1
|
Hrabal I, Aliabadi E, Reiche S, Weber S, Holicki CM, Schmid L, Fast C, Schröder C, Gutjahr B, Behrendt P, Groschup MH, Eiden M. Therapeutic treatment of hepatitis E virus infection in pigs with a neutralizing monoclonal antibody. Sci Rep 2025; 15:10795. [PMID: 40155491 PMCID: PMC11953370 DOI: 10.1038/s41598-025-95992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Hepatitis E virus (HEV) poses a significant risk to human health. In Europe, the majority of HEV infection are caused by the zoonotic genotype 3 (HEV-3), which can cause chronic hepatitis E in immunocompromised patients and those with pre-existing liver disease, and may eventually develop into fatal liver cirrhosis. In this study, we examined the effectiveness of a monoclonal antibody (MAb) treatment strategy using a well established HEV-3 pig model with intravenous infection. For this purpose, nine MAbs raised against the viral capsid protein were generated and the neutralizing activities were compared using in vitro assays. The antibody with the highest neutralizing activity, MAb 5F6A1, was selected for an in vivo study in pigs infected with HEV-3. Following the initial infection of pigs with HEV-3, MAb 5F6A1 was administered intravenously one and seven days post-infection. The results suggest MAb 5F6A1 significantly reduced viremia and virus shedding in pigs infected with HEV-3. This study provides significant insight into the dynamics of HEV infection in pigs and highlights the efficacy of MAb based therapy as an option for treating HEV in porcine hosts and, potentially, humans.
Collapse
Affiliation(s)
- Isabella Hrabal
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Elmira Aliabadi
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
- Helmholz Center for Infection Research GmbH, Braunschweig, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Saskia Weber
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Cora M Holicki
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Laura Schmid
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Christine Fast
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Benjamin Gutjahr
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Patrick Behrendt
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Greifswald - Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| |
Collapse
|
2
|
Yang J, Lv Y, Zhu Y, Song J, Zhu M, Wu C, Fu Y, Zhao W, Zhao Y. Optimizing sheep B-cell epitopes in Echinococcus granulosus recombinant antigen P29 for vaccine development. Front Immunol 2024; 15:1451538. [PMID: 39206186 PMCID: PMC11349700 DOI: 10.3389/fimmu.2024.1451538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Echinococcus granulosus is a widespread zoonotic parasitic disease, significantly impacting human health and livestock development; however, no vaccine is currently available for humans. Our preliminary studies indicate that recombinant antigen P29 (rEg.P29) is a promising candidate for vaccine. Methods Sheep were immunized with rEg.P29, and venous blood was collected at various time points. Serum was isolated, and the presence of specific antibodies was detected using ELISA. We designed and synthesized a total of 45 B cell monopeptides covering rEg.P29 using the overlap method. ELISA was employed to assess the serum antibodies of the immunized sheep for recognition of these overlapping peptides, leading to the preliminary identification of B cell epitopes. Utilizing these identified epitopes, new single peptides were designed, synthesized, and used to optimize and confirm B-cell epitopes. Results rEg.P29 effectively induces a sustained antibody response in sheep, particularly characterized by high and stable levels of IgG. Eight B-cell epitopes of were identified, which were mainly distributed in three regions of rEg.P29. Finally, three B cell epitopes were identified and optimized: rEg.P2971-90, rEg.P29151-175, and rEg.P29211-235. These optimized epitopes were well recognized by antibodies in sheep and mice, and the efficacy of these three epitopes significantly increased when they were linked in tandem. Conclusion Three B-cell epitopes were identified and optimized, and the efficacy of these epitopes was significantly enhanced by tandem connection, which indicated the feasibility of tandem peptide vaccine research. This laid a solid foundation for the development of epitope peptide vaccine for Echinococcus granulosus.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Wei Zhao
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Yinqi Zhao
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Orosz L, Sárvári KP, Dernovics Á, Rosztóczy A, Megyeri K. Pathogenesis and clinical features of severe hepatitis E virus infection. World J Virol 2024; 13:91580. [PMID: 38984076 PMCID: PMC11229844 DOI: 10.5501/wjv.v13.i2.91580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024] Open
Abstract
