1
|
Cnossen VM, van Leeuwen RP, Mazur NI, Vernhes C, ten Voorde W, Burggraaf J, de Visser SJ, Roestenberg M, Kamerling IMC. From setbacks to success: lessons from the journey of RSV vaccine development. Ther Adv Vaccines Immunother 2024; 12:25151355241308305. [PMID: 39711948 PMCID: PMC11660060 DOI: 10.1177/25151355241308305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes high worldwide infant mortality, as well as a high disease burden in the elderly. Efforts in vaccine development over the past 60 years have recently delivered three approved vaccines and two monoclonal antibodies (mAbs). Looking back at the eventful history of RSV vaccine development, several factors can be identified that have hampered the developmental pathway, including the occurrence of enhanced RSV disease (ERD) in the first vaccine attempt and the difficulty in characterizing and stabilizing the pre-fusion F protein as a vaccine target. Moreover, the need for large trials to test vaccine efficacy, usually done late in development, and the lack of a correlate of protection (CoP) result in significant uncertainties in RSV vaccine development. The use of controlled human infection models (CHIMs) may provide a solution for some of these problems: through swift, cost-efficient and closely monitored assessment of vaccine safety and efficacy in early clinical phases, vaccines can either 'fail fast' or show results supporting further investments. Moreover, CHIMs facilitate the assessment of disease and could assist in the identification of a CoP supporting late-stage development. Although some factors may affect translatability to real-world vaccine efficacy, CHIMs can support the clinical development pathway in various ways. We advocate for, and demonstrate, a conceptual and rational design of RSV vaccine development. Assessing protective efficacy early on would result in the most cost-efficient pathway and identification of target populations should be done as early as possible. For RSV, elderly individuals and people in low- and middle-income countries are high-impact populations for RSV prevention. While RSV immunization is now available in certain regions, global access is not accomplished yet, and worldwide prevention does not seem within reach. Quick and cost-effective assessments of candidates currently in the pipeline could contribute to future successes in the battle against RSV.
Collapse
Affiliation(s)
- Victor M. Cnossen
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | | | | | - Charlotte Vernhes
- Vaccines Europe, European Federation of Pharmaceutical Industries and Associations, Brussels, Belgium
| | | | | | - Saco J. de Visser
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Meta Roestenberg
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Ingrid M. C. Kamerling
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
2
|
da Silva GS, Borges SG, Pozzebon BB, de Souza APD. Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges. Microorganisms 2024; 12:2305. [PMID: 39597694 PMCID: PMC11596275 DOI: 10.3390/microorganisms12112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory infections, particularly in children and the elderly. This virus primarily infects ciliated epithelial cells and activates alveolar macrophages and dendritic cells, triggering an innate antiviral response that releases pro-inflammatory cytokines. However, immunity generated by infection is limited, often leading to reinfection throughout life. This review focuses on the immune response elicited by newly developed and approved vaccines against RSV. A comprehensive search of clinical studies on RSV vaccine candidates conducted between 2013 and 2024 was performed. There are three primary target groups for RSV vaccines: pediatric populations, infants through maternal immunization, and the elderly. Different vaccine approaches address these groups, including subunit, live attenuated or chimeric, vector-based, and mRNA vaccines. To date, subunit RSV vaccines and the mRNA vaccine have been approved using the pre-fusion conformation of the F protein, which has been shown to induce strong immune responses. Nevertheless, several other vaccine candidates face challenges, such as modest increases in antibody production, highlighting the need for further research. Despite the success of the approved vaccines for adults older than 60 years and pregnant women, there remains a critical need for vaccines that can protect children older than six months, who are still highly vulnerable to RSV infections.
Collapse
Affiliation(s)
| | | | | | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
| |
Collapse
|
3
|
Peng R, Chen C, Chen Q, Zhang Y, Huang R, Zhang Y, Li J. Global progress in clinical research on human respiratory syncytial virus vaccines. Front Microbiol 2024; 15:1457703. [PMID: 39286350 PMCID: PMC11402711 DOI: 10.3389/fmicb.2024.1457703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Human respiratory syncytial virus (hRSV) not only affects newborns but also older adults, contributing to a substantial worldwide burden of disease. However, only three approved hRSV vaccines remain commercially available to date. The development of a safe, practical and broad-spectrum vaccine suitable for all age groups remains extremely challenging. Using five different approaches-live-attenuated, recombinant-vector, subunit, particle-based, and mRNA-nearly 30 hRSV vaccine candidates are currently conducting clinical trials worldwide; moreover, > 30 vaccines are under preclinical evaluation. This review presents a comprehensive overview of these hRSV vaccines along with prospects for the development of infectious disease vaccines in the post-COVID-19 pandemic era.
Collapse
Affiliation(s)
- Ruofan Peng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenghao Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yuwen Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Renjin Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
4
|
Wu Y, Lu Y, Bai Y, Zhu B, Chang F, Lu Y. Efficacy, Safety, and Immunogenicity of Subunit Respiratory Syncytial Virus Vaccines: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines (Basel) 2024; 12:879. [PMID: 39204005 PMCID: PMC11360664 DOI: 10.3390/vaccines12080879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is garnering increasing attention, with a growing number of subunit RSV vaccines under active clinical investigation. However, comprehensive evidence is limited. METHODS We conducted a comprehensive search across PubMed, Embase, the Cochrane Library, Web of Science, and ClinicalTrials.gov from database inception to 12 January 2024, focusing on published randomized controlled trials (RCTs). RESULTS A total of 17 studies were included, encompassing assessments of efficacy (5 studies), safety (17 studies), and immunogenicity (12 studies) of RSV subunit vaccines. The pooled risk ratio (RR) for RSV-associated acute respiratory infection (RSV-ARI) with subunit vaccines was 0.31 (95% CI: 0.23-0.43), for RSV-associated lower respiratory tract infection (RSV-LRTI), it was 0.32 (95% CI: 0.22-0.44), and for severe RSV-LRTI (RSV-SLRTI), it was 0.13 (95% CI: 0.06-0.29). There was no significant difference in serious adverse events (SAEs) between the vaccine and placebo groups, with a pooled RR of 1.05 (95% CI: 0.98-1.14). The pooled standardized mean difference (SMD) for the geometric mean titer (GMT) of neutralizing antibodies was 2.89 (95% CI: 2.43-3.35). CONCLUSION Subunit RSV vaccines exhibit strong efficacy, favorable safety profiles, and robust immunogenicity. Future research should focus on the cost-effectiveness of various vaccines to enhance regional and national immunization strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Lu
- Correspondence: (F.C.); (Y.L.)
| |
Collapse
|
5
|
Eto T, Okubo Y, Momose A, Tamura H, Zheng R, Callendret B, Bastian A, Comeaux C. A Randomized, Double-Blind, Placebo-Controlled, Phase 1 Study to Evaluate the Safety, Reactogenicity, and Immunogenicity of Single Vaccination of Ad26.RSV.preF-Based Regimen in Japanese Adults Aged 60 Years and Older. Influenza Other Respir Viruses 2024; 18:e13336. [PMID: 38880785 PMCID: PMC11180550 DOI: 10.1111/irv.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is increasingly recognized as a significant cause of lower respiratory tract disease (LRTD) in older adults. The Ad26.RSV.preF/RSV preF protein vaccine demonstrated protective efficacy against RSV related LRTD in a Phase 2b study in the United States. Hence, Ad26.RSV.preF/RSV preF protein vaccine candidate was evaluated in the Japanese older adult population. METHODS This Phase 1 study evaluated safety, reactogenicity, and immunogenicity of Ad26.RSV.preF/RSV preF protein vaccine at dose level of 1 × 1011 vp/150 μg in Japanese healthy adult aged ≥60 years. The study included a screening Phase, vaccination, 28-day follow up Phase, a 182-day follow-up period, and final visit on Day 183. A total of 36 participants were randomized in a 2:1 ratio to receive Ad26.RSV.preF/RSV preF protein vaccine (n = 24) or placebo (n = 12). After study intervention administration, the safety and immunogenicity analysis were performed as per planned schedule. Immune responses including virus-neutralizing and preF-specific binding antibodies were measured on Days 1, 15, 29, and 183. RESULTS There were no deaths, SAEs, or AEs leading to discontinuation reported during the study. The Ad26.RSV.preF/RSV preF protein vaccine had acceptable safety and tolerability profile with no safety concern in Japanese older adults. The Ad26.RSV.preF/RSV preF protein vaccine induced RSV-specific humoral immunity, with increase in antibody titers on Days 15 and 29 compared with baseline which was well maintained until Day 183. CONCLUSIONS A single dose of Ad26.RSV.preF/RSV preF protein vaccine had an acceptable safety and tolerability profile and induced RSV-specific humoral immunity in Japanese healthy adults. TRIAL REGISTRATION NCT number: NCT04354480; Clinical Registry number: CR108768.
