1
|
Zeng Z, Wang Z, Wang X, Yao L, Shang Y, Feng H, Wang H, Shao H, Luo Q, Wen G. Spray vaccination with a Newcastle disease virus (NDV)-vectored infectious laryngotracheitis (ILT) vaccine protects commercial chickens from ILT in the presence of maternally-derived antibodies. Avian Pathol 2024; 53:533-539. [PMID: 38836447 DOI: 10.1080/03079457.2024.2356676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally-derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 d of age (doa) was evaluated. The chickens were exposed to 160-μm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titres were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.
Collapse
Affiliation(s)
- Zhe Zeng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Zichen Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Xin Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Lun Yao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Yu Shang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Helong Feng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Hongcai Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
4
|
Characterization of a Recombinant Thermostable Newcastle Disease Virus (NDV) Expressing Glycoprotein gB of Infectious Laryngotracheitis Virus (ILTV) Protects Chickens against ILTV Challenge. Viruses 2023; 15:v15020500. [PMID: 36851714 PMCID: PMC9959528 DOI: 10.3390/v15020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Infectious laryngotracheitis (ILT) and Newcastle disease (ND) are two important avian diseases that have caused huge economic losses to the poultry industry worldwide. Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated a thermostable recombinant NDV (rNDV) expressing the glycoprotein gB (gB) of infectious laryngotracheitis virus (ITLV) based on the full-length cDNA clone of the thermostable TS09-C strain. This thermostable rNDV, named rTS-gB, displayed similar thermostability, growth kinetics, and pathogenicity compared with the parental TS09-C virus. The immunization data showed that rTS-gB induced effective ILTV- and NDV-specific antibody responses and conferred immunization protection against ILTV challenge in chickens. The efficacy of rTS-gB in alleviating clinical signs was similar to that of the commercial attenuated ILTV K317 strain. Furthermore, rTS-gB could significantly reduce viral shedding in cloacal and tracheal samples. Our study suggested that the rNDV strain rTS-gB is a thermostable, safe, and highly efficient vaccine candidate against ILT and ND.
Collapse
|
5
|
Newcastle Disease Virus Vectored Chicken Infectious Anaemia Vaccine Induces Robust Immune Response in Chickens. Viruses 2021; 13:v13101985. [PMID: 34696415 PMCID: PMC8540149 DOI: 10.3390/v13101985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 01/31/2023] Open
Abstract
Newcastle disease virus (NDV) strain R2B, with an altered fusion protein cleavage site, was used as a viral vector to deliver the immunogenic genes VP2 and VP1 of chicken infectious anaemia virus (CIAV) to generate a bivalent vaccine candidate against these diseases in chickens. The immunogenic genes of CIAV were expressed as a single transcriptional unit from the NDV backbone and the two CIA viral proteins were obtained as separate entities using a self-cleaving foot-and-mouth disease virus 2A protease sequence between them. The recombinant virus (rR2B-FPCS-CAV) had similar growth kinetics as that of the parent recombinant virus (rR2B-FPCS) in vitro with similar pathogenicity characteristics. The bivalent vaccine candidate when given in specific pathogen-free chickens as primary and booster doses was able to elicit robust humoral and cell-mediated immune (CMI) responses obtained in a vaccination study that was conducted over a period of 15 weeks. In an NDV and CIAV ELISA trial, there was a significant difference in the titres of antibody between vaccinated and control groups which showed slight reduction in antibody titre by 56 days of age. Hence, a second booster was administered and the antibody titres were maintained until 84 days of age. Similar trends were noticed in CMI response carried out by lymphocyte transformation test, CD4+ and CD8+ response by flow cytometry analysis and response of real time PCR analysis of cytokine genes. Birds were challenged with virulent NDV and CIAV at 84 days and there was significant reduction in the NDV shed on the 2nd and 4th days post challenge in vaccinated birds as compared to unvaccinated controls. Haematological parameters comprising PCV, TLC, PLC and PHC were estimated in birds that were challenged with CIAV that indicated a significant reduction in the blood parameters of controls. Our findings support the development and assessment of a bivalent vaccine candidate against NDV and CIAV in chickens.