The hepatitis E virus (HEV), a member of the Hepeviridae family, is a small, non-enveloped icosahedral virus divided into eight distinct genotypes (HEV-1 to HEV-8). Only genotypes 1 to 4 are known to cause diseases in humans. Genotypes 1 and 2 commonly spread via fecal-oral transmission, often through the consumption of contaminated water. Genotypes 3 and 4 are known to infect pigs, deer, and wild boars, often transferring to humans through inadequately cooked meat. Acute hepatitis caused by HEV in healthy individuals is mostly asymptomatic or associated with minor symptoms, such as jaundice. However, in immunosuppressed individuals, the disease can progress to chronic hepatitis and even escalate to cirrhosis. For pregnant women, an HEV infection can cause fulminant liver failure, with a potential mortality rate of 25%. Mortality rates also rise amongst cirrhotic patients when they contract an acute HEV infection, which can even trigger acute-on-chronic liver failure if layered onto pre-existing chronic liver disease. As the prevalence of HEV infection continues to rise worldwide, highlighting the particular risks associated with severe HEV infection is of major medical interest. This text offers a brief summary of the characteristics of hepatitis developed by patient groups at an elevated risk of severe HEV infection.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Károly Péter Sárvári
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Áron Dernovics
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - András Rosztóczy
- Department of Internal Medicine, Division of Gastroenterology, University of Szeged, Szeged 6725, Csongrád-Csanád, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| |
Collapse
|
4
|
León-Janampa N, Boennec N, Le Tilly O, Ereh S, Herbet G, Moreau A, Gatault P, Longuet H, Barbet C, Büchler M, Baron C, Gaudy-Graffin C, Brand D, Marlet J. Relevance of Tacrolimus Trough Concentration and Hepatitis E virus Genetic Changes in Kidney Transplant Recipients With Chronic Hepatitis E. Kidney Int Rep 2024; 9:1333-1342. [PMID: 38707810 PMCID: PMC11069011 DOI: 10.1016/j.ekir.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Hepatitis E virus (HEV) can cause chronic infection (≥3 months) and cirrhosis in immunocompromised patients, especially kidney transplant recipients. Low alanine aminotransferase (ALT) levels and high HEV intrahost diversity have previously been associated with evolution toward chronicity in these patients. We hypothesized that additional clinical and viral factors could be associated with the risk of chronic HEV infection. Methods We investigated a series of 27 kidney transplant recipients with HEV infection, including 20 patients with chronic hepatitis E. Results High tacrolimus trough concentration at diagnosis was the most relevant marker associated with chronic hepatitis E (9.2 vs. 6.4 ng/ml, P = 0.04). Most HEV genetic changes selected during HEV infection were compartmentalized between plasma and feces. Conclusion This compartmentalization highlights the diversity and complexity of HEV replication compartments. Tacrolimus trough concentration at diagnosis of HEV infection could allow an early identification of patients at high risk of chronic hepatitis E and guide treatment initiation.
Collapse
Affiliation(s)
- Nancy León-Janampa
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Natacha Boennec
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | | | - Simon Ereh
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Gabriel Herbet
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
| | - Philippe Gatault
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Hélène Longuet
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Christelle Barbet
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Mathias Büchler
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Christophe Baron
- Transplantation rénale – Immunologie clinique, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| | - Julien Marlet
- INSERM U1259 MAVIVH, Université de Tours et CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, Tours, France
| |
Collapse
|
5
|
Gremmel N, Keuling O, Eiden M, Groschup MH, Johne R, Becher P, Baechlein C. Hepatitis E virus neutralization by porcine serum antibodies. J Clin Microbiol 2023; 61:e0037323. [PMID: 37823649 PMCID: PMC10662371 DOI: 10.1128/jcm.00373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023] Open
Abstract
The consumption of raw or undercooked meat products poses a serious risk for human hepatitis E virus (HEV) infections. In many high-income countries, domestic pigs and wild boars represent the main animal reservoirs for HEV and are usually identified by reverse transcription-PCR and antibody enzyme-linked immunosorbent assay (ELISA). In order to characterize the humoral immune response in more detail, a cell culture-based serum neutralization assay using a culture-adapted HEV strain was established here. Measurement of neutralizing antibodies was only possible after removing the viral quasi-envelope by detergent treatment. Serum samples of 343 wild boars from Northern Germany were first analyzed for anti-HEV IgG using an in-house ELISA, resulting in 19% positive samples. Subsequently, a subset of 41 representative samples was tested with the neutralization assay, and the results correlated well with those obtained by ELISA. Not only the human HEV strain 47832c but also two porcine HEV strains were shown to be neutralized by porcine serum antibodies. Neutralizing activity was also found in samples containing both HEV-specific antibodies and HEV RNA. Testing of serum samples derived from two experimentally infected domestic pigs showed a steep increase in neutralizing activity at 24 or 51 days post infection, dependent on the used infectious dose. The developed assay can be useful for characterization of the humoral immune response after HEV infection and for assessing the efficiency of HEV vaccine candidates.
