1
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 1-Primary Immunodeficiencies. Healthcare (Basel) 2024; 12:1976. [PMID: 39408156 PMCID: PMC11476293 DOI: 10.3390/healthcare12191976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are some of the most prevalent chronic diseases that generate not only high social but also economic costs. It is becoming increasingly crucial to take into account inborn errors of immunity (IEIs, formerly known as primary immunodeficiencies (PIDs)) and secondary immunodeficiencies (SIDs) in the diagnostic and therapeutic management of cardiac patients. The number of diseases classified as IEIs is on the rise, with a current total of 485. It is essential to pay attention not only to already confirmed conditions but also to symptoms suggestive of immunodeficiencies. OBJECTIVES The aim of this article is to present IEIs with cardiovascular symptoms that may cause or exacerbate cardiovascular disease, as well as diagnostic and therapeutic procedures. RESULTS It is becoming increasingly evident that immunodeficiencies can be responsible for certain cardiovascular conditions, their hastened progression, and difficulties in their control. CONCLUSIONS Early detection of deficiencies improves not only the quality and longevity of patients, but also allows for better control of cardiovascular diseases and even prevention of their occurrence.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Moschese V, Montin D, Ottaviano G, Sgrulletti M, Beni A, Costagliola G, Sangerardi M, Santilli V, Miraglia Del Giudice M, Rizzo C, Martire B. Vaccines and allergy: Back to the right places. Pediatr Allergy Immunol 2024; 35:e14236. [PMID: 39244712 DOI: 10.1111/pai.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Hypersensitivity reactions represent one of the most common causes of hesitancy for adherence to national vaccination programs. The majority of hypersensitivity reactions after vaccination are mild, and anaphylaxis is reported to be rare, although it remains challenging to estimate the frequency attributed to each single vaccine, either because of the lower number of administered doses of less common vaccines, or the administration of simultaneous vaccine in most of the vaccination programs. Although literature remains scattered, international consensus guides clinicians in identifying patients who might need the administration of vaccines in protected environments due to demonstrated hypersensitivity to vaccine components or adjuvants. Here we provide the current guidance on hypersensitivity reactions to vaccines and on vaccination of children with allergy disorders.
Collapse
Affiliation(s)
- Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, "Regina Margherita" Children Hospital, University of Turin, Turin, Italy
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Beni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maria Sangerardi
- Department of Pediatrics and Emergency, Azienda Ospedaliero Universitaria Consorziale Policlinico, Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Baldassarre Martire
- UOC of Pediatrics and Neonatology, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| |
Collapse
|
3
|
Napiórkowska-Baran K, Darwish S, Kaczor J, Treichel P, Szymczak B, Szota M, Koperska K, Bartuzi Z. Oral Diseases as a Manifestation of Inborn Errors of Immunity. J Clin Med 2024; 13:5079. [PMID: 39274292 PMCID: PMC11396297 DOI: 10.3390/jcm13175079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Oral findings such as inflammation, ulcerations, or lesions can indicate serious systemic diseases and should prompt suspicion of acquired chronic conditions or inborn errors of immunity (IEIs). Currently, there are approximately 500 disease entities classified as IEIs, with the list expanding annually. The awareness of the existence of such conditions is of paramount importance, as patients with these disorders frequently necessitate the utilization of enhanced diagnostic techniques. This is exemplified by patients with impaired antibody production, in whom conventional serological methods may prove to be undiagnostic. Patients with IEI may require distinct therapeutic approaches or antimicrobial prophylaxis throughout their lives. An accurate diagnosis and, more importantly, early identification of patients with immune deficiencies is crucial to ensure the quality and longevity of their lives. It is important to note that the failure to establish a proper diagnosis or to provide adequate treatment could also have legal implications for medical professionals. The article presents IEIs, which may manifest in the oral cavity, and their diagnosis alongside therapeutic procedures.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Justyna Kaczor
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Maciej Szota
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland
| |
Collapse
|
4
|
Rivera-Izquierdo M, Morales-Portillo A, Guerrero-Fernández de Alba I, Fernández-Martínez NF, Schoenenberger-Arnaiz JA, Barranco-Quintana JL, Valero-Ubierna C. Vaccination strategies for patients under monoclonal antibody and other biological treatments: an updated comprehensive review based on EMA authorisations to January 2024. Expert Rev Vaccines 2024; 23:887-910. [PMID: 39258843 DOI: 10.1080/14760584.2024.2401839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) and other biological agents are being increasingly approved in the last years with very different indications. Their highly heterogeneous immunosuppressive effects, mechanisms of action and pharmacokinetics require comprehensive individualized vaccination schedules. AREAS COVERED Vaccination for immunocompromised patients. Prevention and treatment with mAbs and other biological therapies. EXPERT OPINION Current recommendations on vaccine schedules for patients under mAbs or other biological treatments are based on expert opinions and are not individualized according to each vaccine and treatment. No studies are focusing on the high heterogeneity of these agents, which are exponentially developed and used for many different indications. Recent paradigm changes in vaccine development (boosted by the COVID-19 pandemic) and in the mAbs use for prophylactic purposes (changing 'vaccination' by 'immunization' schedules) has been witnessed in the last years. We aimed at collecting all mAbs used for treatment or prevention, approved as of 1 January 2024, by the EMA. Based on available data on mAbs and vaccines, we propose a comprehensive guide for personalizing vaccination. Recent vaccine developments and current population strategies (e.g. zoster vaccination or prophylactic nirsevimab) are discussed. This review aims to be a practical guideline for professionals working in vaccine consultations for immunosuppressed patients.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- Service of Preventive Medicine and Public Health, Hospital Universitario San Cecilio, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
- Instituto de investigación biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Arturo Morales-Portillo
- Service of Pharmacy, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Pharmacoepidemiology and Pharmacodynamics Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | - Nicolás Francisco Fernández-Martínez
- Instituto de investigación biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Joan Antoni Schoenenberger-Arnaiz
- Service of Pharmacy, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Pharmacoepidemiology and Pharmacodynamics Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - José Luis Barranco-Quintana
