1
|
Zhang W, Wang X, Zhang H, Pan Y, Ma W, Xu Y, Tian Z, Xia C, Fu L, Wang Y. Comparison of pathogenicity and host responses of emerging porcine reproductive and respiratory syndrome virus variants in piglets. J Virol 2024; 98:e0154223. [PMID: 39445829 PMCID: PMC11575335 DOI: 10.1128/jvi.01542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
Collapse
Affiliation(s)
- Wenli Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
2
|
Fabros D, Charerntantanakul W. Knock down of transforming growth factor beta improves expressions of co-stimulatory molecules, type I interferon-regulated genes, and pro-inflammatory cytokine in PRRSV-inoculated monocyte-derived macrophages. BMC Vet Res 2024; 20:344. [PMID: 39097704 PMCID: PMC11297646 DOI: 10.1186/s12917-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/28/2023] [Indexed: 08/05/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a poor innate immune response following infection. This study evaluates the effects of transforming growth factor beta 1 (TGFβ1) up-regulated by PRRSV on gene expressions of co-stimulatory molecules, type I interferon (IFN), type I IFN-regulated genes (IRGs), pattern recognition receptors, and pro-inflammatory cytokines in PRRSV-inoculated monocyte-derived macrophages (MDMs). Phosphorothioate-modified antisense oligodeoxynucleotides (AS ODNs) specific to various regions of porcine TGFβ1 mRNA were synthesized, and those specific to the AUG region efficiently knockdown TGFβ1 mRNA expression and protein translation. Transfection of TGFβAS ODNs in MDMs inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) significantly reduced TGFβ1 mRNA expression and significantly increased mRNA expressions of CD80, CD86, IFNβ, IRGs (i.e. IFN regulatory factor 3 (IRF3), IRF7, myxovirus resistance 1, osteopontin, and stimulator of IFN genes), Toll-like receptor 3, and tumor necrosis factor-alpha. Transfection of TGFβAS ODNs in MDMs inoculated with HP-PRRSV-2 also significantly increased mRNA expressions of IFNα, IFNγ, and 2'-5'-oligoadenylate synthetase 1. The quantity of PRRSV-2 RNA copy numbers was significantly reduced in MDMs transfected with TGFβAS ODNs as compared to untransfected MDMs. Recombinant porcine TGFβ1 (rTGFβ1) and recombinant porcine IFNα (rIFNα) sustained and reduced the yields of PRRSV-2 RNA copy numbers in PRRSV-2 inoculated MDMs, respectively. These findings demonstrate a strategy of PRRSV for innate immune suppression via an induction of TGFβ expression. These findings also suggest TGFβ as a potential parameter that future PRRSV vaccine and vaccine adjuvant candidates should take into consideration.
Collapse
Affiliation(s)
- Dante Fabros
- Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Chiang Mai, Thailand
| | - Wasin Charerntantanakul
- Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Perez-Duran F, Calderon-Rico F, Franco-Correa LE, Zamora-Aviles AG, Ortega-Flores R, Durand-Herrera D, Bravo-Patiño A, Cortes-Vieyra R, Hernandez-Morales I, Nuñez-Anita RE. Synthetic Peptides Elicit Humoral Response against Porcine Reproductive and Respiratory Syndrome Virus in Swine. Vaccines (Basel) 2024; 12:652. [PMID: 38932381 PMCID: PMC11209519 DOI: 10.3390/vaccines12060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to analyze the immunogenic response elicited in swine by two synthetic peptides derived from GP5 to understand the role of lineal B epitopes in the humoral and B-cell-mediated response against the porcine reproductive and respiratory syndrome virus (PRRSV). For inoculation, twenty-one-day-old pigs were allocated into six groups: control, vehicle, vaccinated (Ingelvac-PRRSV, MLV®), non-vaccinated and naturally infected, GP5-B and GP5-B3. At 2 days post-immunization (dpi), the GP5-B3 peptide increased the serum concentrations of cytokines associated with activate adaptive cellular immunity, IL-1β (1.15 ± 1.15 to 10.17 ± 0.94 pg/mL) and IL-12 (323.8 ± 23.3 to 778.5 ± 58.11 pg/mL), compared to the control group. The concentration of IgGs anti-GP5-B increased in both cases at 21 and 42 dpi compared to that at 0 days (128.3 ± 8.34 ng/mL to 231.9 ± 17.82 and 331 ± 14.86 ng/mL), while IgGs anti-GP5-B3 increased at 21 dpi (105.1 ± 19.06 to 178 ± 15.09 ng/mL) and remained at the same level until 42 dpi. Also, antibody-forming/Plasma B cells (CD2+/CD21-) increased in both cases (9.85 ± 0.7% to 13.67 ± 0.44 for GP5-B and 15.72 ± 1.27% for GP5-B3). Furthermore, primed B cells (CD2-/CD21+) from immunized pigs showed an increase in both cases (9.62 ± 1.5% to 24.51 ± 1.3 for GP5-B and 34 ± 2.39% for GP5-B3) at 42 dpi. Conversely the naïve B cells from immunized pigs decreased compared with the control group (8.84 ± 0.63% to 6.25 ± 0.66 for GP5-B and 5.78 ± 0.48% for GP5-B3). Importantly, both GP5-B and GP5-B3 peptides exhibited immunoreactivity against serum antibodies from the vaccinated group, as well as the non-vaccinated and naturally infected group. In conclusion, GP5-B and GP5-B3 peptides elicited immunogenicity mediated by antigen-specific IgGs and B cell activation.
