1
|
Rao M, McDuffie E, Srivastava S, Plaisted W, Sachs C. Safety Implications of Modulating Nuclear Receptors: A Comprehensive Analysis from Non-Clinical and Clinical Perspectives. Pharmaceuticals (Basel) 2024; 17:875. [PMID: 39065726 PMCID: PMC11279859 DOI: 10.3390/ph17070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The unintended modulation of nuclear receptor (NR) activity by drugs can lead to toxicities amongst the endocrine, gastrointestinal, hepatic cardiovascular, and central nervous systems. While secondary pharmacology screening assays include NRs, safety risks due to unintended interactions of small molecule drugs with NRs remain poorly understood. To identify potential nonclinical and clinical safety effects resulting from functional interactions with 44 of the 48 human-expressed NRs, we conducted a systematic narrative review of the scientific literature, tissue expression data, and used curated databases (OFF-X™) (Off-X, Clarivate) to organize reported toxicities linked to the functional modulation of NRs in a tabular and machine-readable format. The top five NRs associated with the highest number of safety alerts from peer-reviewed journals, regulatory agency communications, congresses/conferences, clinical trial registries, and company communications were the Glucocorticoid Receptor (GR, 18,328), Androgen Receptor (AR, 18,219), Estrogen Receptor (ER, 12,028), Retinoic acid receptors (RAR, 10,450), and Pregnane X receptor (PXR, 8044). Toxicities associated with NR modulation include hepatotoxicity, cardiotoxicity, endocrine disruption, carcinogenicity, metabolic disorders, and neurotoxicity. These toxicities often arise from the dysregulation of receptors like Peroxisome proliferator-activated receptors (PPARα, PPARγ), the ER, PXR, AR, and GR. This dysregulation leads to various health issues, including liver enlargement, hepatocellular carcinoma, heart-related problems, hormonal imbalances, tumor growth, metabolic syndromes, and brain function impairment. Gene expression analysis using heatmaps for human and rat tissues complemented the functional modulation of NRs associated with the reported toxicities. Interestingly, certain NRs showed ubiquitous expression in tissues not previously linked to toxicities, suggesting the potential utilization of organ-specific NR interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Mohan Rao
- Toxicology Department, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA (C.S.)
| | - Eric McDuffie
- Toxicology Department, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA (C.S.)
| | - Sanjay Srivastava
- Chemistry Department, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA
| | - Warren Plaisted
- Biology Department, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA
| | - Clifford Sachs
- Toxicology Department, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA (C.S.)
| |
Collapse
|
2
|
Bassan A, Steigerwalt R, Keller D, Beilke L, Bradley PM, Bringezu F, Brock WJ, Burns-Naas LA, Chambers J, Cross K, Dorato M, Elespuru R, Fuhrer D, Hall F, Hartke J, Jahnke GD, Kluxen FM, McDuffie E, Schmidt F, Valentin JP, Woolley D, Zane D, Myatt GJ. Developing a pragmatic consensus procedure supporting the ICH S1B(R1) weight of evidence carcinogenicity assessment. FRONTIERS IN TOXICOLOGY 2024; 6:1370045. [PMID: 38646442 PMCID: PMC11027748 DOI: 10.3389/ftox.2024.1370045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.
Collapse
Affiliation(s)
| | | | - Douglas Keller
- Independent Consultant, Kennett Square, PA, United States
| | - Lisa Beilke
- Toxicology Solutions, Inc., Marana, AZ, United States
| | | | - Frank Bringezu
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - William J. Brock
- Brock Scientific Consulting, LLC, Hilton Head, SC, United States
| | | | | | | | | | | | - Douglas Fuhrer
- BioXcel Therapeutics, Inc., New Haven, CT, United States
| | | | - Jim Hartke
- Gilead Sciences, Inc., Foster City, CA, United States
| | | | | | - Eric McDuffie
- Neurocrine Bioscience, Inc., San Diego, CA, United States
| | | | | | | | - Doris Zane
- Gilead Sciences, Inc., Foster City, CA, United States
| | | |
Collapse
|
3
|
Sharlow ER, Llaneza DC, Tewari BP, Mingledorff GA, Mendelson AJ, Sontheimer H, Bloom GS, Lazo JS. Pharmacological profiling identifies divergent chemosensitivities of differentiating and maturing iPSC-derived human cortical neuron populations. FEBS J 2023; 290:4950-4965. [PMID: 37428551 PMCID: PMC10592385 DOI: 10.1111/febs.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Neuronal differentiation and maturation are extended developmental processes. To determine whether neurons at different developmental stages have divergent chemosensitivities, we screened differentiating and maturing neuronal populations using a small compound library comprising FDA-approved and investigational drugs. Using a neurotoxicity assay format, both respective neuronal population-based screening campaigns performed robustly (Z-factors = 0.7-0.8), although the hit rate for the differentiating neurons (2.8%) was slightly higher than for maturing neurons (1.9%). While the majority of hits were toxic to both neuronal populations, these hits predominantly represented promiscuous drugs. Other drugs were selectively neurotoxic, with receptor tyrosine kinase inhibitors disproportionally represented after confirmation. Ponatinib and amuvatinib were neuroinhibitory for differentiating and maturing neurons, respectively. Chemoinformatic analyses confirmed differences in potential drug targets that may be differentially expressed during neuronal development. Subsequent studies demonstrated neuronal expression of AXL, an amuvatinib target, in both neuronal populations. However, functional AXL activity was confirmed only in the maturing neuronal population as determined by AXL phosphorylation in response to GAS6, the cognate ligand of AXL, and concurrent STAT3Y705 phosphorylation. Differentiating neurons were unresponsive to the effects of GAS6 suggesting that the AXL-STAT3 signaling axis was nonfunctional. Amuvatinib treatment of maturing neuronal cultures significantly reduced pAXL levels. These studies indicate that neuronal developmental states may exhibit unique chemosensitivities and that drugs may have different neuro-inhibitory effects depending upon the developmental stage of the neuronal population.
Collapse
Affiliation(s)
| | - Danielle C. Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| | - Bhanu P. Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | | | - Anna J. Mendelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - George S. Bloom
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
- Department of Biology, University of Virginia, Charlottesville, VA 22904
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
4
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
5
|
Valentin JP, Sibony A, Rosseels ML, Delaunois A. "Appraisal of state-of-the-art" The 2021 Distinguished Service Award of the Safety Pharmacology Society: Reflecting on the past to tackle challenges ahead. J Pharmacol Toxicol Methods 2023; 123:107269. [PMID: 37149063 DOI: 10.1016/j.vascn.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
This appraisal of state-of-the-art manuscript highlights and expands upon the thoughts conveyed in the lecture of Dr. Jean-Pierre Valentin, recipient of the 2021 Distinguished Service Award of the Safety Pharmacology Society, given on the 2nd December 2021. The article reflects on the strengths, weaknesses, opportunities, and threats that surrounded the evolution of safety and secondary pharmacology over the last 3 decades with a particular emphasis on pharmaceutical drug development delivery, scientific and technological innovation, complexities of regulatory framework and people leadership and development. The article further built on learnings from past experiences to tackle constantly emerging issues and evolving landscape whilst being cognizant of the challenges facing these disciplines in the broader drug development and societal context.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium.
| | - Alicia Sibony
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Marie-Luce Rosseels
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Annie Delaunois
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| |
Collapse
|
6
|
Valentin JP, Leishman D. 2000-2023 over two decades of ICH S7A: has the time come for a revamp? Regul Toxicol Pharmacol 2023; 139:105368. [PMID: 36841350 DOI: 10.1016/j.yrtph.2023.105368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
The ICH S7A guideline on safety pharmacology studies released over 20 years ago largely achieved its objective "to help protect clinical trial participants and patients receiving marketed products from potential adverse effects of pharmaceuticals". Although, Phase I clinical trials are generally very safe, the incidence and severity of adverse events, the safety related attrition and product withdrawal remain elevated during late-stage clinical development and post approval, a proportion of which can be attributed at least in part to safety pharmacology related issues. Considering the latest scientific and technological advancements in drug safety science, the paradigm shift of the drug discovery and development process and the continuously evolving regulatory landscape, we recommend revisiting, adapting and evolving the ICH S7A guideline. This might offer opportunities i) to select and progress optimized drugs with increased confidence in success, ii) to refine and adapt the clinical monitoring at all stages of clinical development resulting in an optimized benefit/risk assessment, iii) to increase likelihood of regulatory acceptance in a way compatible with an expedited and streamlined drug discovery and development process to benefit patients and iv) to avoid the unnecessary use of animals in 'tick-the-box' studies and encourage alternative approaches. As presented in the article, several options could be envisioned to revisit and adapt the ICH S7A taking into consideration several key features.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium.
