1
|
Pushko P, Lukashevich IS, Johnson DM, Tretyakova I. Single-Dose Immunogenic DNA Vaccines Coding for Live-Attenuated Alpha- and Flaviviruses. Viruses 2024; 16:428. [PMID: 38543793 PMCID: PMC10974764 DOI: 10.3390/v16030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA;
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA;
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike Suite S, Frederick, MD 21701, USA;
| |
Collapse
|
2
|
Lundstrom K. Alphaviruses in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:143-168. [PMID: 37541722 DOI: 10.1016/bs.ircmb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alphaviruses have frequently been engineered for cancer therapy, cancer immunotherapy, and cancer vaccine development. As members of self-replicating RNA viruses, alphaviruses provide high levels of transgene expression through efficient self-amplifying of their RNA genome in host cells. Alphavirus vectors can be used as recombinant viral particles or oncolytic viruses. Alternatively, either naked or nanoparticle-encapsulated RNA and DNA replicons can be utilized. In the context of cancer prevention and treatment, antitumor, cytotoxic and suicide genes have been expressed from alphavirus vectors to provide tumor regression and tumor eradication. Moreover, immunostimulatory genes such as cytokines and chemokines have been used for cancer immunotherapy approaches. Expression of tumor antigens has been applied for cancer vaccine development. Alphavirus vectors has demonstrated tumor regression and even cure in various preclinical animal models. Immunization has elicited strong immune responses and showed protection against challenges with tumor cells in animal models. Several clinical trials have confirmed good safety and tolerability of alphaviruses in cancer patients although therapeutic efficacy will still require optimization.
Collapse
|
3
|
Dailey GP, Crosby EJ, Hartman ZC. Cancer vaccine strategies using self-replicating RNA viral platforms. Cancer Gene Ther 2023; 30:794-802. [PMID: 35821284 PMCID: PMC9275542 DOI: 10.1038/s41417-022-00499-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/21/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
The development and success of RNA-based vaccines targeting SARS-CoV-2 has awakened new interest in utilizing RNA vaccines against cancer, particularly in the emerging use of self-replicating RNA (srRNA) viral vaccine platforms. These vaccines are based on different single-stranded RNA viruses, which encode RNA for target antigens in addition to replication genes that are capable of massively amplifying RNA messages after infection. The encoded replicase genes also stimulate innate immunity, making srRNA vectors ideal candidates for anti-tumor vaccination. In this review, we summarize different types of srRNA platforms that have emerged and review evidence for their efficacy in provoking anti-tumor immunity to different antigens. These srRNA platforms encompass the use of naked RNA, DNA-launched replicons, viral replicon particles (VRP), and most recently, synthetic srRNA replicon particles. Across these platforms, studies have demonstrated srRNA vaccine platforms to be potent inducers of anti-tumor immunity, which can be enhanced by homologous vaccine boosting and combining with chemotherapies, radiation, and immune checkpoint inhibition. As such, while this remains an active area of research, the past and present trajectory of srRNA vaccine development suggests immense potential for this platform in producing effective cancer vaccines.
Collapse
Affiliation(s)
| | | | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Alphaviruses in Immunotherapy and Anticancer Therapy. Biomedicines 2022; 10:biomedicines10092263. [PMID: 36140364 PMCID: PMC9496634 DOI: 10.3390/biomedicines10092263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses have been engineered as expression vectors for vaccine development and gene therapy. Due to the feature of RNA self-replication, alphaviruses can provide exceptional direct cytoplasmic expression of transgenes based on the delivery of recombinant particles, naked or nanoparticle-encapsulated RNA or plasmid-based DNA replicons. Alphavirus vectors have been utilized for the expression of various antigens targeting different types of cancers, and cytotoxic and antitumor genes. The most common alphavirus vectors are based on the Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, but the oncolytic M1 alphavirus has also been used. Delivery of immunostimulatory cytokine genes has been the basis for immunotherapy demonstrating efficacy in different animal tumor models for brain, breast, cervical, colon, lung, ovarian, pancreatic, prostate and skin cancers. Typically, therapeutic effects including tumor regression, tumor eradication and complete cure as well as protection against tumor challenges have been observed. Alphavirus vectors have also been subjected to clinical evaluations. For example, therapeutic responses in all cervical cancer patients treated with an alphavirus vector expressing the human papilloma virus E6 and E7 envelope proteins have been achieved.
Collapse
|
5
|
Application of mRNA Technology in Cancer Therapeutics. Vaccines (Basel) 2022; 10:vaccines10081262. [PMID: 36016150 PMCID: PMC9415393 DOI: 10.3390/vaccines10081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
mRNA-based therapeutics pose as promising treatment strategies for cancer immunotherapy. Improvements in materials and technology of delivery systems have helped to overcome major obstacles in generating a sufficient immune response required to fight a specific type of cancer. Several in vivo models and early clinical studies have suggested that various mRNA treatment platforms can induce cancer-specific cytolytic activity, leading to numerous clinical trials to determine the optimal method of combinations and sequencing with already established agents in cancer treatment. Nevertheless, further research is required to optimize RNA stabilization, delivery platforms, and improve clinical efficacy by interacting with the tumor microenvironment to induce a long-term antitumor response. This review provides a comprehensive summary of the available evidence on the recent advances and efforts to overcome existing challenges of mRNA-based treatment strategies, and how these efforts play key roles in offering perceptive insights into future considerations for clinical application.