Collapse
|
6
|
Riccò M, Cascio A, Corrado S, Bottazzoli M, Marchesi F, Gili R, Giuri PG, Gori D, Manzoni P. Efficacy of Respiratory Syncytial Virus Vaccination to Prevent Lower Respiratory Tract Illness in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines (Basel) 2024; 12:500. [PMID: 38793751 PMCID: PMC11126042 DOI: 10.3390/vaccines12050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
A systematic review and meta-analysis was designed in order to ascertain the effectiveness of respiratory syncytial virus (RSV) vaccination in preventing lower respiratory tract diseases (LRTD) in older adults (age ≥ 60 years). Studies reporting on randomized controlled trials (RCTs) were searched for in three databases (PubMed, Embase, and Scopus) and the preprint repository medRxiv until 31 March 2024. A total of nine studies were eventually included, two of which were conference proceedings. Our analysis included five RCTs on five RSV vaccines (RSVpreF, RSVPreF3, Ad26.RSV.preF, MEDI7510, and mRNA-1345). The meta-analysis documented a pooled vaccine efficacy of 81.38% (95% confidence interval (95% CI) 70.94 to 88.06) for prevention of LRTD with three or more signs/symptoms during the first RSV season after the delivery of the vaccine. Follow-up data were available for RSVPreF3 (2 RSV seasons), RSVpreF (mid-term estimates of second RSV season), and mRNA-1345 (12 months after the delivery of the primer), with a pooled VE of 61.15% (95% CI 45.29 to 72.40). After the first season, the overall risk for developing RSV-related LRTD was therefore substantially increased (risk ratio (RR) 4.326, 95% CI 2.415; 7.748). However, all estimates were affected by substantial heterogeneity, as suggested by the 95% CI of I2 statistics, which could be explained by inconsistencies in the design of the parent studies, particularly when dealing with case definition. In conclusion, adult RSV vaccination was quite effective in preventing LRTD in older adults, but the overall efficacy rapidly decreased in the second season after the delivery of the vaccine. Because of the heterogenous design of the parent studies, further analyses are required before tailoring specific public health interventions.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, “G D’Alessandro”, University of Palermo, AOUP P. Giaccone, 90127 Palermo, Italy;
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Milano, Italy
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Renata Gili
- Department of Prevention, Turin Local Health Authority, 10125 Torino, Italy
| | | | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Paolo Manzoni
- Department of Public Health and Pediatric Sciences, University of Torino School of Medicine, 10125 Turin, Italy;
| |
Collapse
|
7
|
Hu G, Varisco DJ, Das S, Middaugh CR, Gardner F, Ernst RK, Picking WL, Picking WD. Physicochemical characterization of biological and synthetic forms of two lipid A-based TLR4 agonists. Heliyon 2023; 9:e18119. [PMID: 37483830 PMCID: PMC10362264 DOI: 10.1016/j.heliyon.2023.e18119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Toll-like receptor (TLR) agonists are recognized as potential immune-enhancing adjuvants and are included in several licensed vaccines. Monophosphoryl lipid A (MPL®, GlaxoSmithKline) is one such TLR4 agonist that has been approved for use in human vaccines, such as Cervarix and Shingrix. Due to the heterogeneous nature of biologically derived MPL and the need for safer and more potent adjuvants, our groups have developed the novel TLR4 agonist candidates, BECC438 and BECC470 using the Bacterial Enzymatic Combinatorial Chemistry (BECC) platform. BECC438 and BECC470 have been included in studies to test their adjuvant potential and found to be effective in vaccines against both viral and bacterial disease agents. Here, we report detailed biophysical characterization of BECC438 and BECC470 purified from a biological source (BECC438b and BECC470b, respectively) and synthesized chemically (BECC438s and BECC470s, respectively). Both BECC438s and BECC470s have identical acyl chain configurations, BECC438s is bis-phosphorylated and BECC470s is mono-phosphorylated with the removal of the 4' phosphate moiety. We determined the phase transition temperatures for the acyl chains of BECC438b and BECC470b and found them to be different from those exhibited by their synthetic counterparts. Furthermore, the phosphate groups of BECC438b and BECC470b are more highly hydrated than are those of BECC438s and BECC470s. In addition to exploring the BECC molecules' biophysical features in aqueous solution, we explored potential formulation of BECC438 and BECC470 with the aluminum-based adjuvant Alhydrogel and as part of an oil-in-water emulsion (Medimmune Emulsion or ME). All of the lipid A analogues could be fully absorbed to Alhydrogel or incorporated onto ME. Surprisingly, the BECC470s molecule, unlike the others, displayed a nearly baseline signal when monitored using a Limulus amebocyte lysate (LAL) endotoxin detection system. Despite this, it was shown to behave as an agonist for human and mouse TLR4 when tested using multiple cell-based systems. This work paves the way for further formulation optimization of two chemically defined TLR4 agonists that are showing great promise as vaccine adjuvants.
Collapse
Affiliation(s)
- Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - C. Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Francesca Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Piras F, Plitnick LM, Berglund P, Bernard MC, Desert P. Nonclinical safety evaluation of two vaccine candidates for herpes simplex virus type 2 to support combined administration in humans. J Appl Toxicol 2023; 43:534-556. [PMID: 36227735 DOI: 10.1002/jat.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is the most common cause of genital disease worldwide. The development of an effective HSV-2 vaccine would significantly impact global health based on the psychological distress caused by genital herpes for some individuals, the risk transmitting the infection from mother to infant, and the elevated risk of acquiring HIV-1. Five nonclinical safety studies were conducted with the replication defective HSV529 vaccine, alone or adjuvanted with GLA-SE, and the G103 subunit vaccine containing GLA-SE. A biodistribution study was conducted in guinea pigs to evaluate distribution, persistence, and shedding of HSV529. A preliminary immunogenicity study was conducted in rabbits to demonstrate HSV529-specific humoral response and its enhancement by GLA-SE. Three repeated-dose toxicity studies, one in guinea pigs and two in rabbits, were conducted to assess systemic toxicity and local tolerance of HSV529, alone or adjuvanted with GLA-SE, or G103 containing GLA-SE. Data from these studies show that both vaccines are safe and well tolerated and support the ongoing HSV-2 clinical trial in which the two vaccine candidates will be given either sequentially or concomitantly to explore their potential synergistic and incremental effects.
Collapse
Affiliation(s)
| | | | - Peter Berglund
- Immune Design Corp., Seattle, WA, USA, a wholly owned subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
- HDT Bio, Seattle, Washington, USA
| | | | | |
Collapse
|
9
|
Chang LA, Phung E, Crank MC, Morabito KM, Villafana T, Dubovsky F, Falloon J, Esser MT, Lin BC, Chen GL, Graham BS, Ruckwardt TJ. A prefusion-stabilized RSV F subunit vaccine elicits B cell responses with greater breadth and potency than a postfusion F vaccine. Sci Transl Med 2022; 14:eade0424. [PMID: 36542692 PMCID: PMC11345946 DOI: 10.1126/scitranslmed.ade0424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is currently no licensed vaccine for respiratory syncytial virus (RSV). Here, we assess the effect of RSV fusion protein (F) conformation on B cell responses in a post hoc comparison of samples from the DS-Cav1 [prefusion (pre-F)] and MEDI7510 [postfusion (post-F)] vaccine clinical trials. We compared the magnitude and quality of the serological and B cell responses across time points and vaccines. We measured RSV A and B neutralization, F-binding immunoglobulin G titers, and competition assays at week 0 (before vaccination) and week 4 (after vaccination) to evaluate antibody specificity and potency. To compare B cell specificity and activation, we used pre-F and post-F probes in tandem with a 17-color immunophenotyping flow cytometry panel at week 0 (before vaccination) and week 1 (after vaccination). Our data demonstrate that both DS-Cav1 and MEDI7510 vaccination robustly elicit F-specific antibodies and B cells, but DS-Cav1 elicited antibodies that more potently neutralized both RSV A and B. The superior potency was mediated by antibodies that bind antigenic sites on the apex of pre-F that are not present on post-F. In the memory (CD27+) B cell compartment, vaccination with DS-Cav1 or MEDI7510 elicited B cells with different epitope specificities. B cells preferentially binding the pre-F probe were activated in DS-Cav1-vaccinated participants but not in MEDI7510-vaccinated participants. Our findings emphasize the importance of using pre-F as an immunogen in humans because of its deterministic role in eliciting highly potent neutralizing antibodies and memory B cells.
Collapse
Affiliation(s)
- Lauren A. Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Authors contributed equally to this manuscript
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: GlaxoSmithKline, Rockville, MD 20850, USA
- Authors contributed equally to this manuscript
| | - Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Institute for Asthma and Allergy, Chevy Chase, MD 20815, USA
| | - Kaitlyn M. Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tonya Villafana
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Filip Dubovsky
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
- Present address: Novavax, Gaithersburg, MD 20878, USA
| | - Judith Falloon
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
- Present address: Horizon Therapeutics, Gaithersburg, MD 20878, USA
| | - Mark T. Esser
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Moderna, Cambridge, MA 02139, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Departments of Medicine and Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Senior author
- Lead contact
| |
Collapse
|
10
|
Qiu X, Xu S, Lu Y, Luo Z, Yan Y, Wang C, Ji J. Development of mRNA vaccines against respiratory syncytial virus (RSV). Cytokine Growth Factor Rev 2022; 68:37-53. [PMID: 36280532 DOI: 10.1016/j.cytogfr.2022.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is a single-stranded negative-sense RNA virus that is the primary etiologic pathogen of bronchitis and pneumonia in infants and the elderly. Currently, no preventative vaccine has been approved for RSV infection. However, advances in the characterization, and structural resolution, of the RSV surface fusion glycoprotein have revolutionized RSV vaccine development by providing a new target for preventive interventions. In general, six different approaches have been adopted in the development of preventative RSV therapeutics, namely, particle-based vaccines, vector-based vaccines, live-attenuated or chimeric vaccines, subunit vaccines, mRNA vaccines, and monoclonal antibodies. Among these preventive interventions, MVA-BN-RSV, RSVpreF3, RSVpreF, Ad26. RSV.preF, nirsevimab, clesrovimab and mRNA-1345 is being tested in phase 3 clinical trials, and displays the most promising in infant or elderly populations. Accompanied by the huge success of mRNA vaccines in COVID-19, mRNA vaccines have been rapidly developed, with many having entered clinical studies, in which they have demonstrated encouraging results and acceptable safety profiles. In fact, Moderna has received FDA approval, granting fast-track designation for an investigational single-dose mRNA-1345 vaccine against RSV in adults over 60 years of age. Hence, mRNA vaccines may represent a new, more successful, chapter in the continued battle to develop effective preventative measures against RSV. This review discusses the structure, life cycle, and brief history of RSV, while also presenting the current advancements in RSV preventatives, with a focus on the latest progress in RSV mRNA vaccine development. Finally, future prospects for this field are presented.
Collapse
Affiliation(s)
- Xirui Qiu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangtian Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuyue Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Saunders KO, Edwards RJ, Tilahun K, Manne K, Lu X, Cain DW, Wiehe K, Williams WB, Mansouri K, Hernandez GE, Sutherland L, Scearce R, Parks R, Barr M, DeMarco T, Eater CM, Eaton A, Morton G, Mildenberg B, Wang Y, Rountree RW, Tomai MA, Fox CB, Moody MA, Alam SM, Santra S, Lewis MG, Denny TN, Shaw GM, Montefiori DC, Acharya P, Haynes BF. Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Sci Transl Med 2022; 14:eabo5598. [PMID: 36070369 PMCID: PMC10034035 DOI: 10.1126/scitranslmed.abo5598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Microbiology and Molecular Genetics, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Chloe M. Eater
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | | | | | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - R. Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Mark A. Tomai
- 3M Corporate Research Materials Lab, 3M Company; St. Paul, MN, 55144, USA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Pediatrics, Duke University Medical Center; Durham, NC, 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center; Boston, MA, 02215, USA
| | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| |
Collapse
|
12
|
Lende SSF, Pahus MH, Monrad I, Olesen R, Mahr AR, Vibholm LK, Østergaard L, Søgaard OS, Andersen AHF, Denton PW, Tolstrup M. CD169 (Siglec-1) as a Robust Human Cell Biomarker of Toll-Like Receptor 9 Agonist Immunotherapy. Front Cell Infect Microbiol 2022; 12:919097. [PMID: 35865810 PMCID: PMC9294151 DOI: 10.3389/fcimb.2022.919097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is a promising therapeutic area in cancer and chronic viral infections. An important component of immunotherapy in these contexts is the activation of innate immunity. Here we investigate the potential for CD169 (Siglec 1) expression on monocytes to serve as a robust biomarker for activation of innate immunity and, particular, as a proxy for IFN-α production. Specifically, we investigated the effects of Toll-like receptor 9 agonism with MGN1703 (lefitolimod) across experimental conditions ex vivo, in humanized mice, and in clinical trial participants. Ex vivo we observed that the percentage of classical monocytes expressing CD169 increased dramatically from 10% pre-stimulation to 97% 24 hrs after MGN1703 stimulation (p<0.0001). In humanized NOG mice, we observed prominent upregulation of the proportions of monocytes expressing CD169 after two doses of MGN1703 where 73% of classical monocytes were CD169 positive in bone marrow following MGN1703 treatment vs 19% in vehicle treated mice (p=0.0159). Finally, in a clinical trial in HIV-infected individuals receiving immunotherapy treatment with MGN1703, we observed a uniform upregulation of CD169 on monocytes after dosing with 97% of classical monocytes positive for CD169 (p=0.002). Hence, in this comprehensive evaluation ex vivo, in an animal model, and in a clinical trial, we find increases in the percentage of CD169 positive monocytes to be a reliable and robust biomarker of immune activation following TLR9 agonist treatment.