| | - Derek Leishman
- Drug Disposition, Toxicology and PKPD, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| |
Collapse
|
7
|
Mokrov GV. Linked biaromatic compounds as cardioprotective agents. Arch Pharm (Weinheim) 2021; 355:e2100428. [PMID: 34967027 DOI: 10.1002/ardp.202100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVDs) are widespread in the modern world, and their number is constantly growing. For a long time, CVDs have been the leading cause of morbidity and mortality worldwide. Drugs for the treatment of CVD have been developed almost since the beginning of the 20th century, and a large number of effective cardioprotective agents of various classes have been created. Nevertheless, the need for the design and development of new safe drugs for the treatment of CVD remains. Literature data indicate that a huge number of cardioprotective agents of various generations and mechanisms correspond to a single generalized pharmacophore model containing two aromatic nuclei linked by a linear linker. In this regard, we put forward a concept for the design of a new generation of cardioprotective agents with a multitarget mechanism of action within the indicated pharmacophore model. This review is devoted to a generalization of the currently known compounds with cardioprotective properties and corresponding to the pharmacophore model of biaromatic compounds linked by a linear linker. Particular attention is paid to the history of the creation of these drugs, approaches to their design, and analysis of the structure-action relationship within each class.
Collapse
Affiliation(s)
- Grigory V Mokrov
- Department of Medicinal Chemistry, FSBI "Zakusov Institute of Pharmacology", Moscow, Russia
| |
Collapse
|
8
|
Palozi RAC, Lorençone BR, Guarnier LP, Romão PVM, Marques AAM, Hulsmeyer APCR, Lourenço ELB, Tolouei SEL, da Silva GN, Curi TZ, Passoni MT, Dalsenter PR, de Araújo FHS, Oesterreich SA, Souza RIC, Dos Santos AC, de Castilho PF, de Oliveira KMP, Nocchi SR, Silva DB, Gasparotto Junior A. From general toxicology to DNA disruption: A safety assessment of Plinia cauliflora (Mart.) Kausel. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112916. [PMID: 32360045 DOI: 10.1016/j.jep.2020.112916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plinia cauliflora (Mart.) Kausel (Myrtaceae) is popularly known as "jaboticaba" or "jaboticaba". The fruit is appreciated for both fresh consumption and the manufacture of jelly, juice, ice cream, fermented beverages, and liqueurs. The more widespread traditional use of the plant involves the treatment of diarrhea, which utilizes all parts of the plant, including the fruit peels. AIM OF THE STUDY We sought to elucidate possible risks of the administration of an ethanol-soluble fraction that was obtained from an infusion of P. cauliflora fruit peels (SEIPC). We performed a series of experiments to evaluate possible toxicity, in which we administered SEIPC orally both acutely and repeatedly for 28 days. We also evaluated possible endocrine-disruptive and genotoxic effects in eukaryotic cells. The possible mutagenic activity of SEIPC was evaluated using reverse mutation (Ames) assays. MATERIALS AND METHODS SEIPC was produced and chemically characterized by LC-DAD-MS. Acute toxicity and behavioral and physiological alterations were evaluated in the modified Irwin test. Respiratory rate, arterial blood gas, electrocardiography, respiratory rate, heart rate, and blood pressure were evaluated, and hematological, biochemical, and histopathological analyses were performed after 28 days of oral treatment. The comet assay, mammalian erythrocyte micronucleus test, uterotrophic test, Hershberger bioassay, and AMES test were performed using appropriate protocols. RESULTS From SEIPC, ellagic acid and derivatives, flavonols and anthocyanidins, as well as citric acid and gallic acid, were annotated by LC-DAD-MS. We did not observed any significant toxic effects after acute or prolonged SEIPC treatment. No endocrine-disruptive or mutagenic effects were observed. CONCLUSIONS The present study found that SEIPC did not cause any significant alterations of various corporeal systems, including cardiac electrical activity, body temperature, respiratory rate, and arterial pressure. No alterations of biochemical, hematological, or blood gas parameters were observed. SEIPC did not cause any perturbations of the endocrine system or mutagenic, cytotoxic, or genotoxic effects. These findings substantiate the safe clinical use of P. cauliflora.
Collapse
Affiliation(s)
- Rhanany Alan Calloi Palozi
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Lucas Pires Guarnier
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Paulo Vitor Moreira Romão
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | | | | | | | - Tatiana Zauer Curi
- Laboratory of Reproductive Toxicology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Flávio Henrique Souza de Araújo
- Laboratory of Toxicological Assays - LETOX, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Silvia Aparecida Oesterreich
- Laboratory of Toxicological Assays - LETOX, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Roosevelt Isaias Carvalho Souza
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Ariany Carvalho Dos Santos
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Pamella Fukuda de Castilho
- Laboratory of Applied Microbiology, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Kelly Mari Pires de Oliveira
- Laboratory of Applied Microbiology, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Samara Requena Nocchi
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology - LEFaC, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
9
|
Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique. Food Chem Toxicol 2020; 143:111513. [PMID: 32621845 DOI: 10.1016/j.fct.2020.111513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Development of reliable and efficient alternative in vivo methods for evaluation of the chemicals with potential neurotoxicity is an urgent need in the early stages of drug design. In this investigation, the computational prediction models for drug-induced neurotoxicity were developed by using the classical naïve Bayes classifier. Eight molecular properties closely relevant to neurotoxicity were selected. Then, 110 classification models were developed with using the eight important molecular descriptors and 10 types of fingerprints with 11 different maximum diameters. Among these 110 prediction models, the prediction model (NB-03) based on eight molecular descriptors combined with ECFP_10 fingerprints showed the best prediction performance, which gave 90.5% overall prediction accuracy for the training set and 82.1% concordance for the external test set. In addition, compared to naïve Bayes classifier, the recursive partitioning classifier displayed worse predictive performance for neurotoxicity. Therefore, the established NB-03 prediction model can be used as a reliable virtual screening tool to predict neurotoxicity in the early stages of drug design. Moreover, some structure alerts for characterizing neurotoxicity were identified in this research, which could give an important guidance for the chemists in structural modification and optimization to reduce the chemicals with potential neurotoxicity.
Collapse
|
10
|
Jenkinson S, Schmidt F, Rosenbrier Ribeiro L, Delaunois A, Valentin JP. A practical guide to secondary pharmacology in drug discovery. J Pharmacol Toxicol Methods 2020; 105:106869. [PMID: 32302774 DOI: 10.1016/j.vascn.2020.106869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Secondary pharmacological profiling is increasingly applied in pharmaceutical drug discovery to address unwanted pharmacological side effects of drug candidates before entering the clinic. Regulators, drug makers and patients share a demand for deep characterization of secondary pharmacology effects of novel drugs and their metabolites. The scope of such profiling has therefore expanded substantially in the past two decades, leading to the implementation of broad in silico profiling methods and focused in vitro off-target screening panels, to identify liabilities, but also opportunities, as early as possible. The pharmaceutical industry applies such panels at all stages of drug discovery routinely up to early development. Nevertheless, target composition, screening technologies, assay formats, interpretation and scheduling of panels can vary significantly between companies in the absence of dedicated guidelines. To contribute towards best practices in secondary pharmacology profiling, this review aims to summarize the state-of-the art in this field. Considerations are discussed with respect to panel design, screening strategy, implementation and interpretation of the data, including regulatory perspectives. The cascaded, or integrated, use of in silico and off-target profiling allows to exploit synergies for comprehensive safety assessment of drug candidates.