Collapse
Affiliation(s)
- Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Daniel Durand-Herrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Ricarda Cortes-Vieyra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| | - Ilane Hernandez-Morales
- Laboratorio de Investigacion Interdisciplinaria, Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon CP 37684, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N Carretera Morelia-Zinapecuaro, La Palma, Tarimbaro CP 58893, Mexico; (F.P.-D.); (F.C.-R.); (L.E.F.-C.); (A.G.Z.-A.); (R.O.-F.); (D.D.-H.); (A.B.-P.); (R.C.-V.)
| |
Collapse
|
4
|
Li S, Li J, Tian Y, Liu J, Zhu J, Chen N, Shang S. A potent CD8 T-cell response may be associated with partial cross-protection conferred by an attenuated Chinese HP-PRRSV vaccine against NADC30-like PRRSV challenge. J Gen Virol 2023; 104. [PMID: 37159409 DOI: 10.1099/jgv.0.001850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens to the global swine industry. Many commercial PRRSV vaccines, originally designed to provide homologous protection, have shown partial protection against heterologous strains. However, the protective immune mechanisms mediated by these PRRSV vaccines are not fully understood. In this study, we investigated the factors responsible for partial protection conferred by an attenuated Chinese HP-PRRSV vaccine (TJM-F92) against heterologous NADC30-like PRRSV. By analysing peripheral T-cell responses induced by the TJM-F92 vaccine and local and systemic memory responses following challenge with NADC30-like PRRSV (SD17-38 strains) as well as neutralizing antibody response, we found that the TJM-F92 vaccine induced a significant expansion of CD8 T cells but not CD4 T cells or γδ T cells. The expanded CD8 T cells exhibited a phenotype of effector memory T cells and secreted IFN-γ upon restimulation with SD17-38 strains in vitro. In addition, only CD8 T cells in the prior immunized pigs rapidly expanded in the blood and spleen after heterologous challenge, with higher magnitude, compared to the unvaccinated pigs, showing a remarkable memory response. In contrast, no obvious humoral immune response was enhanced in the vaccinated and challenged pigs, and no heterologous neutralizing antibodies were detected throughout the experiment. Our results suggested that CD8 T cells elicited by the TJM-F92 vaccine may be responsible for partial heterologous protection against NADC30-like PRRSV strains and potentially recognize the conserved antigens among PRRSV strains.
