1
|
Huy TXN, Nguyen TT, Salad SA, Aguilar CNT, Reyes AWB, Arayan LT, Min W, Lee HJ, Hop HT, Kim S. Hypertonic Saline Induces Host Protective Immune Responses against Brucella abortus Infection in Mice. J Microbiol Biotechnol 2024; 34:2192-2200. [PMID: 39403730 PMCID: PMC11637827 DOI: 10.4014/jmb.2407.07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024]
Abstract
Hypertonic saline (HTS) resuscitation can enhance immune responses against various pathogens, however, the effect of HTS on brucellosis is yet to be defined. In this study, we found that HTS inhibited Brucella infection in mice by augmenting Th1 immunity. HTS treatment enhanced the serum cytokines production and the expression of nitric oxide synthase (NOS2) and nuclear factor kappa B (NF-ĸB) p50 and p65, crucial anti-Brucella effectors in splenocytes. In addition, HTS treatment also inhibited the phosphorylation of MAPK signaling, accompanied by the down-regulation of the autophagy marker LC3B-II. Due to directing an appropriate immune response, HTS treatment substantially decreased bacterial burden in spleen and liver tissues. In summary, corroborating previous studies showing the antimicrobial effects of HTS, our findings indicate that HTS treatment triggers a protective immune response against Brucella infection. Additionally, these results provide promising evidence of the immunomodulatory role of HTS in controlling bacterial infections.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Said Abdi Salad
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ched Nicole Turbela Aguilar
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna, 4031, Philippines
| | | | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Huynh Tan Hop
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
2
|
Wu F, Deng Y, Yao X, Li J. Ruminant livestock TR V(D)J genes and CDR3 repertoire. Vet Immunol Immunopathol 2024; 277:110829. [PMID: 39316948 DOI: 10.1016/j.vetimm.2024.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ruminant livestock exhibit certain immune characteristics that make them valuable models for studying T cell receptor diversity and immune responses. This resistance is attributed to their well-developed immune system, comprising both innate and adaptive components. In this review, we delve into the intricate workings of the immune system of ruminant livestock, focusing on innate immunity and adaptive immunity. Specifically, we discuss the TR V(D)J genes (including TRB, TRG, and TRA/D chain) and the characteristics of the complementary determining region 3 (CDR3) repertoire in bovine and ovine species, shedding light on the diversity and functionality of the T-cell receptor(TCR) repertoire in these species. Understanding the distinct features of these germline genes and CDR3 repertoires is essential for unraveling the complexities of immune responses in ruminant livestock. Lastly, we outline future prospects in this field, emphasizing the importance of further research to enhance our understanding of ruminant livestock immunity and its potential applications in disease management, vaccine development, and breeding strategies.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China; Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlan Deng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Martino L, Cuvertoret-Sanz M, Wilkinson S, Allepuz A, Perlas A, Ganges L, Pérez L, Domingo M. Serological Investigation for Brucella ceti in Cetaceans from the Northwestern Mediterranean Sea. Animals (Basel) 2024; 14:2417. [PMID: 39199951 PMCID: PMC11350667 DOI: 10.3390/ani14162417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Neurobrucellosis in cetaceans, caused by Brucella ceti, is a relevant cause of death in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea. Serological tests are not used as a routinary technique for the diagnosis of this infection. We briefly describe the pathological findings of nine free-ranging stranded cetaceans diagnosed with Brucella disease or infection in our veterinary necropsy service from 2012 to 2022. The findings included focal diskospondylitis and non-suppurative meningitis, choroiditis and radiculitis. Additionally, an exploratory serological study was conducted in sixty-six frozen sera collected in the period 2012-2022 from fifty-seven striped dolphins, five Risso's dolphins (Grampus griseus), two common bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis) and one pilot whale (Globicephala melas) to compare antibody levels in Brucella-infected (n = 8) and non-infected (n = 58) animals, classified by the cause of death, sex, age class and cetacean morbillivirus (CeMV) infection status. The authors hypothesized that active infection in cases of neurobrucellosis would elicit a stronger, detectable humoral response compared to subclinical infections. We performed a commercial competition ELISA (cELISA) using serial serum dilutions for each sample, considering a percentage of inhibition (PI) of ≥40% as positive. A titer of 1:160 was arbitrarily determined as the seropositivity threshold. Seropositive species included striped dolphins and Risso's dolphins. Seroprevalence was higher in animals with neurobrucellosis (87.5%) compared to the overall seroprevalence (31.8%) and to other causes of death, indicating, likely, a high sensitivity but low specificity for neurobrucellosis. Animals with chronic CeMV seemed to have higher seroprevalences, as well as juveniles, which also had a higher disease prevalence. These results indicate, as in other studies, that antibodies are not decisive against clinical brucellosis, although they may indicate a carrier state, and that CeMV may influence Brucella epidemiology. More research is required to elucidate the epidemiology and pathogenesis and to resolve the complicated host-pathogen interaction in Brucella species.
Collapse
Affiliation(s)
- Laura Martino
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| | - María Cuvertoret-Sanz
- Servei de Diagnòstic de Patologia Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.C.-S.); (S.W.)
| | - Sarah Wilkinson
- Servei de Diagnòstic de Patologia Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.C.-S.); (S.W.)
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| | - Albert Perlas
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| | - Llilianne Ganges
- IRTA—Institut de Recerca en Sanitat Animal, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain;
| | - Lola Pérez
- Facultat de Veterinària de Barcelona, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Mariano Domingo
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.A.); (M.D.)
| |
Collapse
|
4
|
Andrade RS, Faria AR, Andrade HM, de Sousa Bueno Filho JS, Mansur HS, Mansur AAP, Lage AP, Dorneles EMS. Use of recombinant malate dehydrogenase (MDH) and superoxide dismutase (SOD) [CuZn] as antigens in indirect ELISA for diagnosis of bovine brucellosis. J Microbiol Methods 2024; 217-218:106874. [PMID: 38101579 DOI: 10.1016/j.mimet.2023.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The objective of this study was to validate an indirect enzyme-linked immunoassay (iELISA) using the recombinant proteins, malate dehydrogenase (MDH) and superoxide dismutase (SOD) [CuZn], as antigens and to evaluate its ability to discriminate antibodies produced by vaccination from those induced by infection in the diagnosis of bovine brucellosis. Sera from six groups were evaluated: G1 - culture-positive animals (52 serum samples) (naturally infected); G2 - non-vaccinated animals (28 serum samples) positive in RBT (Rose Bengal test) and 2ME (2-mercaptoethanol test) selected from brucellosis-positive herds; G3 - animals from a brucellosis-free area (32 serum samples); G4 - S19 vaccinated heifers (114 serum samples); G5 - RB51 vaccinated heifers (60 serum samples); G6 - animals inoculated with inactivated Yersinia enterocolitica O:9 (42 serum samples). Diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were estimated using the frequentist approach and the confidence interval (CI) (95%) calculated by the Clopper-Pearson (exact) method. The DSe for iELISA_MDH in the G1 group was 71.7% (CI 95%: 57.6-83.2%) and for the G2 100.0% (CI 95%: 87.7-100.0%), whereas the DSp was 84.4% in the G3 (CI 95%: 67.2-94.7%). For the iELISA_SOD the DSe was estimated 67.3% for the G1 (CI 95%: 52.9-79.7%) and 71.4% for G2 (CI 95%: 51.3-86.8%), while the DSp for G3 was 87.5% (CI 95%: 71.0-96.5%). iELISA_MDH and iELISA_SOD showed potential to be used in the diagnosis of infected animals, increasing the range of serological tests available for the diagnosis of bovine brucellosis, with the advantage of being S-LPS-free. However, none of the tests could differentiate between infection and vaccination.
Collapse
Affiliation(s)
- Rafaella Silva Andrade
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Angélica Rosa Faria
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Hélida Monteiro Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Herman Sander Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandra Ancelmo Piscitelli Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
6
|
Blasco JM, Moreno E, Muñoz PM, Conde-Álvarez R, Moriyón I. A review of three decades of use of the cattle brucellosis rough vaccine Brucella abortus RB51: myths and facts. BMC Vet Res 2023; 19:211. [PMID: 37853407 PMCID: PMC10583465 DOI: 10.1186/s12917-023-03773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.
Collapse
Affiliation(s)
- J M Blasco
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España
| | - E Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - P M Muñoz
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, España
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, España
| | - R Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - I Moriyón
- Instituto de Investigación Sanitaria de Navarra and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
de Araujo ACVSC, de Queiroz NMGP, Marinho FV, Oliveira SC. Bacillus Calmette-Guérin-Trained Macrophages Elicit a Protective Inflammatory Response against the Pathogenic Bacteria Brucella abortus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:791-803. [PMID: 37477668 PMCID: PMC10530434 DOI: 10.4049/jimmunol.2200642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
The bacillus Calmette-Guérin (BCG) can elicit enhanced innate immune responses against a wide range of infections, known as trained immunity. Brucella abortus is the causative agent of brucellosis, a debilitating disease that affects humans and animals. In this study, we demonstrate that C57BL/6 mouse bone marrow-derived macrophages under BCG training enhance inflammatory responses against B. abortus. BCG-trained macrophages showed increased MHC class II and CD40 expression on the cell surface and higher IL-6, IL-12, and IL-1β production. The increase in IL-1β secretion was accompanied by enhanced activation of canonical and noncanonical inflammasome platforms. We observed elevated caspase-11 expression and caspase-1 processing in BCG-trained macrophages in response to B. abortus compared with untrained cells. In addition, these BCG-trained cells showed higher NLRP3 expression after B. abortus infection. From a metabolic point of view, signaling through the Akt/mammalian target of rapamycin/S6 kinase pathway was also enhanced. In addition, BCG training resulted in higher inducible NO synthase expression and nitrite production, culminating in an improved macrophage-killing capacity against intracellular B. abortus. In vivo, we monitored a significant reduction in the bacterial burden in organs from BCG-trained C57BL/6 mice when compared with the untrained group. In addition, previous BCG immunization of RAG-1-deficient mice partially protects against Brucella infection, suggesting the important role of the innate immune compartment in this scenario. Furthermore, naive recipient mice that received BM transfer from BCG-trained donors showed greater resistance to B. abortus when compared with their untrained counterparts. These results demonstrate that BCG-induced trained immunity in mice results in better control of intracellular B. abortus in vivo and in vitro.