- Service of Preventive Medicine and Public Health, Hospital Universitario Reina Sofía, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC) Córdoba, Spain
- Expert Committee on Andalusian Vaccine Plan, Consejería de Salud y Familias, Junta de Andalucía, Sevilla, Spain
| | - Carmen Valero-Ubierna
- Service of Preventive Medicine and Public Health, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
5
|
Ridolfi I, Lo Sardo L, Nicola S, Borrelli R, Comola L, Marmora V, Badiu I, Corradi F, Azzolina MCR, Brussino L. MAURIVAX: A Vaccination Campaign Project in a Hospital Environment for Patients Affected by Autoimmune Diseases and Adult Primary Immunodeficiencies. Vaccines (Basel) 2023; 11:1579. [PMID: 37896982 PMCID: PMC10610841 DOI: 10.3390/vaccines11101579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Patients with autoimmune diseases (ADs) and primary immunodeficiencies (PIDs) are characterized by an increased risk of noninvasive and widespread infections as they are considered frail patients. In addition, many flares of the underlying disease are reported after routine vaccinations. To date, the vaccination rate in these two populations is suboptimal. According to the latest guidelines, targeted interventions are needed, such as strengthening the network of vaccination activities. Our project aimed to propose a pilot network for carrying out the recommended vaccinations in frail patients. Methods: The Allergy and Immunology Center of the Mauriziano Hospital in Turin, Italy started the "Maurivax" project, a facilitated pathway for frail patients to administer the recommended vaccinations in the setting of a dedicated structure where they could be properly followed up. Results: From June 2022 to February 2023, 49 patients underwent a vaccination consultation: 45 of them (91.8%) were subsequently vaccinated. Among these, 36 subjects (80%) were affected by an active AD and were already in treatment with immunosuppressive therapy or about to start it. Seven patients (15.5%) had a confirmed diagnosis of PID or showed a clinical presentation that was highly suggestive of that condition. Overall, twenty-seven patients (60%) showed a high-grade immunosuppression and six (13.3%) had a low-grade immunosuppression. No patients had a disease flare within 30 days from vaccination and no severe reactions after vaccination was observed. Conclusions: Adherence and vaccination safety at our immunology hospital vaccine clinic dedicated to patients with ADs and PIDs were high. We propose an effective model for managing vaccinations in frail patients in a specialist hospital setting.
Collapse
Affiliation(s)
- Irene Ridolfi
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Luca Lo Sardo
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
| | - Stefania Nicola
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Richard Borrelli
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Ludovica Comola
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Valentina Marmora
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Iuliana Badiu
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
| | - Federica Corradi
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
| | | | - Luisa Brussino
- S.C.D.U. Immunology and Allergology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (I.R.); (L.L.S.); (R.B.); (L.C.); (V.M.); (I.B.); (F.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
6
|
Cavone F, Cappelli S, Bonuccelli A, D’Elios S, Costagliola G, Peroni D, Orsini A, Consolini R. Ataxia Telangiectasia Arising as Immunodeficiency: The Intriguing Differential Diagnosis. J Clin Med 2023; 12:6041. [PMID: 37762981 PMCID: PMC10531840 DOI: 10.3390/jcm12186041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Ataxia telangiectasia (AT) is a rare disease characterized by the early onset and slow progression of neurodegenerative defects, mainly affecting the cerebellum, associated with immunodeficiency and teleangiectasias. Ataxia is the hallmark of the disease and usually its first manifestation. Overt cerebellar ataxia usually becomes evident between 16 and 18 months of age, after the onset of walking, and is characterized by frequent falls and an ataxic gait with an enlarged base. We report the case of a child who first presented with serious recurrent infectious, without exhibiting neurological symptoms. The patient was initially diagnosed with combined immunodeficiency (CID) of unknown etiology for nearly 3 years, before he was definitively diagnosed with ataxia telangiectasia.
Collapse
Affiliation(s)
- Federica Cavone
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.C.); (G.C.); (D.P.)
| | - Susanna Cappelli
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (S.D.)
| | - Alice Bonuccelli
- Section of Pediatric Neurology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.O.)
| | - Sofia D’Elios
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (S.D.)
| | - Giorgio Costagliola
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.C.); (G.C.); (D.P.)
| | - Diego Peroni
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.C.); (G.C.); (D.P.)
| | - Alessandro Orsini
- Section of Pediatric Neurology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.O.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (S.D.)
| |
Collapse
|
7
|
Taietti I, Votto M, De Filippo M, Naso M, Montagna L, Montagna D, Licari A, Marseglia GL, Castagnoli R. Selective IgM Deficiency: Evidence, Controversies, and Gaps. Diagnostics (Basel) 2023; 13:2861. [PMID: 37685399 PMCID: PMC10486670 DOI: 10.3390/diagnostics13172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Selective Immunoglobulin M deficiency (SIgMD) has been recently included in the inborn errors of immunity (IEI) classification by the International Union of Immunological Societies Expert Committee. The understanding of SIgMD is still extremely limited, especially so in cases of SIgMD in the pediatric population. The epidemiology of SIgMD in the pediatric population is still unknown. The pathogenesis of SIgMD remains elusive, and thus far no genetic nor molecular basis has been clearly established as a definitive cause of this primary immunodeficiency. Recurrent respiratory infections represent the main clinical manifestations in children, followed by allergic and autoimmune diseases. No conclusive data on the correct therapeutic management of SIgMD are available. Although, for most SIgMD patients, Ig replacement therapy is not required, it may be recommended for patients with significantly associated antibody deficiency and recurrent or severe infections. Prophylactic antibiotics and the prompt treatment of febrile illness are crucial. There is insufficient evidence on the prognosis of this condition. Therefore, further studies are required to define the disease trajectories and to increase our understanding of the molecular mechanisms underlying SIgMD in order to facilitate a better clinical, immunological, and prognostic characterization of the condition and develop tailored therapeutic management strategies.
Collapse
Affiliation(s)
- Ivan Taietti
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Martina Votto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria De Filippo
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Matteo Naso
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenza Montagna
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
| | - Daniela Montagna
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (I.T.); (M.V.); (M.D.F.); (M.N.); (L.M.); (D.M.); (G.L.M.)