Collapse
Affiliation(s)
- Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaqi Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yunfei Tian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiawei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| |
Collapse
|
5
|
Madapong A, Saeng-chuto K, Tantituvanont A, Nilubol D. Using a concurrent challenge with porcine circovirus 2 and porcine reproductive and respiratory syndrome virus to compare swine vaccination programs. Sci Rep 2022; 12:15524. [PMID: 36109529 PMCID: PMC9477171 DOI: 10.1038/s41598-022-19529-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of the present study were to evaluate the immune response of six commercial vaccines against PRRSV-2 and PCV2, administered as monovalent or combined products via intramuscular (IM) or intradermal (ID) routes. Seventy-two, 3-week-old pigs were randomly allocated into 8 treatments with 9 pigs each: IMPP0/PCVMH7, IDPP0/PCVMH7, IMING0/PCVMH7, IMPP0/PCVMH0, IDPP0/PCVMH0, IMTRF0, NV/CH, and NV/NC. IMPP0/PCVMH0 and IMPP0/PCVMH7 groups were IM vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 days post-vaccination (DPV), followed by single IM vaccination with Porcilis PCV M Hyo (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. IDPP0/PCVMH0 and IDPP0/PCVMH7 groups were ID vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 DPV, followed by a single concurrent ID injection of Porcilis PCV ID (MSD Animal Health, The Netherlands) and Porcilis M Hyo ID ONCE (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. The IMING0/PCVMH7 group was IM vaccinated once with Ingelvac PRRS MLV (Boehringer Ingelheim, Germany) at 0 DPV, and subsequently IM vaccinated with Ingelvac CircoFLEX (Boehringer Ingelheim, Germany) and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 7 DPV. The IMTRF0 group was IM vaccinated once with combined products of Ingelvac PRRS MLV (Boehringer Ingelheim, Germany), Ingelvac CircoFLEX (Boehringer Ingelheim, Germany), and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 0 DPV. The NV/CH and NV/NC groups were left unvaccinated. At 28 DPV (0 days post-challenge, DPC), pigs were intranasally inoculated with a 4 ml of mixed cell culture inoculum containing HP-PRRSV-2 (105.6 TCID50/ml) and PCV2d (105.0 TCID50/ml). Antibody response, IFN-γ-secreting cells (SC), and IL-10 secretion in supernatants of stimulated PBMC were monitored. Sera were collected and quantified for the PRRSV RNA and PCV2 DNA using qPCR. Three pigs from each group were necropsied at 7 DPC, lung lesions were evaluated. Tissues were collected and performed immunohistochemistry (IHC). Our study demonstrated that concurrent vaccination via the ID or the IM route did not introduce additional reactogenicity. We found no interference with the induction of immune response between vaccination timing. In terms of an immune response, ID vaccination resulted in significantly lower IL-10 levels and higher IFN-γ-SC values compared to the IM-vaccinated groups. In terms of clinical outcomes, only one IM-vaccinated group showed significantly better efficacy when antigens were injected separately compared with concurrently. While the vaccines were ID delivered, these effects disappeared. Our findings confirm that concurrent vaccination of PRRSV-2 MLV and PCV2 via either the IM or the ID routes could be a viable immunization strategy to assist with the control of PRDC. In situations where maximal efficacy is required, over all other factors, concurrent vaccination is possible with the ID route but might not be an ideal strategy if using the IM route.
Collapse
|
6
|
Ruansit W, Charerntantanakul W. Oral Supplementation of Houttuynia cordata Extract Reduces Viremia in PRRSV-1 Modified-Live Virus-Vaccinated Pigs in Response to the HP-PRRSV-2 Challenge. Front Immunol 2022; 13:929338. [PMID: 35924249 PMCID: PMC9339630 DOI: 10.3389/fimmu.2022.929338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the in vitro antiviral activities and the ex vivo immunomodulatory effects of Houttuynia cordata Thunb. (HC) ethanolic extracts in response to porcine reproductive and respiratory syndrome virus (PRRSV). In addition, this study evaluated the in vivo effects of oral supplementation of HC extract on immune responses to and cross-protective efficacy of PRRSV-1 modified-live virus (MLV) vaccine against the highly pathogenic (HP)-PRRSV-2 challenge. In vitro experiments demonstrated that HC extracted in either 50%, 70%, or 95% ethanol (referred to as HC50, HC70, and HC95, respectively) significantly interfered with PRRSV replication in MARC-145 cells. Ex vivo experiments revealed that all HC extracts significantly enhanced mRNA expressions of type I interferon-regulated genes, type I and II interferon (IFN), and pro- and anti-inflammatory cytokines in HP-PRRSV-2-inoculated monocyte-derived macrophages. An in vivo experiment included four groups of six pigs (4 weeks old; n = 24). Group 1 and group 2 were vaccinated with the PRRSV-1 MLV vaccine at 0 dpv (day post vaccination). Group 2 also received oral administration of HC50 extract at 0–49 dpv. Group 3 received the PRRSV-1 MLV vaccine solvent at 0 dpv, while group 4 served as strict control. Groups 1–3 were challenged intranasally with HP-PRRSV-2 at 28 dpv and immune-related and clinical parameters were monitored weekly until 49 dpv. Compared to group 1, group 2 demonstrated significantly increased IFN regulatory factor 3 mRNA expression of PRRSV-recalled peripheral blood mononuclear cells, and significantly reduced HP-PRRSV-2 viremia. No difference in PRRSV-specific antibody responses, rectal temperature, clinical scores, and average daily weight gain was detected. Our study reports the immunomodulatory and anti-PRRSV potentials of HC extract in PRRSV-1 MLV-vaccinated/HP-PRRSV-2 challenged pigs.
