1
|
Park JJ, Tiefenbach J, Anwar MM, Narayanan S, Ope B, Bin Han SS, Ale BM, Adeloye D, Rudan I. Estimating the Global and Regional Burden of Streptococcus pneumoniae Meningitis in Children: Protocol for a Systematic Review and Meta-Analysis. JMIR Res Protoc 2024; 13:e50678. [PMID: 39012685 PMCID: PMC11289570 DOI: 10.2196/50678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) has been a leading cause of bacterial meningitis in children. The most recent estimation of the global burden of Spn meningitis indicates a positive trajectory in eliminating Spn through the implementation of pneumococcal conjugate vaccines. However, continuous monitoring and assessment of the disease burden are necessary due to the evidence of serotype replacement, antibiotic resistance, and the impact of the recent COVID-19 pandemic. OBJECTIVE The aim of this systematic review is to provide an updated and focused assessment of the global and regional burden of Spn meningitis in children, which can guide policies and strategies to reduce the disease burden. METHODS Population-based studies published from January 1, 2000, to January 1, 2022, were preliminarily searched from the electronic databases PubMed, Embase, Global Health (CABI), and CINAHL Plus without any language restrictions. Studies were included if they reported the incidence, prevalence, mortality, or case-fatality ratio (CFR) for Spn meningitis in children aged 0-4 years; meningitis was confirmed by cerebrospinal fluid culture; the study period was a minimum of 1 year; the number of reported cases was at least 10; and the study had no methodological ambiguities. The article screening process follows the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. Characteristics including study period, setting, World Health Organization region, income level, vaccination information, and participant data (age, number of cases, deaths, sequelae, and risk factors) will be extracted from the included studies. Search results will be updated and incorporated into our review prior to finalizing the extraction of data. Generalized linear mixed models meta-analysis will be performed to estimate the pooled incidence and CFR. We will further assess the risk of bias and heterogeneity, and will perform subgroup and sensitivity analyses to provide a meaningful interpretation of the current burden and literature for pneumococcal meningitis. RESULTS Our preliminary search in December 2021 yielded 9295 articles. Out of 275 studies that were assessed with our eligibility criteria, 117 articles were included. Data extraction and analysis are expected to be complete by January 2025. We plan to publish the results from the full study, including an updated search in 2024, by March 2025. CONCLUSIONS Given that the major burden of Spn meningitis affects children under the age of 5 years, this systematic review will provide a thorough understanding of the global burden of Spn meningitis in this vulnerable population over a span of 2 decades. Insights into incidence trends, geospatial distribution, risk factors, and sequelae will be valuable for stakeholders, policy makers, and the academic community. This information will aid in the ongoing monitoring of the disease and in enhancing targeted vaccine programs to further mitigate the impact of the disease on children worldwide. TRIAL REGISTRATION PROSPERO CRD42021293110; https://tinyurl.com/kc3j5k4m. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50678.
Collapse
Affiliation(s)
- Jay J Park
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Global Health Interest Group, Edinburgh, United Kingdom
| | - Jakov Tiefenbach
- Edinburgh Global Health Interest Group, Edinburgh, United Kingdom
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Mohammed Ma'arij Anwar
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandhya Narayanan
- Edinburgh Global Health Interest Group, Edinburgh, United Kingdom
- Barnardo's, Barkingside, United Kingdom
| | - Beatrice Ope
- Association for Reproductive and Family Health, Abuja, Nigeria
| | | | - Boni Maxime Ale
- Edinburgh Global Health Interest Group, Edinburgh, United Kingdom
- Holo Healthcare Limited, Nairobi, Kenya
| | - Davies Adeloye
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Igor Rudan
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Global Health Interest Group, Edinburgh, United Kingdom
- Centre of Global Health, Edinburgh Medical School, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Feng S, McLellan J, Pidduck N, Roberts N, Higgins JP, Choi Y, Izu A, Jit M, Madhi SA, Mulholland K, Pollard AJ, Procter S, Temple B, Voysey M. Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis. Health Technol Assess 2024; 28:1-109. [PMID: 39046101 PMCID: PMC11284620 DOI: 10.3310/ywha3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Background Vaccination of infants with pneumococcal conjugate vaccines is recommended by the World Health Organization. Evidence is mixed regarding the differences in immunogenicity and efficacy of the different pneumococcal vaccines. Objectives The primary objective was to compare the immunogenicity of pneumococcal conjugate vaccine-10 versus pneumococcal conjugate vaccine-13. The main secondary objective was to compare the seroefficacy of pneumococcal conjugate vaccine-10 versus pneumococcal conjugate vaccine-13. Methods We searched the Cochrane Library, EMBASE, Global Health, MEDLINE, ClinicalTrials.gov and trialsearch.who.int up to July 2022. Studies were eligible if they directly compared either pneumococcal conjugate vaccine-7, pneumococcal conjugate vaccine-10 or pneumococcal conjugate vaccine-13 in randomised trials of children under 2 years of age, and provided immunogenicity data for at least one time point. Individual participant data were requested and aggregate data used otherwise. Outcomes