1
|
Franchini L, Porter JJ, Lueck JD, Orlandi C. Gz Enhanced Signal Transduction assaY (G ZESTY) for GPCR deorphanization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605282. [PMID: 39091869 PMCID: PMC11291178 DOI: 10.1101/2024.07.26.605282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GZESTY, a highly sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing novel cloning methods to ensure the correct expression ratio of GZESTY components. GZESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, as well as responses from endogenous GPCRs. Notably, with GZESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph J. Porter
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John D. Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Maroto IB, Moreno E, Costas-Insua C, Merino-Gracia J, Diez-Alarcia R, Álvaro-Blázquez A, Canales Á, Canela EI, Casadó V, Urigüen L, Rodríguez-Crespo I, Guzmán M. Selective inhibition of cannabinoid CB 1 receptor-evoked signalling by the interacting protein GAP43. Neuropharmacology 2023; 240:109712. [PMID: 37689260 DOI: 10.1016/j.neuropharm.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Cannabinoids exert pleiotropic effects on the brain by engaging the cannabinoid CB1 receptor (CB1R), a presynaptic metabotropic receptor that regulates key neuronal functions in a highly context-dependent manner. We have previously shown that CB1R interacts with growth-associated protein of 43 kDa (GAP43) and that this interaction inhibits CB1R function on hippocampal excitatory synaptic transmission, thereby impairing the therapeutic effect of cannabinoids on epileptic seizures in vivo. However, the underlying molecular features of this interaction remain unexplored. Here, we conducted mechanistic experiments on HEK293T cells co-expressing CB1R and GAP43 and show that GAP43 modulates CB1R signalling in a strikingly selective manner. Specifically, GAP43 did not affect the archetypical agonist-evoked (i) CB1R/Gi/o protein-coupled signalling pathways, such as cAMP/PKA and ERK, or (ii) CB1R internalization and intracellular trafficking. In contrast, GAP43 blocked an alternative agonist-evoked CB1R-mediated activation of the cytoskeleton-associated ROCK signalling pathway, which relied on the GAP43-mediated impairment of CB1R/Gq/11 protein coupling. GAP43 also abrogated CB1R-mediated ROCK activation in mouse hippocampal neurons, and this process led in turn to a blockade of cannabinoid-evoked neurite collapse. An NMR-based characterization of the CB1R-GAP43 interaction supported that GAP43 binds directly and specifically through multiple amino acid stretches to the C-terminal domain of the receptor. Taken together, our findings unveil a CB1R-Gq/11-ROCK signalling axis that is selectively impaired by GAP43 and may ultimately control neurite outgrowth.
Collapse
Affiliation(s)
- Irene B Maroto
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Javier Merino-Gracia
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain; Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Alicia Álvaro-Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ángeles Canales
- Department of Organic Chemistry, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain; Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Ignacio Rodríguez-Crespo
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
3
|
Seibel-Ehlert U, Plank N, Inoue A, Bernhardt G, Strasser A. Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors. Int J Mol Sci 2021; 22:9739. [PMID: 34575903 PMCID: PMC8467282 DOI: 10.3390/ijms22189739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such "invasive" techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1-4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1-4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1-4Rs.
Collapse
Affiliation(s)
- Ulla Seibel-Ehlert
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Nicole Plank
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Asuka Inoue
- Department of Pharmacological Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Guenther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Andrea Strasser
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| |
Collapse
|
4
|
Onaran HO, Costa T. Conceptual and experimental issues in biased agonism. Cell Signal 2021; 82:109955. [PMID: 33607257 DOI: 10.1016/j.cellsig.2021.109955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
In this review, we discuss the theoretical and experimental foundations for assessing agonism in the context of signalling bias in GPCRs. We show that the formulation of efficacy in classical receptor theory and the definition of ligand-induced allosteric effect in chemical thermodynamics are coincident measures of agonism, only if we recognize that the classical model cannot be considered as a mechanistic description of the physicochemical events underlying ligand-receptor signalling. It represents instead a mathematical tool, fortuitously capable of extracting efficacy information from concentration-dependent functional data, where both ligand-dependent and ligand-independent information are present. We also assert that dissecting efficacy from affinity, as originally advocated in classical theory, is imperative for understanding the molecular property underlying agonism, and the biased agonism that leads to preferential formation of diverse GPCR-transducer complexes. Finally, we argue that beyond the assumed translational value of functional selectivity (i.e. signalling bias), the identification of ligands with true bias of efficacy is of fundamental importance for unravelling the conformational space that determines the complex functional chemistry of GPCRs.
Collapse
Affiliation(s)
- H Ongun Onaran
- Ankara University, Faculty of Medicine, Department of Pharmacology, Molecular Biology and Technology Development Unit, Ankara, Turkey.
| | | |
Collapse
|
5
|
Suutari T, Rahman SN, Vischer HF, van Iperen D, Merivaara A, Yliperttula M, Leurs R, Kool J, Viitala T. Label-Free Analysis with Multiple Parameters Separates G Protein-Coupled Receptor Signaling Pathways. Anal Chem 2020; 92:14509-14516. [PMID: 33054153 DOI: 10.1021/acs.analchem.0c02652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Real-time label-free techniques are used to profile G protein-coupled receptor (GPCR) signaling pathways in living cells. However, interpreting the label-free signal responses is challenging, and previously reported methods do not reliably separate pathways from each other. In this study, a continuous angular-scanning surface plasmon resonance (SPR) technique is utilized for measuring label-free GPCR signal profiles. We show how the continuous angular-scanning ability, measuring up to nine real-time label-free parameters simultaneously, results in more information-rich label-free signal profiles for different GPCR pathways, providing a more accurate pathway separation. For this, we measured real-time full-angular SPR response curves for Gs, Gq, and Gi signaling pathways in living cells. By selecting two of the most prominent label-free parameters: the full SPR curve angular and intensity shifts, we present how this analysis approach can separate each of the three signaling pathways in a straightforward single-step analysis setup, without concurrent use of signal inhibitors or other response modulating compounds.