Collapse
Affiliation(s)
- Stephen Jenkinson
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America.
| | - Friedemann Schmidt
- Sanofi, R&D Preclinical Safety, Industriepark Höchst, 65926 Frankfurt/Main, Germany
| | - Lyn Rosenbrier Ribeiro
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Alderley Edge, SK10 4TG, United Kingdom
| | - Annie Delaunois
- UCB BioPharma SRL, Early Solutions, Development Science, Non-Clinical Safety, 1420 Braine L'Alleud, Walloon Region, Belgium
| | - Jean-Pierre Valentin
- UCB BioPharma SRL, Early Solutions, Development Science, Non-Clinical Safety, 1420 Braine L'Alleud, Walloon Region, Belgium
| |
Collapse
|
11
|
Zhao P, Li P. Transmural and rate-dependent profiling of drug-induced arrhythmogenic risks through in silico simulations of multichannel pharmacology. Sci Rep 2019; 9:18504. [PMID: 31811197 PMCID: PMC6898675 DOI: 10.1038/s41598-019-55032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
In vitro human ether-à-go-go related gene (hERG) inhibition assay alone might provide insufficient information to discriminate "safe" from "dangerous" drugs. Here, effects of multichannel inhibition on cardiac electrophysiology were investigated using a family of cardiac cell models (Purkinje (P), endocardial (Endo), mid-myocardial (M) and epicardial (Epi)). We found that: (1) QT prolongation alone might not necessarily lead to early afterdepolarization (EAD) events, and it might be insufficient to predict arrhythmogenic liability; (2) the occurrence and onset of EAD events could be a candidate biomarker of drug-induced arrhythmogenicity; (3) M cells are more vulnerable to drug-induced arrhythmias, and can develop early afterdepolarization (EAD) at slower pacing rates; (4) the application of quinidine can cause EADs in all cell types, while INaL is the major depolarizing current during the generation of drug-induced EAD in P cells, ICaL is mostly responsible in other cell types; (5) drug-induced action potential (AP) alternans with beat-to-beat variations occur at high pacing rates in P cells. These results suggested that quantitative profiling of transmural and rate-dependent properties can be essential to evaluate drug-induced arrhythmogenic risks, and may provide mechanistic insights into drug-induced arrhythmias.
Collapse
Affiliation(s)
- Ping'an Zhao
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Henan, P.R. China
- Center for Biomedical Innovation, Yunmai Biomedical Research Institute, Henan, P.R. China
| | - Pan Li
- Center for Public Health Informatics, School of Public Health, Xinxiang Medical University, Henan, P.R. China.
- Center for Biomedical Innovation, Yunmai Biomedical Research Institute, Henan, P.R. China.
| |
Collapse
|
12
|
Palozi RAC, Guarnier LP, Romão PVM, Nocchi SR, Dos Santos CC, Lourenço ELB, Silva DB, Gasparotto FM, Gasparotto Junior A. Pharmacological safety of Plinia cauliflora (Mart.) Kausel in rabbits. Toxicol Rep 2019; 6:616-624. [PMID: 31316897 PMCID: PMC6611835 DOI: 10.1016/j.toxrep.2019.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Fruit peels of Plinia cauliflora are widely used in Brazilian traditional medicine. No studies have proved the safety of its pharmacological effects. We assessed the safety pharmacology of P. cauliflora extract (EEPC) in rabbits. EEPC did not cause any significant changes in several physiological systems. These data provide important safety data for its clinical use.
Fruit peels of Plinia cauliflora (Mart.) Kausel are widely used in Brazilian traditional medicine, but no studies have proved the safety of its pharmacological effects on the respiratory, cardiovascular, and central nervous systems. The present study assessed the safety pharmacology of P. cauliflora in New Zealand rabbits. First, an ethanol extract (EEPC) was selected for the pharmacological experiments and chemical characterization. Then, different groups of rabbits were orally treated with EEPC (200 and 2000 mg/kg) or vehicle. Acute behavioral and physiological alterations in the modified Irwin test, respiratory rate, arterial blood gas, and various cardiovascular parameters (i.e., heart rate, blood pressure, and electrocardiography) were evaluated. The main secondary metabolites that were identified in EEPC were ellagic acid, gallic acid, O-deoxyhexosyl quercetin, and the anthocyanin O-hexosyl cyanidin. No significant behavioral or physiological changes were observed in any of the groups. None of the doses of EEPC affected respiratory rate or arterial blood gas, with no changes on blood pressure or electrocardiographic parameters. The present study showed that EEPC did not cause any significant changes in respiratory, cardiovascular, or central nervous system function. These data provide scientific evidence of the effects of this species and important safety data for its clinical use.
Collapse
Key Words
- ABG, Arterial blood gas
- ANOVA, One-way analysis of variance
- ASE, Accelerated solvent extraction
- BB, Buffer Base
- BE, Base Excess
- BEecf, Base excess in the extracellular fluid compartment
- CNS, Central nervous system
- Ca++, Calcium
- Cardiovascular
- Cl, Chloride
- DBP, Diastolic blood pressure
- ECG, Electrocardiography
- EEPC, Ethanol extract of Plinia cauliflora
- GAE, Gallic acid equivalent
- H+, Hydrogen ion dissociated
- HHb, Deoxyhemoglobin
- Hct, Hematocrit
- Irwin test
- K+, Potassium
- LA, Left arm
- LC-DAD-MS, Liquid chromatography coupled to a diode array detector and mass spectrometer
- LL, Left leg
- MAP, Mean arterial pressure
- Myrtaceae
- Na+, Sodium
- Na₂CO₃, Sodium carbonate
- O2Hb, Oxyhemoglobin
- P50, Half of the maximum hemoglobin saturation
- PCO2, Partial pressure of carbon dioxide
- PO2, Partial pressure of oxygen
- RA, Right arm
- RL, Right leg
- Respiratory
- S.E.M, Standard error of the mean
- SBP, Systolic blood pressure
- SO2, Level of hemoglobin-saturation by oxygen
- Toxicology
- UFLC, Ultra fast liquid chromatograph
- cHCO3, Bicarbonate concentration
- ctCO2 (B), Concentration of total carbon dioxide of whole blood
- ctCO2 (P), Concentration of total carbon dioxide in plasma
- ctO2, Concentration of total oxygen
- pH, Potential of hydrogen
- tHb, Hemoglobin
Collapse
Affiliation(s)
- Rhanany Alan Calloi Palozi
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Lucas Pires Guarnier
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Paulo Vitor Moreira Romão
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Samara Requena Nocchi
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Carlos Calixto Dos Santos
- Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Universidade Paranaense, Umuarama, PR, Brazil
| | | | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Francielly Mourão Gasparotto
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular (LEFaC), Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
13
|
Response of safety pharmacologists to challenges arising from the rapidly evolving changes in the pharmaceutical industry. J Pharmacol Toxicol Methods 2019; 98:106593. [PMID: 31158459 DOI: 10.1016/j.vascn.2019.106593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/14/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023]
Abstract
This commentary highlights and expands upon the thoughts conveyed in the lecture by Dr. Alan S. Bass, recipient of the 2017 Distinguished Service Award from the Safety Pharmacology Society, given on 27 September 2017 in Berlin, Germany. The lecture discussed the societal, scientific, technological, regulatory and economic events that dramatically impacted the pharmaceutical industry and ultimately led to significant changes in the strategic operations and practices of safety pharmacology. It focused on the emerging challenges and opportunities, and considered the lessons learned from drug failures and the influences of world events, including the financial crisis that ultimately led to a collapse of the world economies from which we are now recovering. Events such as these, which continue to today, challenge the assumptions that form the foundation of our discipline and dramatically affect the way that safety pharmacology is practiced. These include the latest scientific and technological developments contributing to the design and advancement of safe medicines. More broadly, they reflect the philosophical mission of safety pharmacology and the roles and responsibilities served by safety pharmacologists. As the discipline of Safety Pharmacology continues to evolve, develop and mature, the reader is invited to reflect on past experiences as a framework towards a vision of the future of the field.