Collapse
Affiliation(s)
- Ana Carolina V. S. C. de Araujo
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nina M. G. P. de Queiroz
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C. Oliveira
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Wang H, Clapp B, Hoffman C, Yang X, Pascual DW. A Single Nasal Dose Vaccination with a Brucella abortus Mutant Potently Protects against Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1576-1588. [PMID: 37036290 PMCID: PMC10159994 DOI: 10.4049/jimmunol.2300071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Sadeghi Z, Fasihi-Ramandi M, Davoudi Z, Bouzari S. Multi-Epitope Vaccine Candidates Associated with Mannosylated Chitosan and LPS Conjugated Chitosan Nanoparticles Against Brucella Infection. J Pharm Sci 2023; 112:991-999. [PMID: 36623693 DOI: 10.1016/j.xphs.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023]
Abstract
One promising approach to increase protection against infectious diseases is to use adjuvants that can selectively stimulate the immune responses. In this study, multi-epitope antigens associated with LPS loaded chitosan (LLC) as toll-like receptor agonist or mannosylated chitosan nanoparticle (MCN) as vaccine delivery system were evaluated for their ability to stimulate immune responses to Brucella infection in mice model. Our results indicated that the addition of MCN to our vaccine formulations significantly elicited IFN-γ and IL-2 cytokines and antibody titers, in comparison with the non-adjuvanted vaccine candidates. The present results indicated that multi-epitopes and their administration with LLC or MCN induced Th1 immune response. In addition, vaccine candidates containing MCN provided high percentage of protection against B. melitensis and B. abortus infection. Our results provided support to previous reports indicating that MCNs are attractive adjuvants and addition of this adjuvant to multi-epitopes antigens play an important role in the development of vaccine against Brucella.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Davoudi
- Department of Medical Biotechnology, Zanjan University of Medical Science, Zanjan, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Li S, Huang J, Wang K, Liu Y, Guo Y, Li X, Wu J, Sun P, Wang Y, Zhu L, Wang H. A bioconjugate vaccine against Brucella abortus produced by engineered Escherichia coli. Front Bioeng Biotechnol 2023; 11:1121074. [PMID: 36911199 PMCID: PMC9995886 DOI: 10.3389/fbioe.2023.1121074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Brucellosis, mainly caused by Brucella, is a widespread zoonotic disease worldwide, with no available effective vaccine for human use. Recently, bioconjugate vaccines against Brucella have been prepared in Yersinia enterocolitica O:9 (YeO9), whose O-antigen structure is similar to that of Brucella abortus. However, the pathogenicity of YeO9 still hinders the large-scale production of these bioconjugate vaccines. Here, an attractive system for the preparation of bioconjugate vaccines against Brucella was established in engineered E. coli. Briefly, the OPS gene cluster of YeO9 was modularized into five individual fragments and reassembled using synthetic biological methods through standardized interfaces, then introduced into E. coli. After confirming the synthesis of targeted antigenic polysaccharides, the exogenous protein glycosylation system (PglL system) was used to prepare the bioconjugate vaccines. A series of experiments were conducted to demonstrate that the bioconjugate vaccine could effectively evoke humoral immune responses and induce the production of specific antibodies against B. abortus A19 lipopolysaccharide. Furthermore, the bioconjugate vaccines provide protective roles in both lethal and non-lethal challenge of B. abortus A19 strain. Using the engineered E. coli as a safer chassis to prepare bioconjugate vaccines against B. abortus paves the way for future industrial applications.
Collapse
Affiliation(s)
- Shulei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.,The Third Medical Center, PLA General Hospital, Beijing, China.,Department of Clinical Laboratory, The Third Medical Centre of Chinese PLA General Hospital, The Training Site for Postgraduate of Jin Zhou Medical University, Beijing, China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.,Beijing Minhai Biotechnology Co., Ltd., Beijing, China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yufei Wang
- The Third Medical Center, PLA General Hospital, Beijing, China.,Department of Clinical Laboratory, The Third Medical Centre of Chinese PLA General Hospital, The Training Site for Postgraduate of Jin Zhou Medical University, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
11
|
Mena-Bueno S, Poveda-Urkixo I, Irazoki O, Palacios L, Cava F, Zabalza-Baranguá A, Grilló MJ. Brucella melitensis Wzm/Wzt System: Changes in the Bacterial Envelope Lead to Improved Rev1Δwzm Vaccine Properties. Front Microbiol 2022; 13:908495. [PMID: 35875565 PMCID: PMC9306315 DOI: 10.3389/fmicb.2022.908495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- Agronomy, Biotecnology and Food Department, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Irati Poveda-Urkixo
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Leyre Palacios
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ana Zabalza-Baranguá
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - María Jesús Grilló
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- *Correspondence: María Jesús Grilló,
| |
Collapse
|
12
|
Huy TXN, Nguyen TT, Reyes AWB, Kim H, Min W, Lee HJ, Lee JH, Kim S. Cobalt (II) Chloride Regulates the Invasion and Survival of Brucella abortus 544 in RAW 264.7 Cells and B6 Mice. Pathogens 2022; 11:596. [PMID: 35631117 PMCID: PMC9143810 DOI: 10.3390/pathogens11050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of Cobalt (II) chloride (CoCl2) in the context of Brucella abortus (B. abortus) infection have not been evaluated so far. Firstly, we found that CoCl2 treatment inhibited the phagocytosis of B. abortus into RAW 264.7 cells. The inhibition of bacterial invasion was regulated by F-actin formation and associated with a reduction in the phosphorylation of ERK1/2 and HIF-1α expression. Secondly, the activation of trafficking regulators LAMP1, LAMP2, and lysosomal enzyme GLA at the transcriptional level activated immune responses, weakening the B. abortus growth at 4 h post-infection (pi). The silencing of HIF-1α increased bacterial survival at 24 h pi. At the same time, CoCl2 treatment showed a significant increase in the transcripts of lysosomal enzyme HEXB and cytokine TNF-α and an attenuation of the bacterial survival. Moreover, the enhancement at the protein level of HIF-1α was induced in the CoCl2 treatment at both 4 and 24 h pi. Finally, our results demonstrated that CoCl2 administration induced the production of serum cytokines IFN-γ and IL-6, which is accompanied by dampened Brucella proliferation in the spleen and liver of treated mice, and reduced the splenomegaly and hepatomegaly. Altogether, CoCl2 treatment contributed to host resistance against B. abortus infection with immunomodulatory effects.
Collapse
Affiliation(s)
- Tran X. N. Huy
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72300, Vietnam;
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - Trang T. Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - Alisha W. B. Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines;
| | - Heejin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - Hu J. Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| | - John H. Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (T.T.N.); (H.K.); (W.M.); (H.J.L.)
| |
Collapse
|
13
|
Poveda-Urkixo I, Ramírez GA, Grilló MJ. Kinetics of Placental Infection by Different Smooth Brucella Strains in Mice. Pathogens 2022; 11:pathogens11030279. [PMID: 35335603 PMCID: PMC8955611 DOI: 10.3390/pathogens11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/18/2023] Open
Abstract
Abortion and reproductive failures induced by Brucella are the main symptoms of animal brucellosis. Laboratory animal models are essential tools of research to study the Brucella pathogenesis before experimentation in natural hosts. To extend the existing knowledge, we studied B. melitensis 16M (virulent) and Rev1 (attenuated) as well as B. suis bv2 infections in pregnant mice. Here, we report new information about kinetics of infection (in spleens, blood, placentas, vaginal shedding, and foetuses), serum cytokine profiles, and histopathological features in placentas and the litter throughout mice pregnancy. Both B. melitensis strains showed a marked placental tropism and reduced viability of pups (mainly in 16M infections), which was preceded by an intense Th1-immune response during placental development. In contrast, B. suis bv2 displayed lower placental tropism, mild proinflammatory immune response, and scarce bacterial transmission to the litter, thus allowing foetal viability. Overall, our studies revealed three different smooth Brucella patterns of placental and foetal pathogenesis in mice, providing a useful animal model for experimental brucellosis.
Collapse
Affiliation(s)
- Irati Poveda-Urkixo
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
| | - Gustavo A. Ramírez
- Departamento de Sanidad Animal, Universidad de Lleida, 25198 Lleida, Spain;
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
- Correspondence:
| |
Collapse
|
14
|
A Model for Brucellosis Disease Incorporating Age of Infection and Waning Immunity. MATHEMATICS 2022. [DOI: 10.3390/math10040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper proposes a model for brucellosis transmission. The model takes into account the age of infection and waning immunity, that is, the progressive loss of immunity after recovery. Three routes of transmissions are considered: vertical transmission, and both direct and indirect routes of horizontal transmission. According to the well-posedness results, we provide explicit formulas for the equilibria. Next, we derive the basic reproduction number R0 and prove some stability results depending on the basic reproductive number. Finally, we perform numerical simulations using model parameters estimated from biological data to confirm our theoretical results. The results of these simulations suggest that for certain values of parameters, there will be periodic outbreaks of epidemics, and the disease will not be eradicated from the population. Our results also highlight the fact that the birth rate of cattle significantly influences the dynamics of the disease. The proposed model can be of a good use in studying the effects of vaccination on the cattle population.
