1
|
Muthuraman KR, Boonyakida J, Matsuda M, Suzuki R, Kato T, Park EY. Tetravalent Virus-like Particles Engineered To Display Envelope Domain IIIs of Four Dengue Serotypes in Silkworm as Vaccine Candidates. Biomacromolecules 2025. [PMID: 39895207 DOI: 10.1021/acs.biomac.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Dengue virus (DENV) causes dengue fever, the leading mosquito-borne viral disease affecting millions globally. Licensed vaccines have their restrictions, and the development of vaccines is in progress to overcome the limitations. In this study, we expressed two types of virus-like particles (VLPs) and four DENV serotype antigens, 1EDIII-4EDIII (tetEDIII), in silkworm larvae and engineered them into tetravalent VLPs (tetVLPs) displaying tetEDIII. Canine parvovirus-like particles (CPV-LPs) were self-assembled in vivo from viral protein VP2 of CPV (CPV-VP2) as heterologous VLPs; dengue virus capsid-like particles (DENV C-LPs) from capsid protein of DENV serotype 2 (DENV-C2) as homologous VLPs. The tetEDIII was displayed on the surface of CPV-LPs and DENV C-LPs through in vitro SpyTag/SpyCatcher (SpT/SpC) covalent ligation. The EDIII display of CPV-LP is better than that of DENV C-LP. Both tetEDIII-displaying tetravalent CPV-LPs (tetCPV-LPs) and tetravalent DENV C-LPs (tetDENV C-LPs) elicited neutralizing antibodies in BALB/c mice assayed through the single-round infectious particles (SRIP) method. The immunogenicity of tetDENV C-LPs for anti-IgG EDIIIs was higher than that of tetCPV-LPs for serotypes 1 and 3. The neutralization activity of tetDENV C-LPs was higher than that of tetCPV-LPs for D1-SRIP, while tetCPV-LPs were higher than that of tetDENV C-LPs for D2- and D4-SRIP. These results suggest that homologous tetDENV C-LPs and heterologous tetCPV-LPs can be suitable vaccine candidates for further evaluation. This result is the first report to display a tetEDIII on the surface of the DENV C-LPs and the CPV-LPs by in vitro bioconjugation.
Collapse
Affiliation(s)
- Krishna Raja Muthuraman
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Disease, Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Tatsuya Kato
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Muthuraman KR, Utomo DIS, Matsuda M, Suzuki R, Park EY. Expression of dengue capsid-like particles in silkworm and display of envelope domain III of dengue virus serotype 2. Protein Expr Purif 2024; 222:106543. [PMID: 38971211 DOI: 10.1016/j.pep.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Dengue virus (DENV) is a considerable public health threat affecting millions of people globally. Vaccines for dengue are an important strategy to reduce the disease burden. We expressed capsid (C2) and envelope domain III of dengue virus serotype 2 (2EDIII) separately in the silkworm expression system. We conjugated them employing the monomeric streptavidin (mSA2) and biotin affinity to display the antigenic 2EDIII on the C2-forming capsid-like particle (CLP). Purified 2EDIII-displaying C2 (CLP/2EDIII) was immunogenic in BALB/c mice, eliciting neutralizing antibodies confirmed by a single-round infectious particle (SRIP) neutralization assay. Th1 cytokine levels were upregulated for the CLP/2EDIII group, and the anti-inflammatory IL-10 and pro-inflammatory IL-6 cytokine levels were also raised compared to the 2EDIII and the control groups. Elevated cytokine levels for CLP/2EDIII indicate the importance of displaying the 2EDIII as CLP/2EDIII rather than as an individual subunit. This study is the first to express the C2 protein as self-assembling CLP in vivo and 2EDIII separately in the silkworm expression system and conjugate them to form a monovalent CLP. Thus, this CLP/2EDIII display method may pave the way for an efficient tetravalent dengue vaccine candidate.