Collapse
Affiliation(s)
| | - Marie Høst Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ida Monrad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anna R. Mahr
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Line K. Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Paul W. Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Martin Tolstrup,
| |
Collapse
|
13
|
Denton AE, Dooley J, Cinti I, Silva-Cayetano A, Fra-Bido S, Innocentin S, Hill DL, Carr EJ, McKenzie ANJ, Liston A, Linterman MA. Targeting TLR4 during vaccination boosts MAdCAM-1 + lymphoid stromal cell activation and promotes the aged germinal center response. Sci Immunol 2022; 7:eabk0018. [PMID: 35522725 PMCID: PMC7612953 DOI: 10.1126/sciimmunol.abk0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1+ stromal cell response to immunization. This correlated with improved GC responses in both younger adult and aged mice, suggesting a link between stromal cell responses to immunization and GC initiation. Using bone marrow chimeras, we also found that MAdCAM-1+ stromal cells could respond directly to TLR4 ligands. Thus, the age-associated defect in GC and stromal cell responses to immunization can be targeted to improve vaccines in older people.
Collapse
Affiliation(s)
- Alice E Denton
- Immunology Programme, Babraham Institute, Cambridge UK
- Department of Immunology and Inflammation, Imperial College London, London UK
| | - James Dooley
- Immunology Programme, Babraham Institute, Cambridge UK
- Adaptive Immunology Laboratory, VIB and University of Leuven, Leuven Belgium
| | - Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London UK
| | | | | | | | - Danika L Hill
- Immunology Programme, Babraham Institute, Cambridge UK
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Edward J Carr
- Immunology Programme, Babraham Institute, Cambridge UK
- Department of Medicine, University of Cambridge, Cambridge UK
- The Francis Crick Institute, London UK
| | - Andrew NJ McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge UK
- Adaptive Immunology Laboratory, VIB and University of Leuven, Leuven Belgium
| | | |
Collapse
|
14
|
An adjuvanted zoster vaccine elicits potent cellular immune responses in mice without QS21. NPJ Vaccines 2022; 7:45. [PMID: 35459225 PMCID: PMC9033770 DOI: 10.1038/s41541-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Herpes zoster (HZ) is caused by reactivation of latent varicella-zoster virus (VZV) when VZV-specific cellular immunity is insufficient to control reactivation. Currently, Shingrix, which contains the VZV gE protein and GSK’s AS01B adjuvant composed of liposomes formulated with cholesterol, monophosphoryl lipid A (MPL) and QS21, is used for prevention of HZ. However, reactogenicity to Shingrix is common leading to poor patient compliance in receiving one or both shots. Here, we evaluated the immunogenicity of a newly formulated gE protein-based HZ vaccine containing Second-generation Lipid Adjuvant (SLA), a synthetic TLR4 ligand, formulated in an oil-in-water emulsion (SLA-SE) without QS21 (gE/SLA-SE). In VZV-primed mouse models, gE/SLA-SE-induced gE-specific humoral and cellular immune responses at comparable levels to those elicited by Shingrix in young mice, as both gE/SLA-SE and Shingrix induce polyfunctional CD4+ T-cell responses. In aged mice, gE/SLA-SE elicited more robust gE-specific T-cell responses than Shingrix. Furthermore, gE/SLA-SE-induced T-cell responses were sustained until 5 months after immunization. Thus, QS21-free, gE/SLA-SE is a promising candidate for development of gE-based HZ vaccines with high immunogenicity—particularly when targeting an older population.
Collapse
|
15
|
Nanishi E, Angelidou A, Rotman C, Dowling DJ, Levy O, Ozonoff A. Precision Vaccine Adjuvants for Older Adults: A Scoping Review. Clin Infect Dis 2022; 75:S72-S80. [PMID: 35439286 PMCID: PMC9376277 DOI: 10.1093/cid/ciac302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Older adults, defined as those ≥60 years of age, are a growing population vulnerable to infections including severe acute respiratory syndrome coronavirus 2. Although immunization is a key to protecting this population, immunosenescence can impair responses to vaccines. Adjuvants can increase the immunogenicity of vaccine antigens but have not been systematically compared in older adults. We conducted a scoping review to assess the comparative effectiveness of adjuvants in aged populations. Adjuvants AS01, MF59, AS03, and CpG-oligodeoxynucleotide, included in licensed vaccines, are effective in older human adults. A growing menu of investigational adjuvants, such as Matrix-M and CpG plus alum, showed promising results in early phase clinical trials and preclinical studies. Most studies assessed only 1 or 2 adjuvants and no study has directly compared >3 adjuvants among older adults. Enhanced preclinical approaches enabling direct comparison of multiple adjuvants including human in vitro modeling and age-specific animal models may derisk and accelerate vaccine development for older adults.
Collapse
Affiliation(s)
| | | | - Chloe Rotman
- Medical Library, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Levy
- Correspondence: O. Levy, Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115 ()
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Safety, tolerability, and immunogenicity of the respiratory syncytial virus prefusion F subunit vaccine DS-Cav1: a phase 1, randomised, open-label, dose-escalation clinical trial. THE LANCET RESPIRATORY MEDICINE 2021; 9:1111-1120. [PMID: 33864736 DOI: 10.1016/s2213-2600(21)00098-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine. METHODS In this randomised, open-label, phase 1 clinical trial, the stabilised prefusion F vaccine DS-Cav1 was evaluated for dose, safety, tolerability, and immunogenicity in healthy adults aged 18-50 years at a single US site. Participants were assigned to receive escalating doses of either 50 μg, 150 μg, or 500 μg DS-Cav1 at weeks 0 and 12, and were randomly allocated in a 1:1 ratio within each dose group to receive the vaccine with or without aluminium hydroxide (AlOH) adjuvant. After 71 participants had been randomised, the protocol was amended to allow some participants to receive a single vaccination at week 0. The primary objectives evaluated the safety and tolerability at every dose within 28 days following each injection. Neutralising activity and RSV F-binding antibodies were evaluated from week 0 to week 44 as secondary and exploratory objectives. Safety was assessed in all participants who received at least one vaccine dose; secondary and exploratory immunogenicity analysis included all participants with available data at a given visit. The trial is registered with ClinicalTrials.gov, NCT03049488, and is complete and no longer recruiting. FINDINGS Between Feb 21, 2017, and Nov 29, 2018, 244 participants were screened for eligibility and 95 were enrolled to receive DS-Cav1 at the 50 μg (n=30, of which n=15 with AlOH), 150 μg (n=35, of which n=15 with AlOH), or 500 μg (n=30, of which n=15 with AlOH) doses. DS-Cav1 was safe and well tolerated and no serious vaccine-associated adverse events deemed related to the vaccine were identified. DS-Cav1 vaccination elicited robust neutralising activity and binding antibodies by 4 weeks after a single vaccination (p<0·0001 for F-binding and neutralising antibodies). In analyses of exploratory endpoints at week 44, pre-F-binding IgG and neutralising activity were significantly increased compared with baseline in all groups. At week 44, RSV A neutralising activity was 3·1 fold above baseline in the 50 μg group, 3·8 fold in the 150 μg group, and 4·5 fold in the 500 μg group (p<0·0001). RSV B neutralising activity was 2·8 fold above baseline in the 50 μg group, 3·4 fold in the 150 μg group, and 3·7 fold in the 500 μg group (p<0·0001). Pre-F-binding IgG remained significantly 3·2 fold above baseline in the 50 μg group, 3·4 fold in the 150 μg group, and 4·0 fold in the 500 μg group (p<0·0001). Pre-F-binding serum IgA remained 4·1 fold above baseline in the 50 μg group, 4·3 fold in the 150 μg group, and 4·8 fold in the 500 μg group (p<0·0001). Although a higher vaccine dose or second immunisation elicited a transient advantage compared with lower doses or a single immunisation, neither significantly impacted long-term neutralisation. There was no long-term effect of dose, number of vaccinations, or adjuvant on neutralising activity. INTERPRETATION In this phase 1 study, DS-Cav1 vaccination was safe and well tolerated. DS-Cav1 vaccination elicited a robust boost in RSV F-specific antibodies and neutralising activity that was sustained above baseline for at least 44 weeks. A single low-dose of pre-F immunisation of antigen-experienced individuals might confer protection that extends throughout an entire RSV season. FUNDING The National Institutes of Allergy and Infectious Diseases.
Collapse
|
17
|
Shan J, Britton PN, King CL, Booy R. The immunogenicity and safety of respiratory syncytial virus vaccines in development: A systematic review. Influenza Other Respir Viruses 2021; 15:539-551. [PMID: 33764693 PMCID: PMC8189192 DOI: 10.1111/irv.12850] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory infection globally. There are vaccine candidates in development, but a systematic review on immunogenicity and safety of vaccine is lacking. Methods This systematic review of RSV vaccine clinical trials was undertaken using four databases. Searches were conducted using both controlled vocabulary terms such as “Respiratory Syncytial Virus, Human,” “Respiratory Syncytial Virus Infections,” “Respiratory Syncytial Virus Vaccines,” “Immunization,” “Immunization Programs” and “Vaccines” and corresponding text word terms. The included studies were limited to clinical trials published from January 2000 to 31 December 2020. RSV infection case was defined as RSV‐associated medically attended acute respiratory illness (MAARI) or RSV infection by serologically confirmed test (Western blot) during the RSV surveillance period. We calculated the relative risk of each vaccine trial with RSV infection case. Results Of 6306 publications, 38 were included and data were extracted covering four major types of RSV vaccine candidates, these being live‐attenuated/chimeric (n = 14), recombinant‐vector (n = 6), subunit (n = 12) and nanoparticle vaccines (n = 6). For RSV infection cases, nine trials were involved and none of them showed a vaccine‐related increased MAARI during RSV surveillance season. Conclusion LID ∆M2‐2, MEDI M2‐2, RSVcps2 and LID/∆M2‐2 /1030s (live‐attenuated) were considered the most promising vaccine candidates in infant and children. In the elderly, a nanoparticle F vaccine candidate and Ad26.RSV.preF were considered as two potential effective vaccines. A promising maternal vaccine candidate is still lacking.