included the geometric mean ratio of serotype-specific immunoglobulin G and the relative risk of seroinfection. Seroinfection was defined for each individual as a rise in antibody between the post-primary vaccination series time point and the booster dose, evidence of presumed subclinical infection. Each trial was analysed to obtain the log of the ratio of geometric means and its standard error. The relative risk of seroinfection ('seroefficacy') was estimated by comparing the proportion of participants with seroinfection between vaccine groups. The log-geometric mean ratios, log-relative risks and their standard errors constituted the input data for evidence synthesis. For serotypes contained in all three vaccines, evidence could be synthesised using a network meta-analysis. For other serotypes, meta-analysis was used. Results from seroefficacy analyses were incorporated into a mathematical model of pneumococcal transmission dynamics to compare the differential impact of pneumococcal conjugate vaccine-10 and pneumococcal conjugate vaccine-13 introduction on invasive pneumococcal disease cases. The model estimated the impact of vaccine introduction over a 25-year time period and an economic evaluation was conducted. Results In total, 47 studies were eligible from 38 countries. Twenty-eight and 12 studies with data available were included in immunogenicity and seroefficacy analyses, respectively. Geometric mean ratios comparing pneumococcal conjugate vaccine-13 versus pneumococcal conjugate vaccine-10 favoured pneumococcal conjugate vaccine-13 for serotypes 4, 9V and 23F at 1 month after primary vaccination series, with 1.14- to 1.54-fold significantly higher immunoglobulin G responses with pneumococcal conjugate vaccine-13. Risk of seroinfection prior to the time of booster dose was lower for pneumococcal conjugate vaccine-13 for serotype 4, 6B, 9V, 18C and 23F than for pneumococcal conjugate vaccine-10. Significant heterogeneity and inconsistency were present for most serotypes and for both outcomes. Twofold higher antibody after primary vaccination was associated with a 54% decrease in risk of seroinfection (relative risk 0.46, 95% confidence interval 0.23 to 0.96). In modelled scenarios, pneumococcal conjugate vaccine-13 or pneumococcal conjugate vaccine-10 introduction in 2006 resulted in a reduction in cases that was less rapid for pneumococcal conjugate vaccine-10 than for pneumococcal conjugate vaccine-13. The pneumococcal conjugate vaccine-13 programme was predicted to avoid an additional 2808 (95% confidence interval 2690 to 2925) cases of invasive pneumococcal disease compared with pneumococcal conjugate vaccine-10 introduction between 2006 and 2030. Limitations Analyses used data from infant vaccine studies with blood samples taken prior to a booster dose. The impact of extrapolating pre-booster efficacy to post-booster time points is unknown. Network meta-analysis models contained significant heterogeneity which may lead to bias. Conclusions Serotype-specific differences were found in immunogenicity and seroefficacy between pneumococcal conjugate vaccine-13 and pneumococcal conjugate vaccine-10. Higher antibody response after vaccination was associated with a lower risk of subsequent infection. These methods can be used to compare the pneumococcal conjugate vaccines and optimise vaccination strategies. For future work, seroefficacy estimates can be determined for other pneumococcal vaccines, which could contribute to licensing or policy decisions for new pneumococcal vaccines. Study registration This study is registered as PROSPERO CRD42019124580. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 17/148/03) and is published in full in Health Technology Assessment; Vol. 28, No. 34. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Julie McLellan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Pidduck
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nia Roberts
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Julian Pt Higgins
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yoon Choi
- Modelling and Economics Unit, UK Health Security Agency, London, UK
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kim Mulholland
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon Procter
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Beth Temple
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
3
|
Feng S, McLellan J, Pidduck N, Roberts N, Higgins JP, Choi Y, Izu A, Jit M, Madhi SA, Mulholland K, Pollard AJ, Temple B, Voysey M. Immunogenicity and seroefficacy of 10-valent and 13-valent pneumococcal conjugate vaccines: a systematic review and network meta-analysis of individual participant data. EClinicalMedicine 2023; 61:102073. [PMID: 37425373 PMCID: PMC10328810 DOI: 10.1016/j.eclinm.2023.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Background Vaccination of infants with pneumococcal conjugate vaccines (PCV) is recommended by the World Health Organization. Evidence is mixed regarding the differences in immunogenicity and efficacy of the different pneumococcal vaccines. Methods In this systematic-review and network meta-analysis, we searched the Cochrane Library, Embase, Global Health, Medline, clinicaltrials.gov and trialsearch.who.int up to February 17, 2023 with no language restrictions. Studies were eligible if they presented data comparing the immunogenicity of either PCV7, PCV10 or PCV13 in head-to-head randomised trials of young children under 2 years of age, and provided immunogenicity data for at least one time point after the primary vaccination series or the booster dose. Publication bias was assessed via Cochrane's Risk Of Bias due to Missing Evidence tool and comparison-adjusted funnel plots with Egger's test. Individual participant level data were requested from publication authors and/or relevant vaccine manufacturers. Outcomes included the geometric mean ratio (GMR) of serotype-specific IgG and the relative risk (RR) of seroinfection. Seroinfection was defined for each individual as a rise in antibody between the post-primary vaccination series time point and the booster dose, evidence of presumed subclinical infection. Seroefficacy was defined as the RR of seroinfection. We also estimated the relationship between the GMR of IgG one month after priming and the RR of seroinfection by the time of the booster dose. The protocol is registered with PROSPERO, ID CRD42019124580. Findings 47 studies were eligible from 38 countries across six continents. 