Collapse
|
14
|
Ursu O, Holmes J, Bologa CG, Yang JJ, Mathias SL, Stathias V, Nguyen DT, Schürer S, Oprea T. DrugCentral 2018: an update. Nucleic Acids Res 2019; 47:D963-D970. [PMID: 30371892 PMCID: PMC6323925 DOI: 10.1093/nar/gky963] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/02/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023] Open
Abstract
DrugCentral is a drug information resource (http://drugcentral.org) open to the public since 2016 and previously described in the 2017 Nucleic Acids Research Database issue. Since the 2016 release, 103 new approved drugs were updated. The following new data sources have been included: Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), FDA Orange Book information, L1000 gene perturbation profile distance/similarity matrices and estimated protonation constants. New and existing entries have been updated with the latest information from scientific literature, drug labels and external databases. The web interface has been updated to display and query new data. The full database dump and data files are available for download from the DrugCentral website.
Collapse
Affiliation(s)
- Oleg Ursu
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Jayme Holmes
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Cristian G Bologa
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Jeremy J Yang
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Stephen L Mathias
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Vasileios Stathias
- Center for Computational Science, Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Science, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Stephan Schürer
- Center for Computational Science, Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA
| | - Tudor Oprea
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
15
|
Valentin JP, Guillon JM, Jenkinson S, Kadambi V, Ravikumar P, Roberts S, Rosenbrier-Ribeiro L, Schmidt F, Armstrong D. In vitro secondary pharmacological profiling: An IQ-DruSafe industry survey on current practices. J Pharmacol Toxicol Methods 2018; 93:7-14. [PMID: 30030184 DOI: 10.1016/j.vascn.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In 2015, IQ DruSafe conducted a survey of its membership to identify industry practices related to in vitro off target pharmacological profiling of small molecules. METHODS An anonymous survey of 20 questions was submitted to IQ-DruSafe representatives. Questions were designed to explore screening strategies, methods employed and experience of regulatory interactions related to in vitro secondary pharmacology profiling. RESULTS The pharmaceutical industry routinely utilizes panels of in vitro assays to detect undesirable off-target interactions of new chemical entities that are deployed at all stages of drug discovery and early development. The formats, approaches and size of panels vary between companies, in particular i) choice of assay technology; ii) test concentration (single vs. multiple concentrations) iii) rationale for targets and panels selection (taking into account organizational experience, primary target, therapeutic area, availability at service providers) iv) threshold level for significant interaction with a target and v) data interpretation. Data are generated during the early phases of drug discovery, principally before in vivo GLP studies (i.e., hit-to-lead, lead optimization, development candidate selection) and used to contextualize in vivo non-clinical and clinical findings. Data were included in regulatory documents, and around half of respondents experienced regulatory questions about the significance of the results. CONCLUSION While it seems that in vitro secondary pharmacological profiling is generally considered valuable across the industry, particularly as a tool in early phases of drug discovery for small molecules, there is only loose consensus on testing paradigm, the required interpretation and suitable follow up strategies to fully understand potential risk.
Collapse
Affiliation(s)
| | | | - Stephen Jenkinson
- Pfizer, Global Safety Pharmacology, Drug Safety Research and Development, San Diego, CA, USA
| | - Vivek Kadambi
- Blueprint Medicines, Nonclinical Development, Cambridge, MA, USA
| | - Peri Ravikumar
- Allergan, Nonclinical and Translational Sciences, Safety Assessment, Madison, NJ, USA
| | - Sonia Roberts
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Lyn Rosenbrier-Ribeiro
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Friedemann Schmidt
- Sanofi-Aventis Deutschland GmbH, Preclinical Safety, R&D, Frankfurt am Main, Germany
| | - Duncan Armstrong
- Novartis Institutes for Biomedical Research, Pre-Clinical Safety, Cambridge, MA, USA
| |
Collapse
|
16
|
Romero L, Cano J, Gomis-Tena J, Trenor B, Sanz F, Pastor M, Saiz J. In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. J Chem Inf Model 2018; 58:867-878. [PMID: 29547274 DOI: 10.1021/acs.jcim.7b00440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drug-induced proarrhythmicity is a major concern for regulators and pharmaceutical companies. For novel drug candidates, the standard assessment involves the evaluation of the potassium hERG channels block and the in vivo prolongation of the QT interval. However, this method is known to be too restrictive and to stop the development of potentially valuable therapeutic drugs. The aim of this work is to create an in silico tool for early detection of drug-induced proarrhythmic risk. The system is based on simulations of how different compounds affect the action potential duration (APD) of isolated endocardial, midmyocardial, and epicardial cells as well as the QT prolongation in a virtual tissue. Multiple channel-drug interactions and state-of-the-art human ventricular action potential models ( O'Hara , T. , PLos Comput. Biol. 2011 , 7 , e1002061 ) were used in our simulations. Specifically, 206.766 cellular and 7072 tissue simulations were performed by blocking the slow and the fast components of the delayed rectifier current ( IKs and IKr, respectively) and the L-type calcium current ( ICaL) at different levels. The performance of our system was validated by classifying the proarrhythmic risk of 84 compounds, 40 of which present torsadogenic properties. On the basis of these results, we propose the use of a new index (Tx) for discriminating torsadogenic compounds, defined as the ratio of the drug concentrations producing 10% prolongation of the cellular endocardial, midmyocardial, and epicardial APDs and the QT interval, over the maximum effective free therapeutic plasma concentration (EFTPC). Our results show that the Tx index outperforms standard methods for early identification of torsadogenic compounds. Indeed, for the analyzed compounds, the Tx tests accuracy was in the range of 87-88% compared with a 73% accuracy of the hERG IC50 based test.
Collapse
Affiliation(s)
- Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería (CI2B) , Universitat Politècnica de València , camino de Vera, s/n , 46022 Valencia , Spain
| | - Jordi Cano
- Centro de Investigación e Innovación en Bioingeniería (CI2B) , Universitat Politècnica de València , camino de Vera, s/n , 46022 Valencia , Spain
| | - Julio Gomis-Tena
- Centro de Investigación e Innovación en Bioingeniería (CI2B) , Universitat Politècnica de València , camino de Vera, s/n , 46022 Valencia , Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (CI2B) , Universitat Politècnica de València , camino de Vera, s/n , 46022 Valencia , Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Carrer del Dr. Aiguader 88 , 08002 Barcelona , Spain
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Carrer del Dr. Aiguader 88 , 08002 Barcelona , Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (CI2B) , Universitat Politècnica de València , camino de Vera, s/n , 46022 Valencia , Spain
| |
Collapse
|
17
|
In vitro assessment of chemotherapy-induced neuronal toxicity. Toxicol In Vitro 2018; 50:109-123. [PMID: 29427706 DOI: 10.1016/j.tiv.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxicity is a major concern during drug development, and together with liver and cardio-toxicity, it is one of the main causes of clinical drug attrition. Current pre-clinical models may not sufficiently identify and predict the risk for central or peripheral nervous system toxicity. One such example is clinically dose-limiting neuropathic effects after the administration of chemotherapeutic agents. Thus, the need to establish novel in vitro tools to evaluate the risk of neurotoxicities, such as neuropathy, remains unmet in drug discovery. Though in vitro studies have been conducted using primary and immortalized cell lines, some limitations include the utility for higher throughput methodologies, method reproducibility, and species extrapolation. As a novel alternative, human induced-pluripotent stem cell (iPSC)-derived neurons appear promising for testing new drug candidates. These iPSC-derived neurons are readily available and can be manipulated as required. Here, we describe a novel approach to assess neurotoxicity caused by different classes of chemotherapeutics using kinetic monitoring of neurite dynamic changes and apoptosis in human iPSC-neurons. These studies show promising changes in neurite dynamics in response to clinical inducers of neuropathy, as well as the ability to rank-order and gather mechanistic insight into class-specific compound induced neurotoxicity. This platform can be utilized in early drug development, as part of a weight of evidence approach, to screen drug candidates, and potentially reduce clinical attrition due to neurotoxicity.