Collapse
Affiliation(s)
- Nele Gremmel
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Oliver Keuling
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine, Hannover, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Christine Baechlein
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
6
|
Chen Y, Wang X, Zhang M, Li J, Gao X, Nan Y, Zhao Q, Zhou EM, Liu B. Identification of two novel neutralizing nanobodies against swine hepatitis E virus. Front Microbiol 2022; 13:1048180. [PMID: 36504801 PMCID: PMC9727072 DOI: 10.3389/fmicb.2022.1048180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis E virus (HEV) is thought to be a zoonotic pathogen that causes serious economic loss and threatens human health. However, there is a lack of efficient antiviral strategies. As a more promising tool for antiviral therapy, nanobodies (also named single-domain antibodies, sdAbs) exhibit higher specificity and affinity than traditional antibodies. In this study, nanobody anti-genotype four HEV open reading frame 2 (ORF2) was screened using phage display technology, and two nanobodies (nb14 and nb53) with high affinity were prokaryotically expressed. They were identified to block HEV ORF2 virus like particle (VLP) sp239 (aa 368-606) absorbing HepG2 cells in vitro. With the previously built animal model, the detection indicators of fecal shedding, viremia, seroconversion, alanine aminotransferase (ALT) levels, and liver lesions showed that nb14 could completely protect rabbits from swine HEV infection, and nb53 partially blocked swine HEV infection in rabbits. Collectively, these results revealed that nb14, with its anti-HEV neutralizing activity, may be developed as an antiviral drug for HEV.
Collapse
|
7
|
Costafreda MI, Sauleda S, Rico A, Piron M, Bes M. Detection of Nonenveloped Hepatitis E Virus in Plasma of Infected Blood Donors. J Infect Dis 2022; 226:1753-1760. [PMID: 34865052 DOI: 10.1093/infdis/jiab589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transfusion-transmitted hepatitis E virus (HEV) infections have raised many concerns regarding the safety of blood products. To date, enveloped HEV particles have been described in circulating blood, whereas nonenveloped HEV virions have only been found in feces; however, no exhaustive studies have been performed to fully characterize HEV particles in blood. METHODS Using isopycnic ultracentrifugation, we determined the types of HEV particles in plasma of HEV-infected blood donors. RESULTS Nonenveloped HEV was detected in 8 of 23 plasma samples, whereas enveloped HEV was found in all of them. No association was observed between the presence of nonenveloped HEV and viral load, gender, or age at infection. However, samples with HEV-positive serology and/or increased levels of liver injury markers contained a higher proportion of nonenveloped HEV than samples with HEV-negative serology and normal levels of liver enzymes. These results were further confirmed by analyzing paired donation and follow-up samples of 10 HEV-infected donors who were HEV seronegative at donation but had anti-HEV antibodies and/or increased levels of liver enzymes at follow up. CONCLUSIONS The HEV-contaminated blood products may contain nonenveloped HEV, which may pose an additional risk to blood safety by behaving differently to pathogen inactivation treatments or increasing infectivity.
Collapse
Affiliation(s)
- Maria Isabel Costafreda
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Silvia Sauleda
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Angie Rico
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain
| | - Maria Piron
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Marta Bes
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| |
Collapse
|
8
|
A Secreted Form of the Hepatitis E Virus ORF2 Protein: Design Strategy, Antigenicity and Immunogenicity. Viruses 2022; 14:v14102122. [PMID: 36298677 PMCID: PMC9610824 DOI: 10.3390/v14102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis E virus (HEV) is an important public health burden worldwide, causing approximately 20 million infections and 70,000 deaths annually. The viral capsid protein is encoded by open reading frame 2 (ORF2) of the HEV genome. Most ORF2 protein present in body fluids is the glycosylated secreted form of the protein (ORF2S). A recent study suggested that ORF2S is not necessary for the HEV life cycle. A previously reported efficient HEV cell culture system can be used to understand the origin and life cycle of ORF2S but is not sufficient for functional research. A more rapid and productive method for yielding ORF2S could help to study its antigenicity and immunogenicity. In this study, the ORF2S (tPA) expression construct was designed as a candidate tool. A set of representative anti-HEV monoclonal antibodies was further used to map the functional antigenic sites in the candidates. ORF2S (tPA) was used to study antigenicity and immunogenicity. Indirect ELISA revealed that ORF2S (tPA) was not antigenically identical to HEV 239 antigen (p239). The ORF2S-specific antibodies were successfully induced in one-dose-vaccinated BALB/c mice. The ORF2S-specific antibody response was detected in plasma from HEV-infected patients. Recombinant ORF2S (tPA) can act as a decoy to against B cells. Altogether, our study presents a design strategy for ORF2S expression and indicates that ORF2S (tPA) can be used for functional and structural studies of the HEV life cycle.