28 and 12 studies with data available were included in immunogenicity and seroefficacy analyses, respectively. GMRs comparing PCV13 vs PCV10 favoured PCV13 for serotypes 4, 9V, and 23F at 1 month after primary vaccination series, with 1.14- to 1.54- fold significantly higher IgG responses with PCV13. Risk of seroinfection prior to the time of booster dose was lower for PCV13 for serotype 4, 6B, 9V, 18C and 23F than for PCV10. Significant heterogeneity and inconsistency were present for most serotypes and for both outcomes. Two-fold higher antibody after primary vaccination was associated with a 54% decrease in risk of seroinfection (RR 0.46, 95% CI 0.23-0.96). Interpretation Serotype-specific differences were found in immunogenicity and seroefficacy between PCV13 and PCV10. Higher antibody response after vaccination was associated with a lower risk of subsequent infection. These findings could be used to compare PCVs and optimise vaccination strategies. Funding The NIHR Health Technology Assessment Programme.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Julie McLellan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Pidduck
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nia Roberts
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Julian P.T. Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yoon Choi
- Modelling and Economics Unit, UK Health Security Agency, London, UK
| | - Alane Izu
- South African Medical Research Council MRC Vaccines and Infectious Diseases Analytics Research Unit, Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Shabir A. Madhi
- South African Medical Research Council MRC Vaccines and Infectious Diseases Analytics Research Unit, Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kim Mulholland
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Andrew J. Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Beth Temple
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Merryn Voysey
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
4
|
Pneumococcal Vaccines: Past Findings, Present Work, and Future Strategies. Vaccines (Basel) 2021; 9:vaccines9111338. [PMID: 34835269 PMCID: PMC8620834 DOI: 10.3390/vaccines9111338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/24/2023] Open
Abstract
The importance of Streptococcus pneumoniae has been well established. These bacteria can colonize infants and adults without symptoms, but in some cases can spread, invade other tissues and cause disease with high morbidity and mortality. The development of pneumococcal conjugate vaccines (PCV) caused an enormous impact in invasive pneumococcal disease and protected unvaccinated people by herd effect. However, serotype replacement is a well-known phenomenon that has occurred after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) and has also been reported for other PCVs. Therefore, it is possible that serotype replacement will continue to occur even with higher valence formulations, but the development of serotype-independent vaccines might overcome this problem. Alternative vaccines are under development in order to improve cost effectiveness, either using proteins or the pneumococcal whole cell. These approaches can be used as a stand-alone strategy or together with polysaccharide vaccines. Looking ahead, the next generation of pneumococcal vaccines can be impacted by the new technologies recently approved for human use, such as mRNA vaccines and viral vectors. In this paper, we will review the advantages and disadvantages of the addition of new polysaccharides in the current PCVs, mainly for low- and middle-income countries, and we will also address future perspectives.
Collapse
|
5
|
Jansen KU, Gruber WC, Simon R, Wassil J, Anderson AS. The impact of human vaccines on bacterial antimicrobial resistance. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4031-4062. [PMID: 34602924 PMCID: PMC8479502 DOI: 10.1007/s10311-021-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 05/07/2023]
Abstract
At present, the dramatic rise in antimicrobial resistance (AMR) among important human bacterial pathogens is reaching a state of global crisis threatening a return to the pre-antibiotic era. AMR, already a significant burden on public health and economies, is anticipated to grow even more severe in the coming decades. Several licensed vaccines, targeting both bacterial (Haemophilus influenzae type b, Streptococcus pneumoniae, Salmonella enterica serovar Typhi) and viral (influenza virus, rotavirus) human pathogens, have already proven their anti-AMR benefits by reducing unwarranted antibiotic consumption and antibiotic-resistant bacterial strains and by promoting herd immunity. A number of new investigational vaccines, with a potential to reduce the spread of multidrug-resistant bacterial pathogens, are also in various stages of clinical development. Nevertheless, vaccines as a tool to combat AMR remain underappreciated and unfortunately underutilized. Global mobilization of public health and industry resources is key to maximizing the use of licensed vaccines, and the development of new prophylactic vaccines could have a profound impact on reducing AMR.