Collapse
|
15
|
Li Z, Wang S, Wei S, Yang G, Zhang C, Xi L, Zhang J, Cui Y, Hao J, Zhang H, Zhang H. Immunization with a combination of recombinant Brucella abortus proteins induces T helper immune response and confers protection against wild-type challenge in BALB/c mice. Microb Biotechnol 2022; 15:1811-1823. [PMID: 35166028 PMCID: PMC9151338 DOI: 10.1111/1751-7915.14015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely, ribosomal protein L7/L12, outer membrane protein (OMP) 22, OMP25 and OMP31, was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. Four proteins were cloned, expressed and purified, and their immunocompetence was analysed. BALB/c mice were immunized subcutaneously with single subunit vaccines (SSVs) or CSV. Cellular and humoral immune responses were determined by ELISA. Results of immunoreactivity showed that these four recombinant proteins reacted with Brucella‐positive serum individually but not with Brucella‐negative serum. A massive production of IFN‐γ and IL‐2 but low degree of IL‐10 was observed in mice immunized with SSVs or CSV. In addition, the titres of IgG2a were heightened compared with IgG1 in SSV‐ or CSV‐immunized mice, which indicated that SSVs and CSV induced a typical T‐helper‐1‐dominated immune response in vivo. Further investigation of the CSV showed a superior protective effect in mice against brucellosis. The protection level induced by CSV was significantly higher than that induced by SSVs, which was not significantly different compared with a group immunized with RB51. Collectively, these antigens of Brucella could be potential candidates to develop subunit vaccines, and the CSV used in this study could be a potential candidate therapy for the prevention of brucellosis.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Shuli Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Shujuan Wei
- College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, 453007, China
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Chunmei Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Jinliang Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Junfang Hao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence, 476000, China
| | - Huan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Provence, 832003, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Provence, 832003, China
| |
Collapse
|
16
|
Ma Z, Yu S, Cheng K, Miao Y, Xu Y, Hu R, Zheng W, Yi J, Zhang H, Li R, Li Z, Wang Y, Chen C. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J Vet Sci 2021; 23:e8. [PMID: 34841746 PMCID: PMC8799945 DOI: 10.4142/jvs.21224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. OBJECTIVES To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. METHODS Constructed Brucella abortus BspJ gene deletion strain (B. abortus ΔBspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. RESULTS BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. CONCLUSIONS BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shuifa Yu
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Kejian Cheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huan Zhang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
17
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Brucella antigens (BhuA, 7α-HSDH, FliC) in poly I:C adjuvant as potential vaccine candidates against brucellosis. J Immunol Methods 2021; 500:113172. [PMID: 34673003 DOI: 10.1016/j.jim.2021.113172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
A promising strategy for controlling animal brucellosis is vaccination with commercial vaccine strains (Brucella melitensis Rev.1 and Brucella abortus RB51). Owing to safety concerns associated with these vaccines, developing a more effective and safe vaccine is essential. In this study, we examined the capacity of BhuA, 7α-HSDH or FliC antigens in the presence or absence of adjuvant in eliciting immune responses against brucellosis. After cloning, expression and purification, these proteins were used to examine immunologic responses. All immunized mice induced a vigorous IgG, with a predominant IgG2a response. Moreover, splenocytes of immunized mice proliferated and produced IL-2 and IFN-γ, suggesting the induction of cellular immunity. The high IgG2a/IgG1 ratio and IL-2 and IFN-γ indicated a Th1-oriented immune response in test groups. BhuA-, 7α-HSDH- or FliC- poly I:C formulations were the most effective at inducing Th1 immune response compared to groups immunized with naked proteins. Immunization with proteins protected mice against B. melitensis 16M and B. abortus 544. The proteins in adjuvant induced higher levels of protection than proteins only and exhibited similar degree of protection to live attenuated vaccines. Our results, for first time, introduced five potential candidates for subunit vaccine development against B. melitensis and B. abortus infection.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
de Oliveira MM, Pereira CR, de Oliveira IRC, Godfroid J, Lage AP, Dorneles EMS. Efficacy of Brucella abortus S19 and RB51 vaccine strains: A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:e32-e51. [PMID: 34328699 DOI: 10.1111/tbed.14259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023]
Abstract
This systematic review and meta-analysis aimed to recalculate the efficacy of Brucella abortus S19 and RB51 vaccine strains and discuss the main variables associated with controlled trials to evaluate bovine brucellosis vaccine efficacy (VE). The most commonly used vaccine strain was S19, at a dose of 1010 colony forming units (CFU), followed by RB51 at 1010 CFU. The most commonly used challenge strain was B. abortus 2308, at a dose of 107 CFU, by the intraconjunctival route. Regarding the meta-analysis, trials were grouped according to the vaccine strain and dose to recalculate protection against abortion (four groups) or infection (five groups) using pooled risk ratio (RR) and VE. Regarding protection against abortion (n = 15 trials), the S19 vaccine at 109 CFU exhibited the highest protection rate (RR = 0.25, 95% confidence interval (CI) : 0.12-0.52; VE = 75.09%, 95% CI: 48.08-88.05), followed by RB51 at 1010 CFU (RR = 0.31, 95% CI: 0.16-0.61; VE = 69.25%, 95% CI: 39.48-84.38). Regarding protection against infection (n = 23 trials), only two subgroups exhibited significant protection: S19 at 109 CFU (RR = 0.28, 95% CI: 0.14-0.55; VE = 72.03%, 95% CI: 57.70- 81.50) and RB51 at 1010 CFU (RR = 0.43, 95% CI: 0.22-0.84; VE = 57.05%, 95% CI: 30.90-73.30). In conclusion, our results suggest that a dose of 109 CFU for S19 and 1010 CFU for RB51 are the most suitable for the prevention of abortion and infection caused by B. abortus.
Collapse
Affiliation(s)
- Marina Martins de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Brazil
| | - Carine Rodrigues Pereira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Brazil
| | | | - Jacques Godfroid
- Department of Arctic and Marine Biology, Uit The Arctic University of Norway, Tromsø, Norway
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras - UFLA, Lavras, Brazil
| |
Collapse
|
19
|
Feng H, Zhi H, Hu X, Yang Y, Zhang L, Liu Q, Feng Y, Wu D, Yang X. Immunological studies of Morinda officinalis: How polysaccharides act as adjuvants. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1954657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haibo Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Hui Zhi
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Xin Hu
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Yan Yang
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Linzi Zhang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Qianqian Liu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Yangyang Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Daiyan Wu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Xiaonong Yang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| |
Collapse
|
20
|
Yan X, Hu S, Yang Y, Xu D, Liu W, Li G, Cai W, Bu Z. Proteomics Investigation of the Time Course Responses of RAW264.7 Macrophages to Infections With the Wild-Type and Twin-Arginine Translocation Mutant Strains of Brucella melitensis. Front Cell Infect Microbiol 2021; 11:679571. [PMID: 34195100 PMCID: PMC8238042 DOI: 10.3389/fcimb.2021.679571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brucella, a notorious intracellular pathogen, causes chronic infections in many mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane; protein substrates translocated by Brucella include ABC transporters, oxidoreductases, and cell envelope biosynthesis proteins. Previously, we showed that a Tat mutant of Brucella melitensis M28 exhibits reduced survival within murine macrophages. In this study, we compared the host responses elicited by wild-type M28 and its Tat-mutant strains ex vivo. We utilized label-free quantitative proteomics to assess proteomic changes in RAW264.7 macrophages after infection with M28 and its Tat mutants. A total of 6085 macrophage proteins were identified with high confidence, and 79, 50, and 99 proteins were differentially produced upon infection with the Tat mutant at 4, 24, and 48 hpi, respectively, relative to the wild-type infection. Gene ontology and KEGG enrichment analysis indicated that immune response-related proteins were enriched among the upregulated proteins. Compared to the wild-type M28 infection, the most upregulated proteins upon Tat-mutant infection included the cytosolic nucleic acid signaling pathway-related proteins IFIH1, DHX58, IFI202, IFI204, and ISG15 and the NF-κB signaling pathway-related proteins PTGS2, CD40, and TRAF1, suggesting that the host increases the production of these proteins in response to Tat mutant infection. Upregulation of some proteins was further verified by a parallel reaction monitoring (PRM) assay. ELISA and qRT-PCR assays indicated that Tat mutant infection significantly induced proinflammatory cytokine (TNF-α and IL-6) and nitric oxide (NO) production. Finally, we showed that the Tat mutant displays higher sensitivity to nitrosative stress than the wild type and that treatment with the NO synthase inhibitor L-NMMA significantly increases the intracellular survival of the Tat mutant, indicating that NO production contributes to restricting Tat mutant survival within macrophages. Collectively, this work improves our understanding of host immune responses to Tat mutants and provides insights into the mechanisms underlying the attenuated virulence of Tat mutants.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sen Hu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Yang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Xu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenxing Liu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
Mazlan M, Khairani-Bejo S, Hamzah H, Nasruddin NS, Salleh A, Zamri-Saad M. Pathological changes, distribution and detection of Brucella melitensis in foetuses of experimentally-infected does. Vet Q 2021; 41:36-49. [PMID: 33349157 PMCID: PMC7817172 DOI: 10.1080/01652176.2020.1867328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Brucellosis of goats is caused by Brucella melitensis. It is a re-emerging zoonotic disease in many countries due to transmission from domestic animals and wildlife such as ibex, deer and wild buffaloes. Objective To describe the pathological changes, identification and distribution of B. melitensis in foetuses of experimentally infected does. Methods Twelve female goats of approximately 90 days pregnant were divided into 4 groups. Group 1 was exposed intra-conjunctival to 100 µL of sterile PBS while goats of Groups 2, 3 and 4 were similarly exposed to 100 µL of an inoculum containing 109 CFU/mL of live B. melitensis. Goats of these groups were killed at 15, 30 and 60 days post-inoculation, respectively. Foetal fluid and tissues were collected for bacterial identification (using direct bacterial culture, PCR and immuno-peroxidase staining) and histopathological examination. Results Bilateral intra-conjunctival exposure of pregnant does resulted in in-utero infection of the foetuses. All full-term foetuses of group 4 were either aborted or stillborn, showing petechiations of the skin or absence of hair coat with subcutaneous oedema. The internal organs showed most severe lesions. Immune-peroxidase staining revealed antigen distribution in all organs that became most extensive in group 4. Brucella melitensis was successfully isolated from the stomach content, foetal fluid and various other organs. Conclusion Vertical transmission of caprine brucellosis was evident causing mild to moderate lesions in different organs. The samples of choice for isolation and identification of B. melitensis are stomach content as well as liver and spleen tissue.