Collapse
|
9
|
Ying D, He Q, Tian W, Chen Y, Zhang X, Wang S, Liu C, Chen Z, Liu Y, Fu L, Yan L, Wang L, Tang Z, Wang L, Zheng Z, Xia N. Urine is a viral antigen reservoir in hepatitis E virus infection. Hepatology 2022; 77:1722-1734. [PMID: 36106666 DOI: 10.1002/hep.32745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS HEV ORF2 antigen (Ag) in serum has become a tool for diagnosing current HEV infection. Particularly, urinary shedding of HEV Ag has been gaining increasing interest. We aim to uncover the origin, antigenicity, diagnostic performance, and diagnostic significance of Ag in urine in HEV infection. APPROACH AND RESULTS Clinical serum and urine samples from patients with acute and chronic HEV infection were analyzed for their Ag levels. Ag in urine was analyzed by biochemical and proteomic approaches. The origin of urinary Ag and Ag kinetics during HEV infection was investigated in mouse and rabbit models, respectively. We found that both the Ag level and diagnostic sensitivity in urine were higher than in serum. Antigenic protein in urine was an E2s-like dimer spanning amino acids 453-606. pORF2 entered urine from serum in mice i.v. injected with pORF2. Ag in urine originated from the secreted form of pORF2 (ORF2S ) that abundantly existed in hepatitis E patients' serum. HEV Ag was specifically taken up by renal cells and was disposed into urine, during which the level of Ag was concentrated >10-fold, resulting in the higher diagnosing sensitivity of urine Ag than serum Ag. Moreover, Ag in urine appeared 6 days earlier, lasted longer than viremia and antigenemia, and showed good concordance with fecal RNA in a rabbit model. CONCLUSIONS Our findings demonstrated the origin and diagnostic value of urine Ag and provided insights into the disposal of exogenous protein of pathogens by the host kidney.
Collapse
Affiliation(s)
- Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Weikun Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yanling Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaoping Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Siling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zihao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yu Liu
- Department of Severe Hepatopathy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Lijuan Fu
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, Xiamen, PR China
| | - Li Yan
- Department of Severe Hepatopathy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China.,NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, PR China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, PR China
| |
Collapse
|
10
|
Zhou Z, Xie Y, Wu C, Nan Y. The Hepatitis E Virus Open Reading Frame 2 Protein: Beyond Viral Capsid. Front Microbiol 2021; 12:739124. [PMID: 34690982 PMCID: PMC8529240 DOI: 10.3389/fmicb.2021.739124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen causing hepatitis in both human and animal hosts, which is responsible for acute hepatitis E outbreaks worldwide. The 7.2 kb genome of the HEV encodes three well-defined open reading frames (ORFs), where the ORF2 translation product acts as the major virion component to form the viral capsid. In recent years, besides forming the capsid, more functions have been revealed for the HEV-ORF2 protein, and it appears that HEV-ORF2 plays multiple functions in both viral replication and pathogenesis. In this review, we systematically summarize the recent research advances regarding the function of the HEV-ORF2 protein such as application in the development of a vaccine, regulation of the innate immune response and cellular signaling, involvement in host tropism and participation in HEV pathogenesis as a novel secretory factor. Progress in understanding more of the function of HEV-ORF2 protein beyond the capsid protein would contribute to improved control and treatment of HEV infection.
Collapse
Affiliation(s)
- Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi’an, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
11
|
Kupke P, Werner JM. Hepatitis E Virus Infection-Immune Responses to an Underestimated Global Threat. Cells 2021; 10:cells10092281. [PMID: 34571931 PMCID: PMC8468229 DOI: 10.3390/cells10092281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Infection with the hepatitis E virus (HEV) is one of the main ubiquitous causes for developing an acute hepatitis. Moreover, chronification plays a predominant role in immunocompromised patients such as transplant recipients with more frequent severe courses. Unfortunately, besides reduction of immunosuppression and off-label use of ribavirin or pegylated interferon alfa, there is currently no specific anti-viral treatment to prevent disease progression. So far, research on involved immune mechanisms induced by HEV is limited. It is very difficult to collect clinical samples especially from the early phase of infection since this is often asymptomatic. Nevertheless, it is certain that the outcome of HEV-infected patients correlates with the strength of the proceeding immune response. Several lymphoid cells have been identified in contributing either to disease progression or achieving sustained virologic response. In particular, a sufficient immune control by both CD4+ and CD8+ T cells is necessary to prevent chronic viral replication. Especially the mechanisms underlying fulminant courses are poorly understood. However, liver biopsies indicate the involvement of cytotoxic T cells in liver damage. In this review, we aimed to highlight different parts of the lymphoid immune response against HEV and point out questions that remain unanswered regarding this underestimated global threat.
Collapse
|
12
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
13
|
Zhang X, Zhao B, Ding M, Song S, Kang Y, Yu Y, Xu M, Xiang T, Gao L, Feng Q, Zhao Q, Zeng MS, Krummenacher C, Zeng YX. A novel vaccine candidate based on chimeric virus-like particle displaying multiple conserved epitope peptides induced neutralizing antibodies against EBV infection. Theranostics 2020; 10:5704-5718. [PMID: 32483413 PMCID: PMC7255000 DOI: 10.7150/thno.42494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 01/20/2023] Open
Abstract
Rationale: Epstein-Barr virus (EBV) is the causative pathogen for infectious mononucleosis and many kinds of malignancies including several lymphomas such as Hodgkin's lymphoma, Burkitt's lymphoma and NK/T cell lymphoma as well as carcinomas such as nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBV-GC). However, to date no available prophylactic vaccine was launched to the market for clinical use. Methods: To develop a novel vaccine candidate to prevent EBV infection and diseases, we designed chimeric virus-like particles (VLPs) based on the hepatitis B core antigen (HBc149). Various VLPs were engineered to present combinations of three peptides derived from the receptor binding domain of EBV gp350. All the chimeric virus-like particles were injected into Balb/C mice for immunogenicity evaluation. Neutralizing titer of mice sera were detected using an in vitro cell model. Results: All chimeric HBc149 proteins self-assembled into VLPs with gp350 epitopes displayed on the surface of spherical particles. Interestingly, the different orders of the three epitopes in the chimeric proteins induced different immune responses in mice. Two constructs (149-3A and 149-3B) induced high serum titer against the receptor-binding domain of gp350. Most importantly, these two VLPs elicited neutralizing antibodies in immunized mice, which efficiently blocked EBV infection in cell culture. Competition analysis showed that sera from these mice contained antibodies to a major neutralizing epitope recognized by the strong neutralizing mAb 72A1. Conclusion: Our data demonstrate that HBc149 chimeric VLPs provide a valuable platform to present EBV gp350 antigens and offer a robust basis for the development of peptide-based candidate vaccines against EBV.
