Shigella Bivalent Conjugate Vaccine (ZF0901) in 3-Month- to 5-Year-Old Children in China. Vaccines (Basel) 2021; 10:vaccines10010033. [PMID: 35062694 PMCID: PMC8780113 DOI: 10.3390/vaccines10010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
No licensed Shigella vaccine is presently available globally. A double-blinded, randomized, placebo-controlled, age descending phase II clinical trial of a bivalent conjugate vaccine was studied in China. The vaccine ZF0901 consisted of O-specific polysaccharides purified and detoxified from lipopolysaccharide (LPS) of S. flexneri 2a and S. sonnei and covalently bonded to tetanus toxoid. A total of 224, 310, and 434 children, consented by parents or guardians, aged 3 to 6 and 6 to 12 months and 1 to 5 years old, respectively, were injected with half or full doses, with or without adjuvant or control Hib vaccine. There were no serious adverse reactions in all recipients of ZF0901 vaccine independent of age, dosage, number of injections, or the adjuvant status. Thirty days after the last injection, ZF0901 induced robust immune responses with significantly higher levels of type-specific serum antibodies (geometric mean concentrations (GMCs) of IgG anti-LPS) against both serotypes in all age groups compared with the pre-immune or the Hib control (p < 0.0001). Here, we demonstrated that ZF0901 bivalent Shigella conjugate vaccine is safe and immunogenic in infants and young children and is likely suitable for routine immunization.
Collapse
|
41
|
Efficient production of immunologically active Shigella invasion plasmid antigens IpaB and IpaH using a cell-free expression system. Appl Microbiol Biotechnol 2021; 106:401-414. [PMID: 34932164 PMCID: PMC8688910 DOI: 10.1007/s00253-021-11701-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Abstract Shigella spp. invade the colonic epithelium and cause bacillary dysentery in humans. Individuals living in areas that lack access to clean water and sanitation are the most affected. Even though infection can be treated with antibiotics, Shigella antimicrobial drug resistance complicates clinical management. Despite decades of effort, there are no licensed vaccines to prevent shigellosis. The highly conserved invasion plasmid antigens (Ipa), which are components of the Shigella type III secretion system, participate in bacterial epithelial cell invasion and have been pursued as vaccine targets. However, expression and purification of these proteins in conventional cell-based systems have been challenging due to solubility issues and extremely low recovery yields. These difficulties have impeded manufacturing and clinical advancement. In this study, we describe a new method to express Ipa proteins using the Xpress+TM cell-free protein synthesis (CFPS) platform. Both IpaB and the C-terminal domain of IpaH1.4 (IpaH-CTD) were efficiently produced with this technology at yields > 200 mg/L. Furthermore, the expression was linearly scaled in a bioreactor under controlled conditions, and proteins were successfully purified using multimode column chromatography to > 95% purity as determined by SDS-PAGE. Biophysical characterization of the cell-free synthetized IpaB and IpaH-CTD using SEC-MALS analysis showed well-defined oligomeric states of the proteins in solution. Functional analysis revealed similar immunoreactivity as compared to antigens purified from E. coli. These results demonstrate the efficiency of CFPS for Shigella protein production; the practicality and scalability of this method will facilitate production of antigens for Shigella vaccine development and immunological analysis. Key points • First report of Shigella IpaB and IpaH produced at high purity and yield using CFPS • CFPS-IpaB and IpaH perform similarly to E. coli–produced proteins in immunoassays • CFPS-IpaB and IpaH react with Shigella-specific human antibodies and are immunogenic in mice. Graphical abstract ![]()
Collapse
|
42
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
43
|
Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021; 10:pathogens10111353. [PMID: 34832508 PMCID: PMC8621228 DOI: 10.3390/pathogens10111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.
Collapse
|
44
|
Ndungo E, Andronescu LR, Buchwald AG, Lemme-Dumit JM, Mawindo P, Kapoor N, Fairman J, Laufer MK, Pasetti MF. Repertoire of Naturally Acquired Maternal Antibodies Transferred to Infants for Protection Against Shigellosis. Front Immunol 2021; 12:725129. [PMID: 34721387 PMCID: PMC8554191 DOI: 10.3389/fimmu.2021.725129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Shigella is the second leading cause of diarrheal diseases, accounting for >200,000 infections and >50,000 deaths in children under 5 years of age annually worldwide. The incidence of Shigella-induced diarrhea is relatively low during the first year of life and increases substantially, reaching its peak between 11 to 24 months of age. This epidemiological trend hints at an early protective immunity of maternal origin and an increase in disease incidence when maternally acquired immunity wanes. The magnitude, type, antigenic diversity, and antimicrobial activity of maternal antibodies transferred via placenta that can prevent shigellosis during early infancy are not known. To address this knowledge gap, Shigella-specific antibodies directed against the lipopolysaccharide (LPS) and virulence factors (IpaB, IpaC, IpaD, IpaH, and VirG), and antibody-mediated serum bactericidal (SBA) and opsonophagocytic killing antibody (OPKA) activity were measured in maternal and cord blood sera from a longitudinal cohort of mother-infant pairs living in rural Malawi. Protein-specific (very high levels) and Shigella LPS IgG were detected in maternal and cord blood sera; efficiency of placental transfer was 100% and 60%, respectively, and had preferential IgG subclass distribution (protein-specific IgG1 > LPS-specific IgG2). In contrast, SBA and OPKA activity in cord blood was substantially lower as compared to maternal serum and varied among Shigella serotypes. LPS was identified as the primary target of SBA and OPKA activity. Maternal sera had remarkably elevated Shigella flexneri 2a LPS IgM, indicative of recent exposure. Our study revealed a broad repertoire of maternally acquired antibodies in infants living in a Shigella-endemic region and highlights the abundance of protein-specific antibodies and their likely contribution to disease prevention during the first months of life. These results contribute new knowledge on maternal infant immunity and target antigens that can inform the development of vaccines or therapeutics that can extend protection after maternally transferred immunity wanes.