Collapse
Affiliation(s)
- Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Khairani-Bejo
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Annas Salleh
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Zamri-Saad
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
22
|
Yang J, He C, Zhang H, Liu M, Zhao H, Ren L, Wu D, Du F, Liu B, Han X, He S, Chen Z. Evaluation and Differential Diagnosis of a Genetic Marked Brucella Vaccine A19ΔvirB12 for Cattle. Front Immunol 2021; 12:679560. [PMID: 34163479 PMCID: PMC8215367 DOI: 10.3389/fimmu.2021.679560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
Brucella abortus is an important zoonotic pathogen that causes severe economic loss to husbandry and poses a threat to human health. The B. abortus A19 live vaccine has been extensively used to prevent bovine brucellosis in China. However, it is difficult to distinguish the serological response induced by A19 from that induced by natural infection. In this study, a novel genetically marked vaccine, A19ΔvirB12, was generated and evaluated. The results indicated that A19ΔvirB12 was able to provide effective protection against B. abortus 2308 (S2308) challenge in mice. Furthermore, the safety and protective efficacy of A19ΔvirB12 have been confirmed in natural host cattle. Additionally, the VirB12 protein allowed for serological differentiation between the S2308 challenge/natural infection and A19ΔvirB12 vaccination. However, previous studies have found that the accuracy of the serological detection based on VirB12 needs to be improved. Therefore, we attempted to identify potential supplementary antigens with differential diagnostic functions by combining label-free quantitative proteomics and protein chip technology. Twenty-six proteins identified only in S2308 were screened; among them, five proteins were considered as potential supplementary antigens. Thus, the accuracy of the differential diagnosis between A19ΔvirB12 immunization and field infection may be improved through multi-antigen detection. In addition, we explored the possible attenuation factors of Brucella vaccine strain. Nine virulence factors were downregulated in A19ΔvirB12. The downregulation pathways of A19ΔvirB12 were significantly enriched in quorum sensing, ATP-binding cassette transporter, and metabolism. Several proteins related to cell division were significantly downregulated, while some proteins involved in transcription were upregulated in S2308. In conclusion, our results contribute to the control and eradication of brucellosis and provide insights into the mechanisms underlying the attenuation of A19ΔvirB12.
Collapse
Affiliation(s)
- Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chuanyu He
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Tecon Biological Co. Ltd., Urumqi, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | | | - Lisong Ren
- Tecon Biological Co. Ltd., Urumqi, China
| | | | - Fangyuan Du
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Sun He
- Tecon Biological Co. Ltd., Urumqi, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Inner Mongolia University for Nationalities, Tongliao, China.,School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Zai X, Yin Y, Guo F, Yang Q, Li R, Li Y, Zhang J, Xu J, Chen W. Screening of potential vaccine candidates against pathogenic Brucella spp. using compositive reverse vaccinology. Vet Res 2021; 52:75. [PMID: 34078437 PMCID: PMC8170439 DOI: 10.1186/s13567-021-00939-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and various animals. The threat of brucellosis has increased, yet currently available live attenuated vaccines still have drawbacks. Therefore, subunit vaccines, produced using protein antigens and having the advantage of being safe, cost-effective and efficacious, are urgently needed. In this study, we used core proteome analysis and a compositive RV methodology to screen potential broad-spectrum antigens against 213 pathogenic strains of Brucella spp. with worldwide geographic distribution. Candidate proteins were scored according to six biological features: subcellular localization, antigen similarity, antigenicity, mature epitope density, virulence, and adhesion probability. In the RV analysis, a total 32 candidate antigens were picked out. Of these, three proteins were selected for assessment of immunogenicity and preliminary protection in a mouse model: outer membrane protein Omp19 (used as a positive control), type IV secretion system (T4SS) protein VirB8, and type I secretion system (T1SS) protein HlyD. These three antigens with a high degree of conservation could induce specific humoral and cellular immune responses. Omp19, VirB8 and HlyD could substantially reduce the organ bacterial load of B. abortus S19 in mice and provide varying degrees of protection. In this study, we demonstrated the effectiveness of this unique strategy for the screening of potential broad-spectrum antigens against Brucella. Further evaluation is needed to identify the levels of protection conferred by the vaccine antigens against wild-type pathogenic Brucella species challenge.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fengyu Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
24
|
Diniz Neto HC, Lombardi MC, Campos MM, Lage AP, Silva ROS, Dorneles EMS, Lage CFA, Carvalho WA, Machado FS, Pereira LGR, Tomich TR, Ramos CP, Assis RA, Lobato FCF, Santana JA, Santos ELS, Andrade RS, Coelho SG. Effects of vaccination against brucellosis and clostridia on the intake, performance, feeding behavior, blood parameters, and immune responses of dairy heifers calves. J Anim Sci 2021; 99:6211303. [PMID: 33822982 DOI: 10.1093/jas/skab107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to identify possible effects of different vaccination strategies (concomitantly or not) against brucellosis and clostridia on intake, performance, feeding behavior, blood parameters, and immune responses of dairy heifers calves. Fifty heifers calves were enrolled [38 Gyr (Zebu, Bos taurus indicus) and 12 5/8 Holstein × Gyr]. At 120 d of age, animals were randomly distributed among 3 groups: B (n = 18), vaccinated against brucellosis; C (n = 14), vaccinated against clostridia and CB (n = 18), vaccinated concomitantly for both. Rectal and thermographic temperatures were evaluated on days -1, 0, 1, 2, 3, 5, 7,10, 14, and 28 relatives to the vaccination day. Feed and water intake, body weight (BW), and feeding behavior were monitored daily by an electronic feeding system. Blood was sampled on days 0, 3, 7, 14, and 28, relative to the vaccination day for determination of glucose and β -hydroxybutyrate (BHBA) concentrations. Blood sampled on day 0 (prevaccination) and on days 28 and 42 were used to evaluate the immune response against Brucella abortus and clostridia. There was an increase in rectal temperature between the first and the third day postvaccination in the 3 groups. The thermography revealed an increase of local temperature for 7 d on groups B and CB. Group C had increased local temperature for a longer period, lasting for up to 14 d. Dry mater intake was reduced for groups B and CB, but no alteration was observed for group C. No alterations regarding initial BW, final BW, average daily weight gain, and feed efficiency were observed. No differences were observed for the 3 vaccination groups for blood parameters throughout the evaluation period. The concomitant vaccination against brucellosis and clostridia led to lower neutralizing antibody titers against epsilon toxin of Clostridium perfringens and botulinum toxin type C of C. botulinum (C > CB > B). When cellular proliferation assay and serological tests to B. abortus were evaluated, no differences were observed between groups B and CB. The present results indicate that the concomitant vaccination against brucellosis and clostridia has no relevant impact on the intake, performance, and feeding behavior of dairy calves. However, the concomitant vaccination of vaccines against these 2 pathogens impacts animal immunity against clostridial infections.