Collapse
Affiliation(s)
- Jing Shan
- Anhui Provincial Children Hospital, Hefei, China.,The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Philip N Britton
- The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Catherine L King
- National Centre for Immunisation Research and Surveillance (NCIRS), The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Robert Booy
- The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
18
|
Williams K, Bastian AR, Feldman RA, Omoruyi E, de Paepe E, Hendriks J, van Zeeburg H, Godeaux O, Langedijk JPM, Schuitemaker H, Sadoff J, Callendret B. Phase 1 Safety and Immunogenicity Study of a Respiratory Syncytial Virus Vaccine With an Adenovirus 26 Vector Encoding Prefusion F (Ad26.RSV.preF) in Adults Aged ≥60 Years. J Infect Dis 2021; 222:979-988. [PMID: 32320465 DOI: 10.1093/infdis/jiaa193] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Despite the high disease burden of respiratory syncytial virus (RSV) in older adults, there is no approved vaccine. We evaluated the experimental RSV vaccine, Ad26.RSV.preF, a replication-incompetent adenovirus 26 vector encoding the F protein stabilized in prefusion conformation. METHODS This phase 1 clinical trial was performed in healthy adults aged ≥60 years. Seventy-two participants received 1 or 2 intramuscular injections of low-dose (LD; 5 × 1010 vector particles) or high-dose (HD; 1 × 1011 vector particles) Ad26.RSV.preF vaccine or placebo, with approximately 12 months between doses and 2-year follow-up for safety and immunogenicity outcomes. RESULTS Solicited adverse events were reported by 44% of vaccine recipients and were transient and mild or moderate in intensity. No serious adverse events were related to vaccination. After the first vaccination, geometric mean titers for RSV-A2 neutralization increased from baseline (432 for LD and 512 for HD vaccine) to day 29 (1031 for LD and 1617 for HD). Pre-F-specific antibody geometric mean titers and median frequencies of F-specific interferon γ-secreting T cells also increased substantially from baseline. These immune responses were still maintained above baseline levels 2 years after immunization and could be boosted with a second immunization at 1 year. CONCLUSIONS Ad26.RSV.preF (LD and HD) had an acceptable safety profile and elicited sustained humoral and cellular immune responses after a single immunization in older adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jerry Sadoff
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | |
Collapse
|
19
|
Watson A, Wilkinson TMA. Respiratory viral infections in the elderly. Ther Adv Respir Dis 2021; 15:1753466621995050. [PMID: 33749408 PMCID: PMC7989115 DOI: 10.1177/1753466621995050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
With the global over 60-year-old population predicted to more than double over the next 35 years, caring for this aging population has become a major global healthcare challenge. In 2016 there were over 1 million deaths in >70 year olds due to lower respiratory tract infections; 13-31% of these have been reported to be caused by viruses. Since then, there has been a global COVID-19 pandemic, which has caused over 2.3 million deaths so far; increased age has been shown to be the biggest risk factor for morbidity and mortality. Thus, the burden of respiratory viral infections in the elderly is becoming an increasing unmet clinical need. Particular challenges are faced due to the interplay of a variety of factors including complex multimorbidities, decreased physiological reserve and an aging immune system. Moreover, their atypical presentation of symptoms may lead to delayed necessary care, prescription of additional drugs and prolonged hospital stay. This leads to morbidity and mortality and further nosocomial spread. Clinicians currently have limited access to sensitive detection methods. Furthermore, a lack of effective antiviral treatments means there is little incentive to diagnose and record specific non-COVID-19 viral infections. To meet this unmet clinical need, it is first essential to fully understand the burden of respiratory viruses in the elderly. Doing this through prospective screening research studies for all respiratory viruses will help guide preventative policies and clinical trials for emerging therapeutics. The implementation of multiplex point-of-care diagnostics as a mainstay in all healthcare settings will be essential to understand the burden of respiratory viruses, diagnose patients and monitor outbreaks. The further development of novel targeted vaccinations as well as anti-viral therapeutics and new ways to augment the aging immune system is now also essential.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Alastair Watson
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Tom M. A. Wilkinson
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton University, Mailpoint 810, Level F, South Block, Southampton General Hospital, Southampton, Hampshire, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
20
|
Zheng Y, Bian L, Zhao H, Liu Y, Lu J, Liu D, Zhang K, Song Y, Luo Y, Jiang C, Chen Y, Zhang Y, Kong W. Respiratory Syncytial Virus F Subunit Vaccine With AS02 Adjuvant Elicits Balanced, Robust Humoral and Cellular Immunity in BALB/c Mice. Front Immunol 2020; 11:526965. [PMID: 33013922 PMCID: PMC7516270 DOI: 10.3389/fimmu.2020.526965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory illness, particularly in infants, the elderly, and immunocompromised adults. There is no licensed commercial vaccine against RSV. Importantly, formalin-inactivated RSV vaccines mediate enhanced respiratory disease. RSV fusion (F) protein with pre-fusion conformation is a promising candidate subunit vaccine. However, some problems remain to be solved, such as low immunogenicity and humoral immunity bias. Adjuvants can effectively enhance and adjust vaccine immune responses. In this study, we formulated pre-fusion RSV-F protein with the adjuvants, Alhydrogel, MF59, AS03, AS02, and glycol chitosan (GCS). We then conducted head-to-head comparisons of vaccine-induced immune responses in BALB/c mice. All adjuvanted vaccines enhanced antigen-specific and neutralizing antibody titers and viral clearance and gave an order of adjuvant activity: AS02 > AS03, MF59 > GCS, and Alhydrogel. Among them, AS02 elicited the highest antibody expression, which persisted until week 18. Moreover, AS02 significantly enhanced Th1 type immune response in immunized mice. Mice in the AS02 group also showed faster recovery from viral attacks in challenge tests. Further transcriptome analysis revealed that AS02 regulates immune balance by activating TLR-4 and promotes Th1-type immune responses. These results suggest that AS02 may be an excellent candidate adjuvant for RSV-F subunit vaccines. This study also provides valuable information regarding the effect of other adjuvants on immune responses of RSV-F subunit vaccines.
Collapse
Affiliation(s)
- Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Huiting Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yulan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Dawei Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yueshuang Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Yusi Luo
- Intensive Care Unit, Department of Emergency, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
21
|
Drysdale SB, Barr RS, Rollier CS, Green CA, Pollard AJ, Sande CJ. Priorities for developing respiratory syncytial virus vaccines in different target populations. Sci Transl Med 2020; 12:eaax2466. [PMID: 32188721 PMCID: PMC7613568 DOI: 10.1126/scitranslmed.aax2466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023]
Abstract
The development of an effective vaccine against respiratory syncytial virus (RSV) has been hampered by major difficulties that occurred in the 1960s when a formalin-inactivated vaccine led to increased severity of RSV disease after acquisition of the virus in the RSV season after vaccination. Recent renewed efforts to develop a vaccine have resulted in about 38 candidate vaccines and monoclonal antibodies now in clinical development. The target populations for effective vaccination are varied and include neonates, young children, pregnant women, and older adults. The reasons for susceptibility to infection in each of these groups may be different and, therefore, could require different vaccine types for induction of protective immune responses, adding a further challenge for vaccine development. Here, we review the current knowledge of RSV vaccine development for these target populations and propose a view and rationale for prioritizing RSV vaccine development.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK.
- Institute of Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Rachael S Barr
- Taunton and Somerset NHS Foundation Trust, Taunton TA1 5DA, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Christopher A Green
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Charles J Sande
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK.
- KEMRI-Wellcome Trust Research Programme, Kilifi 80108, Kenya
| |
Collapse
|
22
|
Albershardt TC, Parsons AJ, Reeves RS, Flynn PA, Campbell DJ, Ter Meulen J, Berglund P. Therapeutic efficacy of PD1/PDL1 blockade in B16 melanoma is greatly enhanced by immunization with dendritic cell-targeting lentiviral vector and protein vaccine. Vaccine 2020; 38:3369-3377. [PMID: 32088020 DOI: 10.1016/j.vaccine.2020.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
While immune checkpoint inhibition is rapidly becoming standard of care in many solid tumors, immune checkpoint inhibitors (ICIs) fail to induce clinical responses in many patients, presumably due to insufficient numbers of tumor-specific T cells in the tumor milieu. To this end, immunization protocols using viral vectors expressing tumor-associated antigens are being explored to induce T cell responses that synergize with ICIs. However, the optimal combination of vaccine and immune checkpoint regimen remains undefined. Here, a dendritic cell-targeting lentiviral vector (ZVex®) expressing the endogenous murine tyrosinase-related protein 1 (mTRP1), or the human tumor antigen NY-ESO-1, was explored as monotherapy or heterologous prime-boost (HPB) vaccine regimen together with recombinant tumor antigen in the murine B16 melanoma model. PD1/PDL1 blockade significantly enhanced ZVex/mTRP1, but not ZVex/NY-ESO-1, induced immune responses in mice, whereas the opposite effect was observed with anti-CTLA4 antibody. Anti-tumor efficacy of anti-PD1, but not anti-PDL1 or anti-CTLA4, was significantly enhanced by ZVex/mTRP1 and HPB vaccination. These results suggest mechanistic differences in the effect of checkpoint blockade on vaccine-induced immune and anti-tumor responses against self versus non-self tumor antigens, possibly due to tolerance and state of exhaustion of anti-tumor T cells.
Collapse
Affiliation(s)
| | - Andrea Jean Parsons
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Rebecca Susan Reeves
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - David James Campbell
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jan Ter Meulen
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Peter Berglund
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
23
|
Welliver RC, Papin JF, Preno A, Ivanov V, Tian JH, Lu H, Guebre-Xabier M, Flyer D, Massare MJ, Glenn G, Ellingsworth L, Smith G. Maternal immunization with RSV fusion glycoprotein vaccine and substantial protection of neonatal baboons against respiratory syncytial virus pulmonary challenge. Vaccine 2019; 38:1258-1270. [PMID: 31761502 DOI: 10.1016/j.vaccine.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Globally, human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children. There are no licensed vaccines despite the high worldwide disease burden. RSV fusion (F) glycoprotein vaccine is the most advanced candidate for maternal immunization. In this report, a baboon maternal immunization model was used to assess the immunogenicity and protection of infants against pulmonary challenge with human RSV/A. Vaccination in the third trimester produced high anti-RSV F IgG titers and virus-neutralizing antibodies. Infants born to immunized females had high levels of serum RSV antibodies that were comparable to maternal levels at birth and persisted for over 50 days with a half-life of 14-24 days. Furthermore, infants from immunized females and challenged with RSV/A were healthy, developed less severe disease, and had only mild pulmonary inflammatory changes whereas infants born to non-vaccinated females developed more severe disease with marked to moderate interstitial pneumonia, pulmonary edema, and bronchiolar obstruction. These results support the further development of the RSV F vaccine for maternal immunization.