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
8
|
La Civita E, Zannella C, Brusa S, Romano P, Schettino E, Salemi F, Carrano R, Gentile L, Punziano A, Lagnese G, Spadaro G, Franci G, Galdiero M, Terracciano D, Portella G, Loffredo S. BNT162b2 Elicited an Efficient Cell-Mediated Response against SARS-CoV-2 in Kidney Transplant Recipients and Common Variable Immunodeficiency Patients. Viruses 2023; 15:1659. [PMID: 37632002 PMCID: PMC10459971 DOI: 10.3390/v15081659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 vaccination is the standard of care for the prevention of COVID-19 disease. Although vaccination triggers both humoral and cellular immune response, COVID-19 vaccination efficacy is currently evaluated by measuring antibodies only, whereas adaptative cellular immunity is unexplored. Our aim is to test humoral and cell-mediated response after three doses of BNT162b vaccine in two cohorts of fragile patients: Common Variable Immunodeficiency (CVID) patients and Kidney Transplant Recipients (KTR) patients compared to healthy donors. We enrolled 10 healthy controls (HCs), 19 CVID patients and 17 KTR patients. HC BNT162b third dose had successfully mounted humoral immune response. A positive correlation between Anti-Spike Trimeric IgG concentration and neutralizing antibody titer was also observed. CVID and KTR groups showed a lower humoral immune response compared to HCs. IFN-γ release induced by epitopes of the Spike protein in stimulated CD4+ and CD8+ T cells was similar among vaccinated HC, CVID and KTR. Patients vaccinated and infected showed a more efficient humoral and cell-mediated response compared to only vaccinated patients. In conclusion, CVID and KTR patients had an efficient cell-mediated but not humoral response to SARS-CoV-2 vaccine, suggesting that the evaluation of T cell responses could be a more sensitive marker of immunization in these subjects.
Collapse
Affiliation(s)
- Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (M.G.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Stefano Brusa
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Paolo Romano
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Elisa Schettino
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Fabrizio Salemi
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Rosa Carrano
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Luca Gentile
- Integrated Department of Laboratory and Trasfusion Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples “Federico II”, 80131 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “ScholaMedicaSalernitana”, University of Salerno, 84081 Baronissi, Italy;
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84125 Salerno, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (M.G.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| |
Collapse
|
9
|
Durkee-Shock JR, Keller MD. Immunizing the Imperfect Immune System: COVID-19 Vaccination in Patients with Inborn Errors of Immunity. Ann Allergy Asthma Immunol 2022; 129:562-571.e1. [PMID: 35718282 PMCID: PMC9212748 DOI: 10.1016/j.anai.2022.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Objective To update clinicians on current evidence regarding the immunogenicity and safety of coronavirus disease 2019 (COVID-19) vaccines in patients with inborn errors of immunity (IEI). Data Sources Peer-reviewed, published studies in PubMed, clinical trials listed on ClinicalTrials.gov, and professional organization and governmental guidelines. Study Selections Literature searches on PubMed and ClinicalTrials.gov were performed using a combination of the following keywords: primary immunodeficiency, COVID-19, SARS-CoV-2, and vaccination. Results A total of 26 studies met the criteria and were included in this review. Overall, antibody responses to COVID-19 vaccination were found in 72% of study subjects, with stronger responses observed after messenger RNA vaccination. Neutralizing antibodies were detected in patients with IEI, though consistently at lower levels than healthy controls. Risk factors for poor antibody responses included diagnosis of common variable immunodeficiency, presence of autoimmune comorbidities, and use of rituximab. T cell responses were detectable in most patients with IEI, with poorer responses often found in patients with common variable immunodeficiency. Safety of COVID-19 vaccines in patients with IEI was acceptable with high rates of reactogenicity but very few serious adverse events, including in patients with immune dysregulation. Conclusion COVID-19 vaccines are safe in patients with IEI and seem to be immunogenic in most individuals, with stronger responses found after messenger RNA vaccinations.
Collapse
Affiliation(s)
- Jessica R Durkee-Shock
- Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, Bethesda, Maryland
| | - Michael D Keller
- Division of Allergy & Immunology and Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia; Department of Pediatrics and GW Cancer Center, George Washington University, Washington, District of Columbia.
| |
Collapse
|
10
|
Martire B, Ottaviano G, Sangerardi M, Sgrulletti M, Chini L, Dellepiane RM, Montin D, Rizzo C, Pignata C, Marseglia GL, Moschese V. Vaccinations in Children and Adolescents Treated With Immune-Modifying Biologics: Update and Current Developments. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1485-1496. [PMID: 35085809 DOI: 10.1016/j.jaip.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Treatment with immune-modifying biologics has positively impacted disease control and quality of life in many patients with immune-mediated disorders. However, the higher susceptibility to common and opportunistic pathogens is of concern. Thus, immunization strategies to control vaccine-preventable diseases represent a critical issue in this population. However, limited data exist on the safety, immunogenicity, and efficacy of available vaccines in patients on biologics, particularly in children. Here, according to published literature and real-life experience and practice, we report the interim indications of the Italian Society of Pediatric Allergology and Immunology (SIAIP) Vaccine Committee and of the Italian Primary Immunodeficiency Network (IPINet) Centers on immunization of children and adolescents receiving biologics. Our aim is to provide a practical guidance for the clinician to ensure optimal protection for patients and the community.
Collapse
Affiliation(s)
- Baldassarre Martire
- Pediatrics and Neonatology Unit, Maternal-Infant Department, Monsignor A. R. Dimiccoli Hospital, Barletta, Italy.
| | - Giorgio Ottaviano
- Molecular and Cellular Immunology Unit, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Maria Sangerardi
- Department of Pediatrics and Emergency, Pediatric Hospital, Policlinico - University of Bari, Bari, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, University of Rome, Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Loredana Chini
- Pediatric Immunopathology and Allergology Unit, University of Rome, Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Rosa Maria Dellepiane
- Pediatric Intermediate Care Unit, Scientific Institute for Research, Hospitalization and Healthcare Foundation (IRCSS); Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Montin
- Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Caterina Rizzo
- Innovation and Clinical Pathways Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, IRCCS Foundation, Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome, Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Fioredda F, Onofrillo D, Farruggia P, Barone A, Veltroni M, Notarangelo LD, Menna G, Russo G, Martire B, Finocchi A, Verzegnassi F, Bonanomi S, Ramenghi U, Pillon M, Dufour C. Diagnosis and management of neutropenia in children: The approach of the Study Group on Neutropenia and Marrow Failure Syndromes of the Pediatric Italian Hemato-Oncology Association (Associazione Italiana Emato-Oncologia Pediatrica - AIEOP). Pediatr Blood Cancer 2022; 69:e29599. [PMID: 35253359 DOI: 10.1002/pbc.29599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022]
Abstract
Neutropenia refers to a group of diseases characterized by a reduction in neutrophil levels below the recommended age threshold. The present study aimed to review the diagnosis and management of neutropenia, including a diagnostic toolkit and candidate underlying genes. This study also aimed to review the progress toward the definition of autoimmune and idiopathic neutropenia rising in infancy or in late childhood but without remission, and provide suggestions for efficient diagnostics, including indications for the bone marrow and genetic testing. The management and treatment protocols for common and unique presentations are also reviewed, providing evidence tailored to a single patient.