Collapse
|
6
|
Shahla S, Mohammad Majid E, Samireh F. Induction of Immune Responses by Recombinant PH-1 Domain of Infectious Laryngotracheitis Virus Glycoprotein B in Chickens. Viral Immunol 2021; 34:552-558. [PMID: 34463142 DOI: 10.1089/vim.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is a cause of main respiratory disease of chickens controlled through live attenuated vaccines. To reduce the risk of adverse effects associated with live vaccines, a recombinant vaccine expressing PH-1 domain of viral glycoprotein B was constructed using the pET expression system under isopropylthiogalactoside (IPTG) induction. The potential immunogenicity of recombinant PH-1 (rPH-1) was evaluated in chickens. Eight-week-old specific-pathogen-free chickens were intramuscularly administered two doses of rPH-1, 25 and 50 μg, alone or with a combination of ISA70 adjuvant. The humoral immune responses were determined up to 3 months postvaccination at 2 weeks apart. The T cell proliferation response was determined on day 28 after primary immunization. The vaccinated birds with rPH-1/ISA70 developed higher and constant-specific anti-ILTV enzyme-linked immunosorbent assay (ELISA) antibodies than in those vaccinated with rPH-1 alone. Coinjection of rPH-1 and adjuvant significantly (p < 0.01) increased the T cell proliferation responses. There were no significant differences in eliciting the immune responses in chickens immunized with the higher dose of the antigen than that with the lower dose. The data indicate the immunogenic efficiency of rPH-1 against ILTV. Vaccination with recombinant proteins offers a preventing option to control the ILTV infection and could be a candidate to replace current live vaccines.
Collapse
Affiliation(s)
- Shahsavandi Shahla
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Ebrahimi Mohammad Majid
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Faramarzi Samireh
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| |
Collapse
|
7
|
Gowthaman V, Kumar S, Koul M, Dave U, Murthy TRGK, Munuswamy P, Tiwari R, Karthik K, Dhama K, Michalak I, Joshi SK. Infectious laryngotracheitis: Etiology, epidemiology, pathobiology, and advances in diagnosis and control - a comprehensive review. Vet Q 2021; 40:140-161. [PMID: 32315579 PMCID: PMC7241549 DOI: 10.1080/01652176.2020.1759845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious upper respiratory tract disease of chicken caused by a Gallid herpesvirus 1 (GaHV-1) belonging to the genus Iltovirus, and subfamily Alphaherpesvirinae within Herpesviridae family. The disease is characterized by conjunctivitis, sinusitis, oculo-nasal discharge, respiratory distress, bloody mucus, swollen orbital sinuses, high morbidity, considerable mortality and decreased egg production. It is well established in highly dense poultry producing areas of the world due to characteristic latency and carrier status of the virus. Co-infections with other respiratory pathogens and environmental factors adversely affect the respiratory system and prolong the course of the disease. Latently infected chickens are the primary source of ILT virus (ILTV) outbreaks irrespective of vaccination. Apart from conventional diagnostic methods including isolation and identification of ILTV, serological detection, advanced biotechnological tools such as PCR, quantitative real-time PCR, next generation sequencing, and others are being used in accurate diagnosis and epidemiological studies of ILTV. Vaccination is followed with the use of conventional vaccines including modified live attenuated ILTV vaccines, and advanced recombinant vector vaccines expressing different ILTV glycoproteins, but still these candidates frequently fail to reduce challenge virus shedding. Some herbal components have proved to be beneficial in reducing the severity of the clinical disease. The present review discusses ILT with respect to its current status, virus characteristics, epidemiology, transmission, pathobiology, and advances in diagnosis, vaccination and control strategies to counter this important disease of poultry.
Collapse
Affiliation(s)
- Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Monika Koul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Urmil Dave
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - T R Gopala Krishna Murthy
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Sunil K Joshi
- Department of Microbiology & Immunology, Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine 2020; 38:6990-7001. [PMID: 32951939 DOI: 10.1016/j.vaccine.2020.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
The most effective strategies for the control of disease in poultry are vaccination and biosecurity. Vaccines useful against pathogens affecting poultry must be safe, effective with a single dose, inexpensive, applicable by mass vaccination methods, and able to induce a protective immune response in the presence of maternal antibodies. Viral vector meet some of these characteristics and if the attenuated virus used as vector infects birds, the vaccine will have the advantage of being bivalent. Thus, viral vectors are currently a tool of choice for the development of new poultry vaccines. This review describes the main viruses used as vectors for the delivery and in vivo expression of antigens of poultry pathogens. It also presents the methodologies most frequently used to obtain recombinant viral vectors and summarizes the state-of-the-art related to vectored vaccines in poultry (some of them currently licensed), the pathogens targeted and their antigens, and the ability of these vaccines to induce an effective immune response. Finally, the review discusses the results of a few studies comparing recombinant viral vector vaccines and live-attenuated vaccines in vaccine matching challenges, and mentions strategies and future researches that can help to improve the efficacy of vectored vaccines in poultry birds.