Collapse
Affiliation(s)
- Robert C Welliver
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 1100 North Lindsay Ave., Oklahoma City, OK, 73104 USA.
| | - James F Papin
- Department of Pathology, University of Oklahoma, Health Sciences Center, 1100 North Lindsay Ave., Oklahoma City, OK, 73104 USA; Division of Comparative Medicine, The University of Oklahoma, Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK, 73104 USA.
| | - Alisha Preno
- Division of Comparative Medicine, The University of Oklahoma, Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK, 73104 USA.
| | - Vadim Ivanov
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, 1100 North Lindsay Ave., Oklahoma City, OK, 73104 USA.
| | - Jing-Hui Tian
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, USA.
| | - Hanxin Lu
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, USA.
| | | | - David Flyer
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, USA
| | | | - Greg Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, USA.
| | | | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD, USA.
| |
Collapse
|
24
|
Zhang Y, Zhang Y, Wu R, Gao F, Zang P, Hu X, Gu C. Effect of cerebral small vessel disease on cognitive function and TLR4 expression in hippocampus. J Clin Neurosci 2019; 67:210-214. [DOI: 10.1016/j.jocn.2019.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
|
25
|
Beugeling M, De Zee J, Woerdenbag HJ, Frijlink HW, Wilschut JC, Hinrichs WLJ. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly. Expert Rev Vaccines 2019; 18:935-950. [PMID: 31446807 DOI: 10.1080/14760584.2019.1657013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes high morbidity and mortality rates among infants, young children, and the elderly worldwide. Unfortunately, a safe and effective vaccine is still unavailable. In 1966, a formalin-inactivated RSV vaccine failed and resulted in the death of two young children. This failure shifted research toward the development of subunit-based vaccines for pregnant women (to passively vaccinate infants) and the elderly. Among these subunit-based vaccines, the viral envelope glycoproteins show great potential as antigens. Areas covered: In this review, progress in the development of safe and effective subunit RSV vaccines based on the viral envelope glycoproteins and intended for pregnant women and the elderly, are reviewed and discussed. Studies published in the period 2012-2018 were included. Expert opinion: Researchers are close to bringing safe and effective subunit-based RSV vaccines to the market using the viral envelope glycoproteins as antigens. However, it remains a major challenge to elicit protective immunity, with a formulation that has sufficient (storage) stability. These issues may be overcome by using the RSV fusion protein in its pre-fusion conformation, and by formulating this protein as a dry powder. It may further be convenient to administer this powder via the pulmonary route.
Collapse
Affiliation(s)
- Max Beugeling
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jildou De Zee
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jan C Wilschut
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
26
|
Ye X, Iwuchukwu OP, Avadhanula V, Aideyan LO, McBride TJ, Ferlic-Stark LL, Patel KD, Piedra FA, Shah DP, Chemaly RF, Piedra PA. Comparison of Palivizumab-Like Antibody Binding to Different Conformations of the RSV F Protein in RSV-Infected Adult Hematopoietic Cell Transplant Recipients. J Infect Dis 2019; 217:1247-1256. [PMID: 29365155 DOI: 10.1093/infdis/jiy026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/16/2018] [Indexed: 11/14/2022] Open
Abstract
Background Most respiratory syncytial virus (RSV) vaccine candidates include fusion (F) protein in different conformations. Antigenic site II found in the different F conformations is the target of palivizumab, the only US Food and Drug Administration approved monoclonal antibody (mAb). Serum palivizumab-like antibody (PLA) is a potential serologic correlate of immunity. Our objective was to determine if different conformations of F protein in a palivizumab competitive antibody (PCA) assay affect the PLA concentrations. Methods Four PCA assays were standardized using mAbs. Each contained prefusion, postfusion, or intermediate F forms. PLA concentrations were measured in acute and convalescent sera from 22 RSV/A and 18 RSV/B-infected adult hematopoietic cell transplant (HCT) recipients. PLA concentrations were calculated using a 4-parameter logistic regression model and analyzed for statistical significance. Results PCA assays revealed significantly greater PLA concentrations in convalescent sera; comparable increases in PLA concentration in RSV/A and RSV/B-infected HCT recipients; and significantly reduced PLA concentrations in HCT recipients who shed RSV ≥14 days. A significant positive correlation was observed between PCA assays and RSV neutralizing antibody titers. Conclusions F protein conformation does not appear to have a measurable impact on PCA assays for measuring PLA induced by RSV/A or RSV/B infection.
Collapse
Affiliation(s)
- Xunyan Ye
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Obinna P Iwuchukwu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Letisha O Aideyan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Trevor J McBride
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Laura L Ferlic-Stark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Kirtida D Patel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Dimpy P Shah
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, University of Texas, Houston
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
27
|
Weinberg A, Lambert SL, Canniff J, Yu L, Lang N, Esser MT, Falloon J, Levin MJ. Antibody and B cell responses to an investigational adjuvanted RSV vaccine for older adults. Hum Vaccin Immunother 2019; 15:2466-2474. [PMID: 30852939 DOI: 10.1080/21645515.2019.1589282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Infections with respiratory syncytial virus (RSV) cause significant morbidity and hospitalization in older adults. We studied the humoral, mucosal and B cell responses of an investigational adjuvanted RSV sF vaccine, MEDI7510, in older adults. Methods: In a substudy of a randomized (1:1), double-blind, placebo-controlled study of MEDI7510 in adults ≥60 years of age, we collected blood and nasal secretions at days 0, 8, 29, 91 and 180 post-vaccination to measure F-specific IgG and IgA antibodies by ELISA, and plasmablasts and memory B cells by IgA/IgG dual-color fluorospot. Results: The 27 vaccine- and 18 placebo-recipients had a mean age of 73 years and included 24 women. Among vaccinees, 93% had significant increases in F-specific plasma IgG 85% had increased plasma IgA; 74% had increased nasal IgG and 26% nasal IgA; 93% had IgG and 89% IgA plasmablasts on Day 8 post-immunization; and 82% had IgG and 7.4% IgA memory B cell responses to the vaccine. Vaccinees <70 years of age and women had the highest responses to the vaccine. Conclusions: This adjuvanted vaccine generated robust humoral immune responses in older adults, including RSV F-specific systemic and mucosal antibodies and memory B cells. Nevertheless, age ≥70 years was associated with decreased immunogenicity of the adjuvanted vaccine.
Collapse
Affiliation(s)
- Adriana Weinberg
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA.,Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA.,Pathology of the University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora , CO , USA
| | | | - Jennifer Canniff
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA
| | - Li Yu
- Statistical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Nancy Lang
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA
| | - Mark T Esser
- Translational Medicine, MedImmune , Gaithersburg , MD , USA
| | - Judith Falloon
- Clinical Development, MedImmune , Gaithersburg , MD , USA
| | - Myron J Levin
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA.,Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA
| |
Collapse
|
28
|
Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, Mejias A, Karron RA, Simões EA, Knezevic I, Ramilo O, Piedra PA, Chu HY, Falsey AR, Nair H, Kragten-Tabatabaie L, Greenough A, Baraldi E, Papadopoulos NG, Vekemans J, Polack FP, Powell M, Satav A, Walsh EE, Stein RT, Graham BS, Bont LJ. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. THE LANCET. INFECTIOUS DISEASES 2018; 18:e295-e311. [PMID: 29914800 DOI: 10.1016/s1473-3099(18)30292-5] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/02/2023]
Abstract
The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the prioritisation of RSV vaccine development. The candidates include mAbs and vaccines using four approaches: (1) particle-based, (2) live-attenuated or chimeric, (3) subunit, (4) vector-based. Late-phase RSV vaccine trial failures highlight gaps in knowledge regarding immunological protection and provide lessons for future development. In this Review, we highlight promising new approaches for RSV vaccine design and provide a comprehensive overview of RSV vaccine candidates and mAbs in clinical development to prevent one of the most common and severe infectious diseases in young children and older adults worldwide.
Collapse
Affiliation(s)
- Natalie I Mazur
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands; Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Deborah Higgins
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Marta C Nunes
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit and Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands
| | - José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III Majadahonda, Madrid, Spain
| | - Annefleur C Langedijk
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Nicole Horsley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter J Openshaw
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Asuncion Mejias
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Department of Pediatrics, Division of Infectious Diseases, Center for Vaccines and Immunity at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Departamento de Farmacología y Pediatria, Facultad de Medicina, Universidad de Malaga, Malaga, Spain
| | - Ruth A Karron
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Af Simões
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Epidemiology Center for Global Health, Colorado School of Public Health, Aurora, CO, USA
| | - Ivana Knezevic
- Norms and Standards for Biologicals, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Octavio Ramilo
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Department of Pediatrics, Division of Infectious Diseases, Center for Vaccines and Immunity at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Department of Molecular Virology and Microbiology, and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Helen Y Chu
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands
| | - Ann R Falsey
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Department of Medicine, University of Rochester and Rochester General Hospital, Rochester, NY, USA
| | - Harish Nair
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Leyla Kragten-Tabatabaie
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Julius Clinical, Zeist, Netherlands
| | - Anne Greenough
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, School of Life Course Sciences, King's College London, London, UK
| | - Eugenio Baraldi
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Nikolaos G Papadopoulos
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Allergy Department, 2nd Paediatric Clinic, National Kapodistrian University of Athens, Athens, Greece; Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| | - Fernando P Polack
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Fundacion INFANT, Buenos Aires, Argentina
| | - Mair Powell
- Licensing Division, Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK
| | - Ashish Satav
- Mahatma Gandhi Tribal Hospital, Karmagram, Utavali, Tahsil, Dharni, India
| | - Edward E Walsh
- Department of Medicine, University of Rochester and Rochester General Hospital, Rochester, NY, USA
| | - Renato T Stein
- Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands; Pontificia Universidade Católica RGS (PUCRS), Porto Alegre, Brazil
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Louis J Bont
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands; Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands; Respiratory Syncytial Virus Network (ReSViNET) Foundation, Zeist, Netherlands.
| | | |
Collapse
|
29
|
Yu L, Esser MT, Falloon J, Villafana T, Yang H. Generalized ROC methods for immunogenicity data analysis of vaccine phase I studies in a seropositive population. Hum Vaccin Immunother 2018; 14:2692-2700. [PMID: 29913105 DOI: 10.1080/21645515.2018.1489191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Immunogenicity data from phase 1 vaccine studies can be difficult to interpret, especially in seropositive populations and when multiple assays are used. We developed 3 statistical methods (Youden index [YI] threshold, receiver-operating characteristic relative to baseline [ROC-B], and ROC of postdose levels [ROC-P]) to characterize complex immunogenicity data by assessing the proportion of a study population that achieved values above thresholds. The YI method calculates a single threshold per assay. Both ROC methods construct ROC curves for individual assays and surfaces for assay combinations to assess degree of separation of postdose values from a reference distribution; the ROC-B method uses overall predose values as the reference distribution and the ROC-P method uses pooled postdose values. All methods are applicable to a seropositive population with overlapping distributions of baseline and postdose measurements and can evaluate results of multiple assays jointly. The ROC-P method is also applicable when postdose levels are fully separated from baseline levels, as is common in a seronegative population. These methods were demonstrated using data from a phase 1a study of respiratory syncytial virus vaccines formulated with and without an adjuvant in a seropositive population of adults aged ≥60 years. All 3 methods provided a comprehensive assessment of vaccine immunogenicity effects with results presented in easily interpretable formats. In the example data, the methods demonstrated antigen dose response trend and contribution of adjuvant to response in multiple assays individually and jointly where optimal responses in assay combinations (humoral and cellular) are important.