Collapse
Affiliation(s)
- Hilton C Diniz Neto
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970, Brazil
| | - Mayara C Lombardi
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970, Brazil
| | - Mariana M Campos
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Rodrigo O S Silva
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, 30161-970, Brazil
| | - Camila Flávia A Lage
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970, Brazil
| | - Wanessa A Carvalho
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Fernanda S Machado
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Luiz Gustavo R Pereira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Thierry R Tomich
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Carolina P Ramos
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Ronnie A Assis
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Francisco Carlos F Lobato
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Jordana A Santana
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Ethiene Luiza S Santos
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Rafaella S Andrade
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, 30161-970, Brazil
| | - Sandra G Coelho
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30161-970, Brazil
| |
Collapse
|
25
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
26
|
Huy TXN, Nguyen TT, Reyes AWB, Vu SH, Min W, Lee HJ, Lee JH, Kim S. Immunization With a Combination of Four Recombinant Brucella abortus Proteins Omp16, Omp19, Omp28, and L7/L12 Induces T Helper 1 Immune Response Against Virulent B. abortus 544 Infection in BALB/c Mice. Front Vet Sci 2021; 7:577026. [PMID: 33553273 PMCID: PMC7854899 DOI: 10.3389/fvets.2020.577026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely outer membrane protein (Omp) 16, Omp19, Omp28, and 50S ribosomal protein L7/L12 was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. The immunoreactivity of these four recombinant proteins as well as pCold-TF vector reacted with Brucella-positive serum individually, but not with Brucella-negative serum by immunoblotting assay. CSV-treated RAW 264.7 cells significantly induced production of IFN-γ and IL-12 while decreased IL-10 production at the late stage of infection compared to PBS-treated control cells. In addition, the enhancement of nitric oxide production together with cytokines secretion profile in CSV-treated cells proved that CSV notably activated bactericidal mechanisms in macrophages. Consistently, mice immunized with CSV strongly elicited production of pro-inflammatory cytokines TNF-α, IL-6 and MCP-1 compared to PBS control group. Moreover, the concentration of IFN-γ was >IL-10 and titers of IgG2a were also heightened compared to IgG1 in CSV-immunized mice which suggest that CSV induced predominantly T helper 1 T cell. These results suggest that the CSV used in the present study is a potential candidate as a preventive therapy against brucellosis.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, Ho Chi Minh City, Vietnam.,Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | | | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
27
|
Ma Z, Yu S, Cheng K, Miao Y, Xu Y, Hu R, Zheng W, Yi J, Zhang H, Li R, Li Z, Wang Y, Chen C. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shuifa Yu
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Kejian Cheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huan Zhang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
28
|
Zhou Z, Gu G, Luo Y, Li W, Li B, Zhao Y, Liu J, Shuai X, Wu L, Chen J, Fan C, Huang Q, Han B, Wen J, Jiao H. Immunological pathways of macrophage response to Brucella ovis infection. Innate Immun 2020; 26:635-648. [PMID: 32970502 PMCID: PMC7556187 DOI: 10.1177/1753425920958179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcriptome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2 (ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1 (ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2 (ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the bacteria–host interaction and demonstrating the pathogenic mechanism of B. ovis.
Collapse
Affiliation(s)
- Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yichen Luo
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Wenjie Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juan Liu
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Xuehong Shuai
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Li Wu
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Jixuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Cailiang Fan
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Animal Disease Prevention and Control Center of Rongchang, Chongqing, China
| | - Qingzhou Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| | - Baoru Han
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Jianjun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,College of Veterinary Medicine, Southwest University, Chongqing, China.,Veterinary Scientific Engineering Research Center, Chongqing, China
| |
Collapse
|
29
|
Xyloglucan based mucosal nanovaccine for immunological protection against brucellosis developed by supercritical fluid technology. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100053. [PMID: 32776000 PMCID: PMC7397708 DOI: 10.1016/j.ijpx.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022]
Abstract
Vaccines delivered via the mucosal route have logistic benefits over parenteral or intramuscular vaccines as they offer patient compliance. This study presents the first intranasal, controlled release, subunit nanovaccine comprising mucoadhesive tamarind seed polymer (xyloglucan) based nanoparticles produced using an efficient, environmentally compatible, and industrially scalable technique: rapid expansion of supercritical solution. The nanovaccine formulation aimed against brucellosis comprised xyloglucan nanoparticles loaded separately with antigenic acellular lipopolysaccharides from B. abortus (S19) and the immunoadjuvant quillaja saponin. The nanovaccine elicited prolonged humoral and cell-mediated immunity in female Balb/c mice. Nasal vaccination with the nanovaccine resulted in higher levels of mucosal IgA and IgG than with an aqueous solution of soluble lipopolysaccharides and quillaja saponin. Systemic immunity triggered by the nanovaccine was evidenced by higher IgG levels in sera post priming and boosting. The nanovaccine induced a mixed Th1/Th2 type of immunity with higher IgG2a levels and thus a polarized Th1 response. The results suggest that the nanovaccine administered by homologous nasal route can prime the immune system via the mucosal and systemic pathways and is a good candidate for vaccine delivery.
Collapse
|
30
|
Hasenauer FC, Rossi UA, Caffaro ME, Raschia MA, Maurizio E, Poli MA, Rossetti CA. Association of TNF rs668920841 and INRA111 polymorphisms with caprine brucellosis: A case-control study of candidate genes involved in innate immunity. Genomics 2020; 112:3925-3932. [PMID: 32629097 DOI: 10.1016/j.ygeno.2020.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/28/2020] [Indexed: 01/24/2023]
Abstract
Caprine brucellosis is an infectious, contagious zoonotic disease caused by Brucella melitensis. Multiple factors, including host genetics, can influence the outcome of the exposure to Brucella; and it is expected that genetic variants that affect the host innate immune response could have a key role in Brucella infection and pathogenesis. In this study, we evaluated if polymorphisms in innate immunity-related genes are associated with results of Brucella infection in goats. Nine polymorphisms within interferon gamma (IFNG), tumor necrosis factor (TNF), MyD88 innate immune signal transduction adaptor (MYD88), interleukin 10 (IL10) and IL-10 receptor subunit alpha (IL10RA) genes and two molecular markers (BMS2753 and INRA111) were resolved by PCR-capillary electrophoresis in samples from 81 seronegative and 61 seropositive goats for brucellosis. A heterozygous genotype at INRA111, a microsatellite near the VRK serine/threonine kinase 2 (VRK2) gene, was associated with absence of Brucella-specific antibodies in goats naturally exposed to the pathogen (P = .004). Conversely, variants in the TNF gene (rs668920841) and near the IFN gamma receptor 1 (IFNGR1) gene (microsatellite BMS2753) were significantly associated with presence of Brucella-specific antibodies at allelic (P = .042 and P = .046) and genotypic level (P = .012 and P = .041, respectively). Moreover, an in silico analysis predicted a functional role of the insertion-deletion polymorphism rs668920841 on the transcriptional regulation of the caprine TNF gene. Altogether, these results contribute to the identification of genetic factors that have a putative effect on the resistance / susceptibility phenotype of goats to Brucella infection.
Collapse
Affiliation(s)
- F C Hasenauer
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290, C1425 CABA, Argentina
| | - U A Rossi
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290, C1425 CABA, Argentina
| | - M E Caffaro
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina
| | - M A Raschia
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina
| | - E Maurizio
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290, C1425 CABA, Argentina
| | - M A Poli
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina
| | - C A Rossetti
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Nanoparticle-Based Vaccines for Brucellosis: Calcium Phosphate Nanoparticles-Adsorbed Antigens Induce Cross Protective Response in Mice. Int J Nanomedicine 2020; 15:3877-3886. [PMID: 32581535 PMCID: PMC7269176 DOI: 10.2147/ijn.s249942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction Vaccine formulation with appropriate adjuvants is an attractive approach to develop protective immunity against pathogens. Calcium phosphate nanoparticles (CaPNs) are considered as ideal adjuvants and delivery systems because of their great potential for enhancing immune responses. In the current study, we have designed nanoparticle-based vaccine candidates to induce immune responses and protection against B. melitensis and B. abortus. Materials and Methods For this purpose, we used three Brucella antigens (FliC, 7α-HSDH, BhuA) and two multi-epitopes (poly B and poly T) absorbed by CaPNs. The efficacy of each formulation was evaluated by measuring humoral, cellular and protective responses in immunized mice. Results The CaPNs showed an average size of about 90 nm with spherical shape and smooth surface. The CaPNs-adsorbed proteins displayed significant increase in cellular and humoral immune responses compared to the control groups. In addition, our results showed increased ratio of specific IgG2a (associated with Th1) to specific IgG1 (associated with Th2). Also, immunized mice with different vaccine candidate formulations were protected against B. melitensis 16M and B. abortus 544, and showed same levels of protection as commercial vaccines (B. melitensis Rev.1 and B. abortus RB51) except for BhuA-CaPNs. Discussion Our data support the hypothesis that these antigens absorbed with CaPNs could be effective vaccine candidates against B. melitensis and B. abortus.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
B Cells Inhibit CD4 + T Cell-Mediated Immunity to Brucella Infection in a Major Histocompatibility Complex Class II-Dependent Manner. Infect Immun 2020; 88:IAI.00075-20. [PMID: 32071068 DOI: 10.1128/iai.00075-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ∼100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella Using B and T cell-deficient Rag1-/- animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection.
Collapse
|
33
|
Application of an O-Linked Glycosylation System in Yersinia enterocolitica Serotype O:9 to Generate a New Candidate Vaccine against Brucella abortus. Microorganisms 2020; 8:microorganisms8030436. [PMID: 32244903 PMCID: PMC7143757 DOI: 10.3390/microorganisms8030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a major zoonotic public health threat worldwide, causing veterinary morbidity and major economic losses in endemic regions. However, no efficacious brucellosis vaccine is yet available, and live attenuated vaccines commonly used in animals can cause human infection. N- and O-linked glycosylation systems have been successfully developed and exploited for the production of successful bioconjugate vaccines. Here, we applied an O-linked glycosylation system to a low-pathogenicity bacterium, Yersinia enterocolitica serotype O:9 (Y. enterocolitica O:9), which has repeating units of O-antigen polysaccharide (OPS) identical to that of Brucella abortus (B. abortus), to develop a bioconjugate vaccine against Brucella. The glycoprotein we produced was recognized by both anti-B. abortus and anti-Y. enterocolitica O:9 monoclonal antibodies. Three doses of bioconjugate vaccine-elicited B. abortus OPS-specific serum IgG in mice, significantly reducing bacterial loads in the spleen following infection with the B. abortus hypovirulent smooth strain A19. This candidate vaccine mitigated B. abortus infection and prevented severe tissue damage, thereby protecting against lethal challenge with A19. Overall, the results indicated that the bioconjugate vaccine elicited a strong immune response and provided significant protection against brucellosis. The described vaccine preparation strategy is safe and avoids large-scale culture of the highly pathogenic B. abortus.