Collapse
Affiliation(s)
| | | | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - James Wassil
- Pfizer Patient and Health Impact, Collegeville, PA USA
- Present Address: Vaxcyte, 353 Hatch Drive, Foster City, CA 94404 USA
| | | |
Collapse
|
6
|
Horn M, Behre U, Traskine M, Dobbelaere K, Borys D. Safety, reactogenicity, and immunogenicity of a 12-valent pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine in healthy toddlers: results from a phase I, randomized trial. Hum Vaccin Immunother 2021; 17:1463-1469. [PMID: 33175600 PMCID: PMC8078718 DOI: 10.1080/21645515.2020.1810493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
As a stepping stone toward evaluation in infants, the safety and immunogenicity of an investigational 12-valent pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine (12vPHiD-CV) was assessed in toddlers. 12vPHiD-CV contains CRM197-conjugated capsular polysaccharides of serotypes 6A and 19A in addition to capsular polysaccharides of the 10 serotypes in PHiD-CV. In this phase I, double-blind, multicenter study (NCT01485406) conducted in Germany, 61 healthy toddlers aged 12–23 months previously primed with three PHiD-CV doses were randomized (1:1) to receive one dose of 12vPHiD-CV or PHiD-CV. Safety and reactogenicity of 12vPHiD-CV were assessed in terms of occurrence of grade 3 vaccination-related solicited and unsolicited adverse events (AEs) and vaccination-related serious AEs. Immune responses were evaluated 1 month post-vaccination. Grade 3 solicited local AEs (all considered vaccination-related) were reported for two (6.5%, redness) and three (9.7%, swelling) toddlers in the 12vPHiD-CV group and one (3.4%, swelling) in the PHiD-CV group. Grade 3 vaccination-related solicited general AEs were only reported in the PHiD-CV group. No grade 3 unsolicited or serious AEs were reported. For PHiD-CV serotypes, 100% of toddlers in both groups had antibody concentrations ≥0.2 µg/mL 1 month post-vaccination, and antibody geometric mean concentrations increased from pre-boosting. For serotypes 6A and 19A, antibody responses tended to be higher in the 12vPHiD-CV than the PHiD-CV group. A single dose of 12vPHiD-CV administered in toddlers was well tolerated and no safety concerns were identified. Immune responses were comparable to those induced by PHiD-CV when administered in toddlers previously primed with three doses of PHiD-CV.
Collapse
Affiliation(s)
| | | | - Magali Traskine
- HPV, Hepatitis and Pneumococcal Vaccines, Clinical R&D, GSK, Wavre, Belgium
| | - Kurt Dobbelaere
- HPV, Hepatitis and Pneumococcal Vaccines, Clinical R&D, GSK, Wavre, Belgium
| | - Dorota Borys
- HPV, Hepatitis and Pneumococcal Vaccines, Clinical R&D, GSK, Wavre, Belgium
| |
Collapse
|
7
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review highlights the recent impacts of vaccines against the major bacterial causes of meningitis in children, and the challenges for further prevention of bacterial meningitis, with a focus on Streptococcus pneumoniae, Neisseria meningitidis and group B Streptococcus. RECENT FINDINGS Conjugate vaccines against S. pneumoniae and N. meningitidis have resulted in dramatic reductions in bacterial meningitis globally where they have been used. Recent licensure and use of capsular group B meningococcal protein vaccines have further reduced meningococcal meningitis in infants, young children and adolescents for countries with endemic disease and during outbreaks. SUMMARY Existing vaccines to prevent bacterial meningitis in children should be utilized in countries with significant numbers of cases of pneumococcal and/or meningococcal meningitis. Vaccines, which are able to protect against more than 13 serotypes of S. pneumoniae are in clinical trials and should be able to further reduce pneumococcal meningitis cases. Cost effective meningococcal vaccines against non-A capsular groups are needed for low-resource countries. There remains an urgent need for a vaccine against group B Streptococcus, which is a major cause of neonatal meningitis globally and for which no vaccine currently exists.
Collapse
|
9
|
Dolhain J, Janssens W, Dindore V, Mihalyi A. Infant vaccine co-administration: review of 18 years of experience with GSK's hexavalent vaccine co-administered with routine childhood vaccines. Expert Rev Vaccines 2020; 19:419-443. [PMID: 32419537 DOI: 10.1080/14760584.2020.1758560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The benefits of vaccine co-administration include improved vaccine acceptance and uptake resulting in an increased coverage and protection against multiple childhood diseases, with minimal medical visits. The diphtheria-tetanus-acellular pertussis-hepatitis B-poliomyelitis-Haemophilus influenzae type b vaccine (DTaP-HBV-IPV/Hib) has been available for more than 19 years and is recommended for co-administration with several other infant vaccines. AREAS COVERED This is a comprehensive review (34 studies, 21,000 participants) describing the immunogenicity and safety of DTaP-HBV-IPV/Hib when co-administered with 12 different vaccines in infants including pneumococcal, meningococcal, rotavirus or measles-mumps-rubella-varicella. EXPERT OPINION Interactions among co-administered vaccines are complex. Therefore, co-administration data are critical before a vaccination regimen can be recommended. Co-administration of DTaP-HBV-IPV/Hib with other routinely administered vaccines was associated with high percentages of children achieving seroprotection/vaccine response against DTaP-HBV-IPV/Hib antigens. In addition, co-administration was not associated with clinically significant interference in immune responses to co-administered vaccines and was well tolerated. Increased systemic reactions observed with some combinations (DTaP-HBV-IPV/Hib + pneumococcal conjugate or meningococcal serogroup B vaccines) were mitigated by prophylactic paracetamol administration. The data reported here, which represent the most frequently used co-administrations of DTaP-HBV-IPV/Hib worldwide, support the concomitant administration of DTaP-HBV-IPV/Hib with other routinely recommended infant vaccines.
Collapse
|
10
|
Abstract
INTRODUCTION Otitis media (OM) is a spectrum of infectious and inflammatory diseases that involve the middle ear. It includes acute otitis media (AOM), otitis media with effusion (OME) and chronic suppurative otitis media (CSOM). AREAS COVERED This manuscript discusses some of the emerging and unsolved problems regarding OM, and some of the newly developed prophylactic and therapeutic medical measures. EXPERT OPINION In recent years, considerable progress in the knowledge of OM physiopathology has been made. However, although extremely common, diseases included under OM have not been adequately studied, and many areas of development, evolution and possible treatments of these pathologies are not defined. It is necessary that these deficiencies be quickly overcome if we want to reduce the total burden of a group of diseases that still have extremely high medical, social and economic relevance.