Collapse
Affiliation(s)
- Krishna Raja Muthuraman
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Doddy Irawan Setyo Utomo
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Disease, Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Disease, Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Tabata K, Kobayashi S, Itakura Y, Gonzalez G, Kabamba CF, Saito S, Sasaki M, Hall WW, Sawa H, Orba Y. Increased production of orthoflavivirus single-round infectious particles produced in mammalian cells at a suboptimal culture temperature of 28°C. J Virol Methods 2024; 329:115007. [PMID: 39154937 DOI: 10.1016/j.jviromet.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
In the employment of serodiagnostic methods for the detection of orthoflavivirus infections, neutralization tests are known to be more accurate than measurements of antibody binding properties employing enzyme-linked immunosorbent assays. However, neutralization tests require infectious virus and laboratories with an appropriate level of biosafety. Single-round infectious particles (SRIPs), which encode a reporter gene instead of the viral structural protein genes, are replication incompetent and represent a safe and reliable alternative to the diagnosis of pathogenic viruses in neutralization tests. The orthoflavivirus SRIPs are produced by co-transfection of plasmids expressing virus-like particles and replicons into mammalian cell lines preferably with high transfection efficacy, such as HEK293T cells. However, certain orthoflavivirus SRIPs have limitations in their efficient expression at 37°C, which is the optimal temperature for mammalian cell growth, resulting in insufficient yields for neutralization tests. Here, we demonstrate that the production of orthoflavivirus SRIPs increases at the lower temperature of 28°C compared to 37°C. Moreover, infections with 28°C-cultured SRIPs in microneutralization tests were specifically inhibited in the presence of serum from mice infected with homologous viruses, suggesting that these SRIPs preserved their neutralizing epitopes for antibodies. Our method to produce high titer SRIPs is anticipated to promote efficient and safe SRIPs neutralization tests as a general serodiagnostic method for detecting virus-specific neutralizing antibodies against orthoflaviviruses.
Collapse
Affiliation(s)
- Koshiro Tabata
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Shintaro Kobayashi
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060‑0818, Japan
| | - Yukari Itakura
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Gabriel Gonzalez
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Chilekwa F Kabamba
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Shinji Saito
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Michihito Sasaki
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William W Hall
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA; National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hirofumi Sawa
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA; One Health Research Center, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yasuko Orba
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
4
|
Welch SR, Spengler JR, Genzer SC, Coleman-McCray JD, Harmon JR, Sorvillo TE, Scholte FE, Rodriguez SE, O’Neal TJ, Ritter JM, Ficarra G, Davies KA, Kainulainen MH, Karaaslan E, Bergeron É, Goldsmith CS, Lo MK, Nichol ST, Montgomery JM, Spiropoulou CF. Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination. SCIENCE ADVANCES 2023; 9:eadh4057. [PMID: 37540755 PMCID: PMC10403222 DOI: 10.1126/sciadv.adh4057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.
Collapse
Affiliation(s)
- Stephen R. Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sarah C. Genzer
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Teresa E. Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Florine E. M. Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sergio E. Rodriguez
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - T. Justin O’Neal
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jana M. Ritter
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Georgia Ficarra
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Katherine A. Davies
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Markus H. Kainulainen
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Cynthia S. Goldsmith
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
5
|
Enhanced Seroconversion to West Nile Virus Proteins in Mice by West Nile Kunjin Replicon Virus-like Particles Expressing Glycoproteins from Crimean–Congo Hemorrhagic Fever Virus. Pathogens 2022; 11:pathogens11020233. [PMID: 35215177 PMCID: PMC8874638 DOI: 10.3390/pathogens11020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Removal of genes coding for major parts of capsid (C), premembrane (prM), and envelope (E) proteins on the flavivirus genome aborts the production of infectious virus particles where the remaining genome forms a replicon that retains replicability in host cells. The C-prM-E proteins can also be expressed in trans with the flavivirus replicons to generate single-round infectious replicon virus-like particles (RVPs). In this study, we characterized the use of RVPs based on the Kunjin strain of WNV (WNVKUN) as a putative WNV vaccine candidate. In addition, the WNVKUN C-prM-E genes were substituted with the Crimean–Congo hemorrhagic fever virus (CCHFV) genes encoding the glycoproteins Gn and Gc to generate a WNVKUN replicon expressing the CCHFV proteins. To generate RVPs, the WNVKUN replicon was transfected into a cell line expressing the WNVKUN C-prM-E. Using immunoblotting and immunofluorescence assays, we showed that the replicon can express the CCHFV Gn and Gc proteins and the RVPs can transduce cells to express WNVKUN proteins and the CCHFV Gn and Gc proteins. Our study also revealed that these RVPs have potential as a vaccine platform with low risk of recombination as it infects cells only in one cycle. The immunization of mice with the RVPs resulted in high seroconversion to both WNV E and NS1 but limited seroconversion to CCHFV Gn and Gc proteins. Interestingly, we found that there was enhanced production of WNV E, NS1 antibodies, and neutralizing antibodies by the inclusion of CCHFV Gc and Gn into WNVKUN RVPs. Thus, this study indicates a complementary effect of the CCHFV Gn and Gc proteins on the immunogenicity by WNVKUN RVPs, which may be applied to develop a future vaccine against the WNV.