Collapse
|
7
|
Duerlinger S, Knecht C, Sawyer S, Balka G, Zaruba M, Ruemenapf T, Kraft C, Rathkjen PH, Ladinig A. Efficacy of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) Vaccine against Experimental Infection with PRRSV AUT15-33 in Weaned Piglets. Vaccines (Basel) 2022; 10:vaccines10060934. [PMID: 35746542 PMCID: PMC9227293 DOI: 10.3390/vaccines10060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the efficacy of the commercial modified live PRRSV-1 vaccine “Ingelvac PRRSFLEX® EU” was assessed in weaned piglets experimentally infected with PRRSV strain AUT15-33. Seventy-four weaned piglets were allocated to five groups. Vaccinated (groups 1, 2, and 5) and non-vaccinated piglets (groups 3 and 4), infected with either a low dose (103 TCID50/dose; groups 2 and 4) or a high dose (105 TCID50/dose; groups 1 and 3) of the virus, were compared regarding clinical signs, average daily weight gain (ADG), lung lesions, viral load in serum, oral swabs, and tissue samples. In comparison to vaccinated animals, coughing increased notably in the second week after challenge in non-vaccinated piglets. During the same time period, vaccinated, high-dose-infected piglets showed significantly higher ADG (p < 0.05) than non-vaccinated, high-dose-infected animals. All infected piglets reached approximately the same viremia levels, but vaccinated animals showed both a significantly reduced viral load in oral fluid (p < 0.05) and tissue samples and significantly reduced lung lesions (p < 0.05). In conclusion, vaccination was able to increase ADG, reduce the amount of viral shedding via oral fluids, and reduce the severity of lung lesions and the viral load in tissue samples under experimental conditions.
Collapse
Affiliation(s)
- Sophie Duerlinger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (C.K.); (S.S.); (A.L.)
- Correspondence: ; Tel.: +43-664-602576853
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (C.K.); (S.S.); (A.L.)
| | - Spencer Sawyer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (C.K.); (S.S.); (A.L.)
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Marianne Zaruba
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.Z.); (T.R.)
| | - Till Ruemenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.Z.); (T.R.)
| | - Christian Kraft
- Boehringer Ingelheim Vetmedica GmbH, 55216 Ingelheim, Germany;
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (C.K.); (S.S.); (A.L.)
| |
Collapse
|
8
|
Garmendia AE, Mwangi W, Renukaradhya GJ. Porcine Reproductive and Respiratory Syndrome. VETERINARY VACCINES 2021:355-370. [DOI: 10.1002/9781119506287.ch26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Choi HY, Lee SH, Ahn SH, Choi JC, Jeong JY, Lee BJ, Kang YL, Hwang SS, Lee JK, Lee SW, Park SY, Song CS, Choi IS, Lee JB. A chimeric porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine is safe under international guidelines and effective both in experimental and field conditions. Res Vet Sci 2021; 135:143-152. [PMID: 33517163 DOI: 10.1016/j.rvsc.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Vaccination is currently the most effective strategy to control porcine reproductive and respiratory syndrome (PRRS). New-generation PRRS vaccines are required to be safe and broadly cross-protective. We have recently created the chimeric PRRS virus K418DM which proved to be a good vaccine candidate under field conditions. In the present study, we designed safety and efficacy tests under experimental and field conditions for further evaluation of K418DM1.1, a plaque-purified K418DM. In the homologous challenge study, K418DM1.1 induced high serum virus neutralization (SVN) antibody titers (i.e., 4.2 log2 ± 1.7) at 21 days post-challenge (dpc) and provided protection as demonstrated by the significantly lower levels of viremia at 3 and 7 dpc and significantly lower microscopic lung lesion scores compared to the unvaccinated group. K418DM1.1 was also protective in the heterologous challenge study, with vaccinated pigs showing significantly lower levels of viremia at 14 dpc compared to the unvaccinated pigs. A field study was performed to evaluate the efficacy of K418DM1.1 against heterologous exposure and vaccinated pigs presented significantly lower viremia than unvaccinated pigs. According to the safety test for the examination of virulence reversion, no infectivity was observed in tissue homogenate filtrate both in the vaccinated and comingled groups. Thus, the risk of virulence, as well as transmission, appeared negligible. These overall results indicate that K418DM1.1 is a good vaccine candidate based on its safety and protective efficacy.