Collapse
|
18
|
Seizure liability assessments using the hippocampal tissue slice: Comparison of non-clinical species. J Pharmacol Toxicol Methods 2017; 93:59-68. [PMID: 29155282 DOI: 10.1016/j.vascn.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Traditionally, rat hippocampal tissue slice models are used as an in vitro electrophysiology assay to assess seizurogenic potential in early drug development despite non-clinical species-specific differences noted during in vivo seizure studies. METHODS Hippocampal tissue slices were acutely isolated from rats, minipigs, dogs and nonhuman primates (NHP). Population spikes (PS) were evoked through stimulation of the CA3 Schaffer collateral pathway and recorded using in vitro electrophysiological techniques via an extracellular electrode placed within the CA1 stratum pyramidale cell body layer. RESULTS Hippocampal slices, across all species, displayed a concentration-dependent increase in PS area and number with the pro-convulsant pentylenetetrazol (PTZ; 0.1-10mM). Beagle dogs exhibited higher sensitivities to PTZ-induced changes in PS area and number compared to both rats and NHPs which presented nuanced differences in their responsiveness to PTZ modulation. Minipigs were comparatively resistant to PTZ-induced changes in both PS area and number. Rat and NHP hippocampal tissues were further characterized with the pro-convulsant agents 4-aminopyradine (4-AP; 1-100μM) and cefazolin (0.001-10mM). Rats possessed higher sensitivities to 4-AP- and cefazolin-induced changes to both PS area and number whereas NHP displayed greater modulation in PS duration. The anti-convulsant agents, diazepam (10-500μM) and lidocaine (1-500μM), were also tested on either rat and/or NHP tissue with both drugs repressing PS activation at high concentrations. DISCUSSION Hippocampal tissue slices, across all species, possessed distinct sensitivities to pro- and anti-convulsant agents which may benefit the design of non-clinical seizure liability studies and their associated data interpretation.
Collapse
|
19
|
Lind JU, Yadid M, Perkins I, O'Connor BB, Eweje F, Chantre CO, Hemphill MA, Yuan H, Campbell PH, Vlassak JJ, Parker KK. Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening. LAB ON A CHIP 2017; 17:3692-3703. [PMID: 28976521 PMCID: PMC5810940 DOI: 10.1039/c7lc00740j] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microphysiological systems and organs-on-chips promise to accelerate biomedical and pharmaceutical research by providing accurate in vitro replicas of human tissue. Aside from addressing the physiological accuracy of the model tissues, there is a pressing need for improving the throughput of these platforms. To do so, scalable data acquisition strategies must be introduced. To this end, we here present an instrumented 24-well plate platform for higher-throughput studies of engineered human stem cell-derived cardiac muscle tissues that recapitulate the laminar structure of the native ventricle. In each well of the platform, an embedded flexible strain gauge provides continuous and non-invasive readout of the contractile stress and beat rate of an engineered cardiac tissue. The sensors are based on micro-cracked titanium-gold thin films, which ensure that the sensors are highly compliant and robust. We demonstrate the value of the platform for toxicology and drug-testing purposes by performing 12 complete dose-response studies of cardiac and cardiotoxic drugs. Additionally, we showcase the ability to couple the cardiac tissues with endothelial barriers. In these studies, which mimic the passage of drugs through the blood vessels to the musculature of the heart, we regulate the temporal onset of cardiac drug responses by modulating endothelial barrier permeability in vitro.
Collapse
Affiliation(s)
- Johan U Lind
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford St., Pierce Hall 321, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mead AN, Amouzadeh HR, Chapman K, Ewart L, Giarola A, Jackson SJ, Jarvis P, Jordaan P, Redfern W, Traebert M, Valentin JP, Vargas HM. Assessing the predictive value of the rodent neurofunctional assessment for commonly reported adverse events in phase I clinical trials. Regul Toxicol Pharmacol 2016; 80:348-57. [DOI: 10.1016/j.yrtph.2016.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
21
|
The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods 2016; 81:47-59. [DOI: 10.1016/j.vascn.2016.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/16/2023]
|
22
|
Qiu XS, Chauveau S, Anyukhovsky EP, Rahim T, Jiang YP, Harleton E, Feinmark SJ, Lin RZ, Coronel R, Janse MJ, Opthof T, Rosen TS, Cohen IS, Rosen MR. Increased Late Sodium Current Contributes to the Electrophysiological Effects of Chronic, but Not Acute, Dofetilide Administration. Circ Arrhythm Electrophysiol 2016; 9:e003655. [PMID: 27071826 DOI: 10.1161/circep.115.003655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs are screened for delayed rectifier potassium current (IKr) blockade to predict long QT syndrome prolongation and arrhythmogenesis. However, single-cell studies have shown that chronic (hours) exposure to some IKr blockers (eg, dofetilide) prolongs repolarization additionally by increasing late sodium current (INa-L) via inhibition of phosphoinositide 3-kinase. We hypothesized that chronic dofetilide administration to intact dogs prolongs repolarization by blocking IKr and increasing INa-L. METHODS AND RESULTS We continuously infused dofetilide (6-9 μg/kg bolus+6-9 μg/kg per hour IV infusion) into anesthetized dogs for 7 hours, maintaining plasma levels within the therapeutic range. In separate experiments, myocardial biopsies were taken before and during 6-hour intravenous dofetide infusion, and the level of phospho-Akt was determined. Acute and chronic dofetilide effects on action potential duration (APD) were studied in canine left ventricular subendocardial slabs using microelectrode techniques. Dofetilide monotonically increased QTc and APD throughout 6.5-hour exposure. Dofetilide infusion during ≥210 minutes inhibited Akt phosphorylation. INa-L block with lidocaine shortened QTc and APD more at 6.5 hours than at 50 minutes (QTc) or 30 minutes (APD) dofetilide administration. In comparison, moxifloxacin, an IKr blocker with no effects on phosphoinositide 3-kinase and INa-L prolonged APD acutely but no additional prolongation occurred on chronic superfusion. Lidocaine shortened APD equally during acute and chronic moxifloxacin superfusion. CONCLUSIONS Increased INa-L contributes to chronic dofetilide effects in vivo. These data emphasize the need to include time and INa-L in evaluating the phosphoinositide 3-kinase inhibition-derived proarrhythmic potential of drugs and provide a mechanism for benefit from lidocaine administration in clinical acquired long QT syndrome.
Collapse
Affiliation(s)
- Xiaoliang S Qiu
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Samuel Chauveau
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Evgeny P Anyukhovsky
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tania Rahim
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ya-Ping Jiang
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Erin Harleton
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Steven J Feinmark
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Richard Z Lin
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ruben Coronel
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Michiel J Janse
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tobias Opthof
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tove S Rosen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ira S Cohen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.).
| | - Michael R Rosen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| |
Collapse
|
23
|
Authier S, Arezzo J, Delatte MS, Kallman MJ, Markgraf C, Paquette D, Pugsley MK, Ratcliffe S, Redfern WS, Stevens J, Valentin JP, Vargas HM, Curtis MJ. Safety pharmacology investigations on the nervous system: An industry survey. J Pharmacol Toxicol Methods 2016; 81:37-46. [PMID: 27263834 DOI: 10.1016/j.vascn.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/13/2016] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
The Safety Pharmacology Society (SPS) conducted an industry survey in 2015 to identify industry practices as they relate to central, peripheral and autonomic nervous system ('CNS') drug safety testing. One hundred fifty-eight (158) participants from Asia (16%), Europe (20%) and North America (56%) responded to the survey. 52% of participants were from pharmaceutical companies (>1000 employees). Oncology (67%) and neurology/psychiatry (66%) were the most frequent target indications pursued by companies followed by inflammation (48%), cardiovascular (43%), metabolic (39%), infectious (37%), orphan (32%) and respiratory (29%) diseases. Seizures (67% of participants), gait abnormalities (67%), tremors (65%), emesis (56%), sedation (52%) and salivation (47%) were the most commonly encountered CNS issues in pre-clinical drug development while headache (65%), emesis/nausea (60%), fatigue (51%) and dizziness (49%) were the most frequent issues encountered in Phase I clinical trials. 54% of respondents reported that a standard battery of tests applied to screen drug candidates was the approach most commonly used to address non-clinical CNS safety testing. A minority (14% of all participants) reported using electroencephalography (EEG) screening prior to animal inclusion on toxicology studies. The most frequent group size was n=8 for functional observation battery (FOB), polysomnography and seizure liability studies. FOB evaluations were conducted in a dedicated room (78%) by blinded personnel (66%) with control for circadian cycle (55%) effects (e.g., dosing at a standardized time; balancing time of day across treatment groups). The rat was reported as the most common species used for seizure liability, nerve conduction and drug-abuse liability testing.