Collapse
Affiliation(s)
- Teemu Suutari
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.,Division of BioAnalytical Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sabrina N Rahman
- Division of Medicinal Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Dick van Iperen
- Precision Mechanics and Engineering Bèta, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
6
|
Is GPR146 really the receptor for proinsulin C-peptide? Bioorg Med Chem Lett 2020; 30:127208. [DOI: 10.1016/j.bmcl.2020.127208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/01/2023]
|
7
|
Kim DM, Yao X, Vanam RP, Marlow MS. Measuring the effects of macromolecular crowding on antibody function with biolayer interferometry. MAbs 2019; 11:1319-1330. [PMID: 31401928 PMCID: PMC6748605 DOI: 10.1080/19420862.2019.1647744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biotherapeutic proteins are commonly dosed at high concentrations into the blood, which is an inherently complex, crowded solution with substantial protein content. The effects of macromolecular crowding may lead to an appreciable level of non-specific hetero-association in this physiological environment. Therefore, developing a method to characterize the diverse consequences of non-specific interactions between proteins under such non-ideal, crowded conditions, which deviate substantially from those commonly employed for in vitro characterization, is vital to achieving a more complete picture of antibody function in a biological context. In this study, we investigated non-specific interactions between human serum albumin (HSA) and two monoclonal antibodies (mAbs) by static light scattering and determined these interactions are both ionic strength-dependent and mAb-dependent. Using biolayer interferometry (BLI), we assessed the effect of HSA on antigen binding by mAbs, demonstrating that these non-specific interactions have a functional impact on mAb:antigen interactions, particularly at low ionic strength. While this effect is mitigated at physiological ionic strength, our in vitro data support the notion that HSA in the blood may lead to non-specific interactions with mAbs in vivo, with a potential impact on their interactions with antigen. Furthermore, the BLI method offers a high-throughput advantage compared to orthogonal techniques such as analytical ultracentrifugation and is amenable to a greater variety of solution conditions compared to nuclear magnetic resonance spectroscopy. Our study demonstrates that BLI is a viable technology for examining the impact of non-specific interactions on specific biologically relevant interactions, providing a direct method to assess binding events in crowded conditions.
Collapse
Affiliation(s)
- Dorothy M Kim
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Xiao Yao
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Ram P Vanam
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Michael S Marlow
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA.,Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc ., Ridgefield , CT , USA
| |
Collapse
|
8
|
Jørgensen CV, Zhou H, Seibel MJ, Bräuner-Osborne H. Label-free dynamic mass redistribution analysis of endogenous adrenergic receptor signaling in primary preadipocytes and differentiated adipocytes. J Pharmacol Toxicol Methods 2019; 97:59-66. [PMID: 30946893 DOI: 10.1016/j.vascn.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Adipose tissues release adipokines, which regulate energy intake and expenditure. G protein-coupled receptors (GPCRs) and associated signaling pathways in adipocytes are potentially important drug targets for conditions with disturbed energy metabolism. METHODS The aim of the current study was to compare signaling of endogenously expressed GPCRs between primary preadipocytes and differentiated adipocytes using a novel state-of-the-art unbiased method that measures dynamic mass redistribution (DMR) in real-time. Adrenergic agonists were chosen since they control adipocyte functions such as lipolysis and glycogenolysis. RESULTS Isoprenaline (ISO) and phenylephrine (PE) elicited concentration-dependent responses in preadipocytes and differentiated adipocytes. The effect of ISO was cholera toxin (CTX)-sensitive, indicating it is Gs-dependent. The effect could also be blocked by propranolol proving the signal is mediated through β-adrenergic receptors. The signaling resulting from PE stimulation was completely abolished by the Gq/11-selective inhibitor FR900359 and CTX in preadipocytes but surprisingly became FR900359-insensitive but remained CTX-sensitive in differentiated adipocytes. The use of prazosin and propranolol revealed that the PE-response in differentiated adipocytes had a β-adrenergic receptor component to it. In addition, we tested the bone-derived peptide osteocalcin, which did not result in DMR changes in preadipocytes or differentiated adipocytes. DISCUSSION In conclusion, this study for the first time demonstrates that DMR assays can be used to assess signaling in differentiated adipocytes. This platform can serve as a tool for future drug screening in primary adipocytes. Furthermore, this study illustrates that PE-induced effects on adipocytes vary by developmental stage and are not as selective as originally thought.
Collapse
Affiliation(s)
- Christinna V Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Australia
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Wang R, Wang J, Liu Y, Zhang X, Liang X. Resonant waveguide grating based assays for colloidal aggregate detection and promiscuity characterization in natural products. RSC Adv 2019; 9:38055-38064. [PMID: 35541809 PMCID: PMC9075791 DOI: 10.1039/c9ra06466d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Small molecules, including natural compounds, in aqueous buffer that self-associate into colloidal aggregates is the main cause of false results in the early stage of drug discovery. Here we reported resonant waveguide grating (RWG) based assays to identify natural compound aggregation and characterize its influence on membrane receptors in living cells. We first applied a cell-free aggregation assay to determine compound critical aggregation concentration (CAC) values. Then we characterized the aggregators' influence on membrane receptors using three types of dynamic mass redistribution (DMR) assays. Results showed that colloidal aggregates may cause false activity in DMR desensitization assays; some of the false activities can be implied by the large response in DMR agonism assays and can further be identified by DMR antagonism assays. Furthermore, the aggregation mechanism was confirmed by addition of 0.025% tween-80, with cell signals attenuated and potency decreased. Finally, these observations were used for aggregate examination and promiscuity investigation of a traditional herbal medicine, Rhodiola rosea, which ultimately led to the revealing of the true target and reduced the risk of a bioactivity tracking process at the very first stage. This study highlights that the RWG based assays can be used as practical tools to distinguish between real and false hits to provide reliable results in the early stage of drug discovery. Resonant waveguide grating based assays to eliminate colloidal aggregate induced false activity involving natural products.![]()
Collapse
Affiliation(s)
- Rong Wang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiuli Zhang
- College of Pharmaceutical Science
- Soochow University
- Suzhou 215123
- China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
10
|
Ruzza C, Ferrari F, Guerrini R, Marzola E, Preti D, Reinscheid RK, Calo G. Pharmacological profile of the neuropeptide S receptor: Dynamic mass redistribution studies. Pharmacol Res Perspect 2018; 6:e00445. [PMID: 30534379 PMCID: PMC6277375 DOI: 10.1002/prp2.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Neuropeptide S (NPS) is the endogenous ligand of the neuropeptide S receptor (NPSR). NPS modulates several biological functions including anxiety, wakefulness, pain, and drug abuse. The aim of this study was the investigation of the pharmacological profile of NPSR using the dynamic mass redistribution (DMR) assay. DMR is a label-free assay that offers a holistic view of cellular responses after receptor activation. HEK293 cells stably transfected with the murine NPSR (HEK293mNPSR) have been used. To investigate the nature of the NPS-evoked DMR signaling, FR900359 (Gq inhibitor), pertussis toxin (Gi inhibitor), and rolipram (phosphodiesterase inhibitor) were used. To determine the pharmacology of NPSR, several selective ligands (agonists, partial agonists, antagonists) have been tested. NPS, through selective NPSR activation, evoked a robust DMR signal with potency in the nanomolar range. This signal was predominantly, but not completely, blocked by FR900359, suggesting the involvement of the Gq-dependent signaling cascade. NPSR ligands (agonists and antagonists) displayed potency values in DMR experiments similar, but not identical, to those reported in the literature. Furthermore, partial agonists produced a higher efficacy in DMR than in calcium experiments. DMR can be successfully used to study the pharmacology and signaling properties of novel NPSR ligands. This innovative approach will likely increase the translational value of in vitro pharmacological studies.