Collapse
Affiliation(s)
- Hwi-Yeon Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - So-Hyun Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - So-Hyeun Ahn
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Chul Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Yun Jeong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Beom-Joo Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong-Soo Hwang
- Samhwa Breedings Agri. Inc., 435, Sinjin-ri, Gwangcheon-eup, Hongseong-gun, Chungcheongnam-Do 350-900, Republic of Korea
| | - Jung-Keun Lee
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555, North 59th Avenue, Glendale, AZ 85308, USA
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
11
|
Yu HY, Qu MS, Zhang JL, Gan L, Zhao Y, Shan XQ, Zhou W, Xia BB, Chen J, Wang ML, Zhao J. Recombinant Porcine Interferon Alpha Enhances Immune Responses to Killed Porcine Reproductive and Respiratory Syndrome Virus Vaccine in Pigs. Viral Immunol 2020; 32:383-392. [PMID: 31693458 DOI: 10.1089/vim.2019.0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, the immunoadjuvant effects of recombinant porcine interferon alpha (rPoIFNα) on the killed virus vaccine (KV) of porcine reproductive and respiratory syndrome virus (PRRSV) in pigs were investigated. The experimental pigs were divided into six groups, including normal control group, rPoIFNα control group, PRRSV KV control group, KV+40,000 U rPoIFNα immunization group, KV+400,000 U rPoIFNα immunization group, and KV+4,000,000 U rPoIFNα immunization group. The experimental pigs were boosted immunized on the 28th day after the initial immunization, and the heparinized blood and serum samples were collected at different time points of these two immunizations to detect and evaluate the immune responses of pigs after immunization by ELISA assay, neutralization assay, flow cytometry, and so on. The results showed that the proportion of the levels of PRRSV-specific antibodies, neutralizing antibodies, stimulation index, IL-4, IFN-γ, and lymphocytes within the groups immunized with KV+rPoIFNα were significantly higher than that group immunized with KV alone. The humoral and cellular immune responses in pigs were markedly enhanced by rPoIFNα after the coadministration with KV vaccine. Therefore, we tentatively think that rPoIFNα is a potential immune promoter with prospects for future applications in the pig industry.
Collapse
Affiliation(s)
- Hai-Yang Yu
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China
| | - Ming-Sheng Qu
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China.,Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Jun-Ling Zhang
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China.,Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Lin Gan
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China.,Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Yu Zhao
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Xue-Qin Shan
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Wei Zhou
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Bing-Bing Xia
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Jason Chen
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China.,Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, China.,Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, China
| |
Collapse
|
12
|
Ruansit W, Charerntantanakul W. Oral supplementation of quercetin in PRRSV-1 modified-live virus vaccinated pigs in response to HP-PRRSV-2 challenge. Vaccine 2020; 38:3570-3581. [PMID: 32184034 DOI: 10.1016/j.vaccine.2020.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
This study evaluated the immunomodulatory effect of quercetin on improving cross protection of porcine reproductive and respiratory syndrome virus-1 (PRRSV-1) modified-live virus (MLV) vaccine against highly pathogenic (HP)-PRRSV-2 challenge. Ex vivo experiments demonstrated that quercetin significantly enhanced type I interferon-regulated genes (IRGs) and type I and II interferon (IFN), and significantly decreased pro- and anti-inflammatory cytokine expressions in HP-PRRSV-inoculated monocyte-derived macrophages. In vivo experiments divided pigs (4-week-old; n = 24) into four groups of six pigs. Group 1 and group 2 were immunized with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination). Group 2 also received oral administration of quercetin at 0-49 dpv. Group 3 was injected with PRRSV-1 MLV vaccine solvent at 0 dpv. Group 4 served as strict control. Group 1-3 were challenged intranasally with HP-PRRSV at 28 dpv and immune and clinical parameters were monitored weekly until 49 dpv. Group 1 demonstrated significantly reduced HP-PRRSV viremia, rectal temperature and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3. Group 2 demonstrated significantly increased IFN regulatory factor 3, stimulator of IFN genes, IFNα, and significantly decreased transforming growth factor beta (TGFβ) mRNA expressions, compared to group 1. The animals demonstrated significantly reduced HP-PRRSV viremia, but did not demonstrate any further improved PRRSV-specific antibody responses, rectal temperature, clinical scores, and ADWG as compared to group 1. Our findings suggest that quercetin up-regulates IRGs, IFNα, and down-regulates TGFβ mRNA expressions which may contribute to further reducing number of viremic pigs and HP-PRRSV viremia which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quercetin may serve as an effective oral immunomodulator for improving cell-mediated immune defense to HP-PRRSV.