Collapse
|
6
|
Lücke AC, vom Hemdt A, Wieseler J, Fischer C, Feldmann M, Rothenfusser S, Drexler JF, Kümmerer BM. High-Throughput Platform for Detection of Neutralizing Antibodies Using Flavivirus Reporter Replicon Particles. Viruses 2022; 14:v14020346. [PMID: 35215941 PMCID: PMC8880525 DOI: 10.3390/v14020346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Flavivirus outbreaks require fast and reliable diagnostics that can be easily adapted to newly emerging and re-emerging flaviviruses. Due to the serological cross-reactivity among flavivirus antibodies, neutralization tests (NT) are considered the gold standard for sero-diagnostics. Here, we first established wild-type single-round infectious virus replicon particles (VRPs) by packaging a yellow fever virus (YFV) replicon expressing Gaussia luciferase (Gluc) with YFV structural proteins in trans using a double subgenomic Sindbis virus (SINV) replicon. The latter expressed the YFV envelope proteins prME via the first SINV subgenomic promoter and the capsid protein via a second subgenomic SINV promoter. VRPs were produced upon co-electroporation of replicon and packaging RNA. Introduction of single restriction enzyme sites in the packaging construct flanking the prME sequence easily allowed to exchange the prME moiety resulting in chimeric VRPs that have the surface proteins of other flaviviruses including dengue virus 1-4, Zika virus, West Nile virus, and tick-borne encephalitis virus. Besides comparing the YF-VRP based NT assay to a YF reporter virus NT assay, we analyzed the neutralization efficiencies of different human anti-flavivirus sera or a monoclonal antibody against all established VRPs. The assays were performed in a 96-well high-throughput format setting with Gluc as readout in comparison to classical plaque reduction NTs indicating that the VRP-based NT assays are suitable for high-throughput analyses of neutralizing flavivirus antibodies.
Collapse
Affiliation(s)
- Arlen-Celina Lücke
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universtät Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.F.); (J.F.D.)
| | - Marie Feldmann
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany;
- Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, 80337 Munich, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universtät Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.F.); (J.F.D.)
- Martinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moskow, Russia
- German Center for Infection Research (DZIF), Associated Partner Site Berlin, 10117 Berlin, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
- German Center for Infection Research (DZIF), Associated Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
7
|
Cuevas-Juárez E, Pando-Robles V, Palomares LA. Flavivirus vaccines: Virus-like particles and single-round infectious particles as promising alternatives. Vaccine 2021; 39:6990-7000. [PMID: 34753613 DOI: 10.1016/j.vaccine.2021.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
The genus flavivirus of the Flaviridae family includes several human pathogens, like dengue, Zika, Japanese encephalitis, and yellow fever virus. These viruses continue to be a significant threat to human health. Vaccination remains the most useful approach to reduce the impact of flavivirus fever. However, currently available vaccines can induce severe side effects or have low effectiveness. An alternative is the use of recombinant vaccines, of which virus-like particles (VLP) and single-round infectious particles (SRIP) are of especial interest. VLP consist of the virus structural proteins produced in a heterologous system that self-assemble in a structure almost identical to the native virus. They are highly immunogenic and have been effective vaccines for other viruses for over 30 years. SRIP are promising vaccine candidates, as they induce both cellular and humoral responses, as viral proteins are expressed. Here, the state of the art to produce both types of particles and their use as vaccines against flaviviruses are discussed. We summarize the different approaches used for the design and production of flavivirus VLP and SRIP, the evidence for their safety and efficacy, and the main challenges for their use as commercial vaccines.
Collapse
Affiliation(s)
- Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesos. Instituto de Biotecnología. Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, México.
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad 655. Cuernavaca, Morelos 62100. México.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos. Instituto de Biotecnología. Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
8
|
Seroprevalence of Flavivirus Neutralizing Antibodies in Thailand by High-Throughput Neutralization Assay: Endemic Circulation of Zika Virus before 2012. mSphere 2021; 6:e0033921. [PMID: 34259560 PMCID: PMC8386448 DOI: 10.1128/msphere.00339-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thailand is a hyperendemic country for flavivirus infections in Southeast Asia. Although the reporting system for flavivirus surveillance in Thailand is well established, syndromic surveillance tends to underestimate the true epidemiological status of flaviviruses due to the majority of infections being asymptomatic. To accurately understand the prevalence of flaviviruses in endemic regions, we performed neutralization tests against multiple flaviviruses using 147 serum samples from healthy donors collected from four distinct regions in Thailand. Single-round infectious particles (SRIP) for six flaviviruses, dengue virus types 1 to 4 (DENV-1 to -4), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), were used as antigens for developing a safe, high-throughput neutralization assay. Titers of neutralizing antibodies (NAbs) against the six flaviviruses revealed that DENV-1 and DENV-2, followed by ZIKV were the predominant circulating flaviviruses in a total of four regions, whereas the prevalence of NAbs against JEV varied among regions. Although the seroprevalence of ZIKV was low relative to that of DENV-1 and DENV-2, the findings strongly suggested that ZIKV has been circulating at a sustained level in Thailand since before 2012. These findings not only demonstrated the application of an SRIP-neutralization test in a serological study, but also elucidated the circulation and distribution trends of different flaviviruses in Thailand. IMPORTANCE Neutralization tests are the most reliable assay for flavivirus antibody detection; however, these assays are not suitable for high-throughput processing due to their time-consuming and labor-intensive nature. In this study, we developed single-round infectious particles (SRIPs) with a luciferase gene for dengue virus types 1 to 4, Japanese encephalitis virus, and Zika virus for use in a safe, high-throughput neutralization assay. We performed neutralization tests against multiple flaviviruses using 147 serum samples that were collected from healthy donors residing in four distinct regions of Thailand in 2011 to 2012. The assay was useful for surveys of flavivirus seroprevalence. The data revealed that dengue virus type 1 (DENV-1) and DENV-2 were the predominant circulating flaviviruses in Thailand and that Zika virus has been circulating at a sustained level in Thailand since before 2012.