Collapse
|
14
|
Synthetic Peptides Containing Three Neutralizing Epitopes of Genotype 4 Swine Hepatitis E Virus ORF2 induced Protection against Swine HEV Infection in Rabbit. Vaccines (Basel) 2020; 8:vaccines8020178. [PMID: 32294910 PMCID: PMC7348971 DOI: 10.3390/vaccines8020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Genotype 4 hepatitis E virus (HEV) is a zoonotic pathogen transmitted to humans through food and water. Previously, three genotype 4 swine HEV ORF2 peptides (407EPTV410, 410VKLYTS415, and 458PSRPF462) were identified as epitopes of virus-neutralizing monoclonal antibodies that partially blocked rabbit infection with swine HEV. Here, individual and tandem fused peptides were synthesized, conjugated to keyhole limpet hemocyanin (KLH), then evaluated for immunoprotection of rabbits against swine HEV infection. Forty New Zealand White rabbits were randomly assigned to eight groups; groups 1 thru 5 received three immunizations with EPTV-KLH, VKLYTS-KLH, PSRPF-KLH, EPTVKLYTS-KLH, or EPTVKLYTSPSRPF-KLH, respectively; group 6 received truncated swine HEV ORF2 protein (sp239), and group 7 received phosphate-buffered saline. After an intravenous swine HEV challenge, all group 7 rabbits exhibited viremia and fecal virus shedding by 2–4 weeks post challenge (wpc), seroconversion by 4–9 wpc, elevated alanine aminotransferase (ALT) at 2 wpc, and severe liver lymphocytic venous periphlebitis. Only 1–2 rabbits/group in groups 1–4 exhibited delayed viremia, fecal shedding, seroconversion, increased ALT levels, and slight liver lymphocytic venous periphlebitis; groups 5–6 showed no pathogenic effects. Collectively, these results demonstrate that immunization with a polypeptide containing three genotype 4 HEV ORF2 neutralizing epitopes completely protected rabbits against swine HEV infection.
Collapse
|
15
|
Wang L, Gao J, Lan X, Zhao H, Shang X, Tian F, Wen H, Ding J, Luo L, Ma X. Identification of combined T-cell and B-cell reactive Echinococcus granulosus 95 antigens for the potential development of a multi-epitope vaccine. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:652. [PMID: 31930053 DOI: 10.21037/atm.2019.10.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Identification of combined T-cell and B-cell reactive Eg95 antigens for the potential development of a multi-epitope vaccine against Echinococcus granulosus (EG), the causative agent of cystic echinococcosis (CE). Methods This study involved the recombinant expression of Eg95 along with associated immune rabbit antiserum preparation. Bioinformatics technology was used to facilitate the analysis of Eg95 molecules. PCR was subsequently used to amplify genetic sequences of the epitopes encoding the T-cell and B-cell reactive peptide fragments. SDS-PAGE was used to assess the expression levels of three proteins. Eg95 serum and patient antiserum, which were assessed using Western blot in order to identify suitable antigenic epitope peptides. ELISA detection assay facilitated comparison of the immune reactivity of the short peptide epitopes. The assay results could be used to determine an EG epitope-based vaccine candidate list from suitably reactive Eg95 epitopes. Results Eg95 molecules have 3 T-B table. The phage display systems were successfully built using the M13KE carrier. Expression of the three fusion protein peptides were detected. Western blot showed Eg95 antiserum against EG facilitated identification of the three T-cell and B-cell reactive epitopes. After the reaction intensities analyzed by the ELISA, both of the short peptide epitopes Eg95-2 and Eg95-3 showed strong signal strength and associated antigenicity when combined with patient serum and rabbit anti-rEg95 serum. Conclusions This study used bioinformatics methods to construct successfully a T-cell and B-cell epitope phage display system for the Eg95 antigen from EG. The two epitopes of Eg95-2 and Eg95-3 demonstrated strong antigenicity with potential applications for peptide vaccine development.