Collapse
Affiliation(s)
| | - Daniela Onofrillo
- Pediatric Hematology and Oncology Unit, Department of Hematology, Spirito Santo Hospital, Pescara, Italy
| | - Piero Farruggia
- Department of Pediatric Onco-Hematology, University Hospital, Parma, Italy
| | - Angelica Barone
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Marinella Veltroni
- Department of Pediatric Onco-Hematology, Meyer Children's Hospital, Florence, Italy
| | - Lucia Dora Notarangelo
- Oncology-Haematology and Bone Marrow Transplantation Unit, Children's Hospital, Brescia, Italy
| | - Giuseppe Menna
- AORN (Azienda Ospedaliera Rilievo Nazionale), Santobono Pausillipon, Naples, Italy
| | - Giovanna Russo
- Pediatric Ematologi and Oncology Unit, Azienda Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Baldassarre Martire
- Unit of Pediatrics and Neonatology, "Monsignor Dimiccoli" Hospital, Barletta, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Disease, University Department of Pediatrics DPUO, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federico Verzegnassi
- Institute of Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy.,Department of Pediatric Hematology, San Gerardo Hospital, Monza, Italy
| | - Sonia Bonanomi
- MBBM (Monza e Brianza per Bambino e Mamma) Foundation, Department of Pediatrics, University of Milano - Bicocca, Monza, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Torino, Turin, Italy
| | - Marta Pillon
- Pediatric Onco-Hematology Unit, University Hospital of Padua, Padua, Italy
| | - Carlo Dufour
- Unit of Haematology, IRCCS - Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
Amodio D, Ruggiero A, Sgrulletti M, Pighi C, Cotugno N, Medri C, Morrocchi E, Colagrossi L, Russo C, Zaffina S, Di Matteo G, Cifaldi C, Di Cesare S, Rivalta B, Pacillo L, Santilli V, Giancotta C, Manno EC, Ciofi Degli Atti M, Raponi M, Rossi P, Finocchi A, Cancrini C, Perno CF, Moschese V, Palma P. Humoral and Cellular Response Following Vaccination With the BNT162b2 mRNA COVID-19 Vaccine in Patients Affected by Primary Immunodeficiencies. Front Immunol 2021; 12:727850. [PMID: 34671350 PMCID: PMC8521226 DOI: 10.3389/fimmu.2021.727850] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells.
Collapse
Affiliation(s)
- Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandra Ruggiero
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mayla Sgrulletti
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Pighi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Medri
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luna Colagrossi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Russo
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Salvatore Zaffina
- Occupational Medicine Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gigliola Di Matteo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Beatrice Rivalta
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lucia Pacillo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marta Ciofi Degli Atti
- Clinical Pathways and Epidemiology Unit-Medical Direction, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Rossi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Finocchi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Caterina Cancrini
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Viviana Moschese
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
13
|
Diotallevi F, Campanati A, Radi G, Martina E, Rizzetto G, Barbadoro P, D'Errico MM, Offidani A. Vaccines Against SARS-CoV-2 in Psoriasis Patients on Immunosuppressive Therapy: Implications of Vaccination Nationwide Campaign on Clinical Practice in Italy. Dermatol Ther (Heidelb) 2021; 11:1889-1903. [PMID: 34586598 PMCID: PMC8480269 DOI: 10.1007/s13555-021-00610-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
More than 12 months have passed since the World Health Organization (WHO) declared Coronavirus Disease 19 (COVID-19), caused by the SARS-CoV2 virus, to be a pandemic on 11 March 2020. The entire world scientific community agrees that at this time vaccine is the most promising weapon to combat the infection and the severity of the disease. According to the document “Draft landscape of COVID-19 candidate vaccines” by WHO, 272 vaccines against SARS-CoV-2 virus are in development, although only four of these, produced by Pfizer-BioNTech (Pfizer, Inc. and BioNTech), Moderna, AstraZeneca, and Janssen companies, respectively, have been approved by European Medicines Agency and Italian Medicines Agency and subsequently distributed nationwide for use. These vaccines are the result of highly innovative procedures and are quite different from each other in terms of composition. Even clinicians in various medical fields may be unfamiliar with the effects of these vaccines. There is the strong emerging need for dermatologists to understand the crucial role of vaccines, with a focus on the need to vaccinate patients suffering from immune-mediated skin diseases, such as psoriasis, while taking the ongoing treatment into consideration regarding the timing of vaccination. Similarly, psoriasis patients aware of having an immune-mediated and inflammatory disease are increasingly asking the dermatologist information about the efficacy and safety of vaccines against SARS-CoV-2 virus. In this narrative review of the literature and critical analysis of the recommendations of the Italian Ministry of Health, we analyze the implications of the vaccination campaign on dermatological patients with psoriasis undergoing immunosuppressive treatment.
Collapse
Affiliation(s)
- Federico Diotallevi
- Department of Clinical and Molecular Sciences, Dermatological Clinic, Polytechnic University of the Marche Region, Via Conca 71, 60020, Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Dermatological Clinic, Polytechnic University of the Marche Region, Via Conca 71, 60020, Ancona, Italy
| | - Giulia Radi
- Department of Clinical and Molecular Sciences, Dermatological Clinic, Polytechnic University of the Marche Region, Via Conca 71, 60020, Ancona, Italy.