Collapse
Affiliation(s)
- Nicola Principi
- Emeritus of Pediatrics, Università Degli Studi Di Milano , Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma , Parma, Italy
| |
Collapse
|
11
|
Lecrenier N, Marijam A, Olbrecht J, Soumahoro L, Nieto Guevara J, Mungall B. Ten years of experience with the pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine (Synflorix) in children. Expert Rev Vaccines 2020; 19:247-265. [DOI: 10.1080/14760584.2020.1738226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
13
|
Hammitt LL, Campbell JC, Borys D, Weatherholtz RC, Reid R, Goklish N, Moulton LH, Traskine M, Song Y, Swinnen K, Santosham M, O'Brien KL. Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: A phase IIb randomized study. Vaccine 2019; 37:7482-7492. [PMID: 31629570 DOI: 10.1016/j.vaccine.2019.09.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Native American populations experience a substantial burden of pneumococcal disease despite use of highly effective pneumococcal conjugate vaccines (PCVs). Protein-based pneumococcal vaccines may extend protection beyond the serotype-specific protection elicited by PCVs. METHODS In this phase IIb, double-blind, controlled trial, 6-12 weeks-old Native American infants randomized 1:1, received either a protein-based pneumococcal vaccine (dPly/PhtD) containing pneumolysin toxoid (dPly, 10 µg) and pneumococcal histidine triad protein D (PhtD, 10 µg) or placebo, administered along with 13-valent PCV (PCV13) at ages 2, 4, 6 and 12-15 months. Other pediatric vaccines were given per the routine immunization schedule. We assessed vaccine efficacy (VE) against acute otitis media (AOM) and acute lower respiratory tract infection (ALRI) endpoints. Immunogenicity, reactogenicity and unsolicited adverse events were assessed in a sub-cohort and serious adverse events were assessed in all children. RESULTS 1803 infants were randomized (900 dPly/PhtD; 903 Control). VE against all episodes of American Academy of Pediatrics (AAP)-defined AOM was 3.8% (95% confidence interval: -11.4, 16.9). Point estimates of VE against other AOM outcomes ranged between 2.9% (-9.5, 14.0) and 5.2% (-8.0, 16.8). Point estimates of VE against ALRI outcomes ranged between -4.4% (-39.2, 21.8) and 2.0% (-18.3, 18.8). Point estimates of VE tended to be higher against first than all episodes but the confidence intervals included zero. dPly/PhtD vaccine was immunogenic and had an acceptable reactogenicity and safety profile after primary and booster vaccination in Native American infants. CONCLUSIONS The dPly/PhtD vaccine was immunogenic and well tolerated, however, incremental efficacy in preventing AAP-AOM over PCV13 was not demonstrated. CLINICAL TRIALS REGISTRATION NCT01545375 (www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Laura L Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| | - James C Campbell
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Robert C Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Novalene Goklish
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lawrence H Moulton
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Yue Song
- XPE Pharma & Science c/o GSK, Wavre, Belgium
| | | | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Katherine L O'Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
14
|
A Cross-Reactive Protein Vaccine Combined with PCV-13 Prevents Streptococcus pneumoniae- and Haemophilus influenzae-Mediated Acute Otitis Media. Infect Immun 2019; 87:IAI.00253-19. [PMID: 31308088 DOI: 10.1128/iai.00253-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 11/20/2022] Open
Abstract
Acute otitis media is one of the most common childhood infections worldwide. Currently licensed vaccines against the common otopathogen Streptococcus pneumoniae target the bacterial capsular polysaccharide and confer no protection against nonencapsulated strains or capsular types outside vaccine coverage. Mucosal infections such as acute otitis media remain prevalent, even those caused by vaccine-covered serotypes. Here, we report that a protein-based vaccine, a fusion construct of epitopes of CbpA to pneumolysin toxoid, confers effective protection against pneumococcal acute otitis media for non-PCV-13 serotypes and enhances protection for PCV-13 serotypes when coadministered with PCV-13. Having cross-reactive epitopes, the fusion protein also induces potent antibody responses against nontypeable Haemophilus influenzae and S. pneumoniae, engendering protection against acute otitis media caused by emerging unencapsulated otopathogens. These data suggest that augmenting capsule-based vaccination with conserved, cross-reactive protein-based vaccines broadens and enhances protection against acute otitis media.
Collapse
|
15
|
Han C, Zhang M. Genetic diversity and antigenicity analysis of Streptococcus pneumoniae pneumolysin isolated from children with pneumococcal infection. Int J Infect Dis 2019; 86:57-64. [DOI: 10.1016/j.ijid.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
|
16
|
Esposito S, Principi N. Pneumococcal immunization with conjugate vaccines: are 10-valent and 13-valent vaccines similar? Future Microbiol 2019; 14:921-923. [PMID: 31373218 DOI: 10.2217/fmb-2019-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Susanna Esposito
- Department of Surgical & Biomedical Sciences, Pediatric Clinic, Università degli Studi di Perugia, Umbria, Italy
| | | |
Collapse
|
17
|
Gonçalves VM, Kaneko K, Solórzano C, MacLoughlin R, Saleem I, Miyaji EN. Progress in mucosal immunization for protection against pneumococcal pneumonia. Expert Rev Vaccines 2019; 18:781-792. [PMID: 31305196 DOI: 10.1080/14760584.2019.1643719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses.