Collapse
Affiliation(s)
- Chiara Ruzza
- Department of Medical SciencesSection of PharmacologyNational Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Federica Ferrari
- Department of Medical SciencesSection of PharmacologyNational Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTAUniversity of FerraraFerraraItaly
| | - Erika Marzola
- Department of Chemical and Pharmaceutical Sciences and LTTAUniversity of FerraraFerraraItaly
| | - Delia Preti
- Department of Chemical and Pharmaceutical Sciences and LTTAUniversity of FerraraFerraraItaly
| | - Rainer K. Reinscheid
- Institute of Pharmacology and ToxicologyJena University HospitalFriedrich Schiller University JenaJenaGermany
- Institute of Physiology IUniversity Hospital MünsterUniversity of MünsterMünsterGermany
| | - Girolamo Calo
- Department of Medical SciencesSection of PharmacologyNational Institute of NeuroscienceUniversity of FerraraFerraraItaly
| |
Collapse
|
11
|
Discovery of novel antagonists on β2-adrenoceptor from natural products using a label-free cell phenotypic assay. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1411-1420. [DOI: 10.1007/s00210-018-1555-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
12
|
Sponder G, Abdulhanan N, Fröhlich N, Mastrototaro L, Aschenbach JR, Röntgen M, Pilchova I, Cibulka M, Racay P, Kolisek M. Overexpression of Na +/Mg 2+ exchanger SLC41A1 attenuates pro-survival signaling. Oncotarget 2017; 9:5084-5104. [PMID: 29435164 PMCID: PMC5797035 DOI: 10.18632/oncotarget.23598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
The Na+/Mg2+ exchanger SLC41A1 (A1), a key component of intracellular Mg homeostasis (IMH), is the major cellular Mg2+ efflux system, and its overexpression decreases [Mg2+]intracellular. IMH plays an important role in the regulation of many cellular processes, including cellular signaling. However, whether the overexpression of A1 and the consequent drop of [Mg2+]i impact on intracellular signaling is unknown. To examine the latter, we utilized dynamic mass redistribution (DMR) assay, PathScan® RTK signaling antibody (PRSA) array, confirmatory Western blot (WB) analyses of phosphorylation of kinases selected by PRSA, and mag-fura 2-assisted fast filter spectrometry (FFS). We demonstrate here that the overexpression of A1 quantitatively and qualitatively changes the DMR signal evoked by the application of PAR-1-selective activating peptide and/or by changing [Mg2+]extracellular in HEK293 cells. PRSA profiling of the phosphorylation of important signaling nodes followed by confirmatory WB has revealed that, in HEK293 cells, A1 overexpression significantly attenuates the phosphorylation of Akt/PKB on Thr308 and/or Ser473 and of Erk1/2 on Thr202/Tyr204 in the presence of 0 or 1 mM (physiological) Mg2+ in the bath solution. The latter is also true for SH-SY5Y and HeLa cells. Overexpression of A1 in HEK293 cells significantly lowers [Mg2+]i in the presence of [Mg2+]e = 0 or 1 mM. This correlates with the observed attenuation of prosurvival Akt/PKB - Erk1/2 signaling in these cells. Thus, A1 expression status and [Mg2+]e (and consequently also [Mg2+]i) modulate the complex physiological fingerprint of the cell and influence the activity of kinases involved in anti-apoptotic and, hence, pro-survival events in cells.
Collapse
Affiliation(s)
- Gerhard Sponder
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Nasrin Abdulhanan
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Nadine Fröhlich
- PerkinElmer Life and Analytical Sciences GmbH, Rodgau, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Monika Röntgen
- Leibnitz Institute for Farm Animal Biology, Department of Muscle and Growth Physiology, Dummerstorf, Germany
| | - Ivana Pilchova
- Biomedical Center Martin, Division of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Cibulka
- Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Racay
- Biomedical Center Martin, Division of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.,Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kolisek
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany.,Biomedical Center Martin, Division of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
13
|
Harris DA, Park JM, Lee KS, Xu C, Stella N, Hague C. Label-Free Dynamic Mass Redistribution Reveals Low-Density, Prosurvival α1B-Adrenergic Receptors in Human SW480 Colon Carcinoma Cells. J Pharmacol Exp Ther 2017; 361:219-228. [PMID: 28196836 PMCID: PMC5399639 DOI: 10.1124/jpet.116.237255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Small molecules that target the adrenergic family of G protein-coupled receptors (GPCRs) show promising therapeutic efficacy for the treatment of various cancers. In this study, we report that human colon cancer cell line SW480 expresses low-density functional α1B-adrenergic receptors (ARs) as revealed by label-free dynamic mass redistribution (DMR) signaling technology and confirmed by quantitative reverse-transcriptase polymerase chain reaction analysis. Remarkably, although endogenous α1B-ARs are not detectable via either [3H]-prazosin-binding analysis or phosphoinositol hydrolysis assays, their activation leads to robust DMR and enhanced cell viability. We provide pharmacological evidence that stimulation of α1B-ARs enhances SW480 cell viability without affecting proliferation, whereas stimulating β-ARs diminishes both viability and proliferation of SW480 cells. Our study illustrates the power of label-free DMR technology for identifying and characterizing low-density GPCRs in cells and suggests that drugs targeting both α1B- and β-ARs may represent valuable small-molecule therapeutics for the treatment of colon cancer.
Collapse
Affiliation(s)
- Dorathy-Ann Harris
- Departments of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.) and Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington
| | - Ji-Min Park
- Departments of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.) and Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington
| | - Kyung-Soon Lee
- Departments of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.) and Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington
| | - Cong Xu
- Departments of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.) and Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington
| | - Nephi Stella
- Departments of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.) and Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington
| | - Chris Hague
- Departments of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.) and Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
14
|
Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. Cell Rep 2016; 16:2281-8. [PMID: 27545877 DOI: 10.1016/j.celrep.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/27/2015] [Accepted: 07/13/2016] [Indexed: 11/23/2022] Open
Abstract
Human mutations in the cytoplasmic C-terminal domain of Slack sodium-activated potassium (KNa) channels result in childhood epilepsy with severe intellectual disability. Slack currents can be increased by pharmacological activators or by phosphorylation of a Slack C-terminal residue by protein kinase C. Using an optical biosensor assay, we find that Slack channel stimulation in neurons or transfected cells produces loss of mass near the plasma membrane. Slack mutants associated with intellectual disability fail to trigger any change in mass. The loss of mass results from the dissociation of the protein phosphatase 1 (PP1) targeting protein, Phactr-1, from the channel. Phactr1 dissociation is specific to wild-type Slack channels and is not observed when related potassium channels are stimulated. Our findings suggest that Slack channels are coupled to cytoplasmic signaling pathways and that dysregulation of this coupling may trigger the aberrant intellectual development associated with specific childhood epilepsies.