Collapse
Affiliation(s)
- Carina Romanutti
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leticia Keller
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Flavia Adriana Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Evaluation of immune efficacy of recombinant PRRSV vectored vaccine rPRRSV-E2 in piglets with maternal derived antibodies. Vet Microbiol 2020; 248:108833. [PMID: 32891948 DOI: 10.1016/j.vetmic.2020.108833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/23/2020] [Indexed: 11/20/2022]
Abstract
Currently live attenuated porcine reproductive and respiratory syndrome (PRRS) and classical swine fever (CSF) vaccines are widely used in Chinese swine herds. However, the mutual effects of vaccination procedures and severe stress caused by successive vaccinations harm piglets and make it difficult to stimulate robust and effective immune responses. In our previous study, a recombinant PRRS virus (PRRSV) vectored vaccine candidate rPRRSV-E2, which expresses CSF virus (CSFV) E2 protein, has been demonstrated being able to protect piglets against lethal challenge of highly-pathogenic (HP)-PRRSV and CSFV. In this study, we determine whether preexisting maternally derived antibodies (MDA) interfere with the immune efficacy of rPRRSV-E2. 8 experimental groups of piglets, with or without PRRSV MDAs or CSFV MDAs were immunized with a single dose of 105 TCID50 rPRRSV-E2 or DMEM and challenged with HP-PRRSV or CSFV. Clinical characteristics, PRRSV- or CSFV-specific antibodies, viremia and pathological changes were monitored, examined and analyzed. The results showed that rPRRSV-E2-vaccinated piglets, either with or without MDAs directed against PRRSV or CSFV were completely protected from the lethal challenge of HP-PRRSV or CSFV. These results demonstrate that the MDAs do not interfere with the immune efficacy of rPRRSV-E2, which indicates that rPRRSV-E2 could have great significance in the effective prevention and control of HP-PRRSV and CSFV.
Collapse
|
10
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
García M, Zavala G. Commercial Vaccines and Vaccination Strategies Against Infectious Laryngotracheitis: What We Have Learned and Knowledge Gaps That Remain. Avian Dis 2020; 63:325-334. [PMID: 31251534 DOI: 10.1637/11967-090218-review.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/24/2019] [Indexed: 11/05/2022]
Abstract
Infectious laryngotracheitis (ILT) is an upper respiratory disease of chickens, pheasants, and peafowl caused by the alphaherpesvirus Gallid alpha herpesvirus 1 (GaHV-1), commonly known as infectious laryngotracheitis virus. ILT is an acute respiratory disease characterized by clinical signs of conjunctivitis, nasal discharge, dyspnea, and lethargy. In severe forms of the disease, hemorrhagic tracheitis together with gasping, coughing, and expectoration of bloody mucus are common. The morbidity and mortality rates of the disease vary depending on the virulence of the strain circulating, the level of virus circulating in the field, and the presence of other respiratory infections. Since the identification of the disease in the 1920s, ILT continues to affect the poultry industry negatively across the globe. The disease is primarily controlled by a combination of biosecurity and vaccination. The first commercial vaccines, introduced in the late 1950s and early 1960s, were the chicken embryo origin live attenuated vaccines. The tissue culture origin vaccine was introduced in late 1970s. Recombinant viral vector ILT vaccines were first introduced in the United States in the 2000s, and now they are being used worldwide, alone or in combination with live attenuated vaccines. This review article provides a synopsis of what we have learned about vaccines and vaccination strategies used around the world and addresses knowledge gaps about the virus and host interactions that remain unknown.