Collapse
Affiliation(s)
- Liang Wang
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Jian Gao
- College of Basic Medicine of Xinjiang Medical University, Urumqi 830011, China
| | - Xi Lan
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Hui Zhao
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xiaoqian Shang
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Fengming Tian
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Hao Wen
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Jianbing Ding
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,College of Basic Medicine of Xinjiang Medical University, Urumqi 830011, China
| | - Li Luo
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- Clinical Medical Research Institute, State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,College of Basic Medicine of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
16
|
Dähnert L, Eiden M, Schlosser J, Fast C, Schröder C, Lange E, Gröner A, Schäfer W, Groschup MH. High sensitivity of domestic pigs to intravenous infection with HEV. BMC Vet Res 2018; 14:381. [PMID: 30514313 PMCID: PMC6278151 DOI: 10.1186/s12917-018-1713-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background Hepatitis E virus (HEV) is one major cause of acute clinical hepatitis among humans throughout the world. In industrialized countries an increasing number of autochthonous HEV infections have been identified over the last years triggered by food borne as well as – to a much lower degree – by human to human transmission via blood transfusion. Pigs have been recognised as main reservoir for HEV genotype 3 (HEV-3), and zoonotic transmission to humans through undercooked/raw meat is reported repeatedly. The minimal infectious dose of HEV-3 for pigs is so far unknown. Results The minimum infectious dose of HEV-3 in a pig infection model was determined by intravenous inoculation of pigs with a dilution series of a liver homogenate of a HEV infected wild boar. Seroconversion, virus replication and shedding were determined by analysis of blood and faeces samples, collected over a maximum period of 91 days. A dose dependent incubation period was observed in faecal shedding of viruses employing a specific and sensitive PCR method. Faecal viral shedding and seroconversion was detected in animals inoculated with dilutions of up to 10− 7. This correlates with an intravenously (i.v.) administered infectious dose of only 6.5 copies in 2 ml (corresponding to 24 IU HEV RNA/ml). Furthermore the first detectable shedding of HEV RNA in faeces is clearly dose dependent. Unexpectedly one group infected with a 10− 4 dilution exhibited prolonged virus shedding for more than 60 days suggesting a persistent infection. Conclusion The results indicate that pigs are highly susceptible to i.v. infection with HEV and that the swine model represents the most sensitive infectivity assay for HEV so far. Considering a minimum infectious dose of 24 IU RNA/ml our findings highlights the potential risk of HEV transmission via blood and blood products. Electronic supplementary material The online version of this article (10.1186/s12917-018-1713-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa Dähnert
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Josephine Schlosser
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163, Berlin, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Elke Lange
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Albrecht Gröner
- PathoGuard Consult, Fasanenweg 6, 64342, Seeheim-Jugenheim, Germany
| | - Wolfram Schäfer
- CSL Behring Biotherapies for Life™, P.O. Box 1230, 35002, Marburg, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
17
|
Sun YP, Zhang W, Zhao QJ, Cao JL, Zhang LJ, Xiang JY, Si JY, Lin X, Chen L, Zheng ZZ, Xia NS. An optimized high-throughput fluorescence plate reader-based RSV neutralization assay. J Virol Methods 2018; 260:34-40. [PMID: 30003925 DOI: 10.1016/j.jviromet.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 02/03/2023]
Abstract
A licensed vaccine for respiratory syncytial virus (RSV) has yet to be developed, and a reliable and repeatable neutralizing assay is indispensable for vaccine development. Here, we demonstrated an optimized high-throughput RSV neutralization assay that utilizes a fluorescence plate reader (reader) as a substitute for flow cytometry to detect fluorescent signals in RSV-A2 mKate-infected cells. Furthermore, this study tested the influence of virus input and infectivity on the neutralizing assay and highlighted critical factors (together with a suggested protocol) for obtaining stable data using this assay.
Collapse
Affiliation(s)
- Yong-Peng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Wei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Qin-Jian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Jian-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Lu-Jing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Jiang-Yan Xiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Jun-Yu Si
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Xue Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Li Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361002, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health School of Life Sciences, Xiamen University, Xiamen, Fujian 361002, PR China.
| |
Collapse
|
18
|
Rajčáni J, Szathmary S. Peptide Vaccines: New Trends for Avoiding the Autoimmune Response. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874279301810010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:Several marketed antiviral vaccines (such as that against hepatitis virus A and/or B, influenza virus, human papillomavirus, yellow fever virus, measles, rubella and mumps viruses) may elicit various autoimmune reactions.Results:The cause of autoimmune response due to vaccination may be: 1. the adjuvant which is regularly added to the vaccine (especially in the case of various oil substrates), 2. the specific viral component itself (a protein or glycoprotein potentially possessing cross-reactive epitopes) and/or 3. contamination of the vaccine with traces of non-viral proteins mostly cellular in origin. Believing that peptide vaccines might represent an optimal solution for avoiding the above-mentioned problems, we discuss the principles of rational design of a typical peptide vaccine which should contain oligopeptides coming either from the selected structural virion components (i.e.capsid proteins and/or envelop glycoproteins or both) or from the virus-coded non-structural polypeptides. The latter should be equally immunogenic as the structural virus proteins. Describing the feasibility of identification and design of immunogenic epitopes, our paper also deals with possible problems of peptide vaccine manufacturing. The presented data are in part based on the experience of our own, in part, they are coming from the results published by others.Conclusion:Any peptide vaccine should be able to elicit relevant and specific antibody formation, as well as an efficient cell-mediated immune response. Consequently, the properly designed peptide vaccine is expected to consist of carefully selected viral peptides, which should stimulate the receptors of helper T/CD4 cells as well as of cytotoxic (T/CD8) lymphocytes.