Collapse
Affiliation(s)
- Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Liana R. Andronescu
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea G. Buchwald
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Patricia Mawindo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | | - Miriam K. Laufer
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcela F. Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Shigella-Specific Immune Profiles Induced after Parenteral Immunization or Oral Challenge with Either Shigella flexneri 2a or Shigella sonnei. mSphere 2021; 6:e0012221. [PMID: 34259559 PMCID: PMC8386581 DOI: 10.1128/msphere.00122-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.
Collapse
|
46
|
Walker R, Kaminski RW, Porter C, Choy RKM, White JA, Fleckenstein JM, Cassels F, Bourgeois L. Vaccines for Protecting Infants from Bacterial Causes of Diarrheal Disease. Microorganisms 2021; 9:1382. [PMID: 34202102 PMCID: PMC8303436 DOI: 10.3390/microorganisms9071382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
The global diarrheal disease burden for Shigella, enterotoxigenic Escherichia coli (ETEC), and Campylobacter is estimated to be 88M, 75M, and 75M cases annually, respectively. A vaccine against this target trio of enteric pathogens could address about one-third of diarrhea cases in children. All three of these pathogens contribute to growth stunting and have demonstrated increasing resistance to antimicrobial agents. Several combinations of antigens are now recognized that could be effective for inducing protective immunity against each of the three target pathogens in a single vaccine for oral administration or parenteral injection. The vaccine combinations proposed here would result in a final product consistent with the World Health Organization's (WHO) preferred product characteristics for ETEC and Shigella vaccines, and improve the vaccine prospects for support from Gavi, the Vaccine Alliance, and widespread uptake by low- and middle-income countries' (LMIC) public health stakeholders. Broadly protective antigens will enable multi-pathogen vaccines to be efficiently developed and cost-effective. This review describes how emerging discoveries for each pathogen component of the target trio could be used to make vaccines, which could help reduce a major cause of poor health, reduced cognitive development, lost economic productivity, and poverty in many parts of the world.
Collapse
Affiliation(s)
- Richard Walker
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Walter Reed Institute of Research, Silver Spring, MD 20910, USA;
| | - Chad Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - Robert K. M. Choy
- Center for Vaccine Innovation and Access, PATH, San Francisco, CA 94108, USA;
| | - Jessica A. White
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - James M. Fleckenstein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Medicine Service, Saint Louis VA Health Care System, St. Louis, MO 63106, USA
| | - Fred Cassels
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| |
Collapse
|
47
|
Chisenga CC, Bosomprah S, Simuyandi M, Mwila-Kazimbaya K, Chilyabanyama ON, Laban NM, Bialik A, Asato V, Meron-Sudai S, Frankel G, Cohen D, Chilengi R. Shigella-specific antibodies in the first year of life among Zambian infants: A longitudinal cohort study. PLoS One 2021; 16:e0252222. [PMID: 34043697 PMCID: PMC8158915 DOI: 10.1371/journal.pone.0252222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Shigellosis, is a leading cause of moderate-to-severe diarrhoea and related mortality in young children in low and middle income countries (LMICs). Knowledge on naturally acquired immunity can support the development of Shigella candidate vaccines mostly needed in LMICs. We aimed to quantify Shigella-specific antibodies of maternal origin and those naturally acquired in Zambian infants. Methods Plasma samples collected from infants at age 6, 14 and 52-weeks were tested for Shigella (S. sonnei and S. flexneri 2a) lipopolysaccharide (LPS) antigen specific immunoglobulin G (IgG) and A (IgA) by enzyme-linked immunosorbent assay. Results At 6 weeks infant age, the IgG geometric mean titres (GMT) against S. sonnei (N = 159) and S. flexneri 2a (N = 135) LPS were 311 (95% CI 259–372) and 446 (95% CI 343–580) respectively. By 14 weeks, a decline in IgG GMT was observed for both S. sonnei to 104 (95% CI 88–124), and S. flexneri 2a to 183 (95% CI 147–230). Both S. sonnei and S. flexneri 2a specific IgG GMT continued to decrease by 52 weeks infant age when compared to 6 weeks. In 27% and 8% of infants a significant rise in titre (4 fold and greater) against S. flexneri 2a and S. sonnei LPS, respectively, was detected between the ages of 14 and 52 weeks. IgA levels against both species LPS were very low at 6 and 14 weeks and raised significantly against S. flexneri 2a and S. sonnei LPS in 29% and 10% of the infants, respectively. Conclusion In our setting, transplacental IgG anti-Shigella LPS is present at high levels in early infancy, and begins to decrease by age 14 weeks. Our results are consistent with early exposure to Shigella and indicate naturally acquired IgG and IgA antibodies to S. flexneri 2a and S. sonnei LPS in part of infants between 14 and 52 weeks of age. These results suggest that a potential timing of vaccination would be after 14 and before 52 weeks of age to ensure early infant protection against shigellosis.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | | | | | | | - Natasha M. Laban