Collapse
Affiliation(s)
- Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| | - Guillermo Zavala
- Avian Health International LLC, Suite M 135, Flowery Branch, GA 30452
| |
Collapse
|
12
|
Yu Q, Li Y, Dimitrov K, Afonso CL, Spatz S, Zsak L. Genetic stability of a Newcastle disease virus vectored infectious laryngotracheitis virus vaccine after serial passages in chicken embryos. Vaccine 2019; 38:925-932. [PMID: 31703935 DOI: 10.1016/j.vaccine.2019.10.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
Abstract
Previously, we have demonstrated that the recombinant Newcastle disease virus (NDV) expressing the infectious laryngotracheitis virus (ILTV) glycoprotein D (gD) conferred protection against both virulent NDV and ILTV challenges in chickens. In this study, we evaluated the genetic stability of the recombinant vaccine after eight serial passages in embryonated chicken eggs (ECE). The vaccine master seed virus at the original egg-passage level 3 (EP3) was diluted and passaged in three separate repetitions (A, B and C) in ECE eight times (EP4 to EP11). RT-PCR analysis of the vaccine seed and egg-passaged virus stocks showed that there was no detectable insertion/deletion in the ILTV gD insert region. Next-generation sequencing analysis of the EP3 and EP11 virus stocks confirmed their genome integrity and revealed a total of thirteen single-nucleotide polymorphisms (SNPs). However, none of these SNPs were located in the ILTV gD insert or any of the known critical biological determinant positions. Virological and immunofluorescent assays provided additional evidence that the EP11 virus stocks retained their growth kinetics, low pathogenicity, and robust level of gD expression comparable to that of the vaccine master seed virus. This indicated that the SNPs were non-detrimental sporadic mutations. These results demonstrated that the insertion of ILTV gD gene into the NDV LaSota backbone did not significantly affect the genetic stability of the recombinant virus and that the rLS/ILTV-gD virus is a safe and genetically stable vaccine candidate after at least eight serial passages in ECE.
Collapse
Affiliation(s)
- Qingzhong Yu
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Yufeng Li
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Kiril Dimitrov
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Stephen Spatz
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Laszlo Zsak
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
13
|
Recombinant Newcastle Disease Virus (NDV) Expressing Sigma C Protein of Avian Reovirus (ARV) Protects against Both ARV and NDV in Chickens. Pathogens 2019; 8:pathogens8030145. [PMID: 31510020 PMCID: PMC6789743 DOI: 10.3390/pathogens8030145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/25/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Newcastle disease (ND) and avian reovirus (ARV) infections are a serious threat to the poultry industry, which causes heavy economic losses. The mesogenic NDV strain R2B is commonly used as a booster vaccine in many Asian countries to control the disease. In this seminal work, a recombinant NDV strain R2B expressing the sigma C (σC) gene of ARV (rNDV-R2B-σC) was generated by reverse genetics, characterized in vitro and tested as a bivalent vaccine candidate in chickens. The recombinant rNDV-R2B-σC virus was attenuated as compared to the parent rNDV-R2B virus as revealed by standard pathogenicity assays. The generated vaccine candidate, rNDV-R2B-σC, could induce both humoral and cell mediated immune responses in birds and gave complete protection against virulent NDV and ARV challenges. Post-challenge virus shedding analysis revealed a drastic reduction in NDV shed, as compared to unvaccinated birds.
Collapse
|
14
|
Schädler J, Sigrist B, Meier SM, Albini S, Wolfrum N. Virus-like particles in a new vaccination approach against infectious laryngotracheitis. J Gen Virol 2019; 100:1013-1026. [PMID: 31099737 DOI: 10.1099/jgv.0.001272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gallid alphaherpesvirus 1 (syn. infectious laryngotracheitis virus; ILTV) is the causative agent of infectious laryngotracheitis, a respiratory disease of chickens causing substantial economic losses in the poultry industry every year. Currently, the most efficient way to achieve protection against infection is immunization with live-attenuated vaccines. However, this vaccination strategy entails the risk of generating new pathogenic viruses resulting from spontaneous mutations or from recombination with field strains. This work presents a new approach based on virus-like particles (VLPs) displaying ILTV glycoproteins B (gB) or G (gG) on their surface. The main focus of this pilot study was to determine the tolerability of VLPs delivered in ovo and intramuscularly (i.m.) into chickens and to investigate the nature of the immune response elicited. The study revealed that the new vaccines were well tolerated in hybrid layer chicks independent of the administration method (in ovo or i.m.). Upon in ovo injection, vaccination with VLP-gG led to an antibody response, while a cellular immune response in VLP-gB-immunized chickens was hardly detectable. Since the administration of VLPs had no visible side effects in vivo and was shown to elicit an antibody-based immune response, we anticipate that VLPs will become a valuable platform for the development of new safe vaccines for poultry.