Collapse
Affiliation(s)
- Simon Authier
- CiToxLAB North America, 445 Armand Frappier, Laval, QC H7V 4B3, Canada.
| | - Joseph Arezzo
- Department of Neuroscience, Albert Einstein College of Medicine, USA; Department of Neurology, Albert Einstein College of Medicine, USA
| | - Marcus S Delatte
- Division of Anesthesia, Analgesia and Addiction Products (DAAAP), CDER, U.S. Food & Drug Administration, Silver Spring, MD, USA
| | | | - Carrie Markgraf
- Discovery Sciences Support, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | - Michael K Pugsley
- Department of Toxicology, Purdue Pharma L.P., Cranbury, NJ 08512, USA
| | - Sian Ratcliffe
- Safety Pharmacology COE, Pfizer, United States, Groton, CT 06340, USA
| | - William S Redfern
- Drug Safety & Metabolism, AstraZeneca, 310 Cambridge Science Park, Cambridge CB4 0WG, UK
| | - Joanne Stevens
- Department of Pharmacology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | - Hugo M Vargas
- Integrated Discovery and Safety Pharmacology, Amgen, Inc., Thousand Oaks, CA, USA
| | - Michael J Curtis
- Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, Rayne Institute, St Thomas' Hospital, London, SE17EH, UK
| |
Collapse
|
24
|
Grant C, Ewart L, Muthas D, Deavall D, Smith SA, Clack G, Newham P. The value of integrating pre-clinical data to predict nausea and vomiting risk in humans as illustrated by AZD3514, a novel androgen receptor modulator. Toxicol Appl Pharmacol 2016; 296:10-8. [DOI: 10.1016/j.taap.2016.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 12/29/2022]
|
25
|
Accardi MV, Troncy E, Abtout S, Ascah A, Maghezzi S, Authier S. Rat cardiovascular telemetry: Marginal distribution applied to positive control drugs. J Pharmacol Toxicol Methods 2016; 81:120-7. [PMID: 27039258 DOI: 10.1016/j.vascn.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 11/26/2022]
Abstract
Cardiovascular effects are considered frequent during drug safety testing. This investigation aimed to characterize the pharmacological response of the conscious telemetered rat in vivo model to known cardiovascular active agents. These effects were analyzed using statistical analysis and cloud representation with marginal distribution curves for the contractility index and heart rate as to assess the effect relationship between cardiac variables. Arterial blood pressure, left ventricular pressure, electrocardiogram and body temperature were monitored. The application of data cloud with marginal distribution curves to heart rate and contractility index provided an interesting tactic during the interpretation of drug-induced changes particularly during selective time resolution (i.e. marginal distribution curves restricted to Tmax). Taken together, the present data suggests that marginal distribution curves can be a valuable interpretation strategy when using the rat cardiovascular telemetry model to detect drug-induced cardiovascular effects. Marginal distribution curves could also be considered during the interpretation of other inter-dependent parameters in safety pharmacology studies.
Collapse
Affiliation(s)
- M V Accardi
- CiToxLAB North America, 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - E Troncy
- Faculty of Veterinary Medicine, University of Montreal, P.O. box 5000, St-Hyacinthe, QC J2S 7C6, Canada
| | - S Abtout
- CiToxLAB North America, 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - A Ascah
- CiToxLAB North America, 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - S Maghezzi
- CiToxLAB North America, 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - S Authier
- CiToxLAB North America, 445 Armand Frappier, Laval, QC H7V 4B3, Canada; Faculty of Veterinary Medicine, University of Montreal, P.O. box 5000, St-Hyacinthe, QC J2S 7C6, Canada.
| |
Collapse
|
26
|
Gilchrist KH, Lewis GF, Gay EA, Sellgren KL, Grego S. High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays. Toxicol Appl Pharmacol 2015; 288:249-57. [PMID: 26232523 DOI: 10.1016/j.taap.2015.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/16/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Microelectrode arrays (MEAs) recording extracellular field potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) provide a rich data set for functional assessment of drug response. The aim of this work is the development of a method for a systematic analysis of arrhythmia using MEAs, with emphasis on the development of six parameters accounting for different types of cardiomyocyte signal irregularities. We describe a software approach to carry out such analysis automatically including generation of a heat map that enables quick visualization of arrhythmic liability of compounds. We also implemented signal processing techniques for reliable extraction of the repolarization peak for field potential duration (FPD) measurement even from recordings with low signal to noise ratios. We measured hiPS-CM's on a 48 well MEA system with 5minute recordings at multiple time points (0.5, 1, 2 and 4h) after drug exposure. We evaluated concentration responses for seven compounds with a combination of hERG, QT and clinical proarrhythmia properties: Verapamil, Ranolazine, Flecainide, Amiodarone, Ouabain, Cisapride, and Terfenadine. The predictive utility of MEA parameters as surrogates of these clinical effects were examined. The beat rate and FPD results exhibited good correlations with previous MEA studies in stem cell derived cardiomyocytes and clinical data. The six-parameter arrhythmia assessment exhibited excellent predictive agreement with the known arrhythmogenic potential of the tested compounds, and holds promise as a new method to predict arrhythmic liability.
Collapse
Affiliation(s)
- Kristin H Gilchrist
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Gregory F Lewis
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Elaine A Gay
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Katelyn L Sellgren
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Sonia Grego
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| |
Collapse
|
27
|
Castellano G, Torrens F. Quantitative Structure-Antioxidant Activity Models of Isoflavonoids: A Theoretical Study. Int J Mol Sci 2015; 16:12891-906. [PMID: 26062128 PMCID: PMC4490477 DOI: 10.3390/ijms160612891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Seventeen isoflavonoids from isoflavone, isoflavanone and isoflavan classes are selected from Dalbergia parviflora. The ChEMBL database is representative from these molecules, most of which result highly drug-like. Binary rules appear risky for the selection of compounds with high antioxidant capacity in complementary xanthine/xanthine oxidase, ORAC, and DPPH model assays. Isoflavonoid structure-activity analysis shows the most important properties (log P, log D, pKa, QED, PSA, NH + OH ≈ HBD, N + O ≈ HBA). Some descriptors (PSA, HBD) are detected as more important than others (size measure Mw, HBA). Linear and nonlinear models of antioxidant potency are obtained. Weak nonlinear relationships appear between log P, etc. and antioxidant activity. The different capacity trends for the three complementary assays are explained. Isoflavonoids potency depends on the chemical form that determines their solubility. Results from isoflavonoids analysis will be useful for activity prediction of new sets of flavones and to design drugs with antioxidant capacity, which will prove beneficial for health with implications for antiageing therapy.
Collapse
Affiliation(s)
- Gloria Castellano
- Departamento de Ciencias Experimentales y Matemáticas, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Guillem de Castro-94, E 46001 València, Spain.