Collapse
Affiliation(s)
| | - Kan Kaneko
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | - Carla Solórzano
- c Department of Clinical Sciences, Liverpool School of Tropical Medicine , Liverpool , UK
| | - Ronan MacLoughlin
- d Science Department and Clinical Department, Aerogen Ltd., IDA Business Park , Galway , Ireland
| | - Imran Saleem
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | | |
Collapse
|
18
|
Temple B, Toan NT, Dai VTT, Bright K, Licciardi PV, Marimla RA, Nguyen CD, Uyen DY, Balloch A, Huu TN, Mulholland EK. Immunogenicity and reactogenicity of ten-valent versus 13-valent pneumococcal conjugate vaccines among infants in Ho Chi Minh City, Vietnam: a randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:497-509. [PMID: 30975525 PMCID: PMC6484092 DOI: 10.1016/s1473-3099(18)30734-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 01/13/2023]
Abstract
Background Few data are available to support the choice between the two currently available pneumococcal conjugate vaccines (PCVs), ten-valent PCV (PCV10) and 13-valent PCV (PCV13). Here we report a head-to-head comparison of the immunogenicity and reactogenicity of PCV10 and PCV13. Methods In this parallel, open-label, randomised controlled trial, healthy infants from two districts in Ho Chi Minh City, Vietnam, were randomly allocated (in a 3:3:5:4:5:4 ratio), with use of a computer-generated list, to one of six infant PCV schedules: PCV10 in a 3 + 1 (group A), 3 + 0 (group B), 2 + 1 (group C), or two-dose schedule (group D); PCV13 in a 2 + 1 schedule (group E); or no infant PCV (control; group F). Blood samples were collected from infants between 2 months and 18 months of age at various timepoints before and after PCV doses and analysed (in a blinded manner) by ELISA and opsonophagocytic assay. The trial had two independent aims: to compare vaccination responses between PCV10 and PCV13, and to evaluate different schedules of PCV10. In this Article, we present results pertaining to the first aim. The primary outcome was the proportion of infants with an IgG concentration of at least 0·35 μg/mL for the ten serotypes common to the two vaccines at age 5 months, 4 weeks after the two-dose primary vaccination series (group C vs group E, per protocol population). An overall difference among the schedules was defined as at least seven of ten serotypes differing in the same direction at the 10% level. We also assessed whether the two-dose primary series of PCV13 (group E) was non-inferior at the 10% level to a three-dose primary series of PCV10 (groups A and B). This trial is registered with ClinicalTrials.gov, number NCT01953510. Findings Of 1424 infants screened between Sept 30, 2013, and Jan 9, 2015, 1201 were allocated to the six groups: 152 (13%) to group A, 149 (12%) to group B, 250 (21%) to group C, 202 (17%) to group D, 251 (21%) to group E, and 197 (16%) to group F. 237 (95%) participants in group C (PCV10) and 232 (92%) in group E (PCV13) completed the primary vaccination series and had blood draws within the specified window at age 5 months, at which time the proportion of infants with IgG concentrations of at least 0·35 μg/mL did not differ between groups at the 10% level for any serotype (PCV10–PCV13 risk difference −2·1% [95% CI −4·8 to −0·1] for serotype 1; −1·3% [–3·7 to 0·6] for serotype 4; −3·4% [–6·8 to −0·4] for serotype 5; 15·6 [7·2 to 23·7] for serotype 6B; −1·3% [–3·7 to 0·6] for serotype 7F; −1·6% [–5·1 to 1·7] for serotype 9V; 0·0% [–2·7 to 2·9] for serotype 14; −2·1% [–5·3 to 0·9] for serotype 18C; 0·0% [–2·2 to 2·3] for serotype 19F; and −11·6% [–18·2 to −4·9] for serotype 23F). At the same timepoint, two doses of PCV13 were non-inferior to three doses of PCV10 for nine of the ten shared serotypes (excluding 6B). Reactogenicity and serious adverse events were monitored according to good clinical practice guidelines, and the profiles were similar in the two groups. Interpretation PCV10 and PCV13 are similarly highly immunogenic when used in 2 + 1 schedule. The choice of vaccine might be influenced by factors such as the comparative magnitude of the antibody responses, price, and the relative importance of different serotypes in different settings. Funding National Health and Medical Research Council of Australia, and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Beth Temple
- Division of Global and Tropical Health, Menzies School of Health Research, Darwin, NT, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Nguyen Trong Toan
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vo Thi Trang Dai
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kathryn Bright
- Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Paul Vincent Licciardi
- Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Ann Marimla
- Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Cattram Duong Nguyen
- Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Doan Y Uyen
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Anne Balloch
- Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Tran Ngoc Huu
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Edward Kim Mulholland