Collapse
|
34
|
Huy TXN, Bernardo Reyes AW, Vu SH, Arayan LT, Hop HT, Min W, Lee HJ, Lee JH, Kim S. Immunogenicity and protective response induced by recombinant Brucella abortus proteins Adk, SecB and combination of these two recombinant proteins against a virulent strain B. abortus 544 infection in BALB/c mice. Microb Pathog 2020; 143:104137. [PMID: 32169487 DOI: 10.1016/j.micpath.2020.104137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
In this study, two recombinant proteins encoded by Brucella abortus genes Adk and SecB were evaluated as single subunit vaccine (SSV) as well as combined subunit vaccine (CSV) against B. abortus infection in BALB/c mice. These genes were cloned into pcold-TF expression system and recombinant proteins were expressed in Escherichia coli DH5α. The immunoreactivity of purified rAdk and rSecB was analyzed by immunoblotting showing that purified rAdk and rSecB as well as pcold-TF vector strongly reacted with Brucella-positive serum. Mice were immunized intraperitoneally with SSVs, CSV, pcold-TF, RB51 and PBS. The analysis of cytokine revealed that SSVs and CSV can strongly induce production of proinflammatory cytokines TNF and IL-6, suggesting that these subunit vaccines elicited innate immune response, particularly, activated antimicrobial mechanism of macrophages to limit the initial infection. On the other hand, immunization with SSVs and CSV elicited strong IFN-γ production and decreased IL-10 production compared to PBS group. The secretion profiles of IFN-γ and IL-10 together with an enhancement of blood CD4+ population and significantly induced specific IgG1 and IgG2a antibodies indicated that SSVs and CSV induced not only humoral immunity but also T helper 1 T cell immunity. Finally, spleen proliferation and bacterial burden in the spleen of mice vaccinated with these subunit vaccines were significantly lower than those of PBS group, which conferred significant protection against B. abortus infection. Altogether, the potential of these antigens of B. abortus could be prospective candidates to develop subunit vaccines against brucellosis.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam; Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Alisha Wehdnesday Bernardo Reyes
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Huynh Tan Hop
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
35
|
Zafari P, Zarifian A, Alizadeh-Navaei R, Taghadosi M, Rafiei A. Association between polymorphisms of cytokine genes and brucellosis: A comprehensive systematic review and meta-analysis. Cytokine 2020; 127:154949. [PMID: 31816580 DOI: 10.1016/j.cyto.2019.154949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Owing to involvement of host genetic factors in susceptibility to brucellosis infection and its outcome, this study aimed to carry out a comprehensive systematic review and meta-analysis to derive a precise evaluation of the association between the risk of brucellosis and its focal complication and all cytokines examined in case-control studies, including Interferon gamma (IFN-γ), Tumor Necrosis Factor (TNF)-α, TNF-β, Transforming Growth Factor(TGF)-β, IL-2, IL-4, IL-6, IL-10, IL-12B, IL-15, and IL-18 polymorphisms. METHODS A systematic literature search in PubMed, Web of Science, Google Scholar, and Scopus was performed to identify the relevant studies, and related information was extracted. The effect size (ES) and corresponding 95% confidence intervals (CIs) were calculated to estimate the association. RESULTS From 158 initial results, twenty-five eligible studies were included in the meta-analysis. Overall, the pooled results showed that the dominant models of IFN-γ UTR5644, TGF-β rs1800470 and rs1800471, TNF-α rs1800629, and IL-10 rs1800872 were significantly less frequent in brucellosis patients than the controls. Also, the pooled analysis of the mutant allele vs. wild allele of TGF-β rs1800471 and IL-10 rs1800872 showed negative association with brucellosis risk. On the other hand, our pooled analysis demonstrated that the mutant allele of IL-4 rs2243250 and IL-18 rs1946519 were associated with increased susceptibility to brucellosis. In addition, the IFN-γ UTR5644 and TGF-β rs1800470 were more frequent in the patients without focal forms. CONCLUSIONS IL-4 rs2243250 and IL-18 rs1946519 have a positive correlation with brucellosis whereas the IFN-γ UTR5644, TGF-β rs1800470 and rs1800471, TNF-α rs1800629, and IL-10 rs1800872 showed a negative association with this disease. The association between the other single nucleotide polymorphisms (SNP) and brucellosis risk was not confirmed in the current meta-analysis. PROSPERO Registration: CRD42018117203.
Collapse
Affiliation(s)
- Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadreza Zarifian
- Center for Excellence in Clinical Research, Mashhad University of Medical Sciences, Mashhad, Iran; Infection Control and Hand Hygiene Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
36
|
Sadeghi Z, Fasihi-Ramandi M, Azizi M, Bouzari S. Mannosylated chitosan nanoparticles loaded with FliC antigen as a novel vaccine candidate against Brucella melitensis and Brucella abortus infection. J Biotechnol 2020; 310:89-96. [PMID: 32017955 DOI: 10.1016/j.jbiotec.2020.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
Brucellosis is a worldwide bacterial zoonosis disease. Live attenuated Brucella vaccines have several drawbacks. Thus development of a safe and effective vaccine for brucellosis is a concern of many scientists. FliC protein contributes in virulence of Brucella; hence, it is a promising target for brucellosis vaccine. In this study, Mannosylated Chitosan Nanoparticles (MCN) loaded with FliC protein were synthesized as a targeted vaccine delivery system. The immunogenicity and protective efficacy of FliC and FliC-MCN against Brucella infection were evaluated in BALB/c mice. After cloning, expression and purification, FliC protein was loaded on MCN. The particle size, loading efficiency and in vitro release of the NPs were determined. Our investigation revealed that FliC and FliC-MCN could significantly increase specific IgG response (higher IgG2a titers). Besides, spleen cells from immunized mice produced high level of IFN-γ and IL-2 and low level IL-10 cytokines. Immunization with FliC and FliC-MCN conferred significant degree of protection against B. melitensis 16 M and B. abortus 544 infections. Overall these results indicate that FliC protein would be a novel potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Moreover, MCN could be used as an adjuvant and targeted vaccine delivery system.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Zriba S, Garcia-Gonzalez DG, Khalaf OH, Wheeler L, Chaki SP, Rice-Ficht A, Ficht TA, Arenas-Gamboa AM. Vaccine safety studies of Brucella abortus S19 and S19Δ vjbR in pregnant swine. Vaccine X 2019; 3:100041. [PMID: 31528851 PMCID: PMC6737346 DOI: 10.1016/j.jvacx.2019.100041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/18/2023] Open
Abstract
Brucellosis in swine is caused by Brucella suis, a bacterial infection of nearly worldwide distribution. Brucella suis is also transmissible to humans, dogs and cattle and is considered a reemerging disease of public health concern. To date, there is no effective vaccine for swine. This prompted us to investigate the potential use of the commercially available vaccine for cattle or the live attenuated vaccine candidate S19ΔvjbR. As the first step, we sought to study the safety of the vaccine candidates when administered in pregnant sows, since one of the major drawbacks associated with vaccination using Live Attenuated Vaccines (LAV) is the induction of abortions when administered in pregnant animals. Fifteen pregnant gilts at mid-gestation were divided into four groups and subsequently vaccinated subcutaneously using different formulations containing 2.0 ± 0.508 × 109 CFU of either S19 or S19ΔvjbR. Vaccination in pregnant animals with the vaccine candidates did not induce abortion, stillbirths or a reduction in litter size. Multiple tissues in the gilts and piglets were examined at the time of delivery to assess bacterial colonization and histopathological changes. There was no evidence of vaccine persistence in the gilts or bacterial colonization in the fetuses. Altogether, these data suggest that both vaccine candidates are safe for use in pregnant swine. Analysis of the humoral responses, specifically anti-Brucella IgG levels measured in serum, demonstrated a robust response induced by either vaccine, but of shorter duration (4-6 weeks post-inoculation) compared to that observed in cattle or experimentally infected mice. Such a transient humoral response may prove to be beneficial in cases where the vaccine is used in eradication campaigns and in the differentiation of vaccinated from infected animals. This study provides evidence to support future efficacy studies of both vaccine candidates in swine.