Collapse
|
9
|
Kotaki T, Kurosu T, Grinyo-Escuer A, Davidson E, Churrotin S, Okabayashi T, Puiprom O, Mulyatno KC, Sucipto TH, Doranz BJ, Ono KI, Soegijanto S, Kameoka M. An affinity-matured human monoclonal antibody targeting fusion loop epitope of dengue virus with in vivo therapeutic potency. Sci Rep 2021; 11:12987. [PMID: 34155267 PMCID: PMC8217507 DOI: 10.1038/s41598-021-92403-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV), from the genus flavivirus of the family flaviviridae, causes serious health problems globally. Human monoclonal antibodies (HuMAb) can be used to elucidate the mechanisms of neutralization and antibody-dependent enhancement (ADE) of DENV infections, leading to the development of a vaccine or therapeutic antibodies. Here, we generated eight HuMAb clones from an Indonesian patient infected with DENV. These HuMAbs exhibited the typical characteristics of weak neutralizing antibodies including high cross-reactivity with other flaviviruses and targeting of the fusion loop epitope (FLE). However, one of the HuMAbs, 3G9, exhibited strong neutralization (NT50 < 0.1 μg/ml) and possessed a high somatic hyper-mutation rate of the variable region, indicating affinity-maturation. Administration of this antibody significantly prolonged the survival of interferon-α/β/γ receptor knockout C57BL/6 mice after a lethal DENV challenge. Additionally, Fc-modified 3G9 that had lost their in vitro ADE activity showed enhanced therapeutic potency in vivo and competed strongly with an ADE-prone antibody in vitro. Taken together, the affinity-matured FLE-targeting antibody 3G9 exhibits promising features for therapeutic application including a low NT50 value, potential for treatment of various kinds of mosquito-borne flavivirus infection, and suppression of ADE. This study demonstrates the therapeutic potency of affinity-matured FLE-targeting antibodies.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | | | | | - Siti Churrotin
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Tamaki Okabayashi
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orapim Puiprom
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kris Cahyo Mulyatno
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Teguh Hari Sucipto
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | | | - Ken-Ichiro Ono
- Medical & Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Soegeng Soegijanto
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
10
|
Tran PTH, Asghar N, Höglund U, Larsson O, Haag L, Mirazimi A, Johansson M, Melik W. Development of a Multivalent Kunjin Virus Reporter Virus-Like Particle System Inducing Seroconversion for Ebola and West Nile Virus Proteins in Mice. Microorganisms 2020; 8:E1890. [PMID: 33260425 PMCID: PMC7760487 DOI: 10.3390/microorganisms8121890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Kunjin virus (KUNV) is an attenuated strain of the severe neurotropic West Nile virus (WNV). The virus has a single-strand positive-sense RNA genome that encodes a polyprotein. Following gene expression, the polyprotein is cleaved into structural proteins for viral packaging and nonstructural proteins for viral replication and expression. Removal of the structural genes generate subgenomic replicons that maintain replication capacity. Co-expression of these replicons with the viral structural genes produces reporter virus-like particles (RVPs) which infect cells in a single round. In this study, we aimed to develop a system to generate multivalent RVPs based on KUNV to elicit an immune response against different viruses. We selected the Ebola virus (EBOV) glycoprotein (GP) and the matrix protein (VP40) genes, as candidates to be delivered by KUNV RVPs. Initially, we enhanced the production of KUNV RVPs by generating a stable cell line expressing the KUNV packaging system comprising capsid, precursor membrane, and envelope. Transfection of the DNA-based KUNV replicon into this cell line resulted in an enhanced RVP production. The replicon was expressed in the stable cell line to produce the RVPs that allowed the delivery of EBOV GP and VP40 genes into other cells. Finally, we immunized BALB/cN mice with RVPs, resulting in seroconversion for EBOV GP, EBOV VP40, WNV nonstructural protein 1, and WNV E protein. Thus, our study shows that KUNV RVPs may function as a WNV vaccine candidate and RVPs can be used as a gene delivery system in the development of future EBOV vaccines.