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, P. O. Box 22085, E 46071 València, Spain.
| |
Collapse
|
28
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
29
|
Polak S, Pugsley MK, Stockbridge N, Garnett C, Wiśniowska B. Early Drug Discovery Prediction of Proarrhythmia Potential and Its Covariates. AAPS JOURNAL 2015; 17:1025-32. [PMID: 25940083 PMCID: PMC4476985 DOI: 10.1208/s12248-015-9773-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
|
30
|
Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nat Rev Drug Discov 2015; 14:294. [PMID: 25792260 DOI: 10.1038/nrd3845-c1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Gunaruwan P, Howes LG. Assessing the Arrhythmogenic Potential of New Drugs: A Guide for the Pharmaceutical Physician. Pharmaceut Med 2015. [DOI: 10.1007/s40290-015-0082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Abstract
Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.
Collapse
|
33
|
Reprint of "Safety pharmacology in 2014: New focus on non-cardiac methods and models". J Pharmacol Toxicol Methods 2014; 70:199-203. [PMID: 25467811 DOI: 10.1016/j.vascn.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/20/2022]
Abstract
"What do you know about Safety Pharmacology?" This is the question that was asked in 2000 with the inception of the Safety Pharmacology Society (SPS). There is now a widespread awareness of the role of safety pharmacology in drug discovery and increasing awareness among the wider community of methods and models used in the assessment of the core battery required set of safety studies. However, safety pharmacology does not stop with core battery studies. New methods are intensively sought in order to achieve a swifter and more reliable assessment of adverse effect liability. The dynamics of the discipline and method expansion are reflected in the content of this issue of the Journal of Pharmacological and Toxicological Methods (JPTM). We are into the second decade of publishing on safety pharmacology methods and models, reflected by the annual themed issue in JPTM, and on willingness of investigators to embrace new technologies and methodologies. This years' themed issue is derived from the annual Safety Pharmacology Society (SPS) meeting, held in Rotterdam, The Netherlands, in 2013.
Collapse
|
34
|
Pugsley MK, Dalton JA, Authier S, Curtis MJ. Safety pharmacology in 2014: new focus on non-cardiac methods and models. J Pharmacol Toxicol Methods 2014; 70:170-4. [PMID: 25128820 DOI: 10.1016/j.vascn.2014.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022]
Abstract
"What do you know about Safety Pharmacology?" This is the question that was asked in 2000 with the inception of the Safety Pharmacology Society (SPS). There is now a widespread awareness of the role of safety pharmacology in drug discovery and increasing awareness among the wider community of methods and models used in the assessment of the core battery required set of safety studies. However, safety pharmacology does not stop with core battery studies. New methods are intensively sought in order to achieve a swifter and more reliable assessment of adverse effect liability. The dynamics of the discipline and method expansion are reflected in the content of this issue of the Journal of Pharmacological and Toxicological Methods (JPTM). We are into the second decade of publishing on safety pharmacology methods and models, reflected by the annual themed issue in JPTM, and on willingness of investigators to embrace new technologies and methodologies. This years' themed issue is derived from the annual Safety Pharmacology Society (SPS) meeting, held in Rotterdam, The Netherlands, in 2013.
Collapse
Affiliation(s)
- Michael K Pugsley
- Drug Safety Sciences, Janssen Research & Development, LLC., 1000 Route 202 South, Raritan, NJ, 00869, USA.
| | - Jill A Dalton
- Safety Pharmacology, MPI Research, Inc., 54943 North Main St., Mattawan, MI 49071-9399, USA
| | - Simon Authier
- CiToxLAB Research Inc., 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
35
|
Keating C, Ewart L, Grundy L, Valentin JP, Grundy D. Translational potential of a mouse in vitro bioassay in predicting gastrointestinal adverse drug reactions in Phase I clinical trials. Neurogastroenterol Motil 2014; 26:980-9. [PMID: 24813024 PMCID: PMC4207192 DOI: 10.1111/nmo.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Motility-related gastrointestinal (GI) adverse drug reactions (GADRs) such as diarrhea and constipation are a common and deleterious feature associated with drug development. Novel biomarkers of GI function are therefore required to aid decision making on the GI liability of compounds in development. METHODS Fifteen compounds associated with or without clinical GADRs were used to assess the ability of an in vitro colonic motility bioassay to predict motility-related GADRs. Compounds were examined in a blinded fashion for their effects on mouse colonic peristaltic motor complexes in vitro. For each compound concentration-response relationships were determined and the results compared to clinical data. Compounds were also assessed using GI transit measurements obtained using an in vivo rat charcoal meal model. KEY RESULTS Within a clinically relevant dosing range, the in vitro assay identified five true and three false positives, four true and three false negatives, which gave a predictive capacity of 60%. The in vivo assay detected four true and four false positives, four false and three true negatives, giving rise to a predictive capacity for this model of 47%. CONCLUSIONS & INFERENCES Overall these results imply that both assays are poor predictors of GADRs. Further analysis would benefit from a larger compound set, but the data show a clear need for improved models for use in safety pharmacology assessment of GI motility.
Collapse
Affiliation(s)
- C Keating
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| | - L Ewart
- Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley ParkMacclesfield, UK
| | - L Grundy
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| | - JP Valentin
- Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley ParkMacclesfield, UK
| | - D Grundy
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| |
Collapse
|
36
|
Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of Drug-Induced Myocardial Infarction-Related Protein Targets through the Prediction of Drug–Target Interactions and Analysis of Biological Processes. Chem Res Toxicol 2014; 27:1263-81. [DOI: 10.1021/tx500147d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergey M. Ivanov
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
| | - Alexey A. Lagunin
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
- Medico-biological
Faculty, Pirogov Russian National Research Medical University, 1,
Ostrovitianova str., 117997 Moscow, Russia
| | - Pavel V. Pogodin
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
- Medico-biological
Faculty, Pirogov Russian National Research Medical University, 1,
Ostrovitianova str., 117997 Moscow, Russia
| | - Dmitry A. Filimonov
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
| | - Vladimir V. Poroikov
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
- Medico-biological
Faculty, Pirogov Russian National Research Medical University, 1,
Ostrovitianova str., 117997 Moscow, Russia
| |
Collapse
|
37
|
McGivern JV, Ebert AD. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 2014; 69-70:170-8. [PMID: 24309014 DOI: 10.1016/j.addr.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
Collapse
|
38
|
Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J 2014; 167:292-300. [PMID: 24576511 DOI: 10.1016/j.ahj.2013.11.004] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 12/18/2022]
Abstract
This white paper provides a summary of a scientific proposal presented at a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/Food and Drug Administration-sponsored Think Tank, held at Food and Drug Administration's White Oak facilities, Silver Spring, MD, on July 23, 2013, with the intention of moving toward consensus on defining a new paradigm in the field of cardiac safety in which proarrhythmic risk would be primarily assessed using nonclinical in vitro human models based on solid mechanistic considerations of torsades de pointes proarrhythmia. This new paradigm would shift the emphasis from the present approach that strongly relies on QTc prolongation (a surrogate marker of proarrhythmia) and could obviate the clinical Thorough QT study during later drug development. These discussions represent current thinking and suggestions for furthering our knowledge and understanding of the public health case for adopting a new, integrated nonclinical in vitro/in silico paradigm, the Comprehensive In Vitro Proarrhythmia Assay, for the assessment of a candidate drug's proarrhythmic liability, and for developing a public-private collaborative program to characterize the data content, quality, and approaches required to assess proarrhythmic risk in the absence of a Thorough QT study. This paper seeks to encourage multistakeholder input regarding this initiative and does not represent regulatory guidance.