Collapse
Affiliation(s)
- Li Yu
- a Statistical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Mark T Esser
- b Infectious Diseases/Vaccines Innovative Medicines, MedImmune , Gaithersburg , MD , USA
| | - Judith Falloon
- c Clinical Development, Infectious Diseases, MedImmune , Gaithersburg , MD , USA
| | - Tonya Villafana
- b Infectious Diseases/Vaccines Innovative Medicines, MedImmune , Gaithersburg , MD , USA
| | - Harry Yang
- a Statistical Sciences, MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
30
|
Blanco JCG, Boukhvalova MS, Morrison TG, Vogel SN. A multifaceted approach to RSV vaccination. Hum Vaccin Immunother 2018; 14:1734-1745. [PMID: 29771625 PMCID: PMC6067850 DOI: 10.1080/21645515.2018.1472183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/12/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants, resulting in significant morbidity and mortality worldwide. In addition, RSV infections occur throughout different ages, thus, maintaining the virus in circulation, and increasing health risk to more susceptible populations such as infants, the elderly, and the immunocompromised. To date, there is no vaccine approved to prevent RSV infection or minimize symptoms of infection. Current clinical trials for vaccines against RSV are being carried out in four very different populations. There are vaccines that target two different pediatric populations, infants 2 to 6 month of age and seropositive children over 6 months of age, as well as women (non-pregnant or pregnant in their third trimester). There are vaccines that target adult and elderly populations. In this review, we will present and discuss RSV vaccine candidates currently in clinical trials. We will describe the preclinical studies instrumental for their advancement, with the goal of introducing new preclinical models that may more accurately predict the outcome of clinical vaccine studies.
Collapse
|
31
|
Human respiratory syncytial virus: pathogenesis, immune responses, and current vaccine approaches. Eur J Clin Microbiol Infect Dis 2018; 37:1817-1827. [PMID: 29876771 DOI: 10.1007/s10096-018-3289-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
Respiratory syncytial virus continues to pose a serious threat to the pediatric populations worldwide. With a genomic makeup of 15,200 nucleotides, the virus encodes for 11 proteins serving as envelope spikes, inner envelope proteins, and non-structural and ribonucleocapsid complexes. The fusion (F) and attachment (G) surface glycoproteins are the key targets for neutralizing antibodies. The highly variable G with altered glycosylations and the conformational alternations of F create challenges for vaccine development. The metastable F protein is responsible for RSV-host cell fusion and thus infectivity. Novel antigenic sites were identified on this form following its stabilization and solving its crystal structure. Importantly, site ø displays neutralizing activity exceeding those of post-F-specific and shared antigenic sites, such as site II which is the target for Palivizumab therapeutic antibody. Induction of high neutralizing antibody responses by pre-F immunization in animal models promoted it as a major vaccine candidate. Since RSV infection is more serious at age extremities and in individuals with undermining health conditions, vaccines are being developed to target these populations. Infants below three months of age have a suppressive immune system, making vaccines' immunogenicity weak. Therefore, a suggested strategy to protect newborns from RSV infection would be through passive immunity of maternal antibodies. Hence, pregnant women at their third trimester have been selected as an ideal target for vaccination with RSV pre-F vaccine. This review summarizes the different modes of RSV pathogenesis and host's immune response to the infection, and illustrates on the latest updates of vaccine development and vaccination approaches.
Collapse
|
32
|
Baseline immune profile by CyTOF can predict response to an investigational adjuvanted vaccine in elderly adults. J Transl Med 2018; 16:153. [PMID: 29866115 PMCID: PMC5987461 DOI: 10.1186/s12967-018-1528-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023] Open
Abstract
Background Mass cytometry, or CyTOF (Cytometry by Time-of-Flight), permits the simultaneous detection of over 40 phenotypic and functional immune markers in individual cells without the issues of spectral overlap seen in traditional flow cytometry. Methods In this study, we applied CyTOF to comprehensively characterize the circulating immune cell populations in elderly individuals both before and after administration of an investigational adjuvanted protein vaccine against respiratory syncytial virus (RSV) in a Phase 1a trial. Antigen-specific T cell responses to RSV by IFNγ ELISPOT had been observed in most but not all recipients in the highest dose cohort in this trial. Here, CyTOF was used to characterize the cellular response profile of ELISPOT responders and non-responders in this vaccine dose cohort. Results Both CD4+ and CD8+ T cell antigen-specific IFNγ responses were observed. Principal components analysis revealed baseline differences between responders and non-responders, including differences in activated (HLA-DR+) CD4+ and CD8+ T cells, which were higher in non-responders versus responders. Using viSNE to analyze RSV-responsive CD4+ and CD8+ T cells, we also found increased expression of HLA-DR, CCR7, CD127 and CD69 in non-responders versus responders. Conclusions High parameter CyTOF can help profile immune components associated with differential vaccine responsiveness. Electronic supplementary material The online version of this article (10.1186/s12967-018-1528-1) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Seydoux E, Liang H, Dubois Cauwelaert N, Archer M, Rintala ND, Kramer R, Carter D, Fox CB, Orr MT. Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:98-112. [PMID: 29769270 DOI: 10.4049/jimmunol.1701604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood. In this article, we demonstrate that the inflammasome activation and the subsequent release of IL-1β are central effectors of the action of GLA-SE, as infiltration of innate cells into the draining lymph nodes and production of IFN-γ are reduced in ASC-/- animals. Importantly, the early proliferation of Ag-specific CD4+ T cells was completely ablated after immunization in ASC-/- animals. Moreover, numbers of Ag-specific CD4+ T and B cells as well as production of IFN-γ, TNF-α, and IL-2 and Ab titers were considerably reduced in ASC-/-, NLRP3-/-, and IL-1R-/- mice compared with wild-type mice and were completely ablated in TLR4-/- animals. Also, extracellular ATP, a known trigger of the inflammasome, augments Ag-specific CD4+ T cell responses, as hydrolyzing it with apyrase diminished adaptive responses induced by GLA-SE. These data thus demonstrate that GLA-SE adjuvanticity acts through TLR4 signaling and NLRP3 inflammasome activation to promote robust Th1 and B cell responses to vaccine Ags. The findings suggest that engagement of both TLR and inflammasome activators may be a general paradigm for induction of robust CD4 T cell immunity with combination adjuvants such as GLA-SE.
Collapse
Affiliation(s)
- Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Michelle Archer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Ryan Kramer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
34
|
Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol 2018; 41:34-41. [PMID: 29677646 DOI: 10.1016/j.coph.2018.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Immunosenescence contributes to increased incidence and severity of many infections in old age and is responsible for impaired immunogenicity and efficacy of vaccines. Adjuvants are one strategy to enhance immunogenicity of vaccines. The oil-in-water emulsions MF59TM and AS03, as well as a virosomal vaccine have been licensed in seasonal or pandemic influenza vaccines and are/were used successfully in the elderly. AS01, a liposome-based adjuvant comprising two immunostimulants has recently been approved in a recombinant protein vaccine for older adults, which showed very high efficacy against herpes zoster in clinical trials. Several adjuvants for use in the older population are in clinical and preclinical development and will hopefully improve vaccines for this age group in the future.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
35
|
Djagbare MD, Yu L, Parupudi A, Sun J, Coughlin ML, Rush BS, Sanyal G. Monoclonal antibody based in vitro potency assay as a predictor of antigenic integrity and in vivo immunogenicity of a Respiratory Syncytial Virus post-fusion F-protein based vaccine. Vaccine 2018; 36:1673-1680. [PMID: 29456016 DOI: 10.1016/j.vaccine.2018.01.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
Abstract
The post-fusion form of Respiratory Syncytial Virus (RSV) fusion (F) protein has been used recently in clinical trials as a potential vaccine antigen with the objective of eliciting protective immune response against RSV. In this paper, in vitro antigenicity and in vivo immunogenicity of recombinant, soluble F protein of RSV (RSVsF) were evaluated by several assays. In Vitro Relative Potency (IVRP) of RSVsF was measured in a sandwich ELISA using two antibodies, each specific for epitope site A or C. Therefore, IVRP reflected the integrity of the antigen in terms of changes in antibody binding affinity of either or both of these sites. RSVsF samples with a wide range of IVRP values were generated by applying UV irradiation (photo) and high temperature (heat) induced stress for varying lengths of time. These samples were characterized in terms of stress induced modifications in primary and secondary structures as well as aggregation of RSVsF. Immunogenicity, also referred to as In vivo potency, was measured by induction of total F-protein specific IgG and RSV-neutralizing antibodies in mice dosed with these RSVsF samples. Comparison of results between IVRP and these immunogenicity assays revealed that IVRP provided a sensitive read-out of the integrity of epitope sites A and C, and a conservative and reliable evaluation of the potency of RSVsF as a vaccine antigen. This high throughput and fast turn-around assay allowed us to efficiently screen many different RSVsF antigen lots, thereby acting as an effective filter for ensuring high quality antigen that delivered in vivo potency. In vitro and in vivo potencies were further probed at the level of individual epitope sites, A and C. Results of these experiments indicated that site A was relatively resistant to stress induced loss of potency, in vitro or in vivo, compared to site C.
Collapse
Affiliation(s)
- Matieyendou Didier Djagbare
- Analytical Sciences, Biopharmaceutical Development, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Li Yu
- Statistical Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Arun Parupudi
- Analytical Sciences, Biopharmaceutical Development, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jenny Sun
- Analytical Sciences, Biopharmaceutical Development, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Melissa L Coughlin
- Analytical Sciences, Biopharmaceutical Development, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Benjamin S Rush
- Analytical Sciences, Biopharmaceutical Development, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Gautam Sanyal
- Analytical Sciences, Biopharmaceutical Development, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
36
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
37
|
Russell CJ, Simões EAF, Hurwitz JL. Vaccines for the Paramyxoviruses and Pneumoviruses: Successes, Candidates, and Hurdles. Viral Immunol 2018; 31:133-141. [PMID: 29323621 DOI: 10.1089/vim.2017.0137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human parainfluenza viruses (family Paramyxoviridae), human metapneumovirus, and respiratory syncytial virus (family Pneumoviridae) infect most infants and children within the first few years of life and are the etiologic agents for many serious acute respiratory illnesses. These virus infections are also associated with long-term diseases that impact quality of life, including asthma. Despite over a half-century of vaccine research, development, and clinical trials, no vaccine has been licensed to date for the paramyxoviruses or pneumoviruses for the youngest infants. In this study, we describe the recent reclassification of paramyxoviruses and pneumoviruses into distinct families by the International Committee on the Taxonomy of Viruses. We also discuss some past unsuccessful vaccine trials and some currently preferred vaccine strategies. Finally, we discuss hurdles that must be overcome to support successful respiratory virus vaccine development for the youngest children.