Collapse
|
15
|
Kountz TS, Lee KS, Aggarwal-Howarth S, Curran E, Park JM, Harris DA, Stewart A, Hendrickson J, Camp ND, Wolf-Yadlin A, Wang EH, Scott JD, Hague C. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics. J Biol Chem 2016; 291:18210-21. [PMID: 27382054 DOI: 10.1074/jbc.m116.729517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 01/11/2023] Open
Abstract
The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nathan D Camp
- Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Alejandro Wolf-Yadlin
- Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | | | - John D Scott
- the Departments of Pharmacology and From the Howard Hughes Medical Institute and
| | | |
Collapse
|
16
|
Fang Y. Compound annotation with real time cellular activity profiles to improve drug discovery. Expert Opin Drug Discov 2016; 11:269-80. [PMID: 26787137 DOI: 10.1517/17460441.2016.1143460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION In the past decade, a range of innovative strategies have been developed to improve the productivity of pharmaceutical research and development. In particular, compound annotation, combined with informatics, has provided unprecedented opportunities for drug discovery. AREAS COVERED In this review, a literature search from 2000 to 2015 was conducted to provide an overview of the compound annotation approaches currently used in drug discovery. Based on this, a framework related to a compound annotation approach using real-time cellular activity profiles for probe, drug, and biology discovery is proposed. EXPERT OPINION Compound annotation with chemical structure, drug-like properties, bioactivities, genome-wide effects, clinical phenotypes, and textural abstracts has received significant attention in early drug discovery. However, these annotations are mostly associated with endpoint results. Advances in assay techniques have made it possible to obtain real-time cellular activity profiles of drug molecules under different phenotypes, so it is possible to generate compound annotation with real-time cellular activity profiles. Combining compound annotation with informatics, such as similarity analysis, presents a good opportunity to improve the rate of discovery of novel drugs and probes, and enhance our understanding of the underlying biology.
Collapse
Affiliation(s)
- Ye Fang
- a Biochemical Technologies, Science and Technology Division , Corning Incorporated , Corning , NY , USA
| |
Collapse
|
17
|
Camp ND, Lee KS, Cherry A, Wacker-Mhyre JL, Kountz TS, Park JM, Harris DA, Estrada M, Stewart A, Stella N, Wolf-Yadlin A, Hague C. Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacol Res 2016; 105:13-21. [PMID: 26773201 DOI: 10.1016/j.phrs.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are essential membrane proteins that facilitate cell-to-cell communication and co-ordinate physiological processes. At least 30 human GPCRs contain a Type I PSD-95/DLG/Zo-1 (PDZ) ligand in their distal C-terminal domain; this four amino acid motif of X-[S/T]-X-[φ] sequence facilitates interactions with PDZ domain-containing proteins. Because PDZ protein interactions have profound effects on GPCR ligand pharmacology, cellular localization, signal-transduction effector coupling and duration of activity, we analyzed the importance of Type I PDZ ligands for the function of 23 full-length and PDZ-ligand truncated (ΔPDZ) human GPCRs in cultured human cells. SNAP-epitope tag polyacrylamide gel electrophoresis revealed most Type I PDZ GPCRs exist as both monomers and multimers; removal of the PDZ ligand played minimal role in multimer formation. Additionally, SNAP-cell surface staining indicated removal of the PDZ ligand had minimal effects on plasma membrane localization for most GPCRs examined. Label-free dynamic mass redistribution functional responses, however, revealed diverging effects of the PDZ ligand. While no clear trend was observed across all GPCRs tested or even within receptor families, a subset of GPCRs displayed diminished agonist efficacy in the absence of a PDZ ligand (i.e. HT2RB, ADRB1), whereas others demonstrated enhanced agonist efficacies (i.e. LPAR2, SSTR5). These results demonstrate the utility of label-free functional assays to tease apart the contributions of conserved protein interaction domains for GPCR signal-transduction coupling in cultured cells.
Collapse
Affiliation(s)
- Nathan D Camp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Allison Cherry
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jennifer L Wacker-Mhyre
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Timothy S Kountz
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ji-Min Park
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dorathy-Ann Harris
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marianne Estrada
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Aaron Stewart
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alejandro Wolf-Yadlin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Chris Hague
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Camp ND, Lee KS, Wacker-Mhyre JL, Kountz TS, Park JM, Harris DA, Estrada M, Stewart A, Wolf-Yadlin A, Hague C. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov 2015; 1. [PMID: 26617989 PMCID: PMC4658663 DOI: 10.1038/celldisc.2015.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent advances in proteomic technology reveal G-protein-coupled receptors (GPCRs) are organized as large, macromolecular protein complexes in cell membranes, adding a new layer of intricacy to GPCR signaling. We previously reported the α1D-adrenergic receptor (ADRA1D)—a key regulator of cardiovascular, urinary and CNS function—binds the syntrophin family of PDZ domain proteins (SNTA, SNTB1, and SNTB2) through a C-terminal PDZ ligand interaction, ensuring receptor plasma membrane localization and G-protein coupling. To assess the uniqueness of this novel GPCR complex, 23 human GPCRs containing Type I PDZ ligands were subjected to TAP/MS proteomic analysis. Syntrophins did not interact with any other GPCRs. Unexpectedly, a second PDZ domain protein, scribble (SCRIB), was detected in ADRA1D complexes. Biochemical, proteomic, and dynamic mass redistribution analyses indicate syntrophins and SCRIB compete for the PDZ ligand, simultaneously exist within an ADRA1D multimer, and impart divergent pharmacological properties to the complex. Our results reveal an unprecedented modular dimeric architecture for the ADRA1D in the cell membrane, providing unexpected opportunities for fine-tuning receptor function through novel protein interactions in vivo, and for intervening in signal transduction with small molecules that can stabilize or disrupt unique GPCR:PDZ protein interfaces.