Collapse
Affiliation(s)
- Wilawan Ruansit
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | | |
Collapse
|
13
|
Efficacy Evaluation of Two Commercial Vaccines Against a Recombinant PRRSV2 Strain ZJnb16-2 From Lineage 8 and 3 in China. Pathogens 2020; 9:pathogens9010059. [PMID: 31952177 PMCID: PMC7168615 DOI: 10.3390/pathogens9010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
From 2010, novel recombinant lineage 3 of porcine reproductive and respiratory syndrome virus 2 (PRRSV2) has continuously emerged China, which has brought about clinical outbreaks of the disease. Previously, a PRRSV2 strain named ZJnb16-2 was identified as a recombinant virus from lineage 8 and 3. In this study, two modified-live vaccines VR2332 MLV and HuN4-F112, which belong to lineage 5 and 8 respectively, were used for efficacy evaluation against the challenge of ZJnb16-2. Piglets vaccinated with HuN4-F112 exhibited temporary fever, higher average daily weight gain, and mild clinical signs as compared to VR2332 MLV vaccinated and unvaccinated piglets upon ZJnb16-2 challenge. Both vaccines could inhibit virus replication in piglets at 21days post challenge (DPC). Cross-reactivity of interferon (IFN)-γ secreting cells against ZJnb16-2 were detected in both vaccinated piglets. The number of IFN-γ secreting cells against ZJnb16-2 in the vaccination group exhibited sustaining elevation after challenge. Results demonstrated that both vaccines provided partial protection against ZJnb16-2 infection. A cross-neutralization antibody against ZJnb16-2 was not detected in any vaccinated piglet before challenge. A low neutralizing antibody titer against ZJnb16-2 was detected after challenge. Besides, all the vaccinated piglets suffered from different degrees of lung pathological lesions, indicating neither VR2332 MLV nor HuN4-F112 provided full protection against ZJnb16-2. This study provides valuable guidelines to control the recombinant virus from lineage 8 and 3 infection with MLV vaccines in the field.
Collapse
|
14
|
Li X, Li P, Cao L, Bai Y, Chen H, Liu H, Ren X, Li G. Porcine IL-12 plasmid as an adjuvant improves the cellular and humoral immune responses of DNA vaccine targeting transmissible gastroenteritis virus spike gene in a mouse model. J Vet Med Sci 2019; 81:1438-1444. [PMID: 31474664 PMCID: PMC6863717 DOI: 10.1292/jvms.18-0682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transmissible gastroenteritis (TGE), caused by transmissible gastroenteritis virus
(TGEV), is a highly infectious disease in pigs. Vaccination is an effective approach to
prevent TGEV infection. Here, we evaluated the potential of TGEV S1 as a DNA vaccine and
porcine interleukin (pIL)-12 as an adjuvant in a mouse model. A DNA vaccine was
constructed with the TGEV S1 gene to induce immune response in an experimental mouse
model; pIL-12 was chosen as the immunological adjuvant within this DNA vaccine. The
pVAX1-(TGEV-S1) and pVAX1-(pIL-12) vectors were transfected into BHK-21 cells and
expressed in vitro. Experimental mice were separately immunized with each
of the recombinant plasmids and controls through the intramuscular route. The lymphocytes
isolated from the blood and spleen were analyzed for proliferation, cytotoxic activities,
and populations of CD4+ and CD8+ cells. The titers of TGEV S1 in an
enzyme-linked immunosorbent assay (ELISA) and TGEV neutralizing antibodies and the
concentrations of interferon (IFN)-γ and IL-4 were also analyzed in the serum. The
plasmids pVAX1-(TGEV-S1) and pVAX1-(pIL-12) could be expressed in BHK-21 cells, and the
combination of pVAX1-(TGEV-S1) and pVAX1-(pIL-12) could induce a significant increase in
all markers. pIL-12 could act as an immunological adjuvant in the DNA vaccine for TGEV-S1.