Collapse
Affiliation(s)
- Pham-Tue-Hung Tran
- School of Medical Science, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 703 62 Örebro, Sweden; (P.-T.-H.T.); (N.A.); (M.J.)
| | - Naveed Asghar
- School of Medical Science, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 703 62 Örebro, Sweden; (P.-T.-H.T.); (N.A.); (M.J.)
| | - Urban Höglund
- Adlego Biomedical AB, P.O. Box 42, 751 03 Uppsala, Sweden; (U.H.); (O.L.)
| | - Olivia Larsson
- Adlego Biomedical AB, P.O. Box 42, 751 03 Uppsala, Sweden; (U.H.); (O.L.)
| | - Lars Haag
- EM Unit (EMil), Department of Laboratory Medicine, Karolinska Institute, 171 77 Solna, Sweden;
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Magnus Johansson
- School of Medical Science, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 703 62 Örebro, Sweden; (P.-T.-H.T.); (N.A.); (M.J.)
| | - Wessam Melik
- School of Medical Science, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 703 62 Örebro, Sweden; (P.-T.-H.T.); (N.A.); (M.J.)
| |
Collapse
|
11
|
Baker C, Shi PY. Construction of Stable Reporter Flaviviruses and Their Applications. Viruses 2020; 12:v12101082. [PMID: 32992987 PMCID: PMC7599567 DOI: 10.3390/v12101082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses are significant human pathogens that cause frequent emerging and reemerging epidemics around the world. Better molecular tools for studying, diagnosing, and treating these diseases are needed. Reporter viruses represent potent tools to fill this gap but have been hindered by genetic instability. Recent advances have overcome these hurdles, opening the way for increased use of stable reporter flaviviruses to diagnose infections, screen and study antiviral compounds, and serve as potential vaccine vectors.
Collapse
Affiliation(s)
- Coleman Baker
- Microbiology and Immunology Department, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Pei-Yong Shi
- Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence:
| |
Collapse
|
12
|
Dalmann A, Wernike K, Snijder EJ, Oreshkova N, Reimann I, Beer M. Single-Round Infectious Particle Production by DNA-Launched Infectious Clones of Bungowannah Pestivirus. Viruses 2020; 12:v12080847. [PMID: 32759644 PMCID: PMC7472241 DOI: 10.3390/v12080847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Reverse genetics systems are powerful tools for functional studies of viral genes or for vaccine development. Here, we established DNA-launched reverse genetics for the pestivirus Bungowannah virus (BuPV), where cDNA flanked by a hammerhead ribozyme sequence at the 5′ end and the hepatitis delta ribozyme at the 3′ end was placed under the control of the CMV RNA polymerase II promoter. Infectious recombinant BuPV could be rescued from pBuPV-DNA-transfected SK-6 cells and it had very similar growth characteristics to BuPV generated by conventional RNA-based reverse genetics and wild type BuPV. Subsequently, DNA-based ERNS deleted BuPV split genomes (pBuPV∆ERNS/ERNS)—co-expressing the ERNS protein from a separate synthetic CAG promoter—were constructed and characterized in vitro. Overall, DNA-launched BuPV genomes enable a rapid and cost-effective generation of recombinant BuPV and virus mutants, however, the protein expression efficiency of the DNA-launched systems after transfection is very low and needs further optimization in the future to allow the use e.g., as vaccine platform.
Collapse
Affiliation(s)
- Anja Dalmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.D.); (K.W.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.D.); (K.W.)
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (E.J.S.); (N.O.)
| | - Nadia Oreshkova
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (E.J.S.); (N.O.)
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.D.); (K.W.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.D.); (K.W.)
- Correspondence:
| |
Collapse
|
13
|
He Y, Liu P, Wang T, Wu Y, Lin X, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Genetically stable reporter virus, subgenomic replicon and packaging system of duck Tembusu virus based on a reverse genetics system. Virology 2019; 533:86-92. [PMID: 31136895 DOI: 10.1016/j.virol.2019.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Duck Tembusu virus (DTMUV) is a novel flavivirus that has caused an outbreak of severe duck egg-drop syndrome since 2010. It has spread rapidly to other avian species, causing enormous economic loss. In the present study, we generated a reporter virus expressing NanoLuc luciferase, which was stable after 10 rounds of continuous propagation without reporter gene deletion. Moreover, we generated two types of replicons driven by the T7 promoter or CMV promoter, both of which worked well in BHK21 cells. Furthermore, we developed the first packaging system for DTMUV by co-transfection into BHK21 cells of a replicon (containing mature C) and a plasmid encoding C16-prM-E, which resulted in the production of single round infectious particles (SRIPs). We also generated a packaging cell line for DTMUV to produce SRIPs. We believe that these multicomponent platform tools are important for DTMUV pathogenesis research and novel vaccine development.