Collapse
Affiliation(s)
- Charles J Russell
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Molecular Biology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Eric A F Simões
- 3 Department of Pediatrics, University of Colorado School of Medicine, Department of Epidemiology, Colorado School of Public Health, Section of Infectious Diseases, Children's Hospital Colorado, Aurora, Colorado
| | - Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Molecular Biology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
38
|
Falloon J, Yu J, Esser MT, Villafana T, Yu L, Dubovsky F, Takas T, Levin MJ, Falsey AR. An Adjuvanted, Postfusion F Protein-Based Vaccine Did Not Prevent Respiratory Syncytial Virus Illness in Older Adults. J Infect Dis 2017; 216:1362-1370. [PMID: 29029260 PMCID: PMC5853767 DOI: 10.1093/infdis/jix503] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is an important cause of illness in older adults. This study assessed efficacy of a vaccine for prevention of RSV-associated acute respiratory illness (ARI), defined by specified symptoms with virologic confirmation. Methods This phase 2b study evaluated RSV postfusion F protein (120 µg) with glucopyranosyl lipid adjuvant (5 µg) in 2% stable emulsion. Subjects aged ≥60 years were randomly assigned at a ratio of 1:1 to receive vaccine or placebo (all received inactivated influenza vaccine). Ill subjects recorded symptoms and provided blood and nasal swab samples. Results In the per-protocol population (n = 1894), the incidence of RSV-associated ARI occurring ≥14 days after dosing was 1.7% and 1.6% in the vaccine and placebo groups, respectively, for a vaccine efficacy (VE) of –7.1% (90% confidence interval [CI], –106.9%–44.3%). Efficacy was not observed in secondary analyses that included seroresponse to nonvaccine RSV antigens (VE, 8.9%; 90% CI, –28.5%–35.4%) or symptoms combined with seroresponse (VE, 10.0%; 90% CI, –45.4%–44.4%). On day 29, 92.9% of vaccinees had an anti-F immunoglobulin G antibody seroresponse. Overall, 48.5% and 30.9% of RSV vaccine recipients reported local and systemic solicited symptoms, respectively. Conclusion The RSV vaccine was immunogenic but did not protect older adults from RSV illness. Clinical Trials Registration NCT02508194.
Collapse
Affiliation(s)
| | - Jing Yu
- MedImmune, Gaithersburg, Maryland
| | | | | | - Li Yu
- MedImmune, Gaithersburg, Maryland
| | | | | | - Myron J Levin
- University of Colorado Anschutz Medical Campus, Aurora
| | - Ann R Falsey
- Rochester General Hospital and University of Rochester, New York
| |
Collapse
|
39
|
Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00225-17. [PMID: 29021302 PMCID: PMC5717189 DOI: 10.1128/cvi.00225-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/30/2017] [Indexed: 11/21/2022]
Abstract
Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log2; linear over a range of 4.27 to 9.65 log2 50% inhibitory concentration (IC50); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (n = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.
Collapse
|
40
|
Cayatte C, Snell Bennett A, Rajani GM, Hostetler L, Maynard SK, Lazzaro M, McTamney P, Ren K, O’Day T, McCarthy MP, Schneider-Ohrum K. Inferior immunogenicity and efficacy of respiratory syncytial virus fusion protein-based subunit vaccine candidates in aged versus young mice. PLoS One 2017; 12:e0188708. [PMID: 29182682 PMCID: PMC5705161 DOI: 10.1371/journal.pone.0188708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is recognized as an important cause of lower and upper respiratory tract infections in older adults, and a successful vaccine would substantially lower morbidity and mortality in this age group. Recently, two vaccine candidates based on soluble purified glycoprotein F (RSV F), either alone or adjuvanted with glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE), failed to reach their primary endpoints in clinical efficacy studies, despite demonstrating the desired immunogenicity profile and efficacy in young rodent models. Here, one of the RSV F vaccine candidates (post-fusion conformation, RSV post-F), and a stabilized pre-fusion form of RSV F (RSV pre-F, DS-Cav1) were evaluated in aged BALB/c mice. Humoral and cellular immunogenicity elicited after immunization of naïve, aged mice was generally lower compared to young animals. In aged mice, RSV post-F vaccination without adjuvant poorly protected the respiratory tract from virus replication, and addition of GLA-SE only improved protection in the lungs, but not in nasal turbinates. RSV pre-F induced higher neutralizing antibody titers compared to RSV post-F (as previously reported) but interestingly, RSV F-specific CD8 T cell responses were lower compared to RSV post-F responses regardless of age. The vaccines were also tested in RSV seropositive aged mice, in which both antigen forms similarly boosted neutralizing antibody titers, although GLA-SE addition boosted neutralizing activity only in RSV pre-F immunized animals. Cell-mediated immune responses in the aged mice were only slightly boosted and well below levels induced in seronegative young mice. Taken together, the findings suggest that the vaccine candidates were not able to induce a strong anti-RSV immune response in recipient mice with an aged immune system, in agreement with recent human clinical trial results. Therefore, the aged mouse model could be a useful tool to evaluate improved vaccine candidates, targeted to prevent RSV disease in older adults.
Collapse
Affiliation(s)
- Corinne Cayatte
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Angie Snell Bennett
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Gaurav Manohar Rajani
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Leigh Hostetler
- Laboratory Animal Resources, MedImmune, Gaithersburg, Maryland, United States of America
| | - Sean K. Maynard
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Michelle Lazzaro
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Patrick McTamney
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Kuishu Ren
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Terrence O’Day
- Department of Statistical Sciences, MedImmune, Gaithersburg, Maryland, United States of America
| | - Michael P. McCarthy
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| | - Kirsten Schneider-Ohrum
- Department of Infectious Diseases/Vaccines, MedImmune, Gaithersburg, Maryland, United States of America
| |
Collapse
|
41
|
van Dinther D, Stolk DA, van de Ven R, van Kooyk Y, de Gruijl TD, den Haan JMM. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. J Leukoc Biol 2017; 102:1017-1034. [PMID: 28729358 PMCID: PMC5597514 DOI: 10.1189/jlb.5mr0217-059rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
There is a growing understanding of why certain patients do or do not respond to checkpoint inhibition therapy. This opens new opportunities to reconsider and redevelop vaccine strategies to prime an anticancer immune response. Combination of such vaccines with checkpoint inhibitors will both provide the fuel and release the brake for an efficient anticancer response. Here, we discuss vaccine strategies that use C-type lectin receptor (CLR) targeting of APCs, such as dendritic cells and macrophages. APCs are a necessity for the priming of antigen-specific cytotoxic and helper T cells. Because CLRs are natural carbohydrate-recognition receptors highly expressed by multiple subsets of APCs and involved in uptake and processing of Ags for presentation, these receptors seem particularly interesting for targeting purposes.
Collapse
Affiliation(s)
- Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Dorian A Stolk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
42
|
Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel® in European and African adults: A phase 1a/1b, randomized, double-blind multi-centre trial. Vaccine 2017; 35:6218-6227. [DOI: 10.1016/j.vaccine.2017.09.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022]
|
43
|
Midgley CM, Haynes AK, Baumgardner JL, Chommanard C, Demas SW, Prill MM, Abedi GR, Curns AT, Watson JT, Gerber SI. Determining the Seasonality of Respiratory Syncytial Virus in the United States: The Impact of Increased Molecular Testing. J Infect Dis 2017; 216:345-355. [PMID: 28859428 DOI: 10.1093/infdis/jix275] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background In the United States, the seasonality of respiratory syncytial virus (RSV) has traditionally been defined on the basis of weeks during which antigen-based tests detect RSV in >10% of specimens (hereafter, the "10% threshold"). Because molecular testing has become more widely used, we explored the extent of polymerase chain reaction (PCR)-based RSV testing and its impact on determining the seasonality of RSV. Methods We assessed antigen- and PCR-based RSV reports submitted to the National Respiratory and Enteric Virus Surveillance System during July 2005-June 2015. To characterize RSV seasons by using PCR-based reports, we assessed the traditional 10% threshold; subsequently, we developed 3 methods based on either PCR-based detections or the percentage of positive test results. Results The annual number of PCR-based reports increased 200-fold during 2005-2015, while the annual number of antigen-based reports declined. The weekly percentage of specimens positive for RSV by PCR was less than that for antigen-detection tests; accordingly, the 10% threshold excluded detections by PCR and so was imprecise for characterizing RSV seasons. Among our PCR-specific approaches, the most sensitive and consistent method captured 96%-98% of annual detections within a season, compared with 82%-94% captured using the traditional method. Conclusions PCR-based reports are increasingly relevant for RSV surveillance and determining the seasonality of RSV. These PCR-specific methods provide a more comprehensive understanding of RSV trends, particularly in settings where testing and reporting are most active. Diagnostic practices will vary by locality and should be understood before choosing which method to apply.
Collapse
Affiliation(s)
- Claire M Midgley
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases.,Epidemic Intelligence Service, Centers for Disease Control and Prevention
| | | | - Jason L Baumgardner
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | | | - Sara W Demas
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mila M Prill
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | | | - Aaron T Curns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - John T Watson
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| |
Collapse
|
44
|
Falloon J, Talbot HK, Curtis C, Ervin J, Krieger D, Dubovsky F, Takas T, Yu J, Yu L, Lambert SL, Villafana T, Esser MT. Dose Selection for an Adjuvanted Respiratory Syncytial Virus F Protein Vaccine for Older Adults Based on Humoral and Cellular Immune Responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00157-17. [PMID: 28679495 PMCID: PMC5585697 DOI: 10.1128/cvi.00157-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022]
Abstract
This is the second phase 1 study of a respiratory syncytial virus (RSV) vaccine containing RSV fusion protein (sF) adjuvanted with glucopyranosyl lipid A (GLA) in a squalene-based 2% stable emulsion (GLA-SE). In this randomized, double-blind study, 261 subjects aged ≥60 years received inactivated influenza vaccine (IIV), a vaccine containing 120 μg sF with escalating doses of GLA (1, 2.5, or 5 μg) in SE, or a vaccine containing 80 μg sF with 2.5 μg GLA in SE. Subjects receiving 120 μg sF with 2.5 or 5 μg GLA were also randomized to receive IIV or placebo. Immunity to RSV was assessed by detection of microneutralizing, anti-F immunoglobulin G, and palivizumab-competitive antibodies and F-specific gamma interferon enzyme-linked immunosorbent spot assay T-cell responses. Higher adjuvant doses increased injection site discomfort, but at the highest dose, the reactogenicity was similar to that of IIV. Significant humoral and cellular immune responses were observed. The 120 μg sF plus 5.0 μg GLA formulation resulted in the highest responses in all subjects and in older subjects. These results confirm previous observations of vaccine tolerability, safety, and immunogenicity and were used to select the 120 μg sF plus 5.0 μg GLA formulation for phase 2 evaluation. (This study has been registered at ClinicalTrials.gov under registration no. NCT02289820.).