Collapse
Affiliation(s)
- Slim Zriba
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel G. Garcia-Gonzalez
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
| | - Omar H. Khalaf
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathology & Poultry Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Lance Wheeler
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
| | - Sankar P. Chaki
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
| | - Angela M. Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical, Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
38
|
Shi Q, Zhao L, Zhang L. Astragalus polysaccharide strengthens the inflammatory and immune responses of Brucella suis S2-infected mice and macrophages. Exp Ther Med 2019; 18:4295-4302. [PMID: 31777537 PMCID: PMC6862205 DOI: 10.3892/etm.2019.8084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella infection is one of the most serious zoonoses worldwide, affecting humans and domestic and wild animals. Astragalus polysaccharide (APS) is extracted from astragalus, which exhibits bioactive properties, including immunomodulation and anti-tumour and antiviral activity. The present study revealed that APS treatment promoted macrophage activation, the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-12 and interferon-γ, and Brucella clearance in murine macrophages and spleens. APS treatment was also demonstrated to protect the integrity of macrophages during infection with live attenuated Brucella suis strain 2 (B. suis S2). The results from in vitro experiments were consistent with the findings from the in vivo study, showing the elevated secretion of TNF-α and nitric oxide in APS-treated murine peritoneal macrophages following B. suis S2 infection. The current study demonstrated the potential of APS in the control and treatment of Brucella infection, and the enhancement of host inflammatory and immune responses.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Lan Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Leifang Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.,Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| |
Collapse
|
39
|
Bagheri Nejad R, Yahyaraeyat R, Es-Haghi A, Nayeri Fasaei B, Zahraei Salehi T. Induction of specific cell-mediated immune responses and protection in BALB/c mice by vaccination with outer membrane vesicles from a Brucella melitensis human isolate. APMIS 2019; 127:797-804. [PMID: 31514254 DOI: 10.1111/apm.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide bacterial zoonosis caused by Brucella spp. No approved vaccine is available for human use against the disease. In this study, outer membrane vesicles (OMVs) from a Brucella melitensis biovar 1 human isolate obtained in Iran were used to immunize BALB/c mice (n = 12) by 2 intramuscular injections with a 2-week interval. Another group of 12 mice was used as non-vaccinated controls. Two weeks after the last vaccination, six mice of each group were sacrificed, and proliferation and interferon gamma (IFNγ) production responses of their splenocytes were evaluated following in vitro stimulation with killed Brucella cells. The other mice were challenged with the virulent B. melitensis isolate. Two weeks later, mice were killed and spleens were cultured to determine the number of the challenge strain. The results showed proliferative response and IFNγ production of splenocytes from vaccinated mice (stimulation index: 2.18 ± 0.57, and 1519.35 ± 10.70 pg/mL, respectively) were significantly higher than those of control mice (stimulation index: 1.02 ± 0.02, and 210.01 ± 17.58 pg/mL, respectively). Numbers of the challenge strain in spleens of vaccinated mice were also significantly less than those in the controls with 1.6 units of protection. Our study revealed vaccination with OMVs of the B. melitensis isolate could induce specific immune responses and protection against infection in the mouse model suggesting their potential application for active immunization against brucellosis.
Collapse
Affiliation(s)
- Ramin Bagheri Nejad
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Bacterial Vaccines, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ramak Yahyaraeyat
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Es-Haghi
- Department of Physicochemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Dynamic Changes of Th1 Cytokines and the Clinical Significance of the IFN- γ/TNF- α Ratio in Acute Brucellosis. Mediators Inflamm 2019; 2019:5869257. [PMID: 31686983 PMCID: PMC6800922 DOI: 10.1155/2019/5869257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Background T-helper type 1 (Th1) cells and Th1-produced cytokines play essential roles in the immune response to foreign pathogens, such as Brucella spp. The aim of this study was to evaluate the dynamic changes of Th1 cells and Th1-produced cytokines in patients with acute brucellosis and their impact on clinical decision-making. Methods Fifty-one individuals with acute brucellosis and 17 healthy subjects were enrolled in this study. The brucellosis patients were diagnosed based on clinical symptoms, laboratory tests, and clinical examination. The levels of serum gamma-interferon (IFN-γ) and tumor necrosis factor-alpha (TNF-α), along with the percentage of Th1 cells, were determined by flow cytometry bead arrays (CBA). Results The frequency of Th1 cells, along with the levels of IFN-γ and TNF-α, was negatively correlated with the clinical parameters. The mean serum levels of IFN-γ and TNF-α and the frequency of Th1 cells were significantly higher in the brucellosis patients in comparison with the healthy subjects (p < 0.05). Besides, the cytokine levels were not significantly different between the positive and negative blood culture groups. IFN-γ levels significantly decreased from 6 months to 12 months post treatment (p < 0.05). However, the IFN-γ levels remained higher than those of the healthy subjects by 12 months post treatment (p < 0.05). The IFN-γ/TNF-α ratio was significantly higher in severe cases than in nonsevere cases (p < 0.05). Conclusions The IFN-γ levels secreted by Th1 cells remain significantly higher than those of healthy subjects more than 12 months after treatment with antibiotics. This finding is different from similar studies. The IFN-γ/TNF-α ratio may be a feasible parameter for assessing clinical severity, yet further longitudinal studies of the immunization and inflammatory reaction of brucellosis are needed in larger patient populations.
Collapse
|
41
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Evaluation of immunogenicity of novel multi-epitope subunit vaccines in combination with poly I:C against Brucella melitensis and Brucella abortus infection. Int Immunopharmacol 2019; 75:105829. [PMID: 31437796 DOI: 10.1016/j.intimp.2019.105829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023]
Abstract
Brucellosis is a worldwide zoonotic disease affecting domestic animals and humans. Due to several safety problems associated with live attenuated vaccines (Rev1 and RB51), it is necessary to produce an efficient and safer vaccine against Brucella. In this study, we evaluated efficacy of two novel multi-peptide vaccine candidates of FliC, 7α-HSDH, BhuA antigens with and without poly I:C adjuvant. Hence, humoral and cellular immune responses and protective efficacy were determined in immunized mice. Our investigation indicated that multi-epitope antigens showed a significant induction of Th1 immunity with high levels of specific IgG (especially the IgG2a), as well as IFN-γ and IL-2 compared to the control group. The addition of poly I:C to multi-epitope antigens improved the humoral and cellular immune responses. The multi-epitope antigens with and without poly I:C also provided cross protection against B. melitensis16M and B. abortus544 infections. The present study suggests that the novel multi-epitope vaccine candidates based on B cell, CD4+ and CD8+T-cell epitopes of FliC, 7α-HSDH, BhuA proteins would be potential vaccine candidate against B. melitensis and B. abortus infections. Furthermore, poly I:C could be considered as a strong Th1-inducing adjuvant in designing vaccine formulation against brucellosis.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
42
|
Muñoz González F, Sycz G, Alonso Paiva IM, Linke D, Zorreguieta A, Baldi PC, Ferrero MC. The BtaF Adhesin Is Necessary for Full Virulence During Respiratory Infection by Brucella suis and Is a Novel Immunogen for Nasal Vaccination Against Brucella Infection. Front Immunol 2019; 10:1775. [PMID: 31402921 PMCID: PMC6676368 DOI: 10.3389/fimmu.2019.01775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella enters their hosts mostly through mucosae from where it spreads systemically. Adhesion to extracellular matrix (ECM) components or to host cells is important for the infectious process, and is mediated by several adhesins, including the BtaF trimeric autotransporter. Although Th1 responses and gamma interferon (IFN-γ) are important for protection, antibodies able to block adhesions might also contribute to prevent Brucella infection. We evaluated the importance of BtaF for respiratory Brucella infection, and characterized the immune response and protection from mucosal challenge induced by nasal vaccination with recombinant BtaF. While lung CFU numbers did not differ at day 1 p.i. between mice intratracheally inoculated with B. suis M1330 (wild type) and those receiving a ΔbtaF mutant, they were reduced in the latter group at 7 and 30 days p.i. For vaccination studies the BtaF passenger domain was engineered and expressed as a soluble trimeric protein. Mice were immunized by the nasal route with BtaF or saline (control group) plus the mucosal adjuvant c-di-AMP. Specific anti-BtaF antibodies (IgG and IgA) were increased in serum, including a mixed IgG2a/IgG1 response. In vitro, these antibodies reduced bacterial adhesion to A549 alveolar epithelial cells. Specific IgA antibodies were also increased in several mucosae. Spleen cells from BtaF immunized mice significantly increased their IL-2, IL-5, IL-17, and IFN-γ secretion upon antigen stimulation. In cervical draining lymph nodes, antigen-experienced CD4+ T cells were maintained mainly as central memory cells. A BtaF-specific delayed-type hypersensitivity response was detected in BtaF immunized mice. Lung cells from the latter produced high levels of IFN-γ upon antigen stimulation. Although nasal immunization with BtaF did not protect mice against B. suis respiratory challenge, it conferred significant protection from intragastric challenge; the splenic load of B. suis was reduced by 3.28 log CFU in immunized mice. This study shows that nasal vaccination with BtaF+c-di-AMP protects against intragastric challenge with B. suis by inducing local and systemic antibody responses, central memory CD4+ T cells and strong Th1 responses. Therefore, although BtaF vaccination did not protect from B. suis respiratory infection, this adhesin constitutes a promising immunogen against mucosal B. suis infection.
Collapse
Affiliation(s)
- Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Iván M Alonso Paiva
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dirk Linke
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Pablo C Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Liu Y, Dong H, Peng X, Gao Q, Jiang H, Xu G, Qin Y, Niu J, Sun S, Li P, Ding J, Chen R. RNA-seq reveals the critical role of Lon protease in stress response and Brucella virulence. Microb Pathog 2019; 130:112-119. [DOI: 10.1016/j.micpath.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
|
44
|
Tian M, Lian Z, Bao Y, Bao S, Yin Y, Li P, Ding C, Wang S, Li T, Qi J, Wang X, Yu S. Identification of a novel, small, conserved hypothetical protein involved inBrucella abortusvirulence by modifying the expression of multiple genes. Transbound Emerg Dis 2018; 66:349-362. [DOI: 10.1111/tbed.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mingxing Tian
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Zhengmin Lian
- China College of Veterinary Medicine Gansu Agricultural University LanzhouChina
| | - Yanqing Bao
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Shijun Bao
- China College of Veterinary Medicine Gansu Agricultural University LanzhouChina
| | - Yi Yin
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Peng Li
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Chan Ding
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Tao Li
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| |
Collapse
|
45
|
Silvestre BT, Silveira JAGD, Facury-Filho EJ, Carvalho AÚD, Versiani AF, Estevam LGTDM, Araújo MSS, Martins-Filho OA, Negrão-Corrêa DA, Ribeiro MFB. Immune response and biochemistry of calves immunized with rMSP1a ( Anaplasma marginale) using carbon nanotubes as carrier molecules. ACTA ACUST UNITED AC 2018; 27:191-202. [PMID: 29846449 DOI: 10.1590/s1984-296120180029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 11/21/2022]
Abstract
Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT) showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2) was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups) and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1), AmUFMG2 (G2), MWNT+rMSP1a (G3), and AmUFMG2 with MWNT+rMSP1a (G4). Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.