Collapse
Affiliation(s)
- Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanyuan Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao Lin
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
14
|
Yamanaka A, Konishi E. Key Amino Acid Substitution for Infection-Enhancing Activity-Free Designer Dengue Vaccines. iScience 2019; 13:125-137. [PMID: 30826727 PMCID: PMC6402262 DOI: 10.1016/j.isci.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Dengue is a globally important disease caused by four serotypes of dengue virus. Dengue vaccine development has been hampered by antigenic cross-reactivity among serotypes, which potentially causes antibody-dependent enhancement of infection and disease severity. Here we found that a single amino acid substitution in the envelope protein at position 87 from aspartic acid to asparagine or at position 107 from leucine to phenylalanine is critical for suppressing the induction of infection-enhancing antibody in a mouse model. The site and type of amino acid substitution were determined via neutralization escape using an enhancing-activity-only monoclonal antibody that was engineered to reveal neutralizing activity. Mutated dengue type 1 DNA vaccines containing either or both amino acid substitutions induced neutralizing antibodies devoid of enhancing activity against all serotypes. The effect of substitution was further demonstrated using other serotypes and a tetravalent formulation. This finding may contribute to the development of infection-enhancing-activity-free dengue vaccines. Amino acids at E87 or E107 are critical for dengue-enhancing antibody induction Neutralization escape is useful for identifying the key types or sites of amino acids Each substitution can be applied to antigens of all four dengue serotypes A modified tetravalent DNA vaccine suppresses enhancing antibody induction in mice
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
High-throughput neutralization assay for multiple flaviviruses based on single-round infectious particles using dengue virus type 1 reporter replicon. Sci Rep 2018; 8:16624. [PMID: 30413742 PMCID: PMC6226426 DOI: 10.1038/s41598-018-34865-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Diseases caused by the genus Flavivirus, including dengue virus (DENV) and Zika virus (ZIKV), have a serious impact on public health worldwide. Due to serological cross-reactivity among flaviviruses, current enzyme-linked immunosorbent assay (ELISA) for IgM/G cannot reliably distinguish between infection by different flaviviruses. In this study, we developed a reporter-based neutralization assay using single-round infectious particles (SRIPs) derived from representative flaviviruses. SRIPs were generated by transfection of human embryonic kidney 293 T cells with a plasmid encoding premembrane and envelope (prME) proteins from DENV1-4, ZIKV, Japanese encephalitis virus, West Nile virus, yellow fever virus, Usutu virus, and tick-borne encephalitis virus, along with a plasmid carrying DENV1 replicon containing the luciferase gene and plasmid for expression of DENV1 capsid. Luciferase activity of SRIPs-infected cells was well correlated with number of infected cells, and each reporter SRIP was specifically neutralized by sera from mice immunized with each flavivirus antigen. Our high-throughput reporter SRIP-based neutralization assay for multiple flaviviruses is a faster, safer, and less laborious diagnostic method than the conventional plaque reduction neutralization test to screen the cause of primary flavivirus infection. The assay may also contribute to the evaluation of vaccine efficacy and assist in routine surveillance and outbreak response to flaviviruses.