Collapse
MESH Headings
- Adjuvants, Immunologic
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Dose-Response Relationship, Immunologic
- Double-Blind Method
- Enzyme-Linked Immunospot Assay
- Female
- Glucosides/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunogenicity, Vaccine
- Immunoglobulin G/blood
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Lipid A/immunology
- Male
- Middle Aged
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/immunology
- T-Lymphocytes/immunology
- Viral Fusion Proteins/administration & dosage
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
| | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - John Ervin
- Center for Pharmaceutical Research, Kansas City, Missouri, USA
| | | | | | | | - Jing Yu
- MedImmune, Gaithersburg, Maryland, USA
| | - Li Yu
- MedImmune, Gaithersburg, Maryland, USA
| | | | | | | |
Collapse
|
45
|
Villafana T, Falloon J, Griffin MP, Zhu Q, Esser MT. Passive and active immunization against respiratory syncytial virus for the young and old. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28525961 DOI: 10.1080/14760584.2017.1333425] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants worldwide and also causes significant disease in the elderly. Despite 60 years of RSV research and vaccine development, there is only one approved medicine to prevent RSV infections. Palivizumab, a monoclonal antibody (mAb) against the RSV fusion (F) protein, is indicated for preterm infants and children at high-risk for RSV infections. It is an active time in RSV vaccine and mAb development with 14 vaccines and 2 mAbs currently being tested in clinical trials as of 13 February 2017. Active vaccination of women in the third trimester or passive immunization of infants with a mAb are particularly attractive approaches as the most severe disease occurs within the first 6 months of life. Areas covered: Here, we review current approaches for preventing RSV in the young and old, describe proposed clinical endpoints for studies in pediatric and adult clinical trials and highlight results from recent and ongoing clinical studies. Expert commentary: With 16 candidates in clinical development, approval of the first RSV vaccine or mAb for the prevention of RSV in all infants or the elderly is likely to occur in the next five years.
Collapse
Affiliation(s)
| | | | | | - Qing Zhu
- a MedImmune LLC , Gaithersburg , MD , USA
| | | |
Collapse
|
46
|
Schmidt ST, Neustrup MA, Harloff-Helleberg S, Korsholm KS, Rades T, Andersen P, Christensen D, Foged C. Systematic Investigation of the Role of Surfactant Composition and Choice of oil: Design of a Nanoemulsion-Based Adjuvant Inducing Concomitant Humoral and CD4 + T-Cell Responses. Pharm Res 2017; 34:1716-1727. [PMID: 28516400 DOI: 10.1007/s11095-017-2180-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Induction of cell-mediated immune (CMI) responses is crucial for vaccine-mediated protection against difficult vaccine targets, e.g., Chlamydia trachomatis (Ct). Adjuvants are included in subunit vaccines to potentiate immune responses, but many marketed adjuvants stimulate predominantly humoral immune responses. Therefore, there is an unmet medical need for new adjuvants, which potentiate humoral and CMI responses. The purpose was to design an oil-in-water nanoemulsion adjuvant containing a synthetic CMI-inducing mycobacterial monomycoloyl glycerol (MMG) analogue to concomitantly induce humoral and CMI responses. METHODS The influence of emulsion composition was analyzed using a systematic approach. Three factors were varied: i) saturation of the oil phase, ii) type and saturation of the applied surfactant mixture, and iii) surfactant mixture net charge. RESULTS The emulsions were colloidally stable with a droplet diameter of 150-250 nm, and the zeta-potential correlated closely with the net charge of the surfactant mixture. Only cationic emulsions containing the unsaturated surfactant mixture induced concomitant humoral and CMI responses upon immunization of mice with a Ct antigen, and the responses were enhanced when squalene was applied as the oil phase. In contrast, emulsions with neutral and net negative zeta-potentials did not induce CMI responses. The saturation degree of the oil phase did not influence the adjuvanticity. CONCLUSION Cationic, MMG analogue-containing nanoemulsions are potential adjuvants for vaccines against pathogens for which both humoral and CMI responses are needed.
Collapse
Affiliation(s)
- Signe Tandrup Schmidt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.,Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Malene Aaby Neustrup
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Stine Harloff-Helleberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
47
|
Rezaee F, Linfield DT, Harford TJ, Piedimonte G. Ongoing developments in RSV prophylaxis: a clinician's analysis. Curr Opin Virol 2017; 24:70-78. [PMID: 28500974 DOI: 10.1016/j.coviro.2017.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children worldwide. Lower respiratory tract infection due to RSV is one of the most common causes of hospitalization for infants, especially those born premature or with chronic lung or heart disease. Furthermore, RSV infection is an important cause of morbidity in adults, particularly in the elderly and immunocompromised individuals. The acute phase of this infection is often followed by episodes of wheezing that recur for months or years and usually lead to a physician diagnosis of asthma. RSV was discovered more than 50 years ago, and despite extensive research to identify pharmacological therapies, the most effective management of this infection remains supportive care. The trial of a formalin-inactivated RSV vaccine in the 1960s resulted in priming the severe illness upon natural infection. Currently, Palivizumab is the only available option for RSV prophylaxis, and because of restricted clinical benefits and high costs, it has been limited to a group of high-risk infants. There are several ongoing trials in preclinical, Phase-I, Phase-II, or Phase-III clinical stages for RSV vaccine development based on various strategies. Here we review the existing available prophylactic options, the current stages of RSV vaccine clinical trials, different strategies, and major hurdles in the development of an effective RSV vaccine.
Collapse
Affiliation(s)
- Fariba Rezaee
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States.
| | - Debra T Linfield
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States
| | - Terri J Harford
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States
| | - Giovanni Piedimonte
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children's, United States; Pathobiology Department, Lerner Research Institute, United States
| |
Collapse
|
48
|
Abstract
Adjuvant properties of bacterial cell wall components like MPLA (monophosphoryl lipid A) are well described and have gained FDA approval for use in vaccines such as Cervarix. MPLA is the product of chemically modified lipooligosaccharide (LOS), altered to diminish toxic proinflammatory effects while retaining adequate immunogenicity. Despite the virtually unlimited number of potential sources among bacterial strains, the number of useable compounds within this promising class of adjuvants are few. We have developed bacterial enzymatic combinatorial chemistry (BECC) as a method to generate rationally designed, functionally diverse lipid A. BECC removes endogenous or introduces exogenous lipid A-modifying enzymes to bacteria, effectively reprogramming the lipid A biosynthetic pathway. In this study, BECC is applied within an avirulent strain of Yersinia pestis to develop structurally distinct LOS molecules that elicit differential Toll-like receptor 4 (TLR4) activation. Using reporter cell lines that measure NF-κB activation, BECC-derived molecules were screened for the ability to induce a lower proinflammatory response than Escherichia coli LOS. Their structures exhibit varied, dose-dependent, TLR4-driven NF-κB activation with both human and mouse TLR4 complexes. Additional cytokine secretion screening identified molecules that induce levels of tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) comparable to the levels induced by phosphorylated hexa-acyl disaccharide (PHAD). The lead candidates demonstrated potent immunostimulation in mouse splenocytes, human primary blood mononuclear cells (PBMCs), and human monocyte-derived dendritic cells (DCs). This newly described system allows directed programming of lipid A synthesis and has the potential to generate a diverse array of TLR4 agonist candidates.IMPORTANCE There is an urgent need to develop effective vaccines against infectious diseases that continue to be major causes of morbidity and mortality worldwide. Making effective vaccines requires selecting an adjuvant to strengthen an appropriate and protective immune response. This work describes a practical method, bacterial enzymatic combinatorial chemistry (BECC), for generating functionally diverse molecules for adjuvant use. These molecules were analyzed in cell culture for their ability to initiate immune stimulatory activity. Several of the assays described herein show promising in vitro cytokine production and costimulatory molecule expression results, suggesting that the BECC molecules may be useful in future vaccine preparations.
Collapse
|
49
|
Kimura H, Nagasawa K, Kimura R, Tsukagoshi H, Matsushima Y, Fujita K, Hirano E, Ishiwada N, Misaki T, Oishi K, Kuroda M, Ryo A. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B. INFECTION GENETICS AND EVOLUTION 2017; 52:1-9. [PMID: 28414106 DOI: 10.1016/j.meegid.2017.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 11/19/2022]
Abstract
In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10-4substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan; Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Ryusuke Kimura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaoruimachi, Takasaki-shi, Gunma 370-0033, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kiyotaka Fujita
- School of Medical Technology, Faculty of Health Science, Gumma Paz College, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Eiko Hirano
- Fukui Prefectural Institute of Public Health and Environmental Science, 39-4 Harame-cho, Fukui-shi, Fukui 910-8851, Japan
| | - Naruhiko Ishiwada
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Takako Misaki
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|
50
|
Immunization with Low Doses of Recombinant Postfusion or Prefusion Respiratory Syncytial Virus F Primes for Vaccine-Enhanced Disease in the Cotton Rat Model Independently of the Presence of a Th1-Biasing (GLA-SE) or Th2-Biasing (Alum) Adjuvant. J Virol 2017; 91:JVI.02180-16. [PMID: 28148790 DOI: 10.1128/jvi.02180-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection of children previously immunized with a nonlive, formalin-inactivated (FI)-RSV vaccine has been associated with serious enhanced respiratory disease (ERD). Consequently, detailed studies of potential ERD are a critical step in the development of nonlive RSV vaccines targeting RSV-naive children and infants. The fusion glycoprotein (F) of RSV in either its postfusion (post-F) or prefusion (pre-F) conformation is a target for neutralizing antibodies and therefore an attractive antigen candidate for a pediatric RSV subunit vaccine. Here, we report the evaluation of RSV post-F and pre-F in combination with glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE) (GLA-SE) and alum adjuvants in the cotton rat model. Immunization with optimal doses of RSV F antigens in the presence of GLA-SE induced high titers of virus-neutralizing antibodies and conferred complete lung protection from virus challenge, with no ERD signs in the form of alveolitis. To mimic a waning immune response, and to assess priming for ERD under suboptimal conditions, an antigen dose de-escalation study was performed in the presence of either GLA-SE or alum. At low RSV F doses, alveolitis-associated histopathology was unexpectedly observed with either adjuvant at levels comparable to FI-RSV-immunized controls. This occurred despite neutralizing-antibody titers above the minimum levels required for protection and with no/low virus replication in the lungs. These results emphasize the need to investigate a pediatric RSV vaccine candidate carefully for priming of ERD over a wide dose range, even in the presence of strong neutralizing activity, Th1 bias-inducing adjuvant, and protection from virus replication in the lower respiratory tract.IMPORTANCE RSV disease is of great importance worldwide, with the highest burden of serious disease occurring upon primary infection in infants and children. FI-RSV-induced enhanced disease, observed in the 1960s, presented a major and ongoing obstacle for the development of nonlive RSV vaccine candidates. The findings presented here underscore the need to evaluate a nonlive RSV vaccine candidate during preclinical development over a wide dose range in the cotton rat RSV enhanced-disease model, as suboptimal dosing of several RSV F subunit vaccine candidates led to the priming for ERD. These observations are relevant to the validity of the cotton rat model itself and to safe development of nonlive RSV vaccines for seronegative infants and children.
Collapse
|