Collapse
|
6
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
7
|
Lundstrom K. Self-Amplifying RNA Viruses as RNA Vaccines. Int J Mol Sci 2020; 21:ijms21145130. [PMID: 32698494 PMCID: PMC7404065 DOI: 10.3390/ijms21145130] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses and rhabdoviruses are characterized by their capacity of highly efficient self-amplification of RNA in host cells, which make them attractive vehicles for vaccine development. Particularly, alphaviruses and flaviviruses can be administered as recombinant particles, layered DNA/RNA plasmid vectors carrying the RNA replicon and even RNA replicon molecules. Self-amplifying RNA viral vectors have been used for high level expression of viral and tumor antigens, which in immunization studies have elicited strong cellular and humoral immune responses in animal models. Vaccination has provided protection against challenges with lethal doses of viral pathogens and tumor cells. Moreover, clinical trials have demonstrated safe application of RNA viral vectors and even promising results in rhabdovirus-based phase III trials on an Ebola virus vaccine. Preclinical and clinical applications of self-amplifying RNA viral vectors have proven efficient for vaccine development and due to the presence of RNA replicons, amplification of RNA in host cells will generate superior immune responses with significantly reduced amounts of RNA delivered. The need for novel and efficient vaccines has become even more evident due to the global COVID-19 pandemic, which has further highlighted the urgency in challenging emerging diseases.
Collapse
|
8
|
Wang M, Luo Y, Sun T, Mao C, Jiang Y, Yu X, Li Z, Xie T, Wu F, Yan H, Teng L. The Ectopic Expression of SurvivinT34A and FilC Can Enhance the Oncolytic Effects of Vaccinia Virus in Murine Gastric Cancer. Onco Targets Ther 2020; 13:1011-1025. [PMID: 32099404 PMCID: PMC7006861 DOI: 10.2147/ott.s230902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Background/Aims Anti-tumor vaccines have been shown to be effective in cancer therapeutics ever since the anti-HPV vaccine was developed. Compared to conventional chemotherapy, anti-tumor vaccines can specifically target cancer cells and they have lower side effects. We developed a recombinant vaccinia virus (VACV) (Western Reserve) WR strain, and we tested its anti-tumor effects in an animal model. Methods A recombinant VACV WR strain expressing mutant survivin T34A (SurT34A) and FilC was constructed and validated. Its oncolytic effect was tested in vitro using a CCK-8 assay, and its tolerance and anti-tumor effects were tested in a murine gastric cancer model. The proportion of lymphocytes in the spleen and tumor was determined after antibody-mediated immuno-depletion. Results The recombinant VACV showed a stronger replication ability in tumor cells, and it was safe in vivo, even at high doses. The combination of vv-SurT34A and vv-FilC resulted in a stronger anti-tumor effect compared to either construct alone. However, the inhibitory effect of vv-SurT34A was stronger than the combination. The recombinant VACV activated the host immune response, as indicated by lymphocyte infiltration in the spleen and tumor tissues. Conclusion The recombinant VACV WR strain expressing SurT34A and FilC is a safe and effective anti-tumor vaccine.
Collapse
Affiliation(s)
- Minglong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxi Luo
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Ting Sun
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Chenyu Mao
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yili Jiang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Fusheng Wu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Yan
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 2019; 14:627-648. [PMID: 30806568 PMCID: PMC6439506 DOI: 10.2217/nnm-2018-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
As effective tools for public health, vaccines prevent disease by priming the body's adaptive and innate immune responses against an infection. Due to advances in understanding cancers and their relationship with the immune system, there is a growing interest in priming host immune defenses for a targeted and complete antitumor response. Nanoparticle systems have shown to be promising tools for effective antigen delivery as vaccines and/or for potentiating immune response as adjuvants. Here, we highlight relevant physiological processes involved in vaccine delivery, review recent advances in the use of nanoparticle systems for vaccines and discuss pertinent challenges to viably translate nanoparticle-based vaccines and adjuvants for public use.
Collapse
Affiliation(s)
- Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Afoma C Umeano
- Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Kou
- Department of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian Xu
- Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 54000, Pakistan
| |
Collapse
|
10
|
Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 2018; 17:833-849. [PMID: 30173619 PMCID: PMC7103734 DOI: 10.1080/14760584.2018.1516552] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.
Collapse
Affiliation(s)
- Braeden Donaldson
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand.,b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Zabeen Lateef
- c Department of Pharmacology and Toxicology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| | - Greg F Walker
- d School of Pharmacy , University of Otago , Dunedin , New Zealand
| | - Sarah L Young
- b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Vernon K Ward
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
11
|
Replicon RNA Viral Vectors as Vaccines. Vaccines (Basel) 2016; 4:vaccines4040039. [PMID: 27827980 PMCID: PMC5192359 DOI: 10.3390/vaccines4040039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.
Collapse
|
12
|
Pushko P, Lukashevich IS, Weaver SC, Tretyakova I. DNA-launched live-attenuated vaccines for biodefense applications. Expert Rev Vaccines 2016; 15:1223-34. [PMID: 27055100 PMCID: PMC5033646 DOI: 10.1080/14760584.2016.1175943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, 505 S Hancock St., Louisville, KY 40202, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Microbiology and Immunology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555, USA
| | - Irina Tretyakova
- Medigen, Inc. 8420 Gas House Pike Suite S, Frederick, MD 21701, USA
| |
Collapse
|