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Department of Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Odutola A, Ota MOC, Antonio M, Ogundare EO, Saidu Y, Owiafe PK, Worwui A, Idoko OT, Owolabi O, Kampmann B, Greenwood BM, Alderson M, Traskine M, Swinnen K, Verlant V, Dobbelaere K, Borys D. Immunogenicity of pneumococcal conjugate vaccine formulations containing pneumococcal proteins, and immunogenicity and reactogenicity of co-administered routine vaccines - A phase II, randomised, observer-blind study in Gambian infants. Vaccine 2019; 37:2586-2599. [PMID: 30975570 DOI: 10.1016/j.vaccine.2019.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Two conserved pneumococcal proteins, pneumolysin toxoid (dPly) and pneumococcal histidine triad protein D (PhtD), combined with 10 polysaccharide conjugates from the pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) in two investigational pneumococcal vaccine (PHiD-CV/dPly/PhtD) formulations were immunogenic and well-tolerated when administered to Gambian children. Here, we report immunogenicity of the polysaccharide conjugates, and immunogenicity and reactogenicity of co-administered routine vaccines. METHODS In this phase II, controlled, observer-blind, single-centre study, healthy infants aged 8-10 weeks were randomised (1:1:1:1:1:1) to six groups. Four groups received 3+0 schedule (2-3-4 months [M]) of PHiD-CV/dPly/PhtD (10 or 30 µg of each protein), PHiD-CV, or 13-valent pneumococcal conjugate vaccine; and two groups received 2+1 schedule (2-4-9 M) of PHiD-CV/dPly/PhtD (30 µg of each protein) or PHiD-CV. All infants received diphtheria-tetanus-whole cell pertussis-hepatitis B-Haemophilus influenzae type b (DTPw-HBV/Hib) and oral trivalent polio vaccines (OPV) at 2-3-4 M, and measles, yellow fever, and OPV vaccines at 9 M. We evaluated immune responses at 2-5-9-12 M; and reactogenicity 0-3 days post-vaccination. RESULTS 1200 infants were enrolled between June 2011 and May 2012; 1152 completed the study. 1 M post-primary vaccination, for each PHiD-CV serotype except 6B and 23F, ≥97.4% (3+0 schedule) and ≥96.4% (2+1 schedule) of infants had antibody concentrations ≥0.2 μg/mL. Immune responses were comparable between groups within the same vaccination schedules. Observed antibody geometric mean concentrations (GMCs) increased by 1 M post-primary vaccination compared to pre-vaccination. In the following months, GMCs and opsonophagocytic activity titres waned, with an increase post-booster for the 2+1 schedule. Immune responses to protein D and, DTPw-HBV/Hib, OPV, measles, and yellow fever vaccines were not altered by co-administration with pneumococcal proteins. Reactogenicity of co-administered vaccines was comparable between groups and did not raise concerns. CONCLUSION Immune responses to the 10 PHiD-CV polysaccharide conjugates and co-administered vaccines were not altered by addition of dPly and PhtD. ClinicalTrials.gov identifier NCT01262872.
Collapse
Affiliation(s)
- Aderonke Odutola
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Martin O C Ota
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Martin Antonio
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Ezra O Ogundare
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Yauba Saidu
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Patrick K Owiafe
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Archibald Worwui
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Olubukola T Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Olumuyiwa Owolabi
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia.
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Brian M Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Burman C, Serra L, Nuttens C, Presa J, Balmer P, York L. Meningococcal disease in adolescents and young adults: a review of the rationale for prevention through vaccination. Hum Vaccin Immunother 2018; 15:459-469. [PMID: 30273506 PMCID: PMC6422514 DOI: 10.1080/21645515.2018.1528831] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is characterized by high mortality and morbidity. While IMD incidence peaks in both infants and adolescents/young adults, carriage rates are often highest in the latter age groups, increasing IMD risk and the likelihood of transmission. Effective vaccines are available for 5 of 6 disease-causing serogroups. Because adolescents/young adults represent a significant proportion of cases, often have the highest carriage rate, and have characteristically low vaccination adherence, efforts should be focused on educating this population regarding long-term consequences of infection and the importance of meningococcal vaccination in prevention. This review describes the role of adolescents/young adults in meningococcal transmission and the clinical consequences and characteristics of IMD in this population. With a focus on countries with advanced economies that have specific meningococcal vaccination recommendations, the epidemiology of meningococcal disease and vaccination recommendations in adolescents/young adults will also be discussed.