Collapse
Affiliation(s)
- Nathan D Camp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Timothy S Kountz
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ji-Min Park
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Dorathy-Ann Harris
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Marianne Estrada
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aaron Stewart
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Alejandro Wolf-Yadlin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Chris Hague
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
19
|
Lee MY, Mun J, Lee JH, Lee S, Lee BH, Oh KS. A comparison of assay performance between the calcium mobilization and the dynamic mass redistribution technologies for the human urotensin receptor. Assay Drug Dev Technol 2015; 12:361-8. [PMID: 25147908 DOI: 10.1089/adt.2014.590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The popular screening method for urotensin (UT) receptor antagonists is to measure the intracellular calcium concentration with a calcium-sensitive fluorescent dye. This assay format has an inherent limitation on the problem related to the fluorescence interference as it involves fluorescent dyes. In the present study, a label-free assay for the screening of UT receptor antagonists was developed by using dynamic mass redistribution (DMR) assay based on label-free optical biosensor. The addition of urotensin II (UII) stimulated a DMR profile to HEK293 cells stably expressing the human UT receptor (HEK293UT cells) but not on parental cells. The EC50 value of UII in label-free assay was 4.58 nM, which is very similar to that in conventional calcium mobilization assay (4.15 nM). Compared with the calcium mobilization assay for UII (Z' factor, 0.77), the current label-free assay presented improved Z' factor (0.81), with a relatively similar S/B ratio (28.0 and 25.6, respectively). The known high-affinity UT receptor antagonists, SB657510, GSK562590, and urantide, exhibited comparable IC50 values but rather less potent in the DMR assay than in calcium mobilization. Our DMR assay was able to present various functional responses, including inverse agonism in SB657510 and GSK1562590 as well as partial agonism in urantide. Moreover, the DMR assay exerted the stable antagonist window upon the minimal agonist stimulus. These results suggest that the label-free cell-based UT receptor assay can be applicable to evaluate the various functional activities of UT receptor-related drug candidates.
Collapse
Affiliation(s)
- Mi Young Lee
- 1 Research Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology , Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguère PM, Sciaky N, Roth BL. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol 2015; 22:362-9. [PMID: 25895059 PMCID: PMC4424118 DOI: 10.1038/nsmb.3014] [Citation(s) in RCA: 497] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and are important targets of drug action. Of the approximately 350 nonolfactory human GPCRs, more than 100 are still considered to be 'orphans' because their endogenous ligands remain unknown. Here, we describe a unique open-source resource that allows interrogation of the druggable human GPCRome via a G protein-independent β-arrestin-recruitment assay. We validate this unique platform at more than 120 nonorphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs and describe a method (parallel receptorome expression and screening via transcriptional output, with transcriptional activation following arrestin translocation (PRESTO-Tango)) for the simultaneous and parallel interrogation of the entire human nonolfactory GPCRome.
Collapse
Affiliation(s)
- Wesley K Kroeze
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maria F Sassano
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xi-Ping Huang
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick M Giguère
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [3] Program in Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [4] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
CXCL14 is no direct modulator of CXCR4. FEBS Lett 2014; 588:4769-75. [DOI: 10.1016/j.febslet.2014.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/03/2023]
|
22
|
Orgovan N, Patko D, Hos C, Kurunczi S, Szabó B, Ramsden JJ, Horvath R. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport. Adv Colloid Interface Sci 2014; 211:1-16. [PMID: 24846752 DOI: 10.1016/j.cis.2014.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing.
Collapse
|
23
|
Fang Y. Live cell optical sensing for high throughput applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:153-63. [PMID: 19475370 DOI: 10.1007/10_2009_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Department, Science and Technology Division, Corning Incorporated, Corning, New York, 14831, USA,
| |
Collapse
|
24
|
Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci Rep 2014; 4:4934. [PMID: 24816792 PMCID: PMC4017216 DOI: 10.1038/srep04934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022] Open
Abstract
Current technologies for studying ion channels are fundamentally limited because of their inability to functionally link ion channel activity to cellular pathways. Herein, we report the use of label-free cell phenotypic profiling to decode the composition and signaling of an endogenous ATP-sensitive potassium ion channel (KATP) in HepG2C3A, a hepatocellular carcinoma cell line. Label-free cell phenotypic agonist profiling showed that pinacidil triggered characteristically similar dynamic mass redistribution (DMR) signals in A431, A549, HT29 and HepG2C3A, but not in HepG2 cells. Reverse transcriptase PCR, RNAi knockdown, and KATP blocker profiling showed that the pinacidil DMR is due to the activation of SUR2/Kir6.2 KATP channels in HepG2C3A cells. Kinase inhibition and RNAi knockdown showed that the pinacidil activated KATP channels trigger signaling through Rho kinase and Janus kinase-3, and cause actin remodeling. The results are the first demonstration of a label-free methodology to characterize the composition and signaling of an endogenous ATP-sensitive potassium ion channel.
Collapse
|
25
|
Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. J Invest Dermatol 2014; 134:2183-2191. [PMID: 24658506 DOI: 10.1038/jid.2014.149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/21/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
It is well established that a gradient of extracellular calcium within the epidermis regulates the differentiation of keratinocytes. However, the molecular mechanisms implicated in this process are not fully understood. RNA interference of the calcium-sensing receptor (CaSR) showed that CaSR is essential in calcium-induced differentiation of normal human epidermal keratinocytes (NHEKs) by increasing the levels of free intracellular calcium, which upregulates the expression of Wnt5a but not Wnt3a, Wnt4, and Dkk-1 in the cells. Subsequently, autocrine Wnt5a promotes the differentiation of NHEKs, determined by increased biosynthesis of keratin-1 and loricrin, whereas proliferation is suppressed. Addition of both Wnt5a and calcium to NHEKs activated the Wnt/β-catenin signaling pathway as indicated by (i) increased stability of β-catenin in the cells, (ii) enhanced β-catenin transcriptional activity, demonstrated by a luciferase-based β-catenin-activated reporter assay, and (iii) augmented Wnt/β-catenin target gene expression. NHEKs depleted for β-catenin had a significantly reduced susceptibility to calcium-induced differentiation. Knockdown of axin 2, an antagonist of β-catenin stability, enhanced the biosynthesis of keratin-1 and loricrin in the cells. Our findings establish a directional crosstalk between CaSR and Wnt/β-catenin signaling in keratinocyte differentiation via Wnt5a that acts as an autocrine stimulus in this process.