Collapse
|
19
|
Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus. J Virol 2018; 92:JVI.00251-18. [PMID: 29669835 DOI: 10.1128/jvi.00251-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection, with domestic animals, including swine and rabbits, being a reservoir. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs), three novel, 1E4, 2C7, and 2G9, and one previously characterized, 1B5, were evaluated for binding to the capsid protein from genotype 4 swine HEV. The results indicated that 625DFCP628, 458PSRPF462, and 407EPTV410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368 to 606) can exist in multimeric forms. Preincubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross-reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and antiviral design.IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of the antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within genotype 4 swine HEV capsid protein were characterized. Moreover, the neutralizing abilities of three MAbs specific for this protein, 2C7, 2G9, and 1B5, were studied in vitro and in vivo Collectively, these findings reveal structural details of genotype 4 HEV capsid protein and should facilitate development of applications for the design of vaccines and antiviral drugs for broader prevention, detection, and treatment of HEV infection of diverse human and animal hosts.
Collapse
|
20
|
Nan Y, Wu C, Zhao Q, Sun Y, Zhang YJ, Zhou EM. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges. Front Microbiol 2018; 9:266. [PMID: 29520257 PMCID: PMC5827553 DOI: 10.3389/fmicb.2018.00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
21
|
Hakim MS, Ikram A, Zhou J, Wang W, Peppelenbosch MP, Pan Q. Immunity against hepatitis E virus infection: Implications for therapy and vaccine development. Rev Med Virol 2017; 28. [PMID: 29272060 DOI: 10.1002/rmv.1964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis worldwide and an emerging cause of chronic infection in immunocompromised patients. As with viral infections in general, immune responses are critical to determine the outcome of HEV infection. Accumulating studies in cell culture, animal models and patients have improved our understanding of HEV immunopathogenesis and informed the development of new antiviral therapies and effective vaccines. In this review, we discuss the recent progress on innate and adaptive immunity in HEV infection, and the implications for the devolopment of effective vaccines and immune-based therapies.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.,Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aqsa Ikram
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.,Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Jianhua Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.,State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Nan Y, Wu C, Zhao Q, Zhou EM. Zoonotic Hepatitis E Virus: An Ignored Risk for Public Health. Front Microbiol 2017; 8:2396. [PMID: 29255453 PMCID: PMC5723051 DOI: 10.3389/fmicb.2017.02396] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) is a quasi-enveloped, single-stranded positive-sense RNA virus. HEV belongs to the family Hepeviridae, a family comprised of highly diverse viruses originating from various species. Since confirmation of HEV's zoonosis, HEV-induced hepatitis has been a public health concern both for developing and developed countries. Meanwhile, the demonstration of a broad host range for zoonotic HEV suggests the existence of a variety of transmission routes that could lead to human infection. Moreover, anti-HEV antibody serosurveillance worldwide demonstrates a higher than expected HEV prevalence rate that conflicts with the rarity and sporadic nature of reported acute hepatitis E cases. In recent years, chronic HEV infection, HEV-related acute hepatic failure, and extrahepatic manifestations caused by HEV infection have been frequently reported. These observations suggest a significant underestimation of the number and complexity of transmission routes previously predicted to cause HEV-related disease, with special emphasis on zoonotic HEV as a public health concern. Significant research has revealed details regarding the virology and infectivity of zoonotic HEV in both humans and animals. In this review, the discovery of HEV zoonosis, recent progress in our understanding of the zoonotic HEV host range, and classification of diverse HEV or HEV-like isolates from various hosts are reviewed in a historic context. Ultimately, this review focuses on current understanding of viral pathogenesis and cross-species transmission of zoonotic HEV. Moreover, host factors and viral determinants influencing HEV host tropism are discussed to provide new insights into HEV transmission and prevalence mechanisms.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| |
Collapse
|
23
|
Generation in yeast and antigenic characterization of hepatitis E virus capsid protein virus-like particles. Appl Microbiol Biotechnol 2017; 102:185-198. [PMID: 29143081 DOI: 10.1007/s00253-017-8622-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Hepatitis E is a globally distributed human disease caused by hepatitis E virus (HEV). In Europe, it spreads through undercooked pork meat or other products and with blood components through transfusions. There are no approved or golden standard serologic systems for HEV diagnostics. Commercially available HEV tests often provide inconsistent results which may differ among the assays. In this study, we describe generation in yeast and characterization of HEV genotype 3 (HEV-3) and rat HEV capsid proteins self-assembled into virus-like particles (VLPs) and the development of HEV-specific monoclonal antibodies (MAbs). Full-length HEV-3 and rat HEV capsid proteins and their truncated variants comprising amino acids (aa) 112-608 were produced in yeast S. cerevisiae. The yeast-expressed rat HEV capsid protein was found to be glycosylated. The full-length HEV-3 capsid protein and both full-length and truncated rat HEV capsid proteins were capable to self-assemble into VLPs. All recombinant proteins contained HEV genotype-specific linear epitopes and cross-reactive conformational epitopes recognized by serum antibodies from HEV-infected reservoir animals. Two panels of MAbs against HEV-3 and rat HEV capsid proteins were generated. Their cross-reactivity pattern was investigated by Western blot, ELISA, and immunofluorescence assay on HEV-3-infected cell cultures. The analysis revealed cross-reactive, genotype-specific, and virus-reactive MAbs. MAb epitopes were localized within S, M, and P domains of HEV-3 and rat HEV capsid proteins. Yeast-generated recombinant VLPs of HEV-3 and rat HEV capsid proteins and HEV-specific MAbs might be employed to develop novel HEV detection systems.