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valeria Asato
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gad Frankel
- Imperial College London, London, United Kingdom
| | - Daniel Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| |
Collapse
|
48
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
49
|
Raqib R, Venkatesan M. Shigella conjugate vaccine efficacy trial in controlled human model and potential immune correlates of protection. EBioMedicine 2021; 66:103343. [PMID: 33873142 PMCID: PMC8082079 DOI: 10.1016/j.ebiom.2021.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Malabi Venkatesan
- Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Maryland, USA (recently retired)
| |
Collapse
|
50
|
Talaat KR, Alaimo C, Martin P, Bourgeois AL, Dreyer AM, Kaminski RW, Porter CK, Chakraborty S, Clarkson KA, Brubaker J, Elwood D, Frölich R, DeNearing B, Weerts H, Feijoo BL, Halpern J, Sack D, Riddle MS, Fonck VG. Human challenge study with a Shigella bioconjugate vaccine: Analyses of clinical efficacy and correlate of protection. EBioMedicine 2021; 66:103310. [PMID: 33862589 PMCID: PMC8054157 DOI: 10.1016/j.ebiom.2021.103310] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Shigellosis is a major cause of moderate to severe diarrhoea and dysentery in children under 5 years of age in low and middle-income countries. The Flexyn2a vaccine conjugates the O-polysaccharide of Shigella flexneri 2a to Pseudomonas aeruginosa exotoxin A. We describe a Phase 2b proof-of-concept challenge study that evaluated safety, immunogenicity, and efficacy of the Flexyn2a vaccine to protect against shigellosis. METHODS In this randomized, double blind, placebo-controlled trial, healthy adults were randomized 1:1 to receive Flexyn2a (10 µg) or placebo intramuscularly, twice, 4 weeks apart, followed by challenge 4 weeks later with 1500 colony forming units (CFUs) of S. flexneri 2a strain 2457T. The primary outcome was vaccine-induced protection. S. flexneri 2a lipopolysaccharide (LPS)-specific immune responses were assessed. FINDINGS Sixty-seven subjects were enrolled, 34 received vaccine and 33 placebo. The vaccine was well tolerated; the majority of adverse events were mild in nature. Thirty vaccinees and 29 placebo recipients received the S. flexneri 2a challenge. Vaccination resulted in a 30.2% reduction in shigellosis compared with placebo (13/30 vs. 18/29; p = 0.11; 95% CI -15 to 62.6). Vaccine efficacy was more robust against severe disease, reaching 51.7% (p = 0.015, 95% CI 5.3 to 77.9) against moderate/severe diarrhoea or dysentery concurrent with fever or severe enteric symptoms and 72.4% (p = 0.07) against more severe diarrhoea (≥10 lose stools or ≥1000 g loose stools/24 h). Vaccinated subjects were less likely to need early antibiotic intervention following challenge (protective efficacy 51.7%, p = 0.01; 95% CI 9 to 76.8). In those who developed shigellosis, vaccinated subjects had a lower disease severity score (p = 0.002) than placebo-recipients. Additionally, LPS-specific serum IgG responses in Flexyn2a recipients were associated with protection against disease (p = 0.0016) and with a decreased shigellosis disease score (p = 0.002). INTERPRETATION The Flexyn2a bioconjugate vaccine was immunogenic, well tolerated and protected against severe illness after Shigella challenge and is a promising Shigella vaccine construct. We identified a strong association between anti-S. flexneri 2a serum IgG and a reduction in disease outcomes. (Clinicaltrials.gov, NCT02646371.) FUNDING: Funding for this study was through a grant from the Wellcome Trust.
Collapse
Affiliation(s)
- Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| | | | | | - A Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Now at PATH Center for Vaccine Innovation and Access, Washington, DC, United States
| | | | - Robert W Kaminski
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Chad K Porter
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kristen A Clarkson
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel Elwood
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hailey Weerts
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brittany L Feijoo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jane Halpern
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - David Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Mark S Riddle
- Naval Medical Research Center, Silver Spring, MD, United States
| | | |
Collapse
|