Collapse
|
26
|
Gitschier HJ, Bergeron AB, Randle DH. Label‐Free Cell‐Based Dynamic Mass Redistribution Assays. ACTA ACUST UNITED AC 2014; 6:39-51. [DOI: 10.1002/9780470559277.ch130205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Sharif NA, Katoli P, Kelly CR, Li L, Xu S, Wang Y, Klekar L, Earnest D, Yacoub S, Hamilton G, Jacobson N, Shepard AR, Ellis D. Trabecular Meshwork Bradykinin Receptors: mRNA Levels, Immunohistochemical Visualization, Signaling Processes Pharmacology, and Linkage to IOP Reduction. J Ocul Pharmacol Ther 2014; 30:21-34. [DOI: 10.1089/jop.2013.0105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Najam A. Sharif
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Parvaneh Katoli
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Curtis R. Kelly
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Linya Li
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Shouxi Xu
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Yu Wang
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Laura Klekar
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - David Earnest
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Shenouda Yacoub
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Gwenette Hamilton
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Nasreen Jacobson
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Allan R. Shepard
- Pharmaceutical Research, Alcon Research, Ltd. (A Novartis Company), Fort Worth, Texas
| | - Dorette Ellis
- Department of Pharmaceutical Sciences, University of North Texas Systems College of Pharmacy, Fort Worth, Texas
| |
Collapse
|
28
|
Gheorghiu M, David S, Polonschii C, Olaru A, Gaspar S, Bajenaru O, Popescu BO, Gheorghiu E. Label free sensing platform for amyloid fibrils effect on living cells. Biosens Bioelectron 2014; 52:89-97. [DOI: 10.1016/j.bios.2013.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/17/2013] [Indexed: 01/19/2023]
|
29
|
|
30
|
Yeast cell assay with a surface plasma resonance sensor at multiple penetration depths. J Microbiol Methods 2013; 95:223-8. [DOI: 10.1016/j.mimet.2013.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 12/24/2022]
|
31
|
Zaytseva N, Lynn JG, Wu Q, Mudaliar DJ, Sun H, Kuang PQ, Fang Y. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. SENSORS AND ACTUATORS. B, CHEMICAL 2013; 188:10.1016/j.snb.2013.08.012. [PMID: 24319319 PMCID: PMC3852437 DOI: 10.1016/j.snb.2013.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion.
Collapse
Affiliation(s)
- Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Jeffery G. Lynn
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Qi Wu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | | | | | - Patty Q. Kuang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| |
Collapse
|
32
|
Present and future approaches to screening of G-protein-coupled receptors. Future Med Chem 2013; 5:523-38. [PMID: 23573971 DOI: 10.4155/fmc.13.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As G-protein-coupled receptors (GPCRs) mediate a multitude of cellular signal transduction events, affecting more or less all human disease areas, it is, therefore, no surprise that they comprise the largest family of current drug targets. Screening of compounds interacting with GPCRs has developed during the past decade from receptor binding assays, to various functional determination of coupling to G-proteins, and, more recently, G-protein-independent signal transduction events. Additional opportunities have been presented in drug discovery through novel pharmacological properties obtained for receptor dimers and by identification of ligands for orphan GPCRs. Furthermore, high-throughput formats and automation has substantially facilitated and accelerated the screening process providing powerful tools in improving modern drug discovery.
Collapse
|
33
|
Thimm D, Funke M, Meyer A, Müller CE. 6-Bromo-8-(4-[3H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic Acid: A Powerful Tool for Studying Orphan G Protein-Coupled Receptor GPR35. J Med Chem 2013; 56:7084-99. [DOI: 10.1021/jm4009373] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik Thimm
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Mario Funke
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Anne Meyer
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
34
|
Deng H, Sun H, Fang Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J Pharmacol Toxicol Methods 2013; 68:323-33. [PMID: 23933114 DOI: 10.1016/j.vascn.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Efficacy describes the property of a ligand that enables the receptor to change its behavior towards the host cell, while biased agonism defines the ability of a ligand to differentially activate some of the vectorial pathways over others mediated through the receptor. However, little is known about the molecular basis defining the efficacy of ligands at G protein-coupled receptors. Here we characterize the biased agonism and cell phenotypic efficacy of seven agonists at the endogenous muscarinic M3 receptors in six different cell lines including HT-29, PC-3, HeLa, SF268, CCRF-CEM and HCT-15 cells. METHODS Quantitative real-time PCR and multiple label-free whole cell dynamic mass redistribution (DMR) assays were used to determine the functional muscarinic receptors in each cell line. DMR pathway deconvolution assay was used to determine the pathway biased activity of the muscarinic agonists. Operational agonism model was used to quantify the pathway bias, while macro-kinetic data reported in literature was used to analyze the biochemical mechanism of action of these agonists. RESULTS Quantitative real-time PCR and ligand pharmacology studies showed that all the native cell lines endogenously express functional M3 receptors. Furthermore, different agonists triggered distinct DMR signals in a specific cell line as well as in different cell lines. DMR pathway deconvolution using known G protein modulators revealed that the M3 receptor in all the six cell lines signals through multiple G protein-mediated pathways, and certain agonists display biased agonism in a cell line-dependent manner. The whole cell efficacy and potency of these agonists were found to be sensitive to the assay time as well as the cell background. Correlation analysis suggested that the whole cell efficacy of agonists is correlated well with their macro-dissociation rate constants. DISCUSSION This study implicates that the endogenous M3 receptors are coupled to multiple pathways, and the muscarinic agonists can display distinct biased agonism and whole cell phenotypic efficacy.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States
| | | | | |
Collapse
|
35
|
Morse M, Sun H, Tran E, Levenson R, Fang Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol Toxicol 2013; 14:17. [PMID: 23497702 PMCID: PMC3602246 DOI: 10.1186/2050-6511-14-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
Background In vitro pharmacology of ligands is typically assessed using a variety of molecular assays based on predetermined molecular events in living cells. Many ligands including opioid ligands pose the ability to bind more than one receptor, and can also provide distinct operational bias to activate a specific receptor. Generating an integrative overview of the binding and functional selectivity of ligands for a receptor family is a critical but difficult step in drug discovery and development. Here we applied a newly developed label-free integrative pharmacology on-target (iPOT) approach to systematically survey the selectivity of a library of fifty-five opioid ligands against the opioid receptor family. All ligands were interrogated using dynamic mass redistribution (DMR) assays in both recombinant and native cell lines that express specific opioid receptor(s). The cells were modified with a set of probe molecules to manifest the binding and functional selectivity of ligands. DMR profiles were collected and translated to numerical coordinates that was subject to similarity analysis. A specific set of opioid ligands were then selected for quantitative pharmacology determination. Results Results showed that among fifty-five opioid ligands examined most ligands displayed agonist activity in at least one opioid receptor expressing cell line under different conditions. Further, many ligands exhibited pathway biased agonism. Conclusion We demonstrate that the iPOT effectively sorts the ligands into distinct clusters based on their binding and functional selectivity at the opioid receptor family.