Collapse
|
24
|
Wang H, Zhang W, Gu H, Chen W, Zeng M, Ji C, Song R, Zhang G. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein. PLoS One 2017; 12:e0184947. [PMID: 28957334 PMCID: PMC5619941 DOI: 10.1371/journal.pone.0184947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/02/2017] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) is responsible for hepatitis E, which represents a global public health problem. HEV genotypes 3 and 4 are reported to be zoonotic, and animals are monitored for HEV infection in the interests of public hygiene and food safety. The development of novel diagnostic methods and vaccines for HEV in humans is thus important topics of research. Opening reading frame (ORF) 2 of HEV includes both linear and conformational epitopes and is regarded as the primary candidate for vaccines and diagnostic tests. We investigated the precise location of the HEV epitopes in the ORF2 protein. We prepared four monoclonal antibodies (mAbs) against genotype 4 ORF2 protein and identified two linear epitopes, G438IVIPHD444 and Y457DNQH461, corresponding to two of these mAbs using phage display biopanning technology. Both these epitopes were speculated to be universal to genotypes 1, 2, 3, 4, and avian HEVs. We also used two 12-mer fragments of ORF2 protein including these two epitopes to develop a peptide-based enzyme-linked immunosorbent assay (ELISA) to detect HEV in serum. This assay demonstrated good specificity but low sensitivity compared with the commercial method, indicating that these two epitopes could serve as potential candidate targets for diagnosis. Overall, these results further our understanding of the epitope distribution of HEV ORF2, and provide important information for the development of peptide-based immunodiagnostic tests to detect HEV in serum.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (GZ); (HW)
| | - Weidong Zhang
- Hospital of South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Honglang Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wanli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Meng Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Chihai Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ruyue Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People’s Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (GZ); (HW)
| |
Collapse
|
25
|
Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7:1419. [PMID: 27656178 PMCID: PMC5013053 DOI: 10.3389/fmicb.2016.01419] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College ParkMD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park MD, USA
| |
Collapse
|
26
|
Cai W, Tang ZM, Wen GP, Wang SL, Ji WF, Yang M, Ying D, Zheng ZZ, Xia NS. A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus. Sci Rep 2016; 6:25141. [PMID: 27122081 PMCID: PMC4848499 DOI: 10.1038/srep25141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is the aetiological agent of enterically transmitted hepatitis. The traditional methods for evaluating neutralizing antibody titres against HEV are real-time PCR and the immunofluorescence foci assay (IFA), which are poorly repeatable and operationally complicated, factors that limit their applicability to high-throughput assays. In this study, we developed a novel high-throughput neutralizing assay based on biotin-conjugated p239 (HEV recombinant capsid proteins, a.a. 368–606) and staining with allophycocyanin-conjugated streptavidin (streptavidin APC) to amplify the fluorescence signal. A linear regression analysis indicated that there was a high degree of correlation between IFA and the novel assay. Using this method, we quantitatively evaluated the neutralization of sera from HEV-infected and vaccinated macaques. The anti-HEV IgG level had good concordance with the neutralizing titres of macaque sera. However, the neutralization titres of the sera were also influenced by anti-HEV IgM responses. Further analysis also indicated that, although vaccination with HEV vaccine stimulated higher anti-HEV IgG and neutralization titres than infection with HEV in macaques, the proportions of neutralizing antibodies in the infected macaques’ sera were higher than in the vaccinated macaques with the same anti-HEV IgG levels. Thus, the infection more efficiently stimulated neutralizing antibody responses.
Collapse
Affiliation(s)
- Wei Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Gui-Ping Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Fang Ji
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Min Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| |
Collapse
|