Collapse
|
39
|
Safety pharmacology — Current and emerging concepts. Toxicol Appl Pharmacol 2013; 273:229-41. [DOI: 10.1016/j.taap.2013.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/31/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
40
|
Louvel J, Carvalho JFS, Yu Z, Soethoudt M, Lenselink EB, Klaasse E, Brussee J, Ijzerman AP. Removal of human ether-à-go-go related gene (hERG) K+ channel affinity through rigidity: a case of clofilium analogues. J Med Chem 2013; 56:9427-40. [PMID: 24224763 DOI: 10.1021/jm4010434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiotoxicity is a side effect that plagues modern drug design and is very often due to the off-target blockade of the human ether-à-go-go related gene (hERG) potassium channel. To better understand the structural determinants of this blockade, we designed and synthesized a series of 40 derivatives of clofilium, a class III antiarrhythmic agent. These were evaluated in radioligand binding and patch-clamp assays to establish structure-affinity relationships (SAR) for this potassium channel. Efforts were especially focused on studying the influence of the structural rigidity and the nature of the linkers composing the clofilium scaffold. It was shown that introducing triple bonds and oxygen atoms in the n-butyl linker of the molecule greatly reduced affinity without significantly modifying the pKa of the essential basic nitrogen. These findings could prove useful in the first stages of drug discovery as a systematic way of reducing the risk of hERG K(+) channel blockade-induced cardiotoxicity.
Collapse
Affiliation(s)
- Julien Louvel
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ahuja V, Sharma S. Drug safety testing paradigm, current progress and future challenges: an overview. J Appl Toxicol 2013; 34:576-94. [PMID: 24777877 DOI: 10.1002/jat.2935] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 12/29/2022]
Abstract
Early assessment of the toxicity potential of new molecules in pharmaceutical industry is a multi-dimensional task involving predictive systems and screening approaches to aid in the optimization of lead compounds prior to their entry into development phase. Due to the high attrition rate in the pharma industry in last few years, it has become imperative for the nonclinical toxicologist to focus on novel approaches which could be helpful for early screening of drug candidates. The need is that the toxicologists should change their classical approach to a more investigative approach. This review discusses the developments that allow toxicologists to anticipate safety problems and plan ways to address them earlier than ever before. This includes progress in the field of in vitro models, surrogate models, molecular toxicology, 'omics' technologies, translational safety biomarkers, stem-cell based assays and preclinical imaging. The traditional boundaries between teams focusing on efficacy/ safety and preclinical/ clinical aspects in the pharma industry are disappearing, and translational research-centric organizations with a focused vision of bringing drugs forward safely and rapidly are emerging. Today's toxicologist should collaborate with medicinal chemists, pharmacologists, and clinicians and these value-adding contributions will change traditional toxicologists from side-effect identifiers to drug development enablers.
Collapse
Affiliation(s)
- Varun Ahuja
- Drug Safety Assessment, Novel Drug Discovery and Development, Lupin Limited (Research Park), 46A/47A, Nande Village, MulshiTaluka, Pune, 412 115, India
| | | |
Collapse
|
42
|
Chain ASY, Sturkenboom MCJM, Danhof M, Della Pasqua OE. Establishing in vitro to clinical correlations in the evaluation of cardiovascular safety pharmacology. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e373-e383. [PMID: 24050134 DOI: 10.1016/j.ddtec.2012.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Preclinical studies are vital in establishing the efficacy and safety of a new chemical entity (NCE) in humans. To deliver meaningful information, experiments have to be well defined and provide outcome that is relevant and translatable to humans. This review briefly surveys the various preclinical experiments that are frequently conducted to assess drug effects on cardiac conductivity in early drug development. We examine the different approaches used to establish correlations between non-clinical and clinical settings and discuss their value in the evaluation of cardiovascular risk.
Collapse
|
43
|
Zemzemi N, Bernabeu MO, Saiz J, Cooper J, Pathmanathan P, Mirams GR, Pitt-Francis J, Rodriguez B. Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. Br J Pharmacol 2013; 168:718-33. [PMID: 22946617 PMCID: PMC3579290 DOI: 10.1111/j.1476-5381.2012.02200.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose Understanding drug effects on the heart is key to safety pharmacology assessment and anti-arrhythmic therapy development. Here our goal is to demonstrate the ability of computational models to simulate the effect of drug action on the electrical activity of the heart, at the level of the ion-channel, cell, heart and ECG body surface potential. Experimental Approach We use the state-of-the-art mathematical models governing the electrical activity of the heart. A drug model is introduced using an ion channel conductance block for the hERG and fast sodium channels, depending on the IC50 value and the drug dose. We simulate the ECG measurements at the body surface and compare biomarkers under different drug actions. Key Results Introducing a 50% hERG-channel current block results in 8% prolongation of the APD90 and 6% QT interval prolongation, hERG block does not affect the QRS interval. Introducing 50% fast sodium current block prolongs the QRS and the QT intervals by 12% and 5% respectively, and delays activation times, whereas APD90 is not affected. Conclusions and Implications Both potassium and sodium blocks prolong the QT interval, but the underlying mechanism is different: for potassium it is due to APD prolongation; while for sodium it is due to a reduction of electrical wave velocity. This study shows the applicability of in silico models for the investigation of drug effects on the heart, from the ion channel to the ECG-based biomarkers.
Collapse
Affiliation(s)
- Nejib Zemzemi
- Department of Computer Science, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Marks L, Beard E, Cobey D, Moore N, Motyer V, Valentin JP, Ewart L. An evaluation of the non-invasive faecal pellet assessment method as an early drug discovery screen for gastrointestinal liability. J Pharmacol Toxicol Methods 2013; 68:123-36. [DOI: 10.1016/j.vascn.2013.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/24/2022]
|
45
|
|
46
|
Authier S, Vargas HM, Curtis MJ, Holbrook M, Pugsley MK. Safety pharmacology investigations in toxicology studies: An industry survey. J Pharmacol Toxicol Methods 2013; 68:44-51. [DOI: 10.1016/j.vascn.2013.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|
47
|
Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A. Comparison of Electrophysiological Data From Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes to Functional Preclinical Safety Assays. Toxicol Sci 2013; 134:412-26. [DOI: 10.1093/toxsci/kft113] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
48
|
Carvalho JFS, Louvel J, Doornbos MLJ, Klaasse E, Yu Z, Brussee J, IJzerman AP. Strategies to reduce HERG K+ channel blockade. Exploring heteroaromaticity and rigidity in novel pyridine analogues of dofetilide. J Med Chem 2013; 56:2828-40. [PMID: 23473309 DOI: 10.1021/jm301564f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-induced blockade of the human ether-a-go-go-related gene K(+) channel (hERG) represents one of the major antitarget concerns in pharmaceutical industry. SAR studies of this ion channel have shed light on the structural requirements for hERG interaction but most importantly may reveal drug design principles to reduce hERG affinity. In the present study, a novel library of neutral and positively charged heteroaromatic derivatives of the class III antiarrhythmic agent dofetilide was synthesized and assessed for hERG affinity in radioligand binding and manual patch clamp assays. Structural modifications of the pyridine moiety, side chain, and peripheral aromatic moieties were evaluated, thereby revealing approaches for reducing hERG binding affinity. In particular, we found that the extra rigidity imposed close to the positively charged pyridine moiety can be very efficient in decreasing hERG affinity.
Collapse
Affiliation(s)
- João F S Carvalho
- Leiden Academic Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Drug discovery is a complex process with the aim of discovering efficacious molecules where their potency and selectivity are balanced against ADMET properties to set the appropriate dose and dosing interval. The link between physicochemical properties and molecular structure are well established. The subsequent connections between physicochemical properties and a drug's biological behavior provide an indirect link back to structure, facilitating the prediction of a biological property as a consequence of a particular molecular manipulation. Due to this understanding, during early drug discovery in vitro physicochemical property assays are commonly performed to eliminate compounds with properties commensurate with high attrition risks. However, the goal is to accurately predict physicochemical properties to prevent the synthesis of high risk compounds and hence minimize wasted drug discovery efforts. This paper will review the relevance to ADMET behaviors of key physicochemical properties, such as ionization, aqueous solubility, hydrogen bonding strength and hydrophobicity, and the in silico methodology for predicting them.
Collapse
Affiliation(s)
- Mark C Wenlock
- AstraZeneca R&D Alderley Park, DMPK, Mereside, Macclesfield, Cheshire, SK10 4TF, United Kingdom.
| | | |
Collapse
|
50
|
Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 2012. [DOI: 10.1038/nrd3845] [Citation(s) in RCA: 470] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|