Collapse
Affiliation(s)
- Megan Morse
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
36
|
Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 2013; 67:69-81. [PMID: 23340025 DOI: 10.1016/j.vascn.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Central to drug discovery and development is to comprehend the target(s), potency, efficacy and safety of drug molecules using pharmacological assays. Owing to their ability to provide a holistic view of drug actions in native cells, label-free biosensor-enabled cell phenotypic assays have been emerging as new generation phenotypic assays for drug discovery. Despite the benefits associated with wide pathway coverage, high sensitivity, high information content, non-invasiveness and real-time kinetics, label-free cell phenotypic assays are often viewed to be a blackbox in the era of target-centric drug discovery. METHODS This article first reviews the biochemical and biological complexity of drug-target interactions, and then discusses the key characteristics of label-free cell phenotypic assays and presents a five-step strategy to troubleshooting and deconvoluting the label-free cell phenotypic profiles of drugs. RESULTS Drug-target interactions are intrinsically complicated. Label-free cell phenotypic signatures of drugs mirror the innate complexity of drug-target interactions, and can be effectively deconvoluted using the five-step strategy. DISCUSSION The past decades have witnessed dramatic expansion of pharmacological assays ranging from molecular to phenotypic assays, which is coincident with the realization of the innate complexity of drug-target interactions. The clinical features of a drug are defined by how it operates at the system level and by its distinct polypharmacology, ontarget, phenotypic and network pharmacology. Approaches to examine the biochemical, cellular and molecular mechanisms of action of drugs are essential to increase the efficiency of drug discovery and development. Label-free cell phenotypic assays and the troubleshooting and deconvoluting approach presented here may hold great promise in drug discovery and development.
Collapse
|
37
|
Klein MT, Vinson PN, Niswender CM. Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:1-59. [PMID: 23415091 PMCID: PMC5482179 DOI: 10.1016/b978-0-12-394587-7.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, allosteric modulation of 7 transmembrane spanning receptors (7TMRs) has become a highly productive and exciting field of receptor pharmacology and drug discovery efforts. Positive and negative allosteric modulators (PAMs and NAMs, respectively) present a number of pharmacological and therapeutic advantages over conventional orthosteric ligands, including improved receptor-subtype selectivity, a lower propensity to induce receptor desensitization, the preservation of endogenous temporal and spatial activation of receptors, greater chemical flexibility for optimization of drug metabolism and pharmacokinetic parameters, and saturability of effect at target receptors, thus improving safety concerns and risk of overdose. Additionally, the relatively new concept of allosteric modulator-mediated receptor signal bias opens up a number of intriguing possibilities for PAMs, NAMs, and allosteric agonists, including the potential to selectively activate therapeutically beneficial signaling cascades, which could yield a superior tissue selectivity and side effect profile of allosteric modulators. However, there are a number of considerations and caveats that must be addressed when screening for and characterizing the properties of 7TMR allosteric modulators. Mode of pharmacology, methodology used to monitor receptor activity, detection of appropriate downstream analytes, selection of orthosteric probe, and assay time-course must all be considered when implementing any high-throughput screening campaign or when characterizing the properties of active compounds. Yet compared to conventional agonist/antagonist drug discovery programs, these elements of assay design are often a great deal more complicated when working with 7TMRs allosteric modulators. Moreover, for classical pharmacological methodologies and analyses, like radioligand binding and the assessment of compound affinity, the properties of allosteric modulators yield data that are more nuanced than orthosteric ligand-receptor interactions. In this review, we discuss the current methodologies being used to identify and characterize allosteric modulators, lending insight into the approaches that have been most successful in accurately and robustly identifying hit compounds. New label-free technologies capable of detecting phenotypic cellular changes in response to receptor activation are powerful tools well suited for assessing subtle or potentially masked cellular responses to allosteric modulation of 7TMRs. Allosteric modulator-induced receptor signal bias and the assay systems available to probe the various downstream signaling outcomes of receptor activation are also discussed.
Collapse
Affiliation(s)
- Michael T Klein
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
38
|
Pai S, Verrier F, Sun H, Hu H, Ferrie AM, Eshraghi A, Fang Y. Dynamic Mass Redistribution Assay Decodes Differentiation of a Neural Progenitor Stem Cell. ACTA ACUST UNITED AC 2012; 17:1180-91. [DOI: 10.1177/1087057112455059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cells hold great potential in drug discovery and development. However, challenges remain to quantitatively measure the functions of stem cells and their differentiated products. Here, we applied fluorescent imaging, quantitative real-time PCR, and label-free dynamic mass redistribution (DMR) assays to characterize the differentiation process of the ReNcell VM human neural progenitor stem cell. Immunofluorescence imaging showed that after growth factor withdrawal, the neuroprogenitor stem cell was differentiated into dopaminergic neurons, astrocytes, and oligodendrocytes, thus creating a neuronal cell system. High-performance liquid chromatography analysis showed that the differentiated cell system released dopamine upon depolarization with KCl. In conjunction with quantitative real-time PCR, DMR assays using a G-protein-coupled receptor agonist library revealed that a subset of receptors, including dopamine D1 and D4 receptors, underwent marked alterations in both receptor expression and signaling pathway during the differentiation process. These findings suggest that DMR assays can decode the differentiation process of stem cells at the cell system level.
Collapse
Affiliation(s)
- Sadashiva Pai
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Florence Verrier
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Haiyan Sun
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Haibei Hu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Ann M. Ferrie
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Azita Eshraghi
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY, USA
| |
Collapse
|
39
|
Fang Y. Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discov 2012; 7:969-88. [PMID: 22860803 DOI: 10.1517/17460441.2012.715631] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The study of drug-target interactions is essential for the understanding of biological processes and for the efforts to develop new therapeutic molecules. Increased ligand-binding assays have coincided with the advances in reagents, detection and instrumentation technologies, the expansion in therapeutic targets of interest, and the increasingly recognized importance of biochemical aspects of drug-target interactions in determining the clinical performance of drug molecules. Nowadays, ligand-binding assays can determine every aspect of many drug-target interactions. AREAS COVERED Given that ligand-target interactions are very diverse, the author has decided to focus on the binding of small molecules to protein targets. This article first reviews the key biochemical aspects of drug-target interactions, and then discusses the detection principles of various ligand-binding techniques in the context of their primary applications for drug discovery and development. EXPERT OPINION Equilibrium-binding affinity should not be used as a solo indicator for the in vivo pharmacology of drugs. The clinical relevance of drug-binding kinetics demands high throughput kinetics early in drug discovery. The dependence of ligand binding and function on the conformation of targets necessitates solution-based and whole cell-based ligand-binding assays. The increasing need to examine ligand binding at the proteome level, driven by the clinical importance of the polypharmacology of ligands, has started to make the structure-based in silico binding screen an indispensable technique for drug discovery and development. Integration of different ligand-binding assays is important to improve the efficiency of the drug discovery and development process.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning, Inc., Corning, NY 14831, USA.
| |
Collapse
|
40
|
Label-free monitoring of apoptosis by surface plasmon resonance detection of morphological changes. Apoptosis 2012; 17:916-25. [DOI: 10.1007/s10495-012-0737-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Abstract
G-protein-coupled receptors (GPCRs) mediate many important physiological functions and
are considered as one of the most successful therapeutic targets for a broad spectrum of
diseases. The design and implementation of high-throughput GPCR assays that allow the
cost-effective screening of large compound libraries to identify novel drug candidates are
critical in early drug discovery. Early functional GPCR assays depend primarily on the
measurement of G-protein-mediated 2nd messenger generation. Taking advantage of the
continuously deepening understanding of GPCR signal transduction, many
G-protein-independent pathways are utilized to detect the activity of GPCRs, and may
provide additional information on functional selectivity of candidate compounds. With the
combination of automated imaging systems and label-free detection systems, such assays are
now suitable for high-throughput screening (HTS). In this review, we summarize the most
widely used GPCR assays and recent advances in HTS technologies for GPCR drug
discovery.