Collapse
Affiliation(s)
- Bruna Torres Silvestre
- Departamento de Parasitologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | | | - Elias Jorge Facury-Filho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Antônio Último de Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Alice Freitas Versiani
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | | | - Márcio Sobreira Silva Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, Brasil
| | - Olindo Assis Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, Brasil
| | - Deborah Aparecida Negrão-Corrêa
- Departamento de Parasitologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Múcio Flávio Barbosa Ribeiro
- Departamento de Parasitologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| |
Collapse
|
46
|
Abstract
Abstract
Introduction
Serological diagnosis of brucellosis is still a great challenge due to the infeasibility of discriminating infected animals from vaccinated ones, so it is necessary to search for diagnostic biomarkers for differential diagnosis of brucellosis.
Material and Methods
Cell division cycle 42 (Cdc42) from sheep (Ovis aries) (OaCdc42) was cloned by rapid amplification of cDNA ends (RACE), and then tissue distribution and differential expression levels of OaCdc42 mRNA between infected and vaccinated sheep were analysed by RT-qPCR.
Results
The full-length cDNA of OaCdc42 was 1,609 bp containing an open reading frame (ORF) of 576 bp. OaCdc42 mRNAs were detected in the heart, liver, spleen, lung, kidneys, rumen, small intestine, skeletal muscles, and buffy coat, and the highest expression was detected in the small intestine. Compared to the control, the levels of OaCdc42 mRNA from sheep infected with Brucella melitensis or sheep vaccinated with Brucella suis S2 was significantly different (P < 0.01) after 40 and 30 days post-inoculation, respectively. However, the expression of OaCdc42 mRNA was significantly different between vaccinated and infected sheep (P < 0.05 or P < 0.01) on days: 14, 30, and 60 post-inoculation, whereas no significant difference (P > 0.05) was noted 40 days post-inoculation. Moreover, the expression of OaCdc42 from both infected and vaccinated sheep showed irregularity.
Conclusion
OaCdc42 is not a good potential diagnostic biomarker for differential diagnosis of brucellosis in sheep.
Collapse
|
47
|
Simpson GJG, Marcotty T, Rouille E, Chilundo A, Letteson JJ, Godfroid J. Immunological response to Brucella abortus strain 19 vaccination of cattle in a communal area in South Africa. J S Afr Vet Assoc 2018; 89:e1-e7. [PMID: 29781672 PMCID: PMC6138165 DOI: 10.4102/jsava.v89i0.1527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Brucellosis is of worldwide economic and public health importance. Heifer vaccination with live attenuated Brucella abortus strain 19 (S19) is the cornerstone of control in low- and middle-income countries. Antibody persistence induced by S19 is directly correlated with the number of colony-forming units (CFU) per dose. There are two vaccination methods: a 'high' dose (5-8 × 1010 CFU) subcutaneously injected or one or two 'low' doses (5 × 109 CFU) through the conjunctival route. This study aimed to evaluate serological reactions to the 'high' dose and possible implications of the serological findings on disease control. This study included 58 female cases, vaccinated at Day 0, and 29 male controls. Serum was drawn repeatedly and tested for Brucella antibodies using the Rose Bengal Test (RBT) and an indirect enzyme-linked immunosorbent assay (iELISA). The cases showed a rapid antibody response with peak RBT positivity (98%) at 2 weeks and iELISA (95%) at 8 weeks, then decreased in an inverse logistic curve to 14% RBT and 32% iELISA positive at 59 weeks and at 4.5 years 57% (4/7 cases) demonstrated a persistent immune response (RBT, iELISA or Brucellin skin test) to Brucella spp. Our study is the first of its kind documenting the persistence of antibodies in an African communal farming setting for over a year to years after 'high' dose S19 vaccination, which can be difficult to differentiate from a response to infection with wild-type B. abortus. A recommendation could be using a 'low' dose or different route of vaccination.
Collapse
|
48
|
Yang YJ, Liu ZS, Lu SY, Hu P, Li C, Ahmad W, Li YS, Xu YM, Tang F, Zhou Y, Ren HL. Cloning and Differential Expression Analyses of Cdc42 from Sheep. J Vet Res 2018; 62:113-119. [PMID: 29978136 PMCID: PMC5957470 DOI: 10.1515/jvetres-2018-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Serological diagnosis of brucellosis is still a great challenge due to the infeasibility of discriminating infected animals from vaccinated ones, so it is necessary to search for diagnostic biomarkers for differential diagnosis of brucellosis. MATERIAL AND METHODS Cell division cycle 42 (Cdc42) from sheep (Ovis aries) (OaCdc42) was cloned by rapid amplification of cDNA ends (RACE), and then tissue distribution and differential expression levels of OaCdc42 mRNA between infected and vaccinated sheep were analysed by RT-qPCR. RESULTS The full-length cDNA of OaCdc42 was 1,609 bp containing an open reading frame (ORF) of 576 bp. OaCdc42 mRNAs were detected in the heart, liver, spleen, lung, kidneys, rumen, small intestine, skeletal muscles, and buffy coat, and the highest expression was detected in the small intestine. Compared to the control, the levels of OaCdc42 mRNA from sheep infected with Brucella melitensis or sheep vaccinated with Brucella suis S2 was significantly different (P < 0.01) after 40 and 30 days post-inoculation, respectively. However, the expression of OaCdc42 mRNA was significantly different between vaccinated and infected sheep (P < 0.05 or P < 0.01) on days: 14, 30, and 60 post-inoculation, whereas no significant difference (P > 0.05) was noted 40 days post-inoculation. Moreover, the expression of OaCdc42 from both infected and vaccinated sheep showed irregularity. CONCLUSION OaCdc42 is not a good potential diagnostic biomarker for differential diagnosis of brucellosis in sheep.
Collapse
Affiliation(s)
- Yong-Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
- Department of Food Science, College of Agriculture, Yanbian University, Yanji133002, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Chuang Li
- Department of Food Science, College of Agriculture, Yanbian University, Yanji133002, China
| | - Waqas Ahmad
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
- Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang35200, Pakistan
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Yun-Ming Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
- Jiangsu Polytechnic College of Agriculture and Forestry, Jurong212400, China
| | - Feng Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
- College of Animal Husbandry and Veterinary Medicine, Liaoning Medical University, Jinzhou121001, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, China
| |
Collapse
|
49
|
Zhang J, Yin S, Yi D, Zhang H, Li Z, Guo F, Chen C, Fang W, Wang J. The Brucella melitensis M5-90ΔmanB live vaccine candidate is safer than M5-90 and confers protection against wild-type challenge in BALB/c mice. Microb Pathog 2017; 112:148-155. [PMID: 28916316 DOI: 10.1016/j.micpath.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
Abstract
Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (strain M5-90 or others) have several drawbacks. The first is their residual virulence for animals and humans and the second is their inability to differentiate natural infection from that caused by vaccination. In the present study, Brucella melitensis M5-90 manB mutant (M5-90ΔmanB) was generated to overcome these drawbacks. M5-90ΔmanB showed significantly reduced survival in macrophages and mice, and induced strong protective immunity in BALB/c mice. It elicited anti-Brucella-specific IgG1 and IgG2a subtype responses and induced the secretion of gamma interferon (IFN-γ) and interleukin-4(IL-4). Results of immune assays showed, M5-90ΔmanB immunization induced the secretion of IFN-γ in goats, and serum samples from goats inoculated with M5-90ΔmanB were negative by Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Further, the ManB antigen also allows serological assays differentiate infections caused by wild strains from infections by vaccination. These results show that M5-90ΔmanB is a suitable attenuated vaccine candidate against virulent Brucella melitensis 16 M (16 M) infection.
Collapse
Affiliation(s)
- Junbo Zhang
- College of Agroforestry Engineering and Planning (Cultural and Technological Industry Innovation Research Center), Tongren University, Tongren 554300, Guizhou, China; College of Animal Science and Technology, Zhejiang University, Hangzhou 3100204, Zhejiang, China
| | - Shuanghong Yin
- College of One Health, Tongren University, Tongren 554300, Guizhou, China
| | - Dewu Yi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Hong Zhang
- College of One Health, Tongren University, Tongren 554300, Guizhou, China
| | - Zhiqiang Li
- College of Biotechnology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Fei Guo
- College of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang University, Hangzhou 3100204, Zhejiang, China.
| | - Jiafu Wang
- College of Agroforestry Engineering and Planning (Cultural and Technological Industry Innovation Research Center), Tongren University, Tongren 554300, Guizhou, China
| |
Collapse
|
50
|
Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice. Microb Pathog 2017; 103:87-93. [DOI: 10.1016/j.micpath.2016.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|