Collapse
|
16
|
Lu CY, Hour MJ, Wang CY, Huang SH, Mu WX, Chang YC, Lin CW. Single-Round Infectious Particle Antiviral Screening Assays for the Japanese Encephalitis Virus. Viruses 2017; 9:v9040076. [PMID: 28394283 PMCID: PMC5408682 DOI: 10.3390/v9040076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a mosquito-borne flavivirus with a positive-sense single-stranded RNA genome that contains a big open reading frame (ORF) flanked by 5′- and 3′- untranslated regions (UTRs). Nearly 30,000 JE cases with 10,000 deaths are still annually reported in East Asia. Although the JEV genotype III vaccine has been licensed, it elicits a lower protection against other genotypes. Moreover, no effective treatment for a JE case is developed. This study constructed a pBR322-based and cytomegaloviruses (CMV) promoter-driven JEV replicon for the production of JEV single-round infectious particles (SRIPs) in a packaging cell line expressing viral structural proteins. Genetic instability of JEV genome cDNA in the pBR322 plasmid was associated with the prokaryotic promoter at 5′ end of the JEV genome that triggers the expression of the structural proteins in E. coli. JEV structural proteins were toxic E. coli, thus the encoding region for structural proteins was replaced by a reporter gene (enhanced green fluorescent protein, EGFP) that was in-frame fused with the first eight amino acids of the C protein at N-terminus and the foot-and-mouth disease virus (FMDV) 2A peptide at C-terminus in a pBR322-based JEV-EGFP replicon. JEV-EGFP SRIPs generated from JEV-EGFP replicon-transfected packaging cells displayed the infectivity with cytopathic effect induction, self-replication of viral genomes, and the expression of EGFP and viral proteins. Moreover, the combination of JEV-EGFP SRIP plus flow cytometry was used to determine the half maximal inhibitory concentration (IC50) values of antiviral agents according to fluorescent intensity and positivity of SRIP-infected packaging cells post treatment. MJ-47, a quinazolinone derivative, significantly inhibited JEV-induced cytopathic effect, reducing the replication and expression of JEV-EGFP replicon in vitro. The IC50 value of 6.28 µM for MJ-47 against JEV was determined by the assay of JEV-EGFP SRIP infection in packaging cells plus flow cytometry that was more sensitive, effective, and efficient compared to the traditional plaque assay. Therefore, the system of JEV-EGFP SRIPs plus flow cytometry was a rapid and reliable platform for screening antiviral agents and evaluating antiviral potency.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Wen-Xiang Mu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Chun Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
17
|
Yamanaka A, Moi ML, Takasaki T, Kurane I, Konishi E. Neutralizing and enhancing antibody responses to five genotypes of dengue virus type 1 (DENV-1) in DENV-1 patients. J Gen Virol 2017; 98:166-172. [PMID: 27911254 DOI: 10.1099/jgv.0.000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) has four distinct serotypes, DENV-1-4, with four to six genotypes in each serotype. The World Health Organization recommends tetravalent formulations including one genotype of each serotype as safe and effective dengue vaccines. Here, we investigated the impact of genotype on the neutralizing antibody responses to DENV-1 in humans. Convalescent sera collected from patients with primary infection of DENV-1 were examined for neutralizing antibody against single-round infectious particles of the five DENV-1 genotypes (GI-GV). In both GI- and GIV-infected patients, their neutralizing antibody titres against the five genotypes were similar, differing ≤4-fold from the homogenotypic responses. The enhancing activities against the five genotypes were also similar in these sera. Thus, the genotype strains of DENV-1 showed no significant antigenic differences in these patients, suggesting that GI- or GIV-derived vaccine antigens should induce equivalent levels of neutralizing antibodies against all DENV-1 genotypes.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.,BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Meng Ling Moi
- Present address: Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Present address: Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan.,Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
18
|
Yamanaka A, Moi ML, Takasaki T, Kurane I, Matsuda M, Suzuki R, Konishi E. Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses. J Virol Methods 2017; 243:164-171. [PMID: 28219763 DOI: 10.1016/j.jviromet.2017.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/18/2022]
Abstract
The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University,420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand(3); BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Meng Ling Moi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tomohiko Takasaki
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University,420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand(3); BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Yamanaka A, Konishi E. Complement-independent dengue virus type 1 infection-enhancing antibody reduces complement-dependent and -independent neutralizing antibody activity. Vaccine 2016; 34:6449-6457. [PMID: 27866774 DOI: 10.1016/j.vaccine.2016.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Dengue fever and dengue hemorrhagic fever are globally important mosquito-transmitted viral diseases. However, the only licensed vaccine is not highly protective. Viremia is related to disease severity in infected humans, and it is thought to be reduced by neutralizing antibodies but increased by infection-enhancing antibodies. We established an assay system to measure the balance between neutralizing and enhancing antibodies and found that most dengue-immune individuals in endemic areas carry complement-independent enhancing antibodies (CiEAb). Studying CiEAb is important for dengue vaccine development because the enhancing activity of CiEAb does not decrease in the presence of complement, which can reduce the enhancing activity of other antibodies in vitro. Here, we investigated the effects of CiEAb on the activity of neutralizing antibodies (mainly, complement-dependent neutralizing antibodies; CdNAb) using cocktails of mouse monoclonal antibodies (MAbs) against dengue virus type 1 (DENV-1). These cocktails included MAbs with enhancing activity only (represented by