| | - Emanuela Martina
- Department of Clinical and Molecular Sciences, Dermatological Clinic, Polytechnic University of the Marche Region, Via Conca 71, 60020, Ancona, Italy
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences, Dermatological Clinic, Polytechnic University of the Marche Region, Via Conca 71, 60020, Ancona, Italy
| | - Pamela Barbadoro
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, Ancona, Italy
| | - Marcello Mario D'Errico
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Dermatological Clinic, Polytechnic University of the Marche Region, Via Conca 71, 60020, Ancona, Italy
| |
Collapse
|
14
|
D’Amelio R, Asero R, Cassatella MA, Laganà B, Lunardi C, Migliorini P, Nisini R, Parronchi P, Quinti I, Racanelli V, Senna G, Vacca A, Maggi E. Anti-COVID-19 Vaccination in Patients with Autoimmune-Autoinflammatory Disorders and Primary/Secondary Immunodeficiencies: The Position of the Task Force on Behalf of the Italian Immunological Societies. Biomedicines 2021; 9:1163. [PMID: 34572349 PMCID: PMC8465958 DOI: 10.3390/biomedicines9091163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has represented an unprecedented challenge for humankind from health, economic, and social viewpoints. In February 2020, Italy was the first western country to be deeply hit by the pandemic and suffered the highest case/fatality rate among western countries. Brand new anti-COVID-19 vaccines have been developed and made available in <1-year from the viral sequence publication. Patients with compromised immune systems, such as autoimmune-autoinflammatory disorders (AIAIDs), primary (PIDs) and secondary (SIDs) immunodeficiencies, have received careful attention for a long time regarding their capacity to safely respond to traditional vaccines. The Italian Immunological Societies, therefore, have promptly faced the issues of safety, immunogenicity, and efficacy/effectiveness of the innovative COVID-19 vaccines, as well as priority to vaccine access, in patients with AIADs, PIDs, and SIDs, by organizing an ad-hoc Task Force. Patients with AIADs, PIDs, and SIDs: (1) Do not present contraindications to COVID-19 vaccines if a mRNA vaccine is used and administered in a stabilized disease phase without active infection. (2) Should usually not discontinue immunosuppressive therapy, which may be modulated depending on the patient's clinical condition. (3) When eligible, should have a priority access to vaccination. In fact, immunizing these patients may have relevant social/health consequences, since these patients, if infected, may develop chronic infection, which prolongs viral spread and facilitates the emergence of viral variants.
Collapse
Affiliation(s)
- Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica S. Carlo di Paderno Dugnano, Via Ospedale 21, 20037 Milano, Italy;
| | - Marco Antonio Cassatella
- Sezione di Patologia Generale, Dipartimento di Medicina, Università di Verona, Strada Le Grazie 4, 37134 Verona, Italy;
| | - Bruno Laganà
- UOC Medicina Interna, Dipartimento di Medicina Clinica e Molecolare, AOU S. Andrea, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Claudio Lunardi
- Responsabile Unità di Malattie Autoimmunitarie, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Paola Migliorini
- Direttore Unità Operativa di Immunoallergologia Clinica, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero Universitaria Pisana, Università di Pisa, Via Roma 67, 56126 Pisa, Italy;
| | - Roberto Nisini
- Direttore Reparto Immunologia, Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Parronchi
- Direttore SOD Immunologia e Terapie Cellulari, Dipartimento di Medicina Sperimentale e Clinica, AOU Careggi, Università di Firenze, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Isabella Quinti
- Responsabile UOD Centro di Riferimento Regionale per le Immunodeficienze, Dipartimento di Medicina Molecolare, AOU Policlinico Umberto I, Sapienza Università di Roma, Viale dell’Università 37, 00161 Rome, Italy;
| | - Vito Racanelli
- UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Gianenrico Senna
- Direttore USD Allergologia, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Angelo Vacca
- Direttore UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Enrico Maggi
- Unità di Immunità Traslazionale, Dipartimento di Immunologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di S. Paolo 15, 00146 Rome, Italy
| |
Collapse
|
15
|
Cortesi M, Badolato R. Alternative Approach to Varicella Zoster Virus Prevention in a Child with Lymphopenia. J Clin Immunol 2021; 41:1681-1682. [PMID: 34241732 DOI: 10.1007/s10875-021-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Manuela Cortesi
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy.
| | - Raffaele Badolato
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Milito C, Soccodato V, Collalti G, Lanciarotta A, Bertozzi I, Rattazzi M, Scarpa R, Cinetto F. Vaccination in PADs. Vaccines (Basel) 2021; 9:vaccines9060626. [PMID: 34207916 PMCID: PMC8230118 DOI: 10.3390/vaccines9060626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Primary antibody deficiencies (PADs) are the most common primary immunodeficiencies (PIDs). They can be divided into the following groups, depending on their immunological features: agammaglobulinemia; common variable immunodeficiency (CVID) isotype; hyper IgM isotype; light chain or functional deficiencies with normal B cell count; specific antibody deficiency with normal Ig concentrations and normal numbers of B cells and transient hypogammaglobulinemia of infancy. The role of vaccination in PADs is recognized as therapeutic, diagnostic and prognostic and may be used in patients with residual B-cell function to provide humoral immunity to specific infective agents. According to their content and mechanisms, vaccines are grouped as live attenuated, inactivated (conjugated, polysaccharide), mRNA or replication-deficient vector vaccines. Vaccination may be unsafe or less effective when using certain vaccines and in specific types of immunodeficiency. Inactivated vaccines can be administered in PAD patients even if they could not generate a protective response; live attenuated vaccines are not recommended in major antibody deficiencies. From December 2020, European Medicines Agency (EMA) approved vaccines against COVID-19 infection: according to ESID advises, those vaccinations are recommended in patients with PADs. No specific data are available on safety and efficacy in PAD patients.
Collapse
Affiliation(s)
- Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.S.); (G.C.)
- Correspondence:
| | - Valentina Soccodato
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.S.); (G.C.)
| | - Giulia Collalti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.S.); (G.C.)
| | - Alison Lanciarotta
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Ilaria Bertozzi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Marcello Rattazzi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Riccardo Scarpa
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Francesco Cinetto
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| |
Collapse
|
17
|
Righi E, Gallo T, Azzini AM, Mazzaferri F, Cordioli M, Merighi M, Tacconelli E. A Review of Vaccinations in Adult Patients with Secondary Immunodeficiency. Infect Dis Ther 2021; 10:637-661. [PMID: 33687662 PMCID: PMC7941364 DOI: 10.1007/s40121-021-00404-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
Vaccine-preventable diseases and their related complications are associated with increased morbidity and mortality in patients with altered immunocompetence. Optimised immunisation in this patient population is challenging because of limited data from vaccine trials, suboptimal vaccine efficacy and safety concerns. Reliable efficacy data are lacking among patients with altered immunocompetence, and existing recommendations are mainly based on expert consensus and may vary geographically. Inactivated vaccines can be generally used without risks in this group, but their efficacy may be reduced, and immunisation schedules vary according to local guidelines, age, and type and stage of the underlying disease. Live vaccines, if indicated, should be administered with care because of the risk of vaccine-associated disease. We have reviewed the current evidence on vaccination principles and recommendations in adult patients with secondary immunodeficiencies, including asplenia, HIV infection, stem cell and solid organ transplant, haematological malignancies, inflammatory bowel disease and other chronic disorders.