Collapse
Affiliation(s)
- Cynthia Burman
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| | - Lidia Serra
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| | - Charles Nuttens
- b Pfizer Vaccines, Medical Development, Scientific & Clinical Affairs , Paris , France
| | - Jessica Presa
- c Pfizer Vaccines, Medical & Scientific Affairs , Collegeville , PA , USA
| | - Paul Balmer
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| | - Laura York
- a Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville , PA , USA
| |
Collapse
|
21
|
Carmona Martinez A, Prymula R, Miranda Valdivieso M, Otero Reigada MDC, Merino Arribas JM, Brzostek J, Szenborn L, Ruzkova R, Horn MR, Jackowska T, Centeno-Malfaz F, Traskine M, Dobbelaere K, Borys D. Immunogenicity and safety of 11- and 12-valent pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccines (11vPHiD-CV, 12vPHiD-CV) in infants: Results from a phase II, randomised, multicentre study. Vaccine 2018; 37:176-186. [PMID: 30054160 DOI: 10.1016/j.vaccine.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/11/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND We assessed 2 investigational 11- and 12-valent vaccines, containing capsular polysaccharides of 10 serotypes as in the pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) and CRM197-conjugated capsular polysaccharides of serotypes 19A (11-valent) or 19A and 6A (12-valent). METHODS In this phase II, partially-blind, multicentre study (NCT01204658), healthy infants were randomised (1:1:1:1) to receive 11vPHiD-CV, 12vPHiD-CV, PHiD-CV, or 13-valent CRM197-conjugate pneumococcal vaccine (PCV13), at 2, 3, and 4 (primary series), and 12-15 months of age (booster dose), co-administered with DTPa-HBV-IPV/Hib. Confirmatory objectives assessed non-inferiority of investigational vaccines to comparators (PHiD-CV for common serotypes; PCV13 for 19A and 6A), in terms of percentage of infants with pneumococcal antibody concentrations ≥0.2 μg/mL and antibody geometric mean concentrations, post-primary vaccination. Reactogenicity and safety were assessed. RESULTS 951 children received ≥1 primary dose, 919 a booster dose. Pre-defined immunological non-inferiority criteria were met simultaneously for 9/11 11vPHiD-CV serotypes (all except 23F and 19A) and 10/12 12vPHiD-CV serotypes (all except 19A and 6A); thus, non-inferiority objectives were reached. For each PHiD-CV serotype, percentages of children with antibody concentrations ≥0.2 µg/mL were ≥96.7% post-primary (except 6B [≥75.2%] and 23F [≥81.1%]), and ≥98.1% post-booster vaccination. For each PHiD-CV serotype except serotype 1, ≥81.0% and ≥93.9% of children had opsonophagocytic activity titres ≥8, post-primary and booster vaccination. AEs incidence was similar across all groups. SAEs were reported for 117 children (29 in the 11vPHiD-CV group, 26 in the 12vPHiD-CV group, 38 in the PHiD-CV group and 24 in the PCV13 group); 4 SAEs were considered vaccination-related. No fatal events were recorded. CONCLUSION Addition of 19A and 6A CRM197-conjugates did not alter immunogenicity of the PHiD-CV conjugates; for both investigational vaccines post-booster immune responses to 10 common serotypes appeared similar to those elicited by PHiD-CV. Safety and reactogenicity profiles of the investigational vaccines were comparable to PHiD-CV. Clinical trial registry: NCT01204658.
Collapse
Affiliation(s)
| | - Roman Prymula
- Department of Social Medicine, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 38 Hradec Králové, Czech Republic.
| | | | | | | | - Jerzy Brzostek
- Health Care Establishment in Debica, Infectious Diseases Outpatient Clinic, ul. Krakowska 91, 39-200 Debica, Poland.
| | - Leszek Szenborn
- Department of Paediatric Infectious Diseases, Wroclaw Medical University, 2-2A, Chalubinskiego, 50-368 Wroclaw, Poland.
| | - Renata Ruzkova
- Pediatric Office Dr. Renata Ruzkova, Kladenska 53, Medicentrum 6, s.r.o., 160 00 Prague, Czech Republic.
| | - Michael R Horn
- Pediatric Office Dr. Med. Michael Horn, Achenweg 1, 83471 Schönau am Königssee, Germany.
| | - Teresa Jackowska
- Department of Pediatrics, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Fernando Centeno-Malfaz
- Department of Pediatrics, Rio Hortega University Hospital, Calle Dulzaina, 2, 47012 Valladolid, Spain.
| | | | | | | |
Collapse
|
22
|
Pichichero ME. Pneumococcal whole-cell and protein-based vaccines: changing the paradigm. Expert Rev Vaccines 2018; 16:1181-1190. [PMID: 29130395 DOI: 10.1080/14760584.2017.1393335] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Epidemiologic evaluations of Streptococcus pneumoniae nasopharyngeal (NP) colonization and pneumococcal disease suggest that newer serotypes in future formulations of pneumococcal conjugate vaccines (PCVs) are needed and there may need to be continued reformulations because there are many new emerging serotypes expressed by pneumococci. Areas covered: Mechanisms of protection by next-generation whole-cell vaccine (WCV) and/or multi-component pneumococcal purified protein vaccines (PPVs) in development for prevention of pneumococcal infections. Expert commentary: A long-term strategy for prevention of pneumococcal disease will likely include WCV and PPVs. However these vaccines will impact disease pathogenesis in a different manner than PCVs. Prevention of pneumococcal NP colonization should not be expected, nor is it desirable because risks for NP colonization by other replacement organisms into the ecological niche vacated by all pneumococci may have consequences. The expression biology of capsule and surface protein antigens are phase dependent. Therefore, the immune response will be different and the mechanism of protection divergent. WCVs and PPVs may be alternative strategies in low income developing countries to protect against invasive disease and reduce NP carriage load.
Collapse
Affiliation(s)
- Michael E Pichichero
- a Rochester General Hospital Research Institute , Center for Infectious Diseases and Immunology , Rochester , NY , USA
| |
Collapse
|