D1-V-3H12 [3H12]) or neutralizing activity only (represented by D1-IV-7F4 [7F4]). Because 3H12, an IgG1 subclass antibody, is complement-independent and cross-reacted with all dengue serotypes, it is a suitable model of CiEAb. An approximately equal amount of 3H12 abolished the neutralizing activity of 7F4. The complement-dependent neutralizing activities of the IgG2a and IgG2b variants of 7F4 were also completely inhibited by ⩾3-fold concentrations of the IgG1 variant. The complement-dependent antibody activities of other anti-DENV-1 MAbs and those of MAbs directed against other serotypes were inhibited 50% by 3H12 at various mixing ratios, ranging from one-hundredth to 10-fold. The complement-dependent neutralizing activities of dengue-immune mouse ascites fluids were also effectively inhibited by 3H12. This suggests that concomitantly induced CiEAb exerts an unwanted effect on the protective capacity of a vaccine. Thus, the effective inhibition of the neutralizing activity of CdNAb by CiEAb has implications for dengue pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
20
|
Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Appl Biochem Biotechnol 2016; 178:1567-85. [PMID: 26728654 PMCID: PMC7091396 DOI: 10.1007/s12010-015-1968-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Abstract
Cell-based reporter systems have facilitated studies of viral replication and pathogenesis, virus detection, and drug susceptibility testing. There are three types of cell-based reporter systems that express certain reporter protein for positive-sense single strand RNA virus infections. The first type is classical reporter system, which relies on recombinant virus, reporter virus particle, or subgenomic replicon. During infection with the recombinant virus or reporter virus particle, the reporter protein is expressed and can be detected in real time in a dose-dependent manner. Using subgenomic replicon, which are genetically engineered viral RNA molecules that are capable of replication but incapable of producing virions, the translation and replication of the replicon could be tracked by the accumulation of reporter protein. The second type of reporter system involves genetically engineered cells bearing virus-specific protease cleavage sequences, which can sense the incoming viral protease. The third type is based on viral replicase, which can report the specific virus infection via detection of the incoming viral replicase. This review specifically focuses on the major technical breakthroughs in the design of cell-based reporter systems and the application of these systems to the further understanding and control of viruses over the past few decades.
Collapse
|
21
|
Yamanaka A, Oddgun D, Chantawat N, Okabayashi T, Ramasoota P, Churrotin S, Kotaki T, Kameoka M, Soegijanto S, Konishi E. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand. Microbes Infect 2015; 18:277-84. [PMID: 26645957 DOI: 10.1016/j.micinf.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Duangjai Oddgun
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Nantarat Chantawat
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tamaki Okabayashi
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Siti Churrotin
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60015, Indonesia
| | - Tomohiro Kotaki
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60015, Indonesia; Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo 654-0142, Japan
| | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo 654-0142, Japan
| | - Soegeng Soegijanto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60015, Indonesia
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Expression of enhancing-activity-free neutralizing antibody against dengue type 1 virus in plasmid-inoculated mice. Vaccine 2015; 33:6070-7. [DOI: 10.1016/j.vaccine.2015.07.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/16/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
|
23
|
Huang YT, Liao JT, Yen LC, Chang YK, Lin YL, Liao CL. Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges. J Biomed Sci 2015; 22:74. [PMID: 26362772 PMCID: PMC4566489 DOI: 10.1186/s12929-015-0181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/01/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. RESULTS We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. CONCLUSIONS Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161 Section 6, Ming Chuan E. Road, Taipei, 114, Taiwan, Republic of China (ROC).
| | - Jia-Teh Liao
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chuan E. Road, Taipei, 114, Taiwan, ROC.
| | - Li-Chen Yen
- Department of Biochemistry, National Defense Medical Center, No. 161 Section 6, Ming Chuan E. Road, Taipei, 114, Taiwan, ROC.
| | - Yung-Kun Chang
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chuan E. Road, Taipei, 114, Taiwan, ROC.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Section 2, Academia Road Nankang, Taipei, 115, Taiwan, ROC.
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chuan E. Road, Taipei, 114, Taiwan, ROC. .,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan, ROC.
| |
Collapse
|
24
|
Abstract
Attenuated, live viral vaccines have been extraordinarily successful in protecting against many diseases. The main drawbacks in their development and use have been reliance on an unpredictable method of attenuation and the potential for evolutionary reversion to high virulence. Methods of genetic engineering now provide many safer alternatives to live vaccines, so if live vaccines are to compete with these alternatives in the future, they must either have superior immunogenicity or they must be able to overcome these former disadvantages. Several live vaccine designs that were historically inaccessible are now feasible because of advances in genome synthesis. Some of those methods are addressed here, with an emphasis on whether they enable predictable levels of attenuation and whether they are stable against evolutionary reversion. These new designs overcome many of the former drawbacks and position live vaccines to be competitive with alternatives. Not only do new methods appear to retard evolutionary reversion enough to prevent vaccine-derived epidemics, but it may even be possible to permanently attenuate live vaccines that are transmissible but cannot evolve to higher virulence under prolonged adaptation.
Collapse
Affiliation(s)
- J J Bull
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|