Collapse
Affiliation(s)
- Elda Righi
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
- Infectious Diseases, Verona University Hospital, Verona, Italy.
| | - Tolinda Gallo
- Public Health Department, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Anna Maria Azzini
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Infectious Diseases, Verona University Hospital, Verona, Italy
| | | | - Maddalena Cordioli
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Infectious Diseases, Verona University Hospital, Verona, Italy
| | - Mara Merighi
- Infectious Diseases, Verona University Hospital, Verona, Italy
| | - Evelina Tacconelli
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Infectious Diseases, Verona University Hospital, Verona, Italy
| |
Collapse
|
18
|
Giordano P, Santoro N, Stefanizzi P, Termite S, De Nitto S, Bianchi FP, Corallo PC, Lassandro G, Tafuri S. Vaccination coverage among paediatric onco-haematological patients: an Italian cross-sectional study. Hum Vaccin Immunother 2021; 17:818-823. [PMID: 32845796 PMCID: PMC7993150 DOI: 10.1080/21645515.2020.1797367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Children with onco-hematological diseases are at increased risk of infection. However, this risk can in part be controlled or reduced using currently available vaccines. Despite available evidence, in patients diagnosed with a hematological or oncological disease the vaccination schedule is often inappropriately discontinued. In this study we evaluated whether the diagnosis of an oncological or hematological disease is a determinant of noncompliance with recommended vaccinations.The study was carried out between March and April 2019. The population was composed of a convenience sample of 228 children cared for in the Pediatric Oncology Department and Pediatric Hematology Department of the Policlinico Giovanni XXIII Pediatric Hospital (Bari, Italy) from 2005 to 2015. Information on the immunization status of the patients was obtained from the Apulia regional immunization database (GIAVA). A post-diagnosis adherence score was calculated.The vaccination coverage was 87.7% for the DTaP-IPV-Hep B-Hib vaccine (3 doses), 68.7% for the pneumococcal vaccine (3 doses), 75.8% for the MMR vaccine (2 doses) and 75.1% for the varicella vaccine (2 doses). The average age at vaccination was older than that recommended by the National Vaccination Plan. A diagnosis of oncological disease and an older age at enrollment were risk factors for missing vaccinations. These results showed that the overall vaccination status of pediatric onco-hematological patients is suboptimal. Improving provider communication and establishing the hospital as the primary environment for vaccine administration may lead to better vaccination compliance in this group.
Collapse
Affiliation(s)
- Paola Giordano
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Nicola Santoro
- Paediatric Oncology Department, Bari Policlinico General Hospital, Bari, Italy
| | - Pasquale Stefanizzi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Stefano Termite
- Public Health Department, Brindisi Health Trust, ASL Brindisi, Dipartimento di Prevenzione, Brindisi, Italy
| | - Sara De Nitto
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Francesco Paolo Bianchi
- Public Health Department, Brindisi Health Trust, ASL Brindisi, Dipartimento di Prevenzione, Brindisi, Italy
| | - Paola Carmela Corallo
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Giuseppe Lassandro
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
19
|
Vaccination of immune compromised children-an overview for physicians. Eur J Pediatr 2021; 180:2035-2047. [PMID: 33665677 PMCID: PMC8195953 DOI: 10.1007/s00431-021-03997-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/19/2023]
Abstract
Immune compromised children are threatened by a higher risk of infections; some of these are preventable by vaccination. Primary care physicians play a fundamental role in optimising vaccination status. In this narrative review, we present the evidence on vaccine safety and immunogenicity in immune compromised children and discuss in which conditions live-attenuated vaccines can possibly be used. Vaccination schedules differ in some of these conditions, including the use of vaccines with higher antigenic contents (e.g. high-dose hepatitis B vaccine), additional vaccine doses (e.g. 2-dose schedule meningococcal vaccine), more frequent booster doses (e.g. life-long pneumococcal vaccine booster), supplementary vaccines (e.g. meningococcal B vaccine) and use of vaccines beyond the age of usual recommendation (e.g. Haemophilus influenza type b vaccine after 5 years of age). Serological monitoring is a useful tool for customizing vaccination schedule in immune compromised children, confirming adequate vaccine response and documenting seroprotection (especially against measles and varicella). Finally, verification of vaccination status of all household members can prevent them being vector of transmission of an infection to the immune compromised children. Conclusion: Intensified information strategies are needed to improve trust, rectify perceived risks and improve vaccine acceptability; primary physicians can play a critical role in the latter. What is Known: • Physician's awareness is key to success, since it repeatedly correlates with higher vaccination rates What is New: • The vaccination status of immunocompromised children is rarely up-to-date • Knowing the latest vaccine recommendations is challenging, as they differ for each medical condition and change periodically • This review summarises the vaccine recommendations for children with compromised immune systems and highlights how paediatricians play a key role in coordinating their application.
Collapse
|
20
|
Sgrulletti M, Ottaviano G, Sangerardi M, Chini L, Dellepiane RM, Martire B, Montin D, Rizzo C, Moschese V. One step closer to influenza vaccine inclusiveness. Pediatr Allergy Immunol 2020; 31 Suppl 26:69-71. [PMID: 33236432 PMCID: PMC7753274 DOI: 10.1111/pai.13338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Flu virus infection is a common cause of acute respiratory illness, with the major incidence in pediatric age, high morbidity, and mortality. The flu vaccine is recommended for all people aged ≥6 months, unless specific contraindications are present. Younger and older age, pregnancy, chronic diseases like asthma, and immunodeficiency are risk factors for severe complications following flu infection. Thus, these categories represent the target for flu vaccine strategies in most countries. Inactivated influenza vaccine (IIV), recombinant influenza vaccine (RIV) or live-attenuated influenza virus (LAIV) are currently available, with specific precautions and contraindications. We aim to resume the current indications for vaccines in the vulnerable populations to support flu vaccination inclusiveness, in anticipation of a "universal vaccine" strategy.