Collapse
Affiliation(s)
- Julia Schädler
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte Sigrist
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simone M Meier
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nina Wolfrum
- 1 National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Chimeric Newcastle disease virus-vectored vaccine protects chickens against H9N2 avian influenza virus in the presence of pre-existing NDV immunity. Arch Virol 2018; 163:3365-3371. [PMID: 30187143 DOI: 10.1007/s00705-018-4016-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023]
Abstract
A chimeric Newcastle disease virus (NDV) vector (NDV/AI4-TFHN) was constructed with the replacement of the ectodomains of the fusion and hemagglutinin-neuraminidase proteins by those from avian paramyxovirus type 2. The chimeric virus induced high antibody response in chickens pre-immunized with NDV. A recombinant vaccine candidate, NDV/AI4-TFHN-H9, expressing the hemagglutinin of H9N2 avian influenza virus, was generated, on the basis of the chimeric NDV vector mentioned above. The NDV/AI4-TFHN-H9 vaccine elicited H9-specific hemagglutination inhibition antibodies in chickens pre-immunized with NDV vaccine, and reduced the numbers of chickens shedding virus after H9N2 challenge. NDV/AI4-TFHN-H9 could serve as an alternative vaccine for the prevention of H9N2 infection in commercial poultry flocks.
Collapse
|
16
|
Hu H, Roth JP, Yu Q. Generation of a recombinant Newcastle disease virus expressing two foreign genes for use as a multivalent vaccine and gene therapy vector. Vaccine 2018; 36:4846-4850. [PMID: 30037477 DOI: 10.1016/j.vaccine.2018.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene therapy. A majority of these NDV vectors express only a single foreign gene through either an independent transcription unit (ITU) or an internal ribosomal entry site (IRES). In the present study, we combined the ITU and IRES methods to generate a novel NDV LaSota strain-based recombinant virus vectoring the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological assessments of the recombinant virus, rLS/IRES-RFP/GFP, showed that it was slightly attenuated in vivo, yet maintained similar growth dynamics and viral yields in vitro when compared to the parental LaSota virus. Expression of both the RFP and GFP was detected from the rLS/IRES-RFP/GFP virus-infected DF-1 cells by fluorescence microscopy. These data suggest that the rLS/IRES-RFP/GFP virus may be used as a multivalent vector for the development of vaccines and gene therapy agents.
Collapse
Affiliation(s)
- Haixia Hu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Jason P Roth
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
17
|
Abdul-Cader MS, Palomino-Tapia V, Amarasinghe A, Ahmed-Hassan H, De Silva Senapathi U, Abdul-Careem MF. Hatchery Vaccination Against Poultry Viral Diseases: Potential Mechanisms and Limitations. Viral Immunol 2017; 31:23-33. [PMID: 28714781 DOI: 10.1089/vim.2017.0050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Commercial broiler and layer chickens are heavily vaccinated against economically important viral diseases with a view of preventing morbidity, mortality, and production impacts encountered during short production cycles. Hatchery vaccination is performed through in ovo embryo vaccination prehatch or spray and subcutaneous vaccinations performed at the day of hatch before the day-old chickens are being placed in barns with potentially contaminated environments. Commercially, multiple vaccines (e.g., live, live attenuated, and viral vectored vaccines) are available to administer through these routes within a short period (embryo day 18 prehatch to day 1 posthatch). Although the ability to mount immune response, especially the adaptive immune response, is not optimal around the hatch, it is possible that the efficacy of these vaccines depends partly on innate host responses elicited in response to replicating vaccine viruses. This review focuses on the current knowledge of hatchery vaccination in poultry and potential mechanisms of hatchery vaccine-mediated protective responses and limitations.
Collapse
Affiliation(s)
- Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Canada
| | - Victor Palomino-Tapia
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Canada
| | - Aruna Amarasinghe
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Canada
| | - Hanaa Ahmed-Hassan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Canada
| | - Upasama De Silva Senapathi
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Canada
| |
Collapse
|