Collapse
|
42
|
Abstract
INTRODUCTION The need to improve drug research and development productivity continues to drive innovation in pharmacological assays. Technologies that can leverage the advantages of both molecular and phenotypic assays would hold great promise for discovery of new medicines. AREAS COVERED This article briefly reviews current label-free platforms for cell-based assays and is primarily focused on fundamental aspects of these assays using dynamic mass redistribution technology as an example. The article also presents strategies for relating label-free profiles to molecular modes of actions of drugs. EXPERT OPINION Emerging evidence suggests that label-free cellular assays are phenotypic in nature, yet permit molecular mechanistic deconvolution. Together with unique competency in throughput, sensitivity and pathway coverages, label-free cellular assays allow users to screen drugs against endogenous receptors in native cells (including disease relevant primary cells) and determine the molecular modes of action of drug molecules. However, there are challenges for label-free in both basic research and drug discovery: the deconvolution of the cellular and molecular mechanisms for the biosensor signatures of receptor-drug interactions, new methodologies for data analysis and the development of new biosensor technologies. These challenges will need to be met for the wide adoption of these assays in drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning, Inc. , Corning, NY 14831 , USA
| |
Collapse
|
43
|
Tran E, Sun H, Fang Y. Dynamic mass redistribution assays decode surface influence on signaling of endogenous purinergic P2Y receptors. Assay Drug Dev Technol 2011; 10:37-45. [PMID: 22066912 DOI: 10.1089/adt.2011.0392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interactions with extracellular matrices (ECM) shape the signaling and functions of many types of cells and receptors, and distinct ECM coatings have been used in a wide range of substrates for drug discovery processes. Here, we investigate the influence of ECM protein coatings on the signaling of endogenous purinergic 2Y (P2Y) receptors in human embryonic kidney HEK293 cells using dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor. Results showed that ECM proteins had significant impacts on the DMR characteristics, potency, and efficacy of seven P2Y agonists. This study documents the importance of surface chemistry in regulating receptor signaling.
Collapse
Affiliation(s)
- Elizabeth Tran
- Science and Technology Division, Department of Biochemical Technologies, Corning Incorporated , Corning, New York 14831, USA
| | | | | |
Collapse
|
44
|
Verrier F, An S, Ferrie AM, Sun H, Kyoung M, Deng H, Fang Y, Benkovic SJ. GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat Chem Biol 2011; 7:909-15. [PMID: 22020552 PMCID: PMC3218230 DOI: 10.1038/nchembio.690] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/18/2011] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit exogenous signals to the nucleus, promoting a myriad of biological responses via multiple signaling pathways in both healthy and cancerous cells. However, little is known about the response of cytosolic metabolic pathways to GPCR-mediated signaling. Here we applied fluorescent live-cell imaging and label-free dynamic mass redistribution assays to study whether purine metabolism is associated with GPCR signaling. Through a library screen of GPCR ligands in conjunction with live-cell imaging of a metabolic multienzyme complex for de novo purine biosynthesis, the purinosome, we demonstrated that the activation of endogenous Gα(i)-coupled receptors correlates with purinosome assembly and disassembly in native HeLa cells. Given the implications of GPCRs in mitogenic signaling and of the purinosome in controlling metabolic flux via de novo purine biosynthesis, we hypothesize that regulation of purinosome assembly and disassembly may be one of the downstream events of mitogenic GPCR signaling in human cancer cells.
Collapse
Affiliation(s)
- Florence Verrier
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stallaert W, Christopoulos A, Bouvier M. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opin Drug Discov 2011; 6:811-25. [DOI: 10.1517/17460441.2011.586691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
|
47
|
Heeres JT, Hergenrother PJ. High-throughput screening for modulators of protein–protein interactions: use of photonic crystal biosensors and complementary technologies. Chem Soc Rev 2011; 40:4398-410. [DOI: 10.1039/b923660k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Abstract
Label-free biosensors offer integrated, kinetic and multi-parametric measures of receptor biology and ligand pharmacology in whole cells. Being highly sensitive and pathway-unbiased, label-free receptor assays can be used to probe the systems cell biology including pleiotropic signaling of receptors, and to characterize the functional selectivity and phenotypic pharmacology of ligand molecules. These assays provide a new dimension for elucidating receptor biology and for facilitating drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Sullivan Park, Corning, NY 14831, Tele: 607-9747203, Fax: 919-9745957
| |
Collapse
|
49
|
Abstract
Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831, USA
| |
Collapse
|
50
|
Abstract
IMPORTANCE OF THE FIELD: Cancer is a collection of diseases that arise from the progressive accumulation of genetic alterations in somatic cells. Genomic approaches have identified a great variety of genetic abnormalities associated with tumorigenesis, and molecular imaging and quantification assays have further elucidated the complex interactions within or between pathways. It is acknowledged that it is proteins, rather than genes, to fulfill most cellular functions; and signaling proteins largely operate through a large and complex network. To this end, cancer is mostly a pathway dysregulated disease - a small number of core pathways are dominate in aberrant cell growth leading to cancer. Thus, understanding the functional consequences of dysregulated and/or mutant signaling proteins in the context of native signaling networks is the frontier in cancer research. AREAS COVERED IN THIS REVIEW: This article reviews why resonant waveguide grating (RWG) biosensor cellular assays are considered to be integrative in nature, and how RWG biosensor can be used for mining the surface markers of cancer cells, and discovering core pathway(s) of cancer receptor signaling. WHAT THE READER WILL GAIN: The reader will gain an overview of cancer biology from pathway perspective, and have a glimpse of potential implications of integrative cellular assays, as promised by RWG biosensor, in cancer research and diagnosis. TAKE HOME MESSAGE: Successful approaches for developing next-generation anti-cancer therapies and diagnostic protocols should take into account that the dysregulation of oncogenic pathways is central to tumorigenesis. The biosensor cellular assays offer unprecedented advantage in characterizing cancer biology. However, significant challenges are also presented in deconvoluting and validating cellular mechanisms identified in cancer receptor signaling using these assays.
Collapse
Affiliation(s)
- Ye Fang
- Senior Research Manager, Biochemical Technologies, Science and Technology Division, Corning Inc., Sullivan Park, Corning, NY 14831, Tele: 607-9747203, ,
| |
Collapse
|