Collapse
Affiliation(s)
- Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Giorgio Ottaviano
- Molecular and Cellular Immunology Unit, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Maria Sangerardi
- Department of Pediatrics and Emergency, Azienda Ospedaliero Universitaria Consorziale Policlinico, Ospedale Pediatrico "Giovanni XXIII", Bari, Italy
| | - Loredana Chini
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Rosa Maria Dellepiane
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Baldassarre Martire
- Pediatrics and Neonatology Unit, Maternal-Infant Department, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - Davide Montin
- Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Caterina Rizzo
- Innovation and Clinical Pathways Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Romano R, Giardino G, Cirillo E, Prencipe R, Pignata C. Complement system network in cell physiology and in human diseases. Int Rev Immunol 2020; 40:159-170. [PMID: 33063546 DOI: 10.1080/08830185.2020.1833877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is a multi-functional system representing the first line host defense against pathogens in innate immune response, through three different pathways. Impairment of its function, consisting in deficiency or excessive deregulated activation, may lead to severe systemic infections or autoimmune disorders. These diseases may be inherited or acquired. Despite many diagnostic tools are currently available, ranging from traditional, such as hemolytic or ELISA based assays, to innovative ones, like next generation sequencing techniques, these diseases are often not recognized. As for therapeutic aspects, strategies based on the use of targeted drugs are now widespread. The aim of this review is to present an updated overview of complement system pathophysiology, clinical implications of its dysfunction and to summarize diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| |
Collapse
|
22
|
Cirillo E, Giardino G, Ricci S, Moschese V, Lougaris V, Conti F, Azzari C, Barzaghi F, Canessa C, Martire B, Badolato R, Dotta L, Soresina A, Cancrini C, Finocchi A, Montin D, Romano R, Amodio D, Ferrua F, Tommasini A, Baselli LA, Dellepiane RM, Polizzi A, Chessa L, Marzollo A, Cicalese MP, Putti MC, Pession A, Aiuti A, Locatelli F, Plebani A, Pignata C. Consensus of the Italian Primary Immunodeficiency Network on transition management from pediatric to adult care in patients affected with childhood-onset inborn errors of immunity. J Allergy Clin Immunol 2020; 146:967-983. [PMID: 32827505 DOI: 10.1016/j.jaci.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Medical advances have dramatically improved the long-term prognosis of children and adolescents with inborn errors of immunity (IEIs). Transfer of the medical care of individuals with pediatric IEIs to adult facilities is also a complex task because of the large number of distinct disorders, which requires involvement of patients and both pediatric and adult care providers. To date, there is no consensus on the optimal pathway of the transitional care process and no specific data are available in the literature regarding patients with IEIs. We aimed to develop a consensus statement on the transition process to adult health care services for patients with IEIs. Physicians from major Italian Primary Immunodeficiency Network centers formulated and answered questions after examining the currently published literature on the transition from childhood to adulthood. The authors voted on each recommendation. The most frequent IEIs sharing common main clinical problems requiring full attention during the transitional phase were categorized into different groups of clinically related disorders. For each group of clinically related disorders, physicians from major Italian Primary Immunodeficiency Network institutions focused on selected clinical issues representing the clinical hallmark during early adulthood.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Francesca Conti
- Unit of Pediatrics, University of Bologna, St. Orsola University Hospital, Bologna, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clementina Canessa
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Baldassarre Martire
- Unit of Pediatric and Neonatology, Maternal-Infant Department, Mons A. R. Dimiccoli Hospital, Barletta, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Laura Dotta
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Donato Amodio
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste and Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Lucia Augusta Baselli
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pediatrics, Milan, Italy
| | - Rosa Maria Dellepiane
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pediatrics, Milan, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - Antonio Marzollo
- Department of Women's and Children's Health, Pediatric Hematology-Oncology Unit, University of Padua, Padua, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Caterina Putti
- Department of Women's and Children's Health, Pediatric Hematology-Oncology Unit, University of Padua, Padua, Italy
| | - Andrea Pession
- Unit of Pediatrics, University of Bologna, St. Orsola University Hospital, Bologna, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Childrens' Hospital, Sapienza, University of Rome, Rome Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy.
| |
Collapse
|
23
|
Cardinale F, Ciprandi G, Barberi S, Bernardini R, Caffarelli C, Calvani M, Cavagni G, Galli E, Minasi D, Del Giudice MM, Moschese V, Novembre E, Paravati F, Peroni DG, Tosca MA, Traina G, Tripodi S, Marseglia GL. Consensus statement of the Italian society of pediatric allergy and immunology for the pragmatic management of children and adolescents with allergic or immunological diseases during the COVID-19 pandemic. Ital J Pediatr 2020; 46:84. [PMID: 32546234 PMCID: PMC7296524 DOI: 10.1186/s13052-020-00843-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has surprised the entire population. The world has had to face an unprecedented pandemic. Only, Spanish flu had similar disastrous consequences. As a result, drastic measures (lockdown) have been adopted worldwide. Healthcare service has been overwhelmed by the extraordinary influx of patients, often requiring high intensity of care. Mortality has been associated with severe comorbidities, including chronic diseases. Patients with frailty were, therefore, the victim of the SARS-COV-2 infection. Allergy and asthma are the most prevalent chronic disorders in children and adolescents, so they need careful attention and, if necessary, an adaptation of their regular treatment plans. Fortunately, at present, young people are less suffering from COVID-19, both as incidence and severity. However, any age, including infancy, could be affected by the pandemic.Based on this background, the Italian Society of Pediatric Allergy and Immunology has felt it necessary to provide a Consensus Statement. This expert panel consensus document offers a rationale to help guide decision-making in the management of children and adolescents with allergic or immunologic diseases.
Collapse
Affiliation(s)
- Fabio Cardinale
- Pediatric Unit, Azienda Ospedaliero-Universitaria "Policlinico- Giovanni XXIII, Bari, Italy
| | | | | | | | - Carlo Caffarelli
- Pediatric Clinic, Mother-child Department, University of Parma, Parma, Italy
| | - Mauro Calvani
- Operative Unit of Pediatrics, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Giovanni Cavagni
- Coordinator European Allergology Center - European Diagnostic Center Dalla Rosa Prati, Parma, Italy
| | - Elena Galli
- Pediatric Allergology Unit, Department of Pediatric Medicine, S. Pietro Hospital Fatebenefratelli, Rome, Italy
| | - Domenico Minasi
- Pediatric Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman and Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Viviana Moschese
- Pediatric Allergology and Immunology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy
| | - Elio Novembre
- Allergy Unit, Department of Science Health, Meyer Children's Hospital, University of Florence, Florence, Italy
| | | | | | | | | | | | - Gian Luigi Marseglia
- Pediatric Clinic, Pediatrics Department, Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Villena R, Durán L. Inmunizaciones en niños, adolescentes y adultos inmunosuprimidos. REVISTA MÉDICA CLÍNICA LAS CONDES 2020. [DOI: 10.1016/j.rmclc.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Laws HJ, Baumann U, Bogdan C, Burchard G, Christopeit M, Hecht J, Heininger U, Hilgendorf I, Kern W, Kling K, Kobbe G, Külper W, Lehrnbecher T, Meisel R, Simon A, Ullmann A, de Wit M, Zepp F. Impfen bei Immundefizienz. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:588-644. [PMID: 32350583 PMCID: PMC7223132 DOI: 10.1007/s00103-020-03123-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hans-Jürgen Laws
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Ulrich Baumann
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität FAU Erlangen-Nürnberg, Erlangen, Deutschland
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
| | - Gerd Burchard
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Deutschland
| | - Maximilian Christopeit
- Interdisziplinäre Klinik für Stammzelltransplantation, Universitätsklinikum Eppendorf, Hamburg, Deutschland
| | - Jane Hecht
- Abteilung für Infektionsepidemiologie, Fachgebiet Nosokomiale Infektionen, Surveillance von Antibiotikaresistenz und -verbrauch, Robert Koch-Institut, Berlin, Deutschland
| | - Ulrich Heininger
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
- Universitäts-Kinderspital beider Basel, Basel, Schweiz
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Deutschland
| | - Winfried Kern
- Klinik für Innere Medizin II, Abteilung Infektiologie, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Kerstin Kling
- Abteilung für Infektionsepidemiologie, Fachgebiet Impfprävention, Robert Koch-Institut, Berlin, Deutschland.
| | - Guido Kobbe
- Klinik für Hämatologie, Onkologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Wiebe Külper
- Abteilung für Infektionsepidemiologie, Fachgebiet Impfprävention, Robert Koch-Institut, Berlin, Deutschland
| | - Thomas Lehrnbecher
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Frankfurt, Frankfurt am Main, Deutschland
| | - Roland Meisel
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Arne Simon
- Klinik für Pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Deutschland
| | - Andrew Ullmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Maike de Wit
- Klinik für Innere Medizin - Hämatologie, Onkologie und Palliativmedizin, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Klinik für Innere Medizin - Onkologie, Vivantes Auguste-Viktoria-Klinikum, Berlin, Deutschland
| | - Fred Zepp
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
- Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Mainz, Mainz, Deutschland
| |
Collapse
|
26
|
Stern PL. Key steps in vaccine development. Ann Allergy Asthma Immunol 2020; 125:17-27. [PMID: 32044451 DOI: 10.1016/j.anai.2020.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The goal of a vaccine is to prime the immune response so the immune memory can facilitate a rapid response to adequately control the pathogen on natural infection and prevent disease manifestation. This article reviews the main elements that provide for the development of safe and effective vaccines. DATA SOURCES Literature covering target pathogen epidemiology, the key aspects of the functioning immune response underwriting target antigen selection, optimal vaccine formulation, preclinical and clinical trial studies necessary to deliver safe and efficacious immunization. STUDY SELECTIONS Whole live, inactivated, attenuated, or partial fractionated organism-based vaccines are discussed in respect of the balance of reactogenicity and immunogenicity. The use of adjuvants to compensate for reduced immunogenicity is described. The requirements from preclinical studies, including establishing a proof of principle in animal models, the design of clinical trials with healthy volunteers that lead to licensure and beyond are reviewed. RESULTS The 3 vaccine development phases, preclinical, clinical, and post-licensure, integrate the requirements to ensure safety, immunogenicity, and efficacy in the final licensed product. Continuing monitoring of efficacy and safety in the immunized populations is essential to sustain confidence in vaccination programs. CONCLUSION In an era of increasing vaccine hesitancy, the need for a better and widespread understanding of how immunization acts to counteract the continuing and changing risks from the pathogenic world is required. This demands a societal responsibility for obligate education on the benefits of vaccination, which as a medical intervention has saved more lives than any other procedure.
Collapse
Affiliation(s)
- Peter L Stern
- Manchester Cancer Research Centre, University of Manchester, UK.
| |
Collapse
|
27
|
Zrzavy T, Kollaritsch H, Rommer PS, Boxberger N, Loebermann M, Wimmer I, Winkelmann A, Zettl UK. Vaccination in Multiple Sclerosis: Friend or Foe? Front Immunol 2019; 10:1883. [PMID: 31440255 PMCID: PMC6693409 DOI: 10.3389/fimmu.2019.01883] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous systems (CNS). Disease-modifying treatments (including immunosuppressive treatments) have shown positive effects on the disease course, but are associated with systemic consequences on the immune system and may increase the risk of infections and alter vaccine efficiency. Therefore, vaccination of MS patients is of major interest. Over the last years, vaccine hesitancy has steadily grown especially in Western countries, partly due to fear of sequelae arising from vaccination, especially neurological disorders. The interaction of vaccination and MS has been discussed for decades. In this review, we highlight the immunology of vaccination, provide a review of literature and discuss the clinical consideration of MS, vaccination and immunosuppression. In conclusion, there is consensus that MS cannot be caused by vaccines, neither by inactivated nor by live vaccines. However, particular attention should be paid to two aspects: First, in immunocompromised patients, live vaccines may lead to a stronger immune reaction with signs of the disease against which the patients have been vaccinated, albeit in weakened form. Second, protection provided by vaccination should be controlled in patients who have been vaccinated while receiving immunomodulatory or immunosuppressive treatment. In conclusion, there is evidence that systemic infections can worsen MS, thus vaccination will lower the risk of relapses by reducing the risk of infections. Therefore, vaccination should be in general recommended to MS patients.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Herwig Kollaritsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Nina Boxberger
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Micha Loebermann
- Department of Tropical Medicine and Infectious Diseases, University of Rostock, Rostock, Germany
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|