Furthermore, the DNA vaccine prepared using TGEV-S1 and porcine IL-12 could induce
excellent humoral and cellular immune responses.
Collapse
Affiliation(s)
- Xunliang Li
- College of Veterinary Medicine, Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Pengchong Li
- College of Veterinary Medicine, Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China.,Fushun Committee of Agriculture, East of Linjiang Street, Shuncheng District, Fushun 113006, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Yunyun Bai
- Chongqing Lianglu/Cutan Free Trade Port Area Entry-Exit Inspection and Quarantine Bureau, 88 Yanhang road Cuntan Street Jangbei District, Chongqing 400023, China
| | - Huijie Chen
- College of Veterinary Medicine, Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - He Liu
- >Fushun Center for Animal Disease Control and Prevention, East of Gebu Street, Shuncheng District, Fushun 113013, China
| | - Xiaofeng Ren
- College of Veterinary Medicine, Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| |
Collapse
|
15
|
Oh T, Kim H, Park KH, Jeong J, Yang S, Kang I, Chae C. Comparison of four commercial PRRSV MLV vaccines in herds with co-circulation of PRRSV-1 and PRRSV-2. Comp Immunol Microbiol Infect Dis 2019; 63:66-73. [PMID: 30961820 DOI: 10.1016/j.cimid.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Abstract
The efficacy of four commercial porcine reproductive and respiratory syndrome virus (PRRSV) modified-live virus (MLV) vaccines against respiratory disease was evaluated and compared in pig farms suffering from co-infection with PRRSV-1 and PRRSV-2. All vaccinated groups on average exhibited improved growth rate compared to the unvaccinated pigs. Interestingly, the two groups vaccinated with either of the PRRSV-2 MLV vaccines had a better overall growth rate compared to the pigs vaccinated with either of the PRRSV-1 MLV vaccines. Vaccination of pigs with either of the PRRSV-1 MLV vaccines did not result in reduction of PRRSV-1 or PRRSV-2 viremia whereas vaccination of pigs with either of the PRRSV-2 MLV vaccines resulted in the reduction of PRRSV-2 viremia only. Taken together, the results of this field study demonstrate that a PRRSV-2 MLV vaccine can be efficacious against respiratory disease caused by co-infection with PRRSV-1 and PRRSV-2.
Collapse
Affiliation(s)
- Taehwan Oh
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hanjin Kim
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kee Hwan Park
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiwoon Jeong
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Siyeon Yang
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ikjae Kang
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chanhee Chae
- Seoul National University, College of Veterinary Medicine, Department of Veterinary Pathology, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Charerntantanakul W, Pongjaroenkit S. Co-administration of saponin quil A and PRRSV-1 modified-live virus vaccine up-regulates gene expression of type I interferon-regulated gene, type I and II interferon, and inflammatory cytokines and reduces viremia in response to PRRSV-2 challenge. Vet Immunol Immunopathol 2018; 205:24-34. [PMID: 30458999 DOI: 10.1016/j.vetimm.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating virus which suppresses the expression of type I and II interferons (IFNs) as well as several pro-inflammatory cytokines. Our previous study reported that saponin quil A had a potential to up-regulate the expression of type I IFN-regulated genes and type I and II IFNs in porcine peripheral blood mononuclear cells (PBMC) inoculated with PRRSV. The present study evaluated the immunostimulatory effect of quil A on potentiating cross protective immunity of PRRSV-1 modified-live virus (MLV) vaccine against PRRSV-2 challenge. Twenty-four 4-week-old PRRSV-seronegative pigs were divided into four groups of six pigs. Group 1 and group 2 pigs were vaccinated with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination), and additionally group 2 pigs were injected intramuscularly with quil A at -1, 0, 1 dpv. Group 3 pigs were injected with PRRSV-1 MLV vaccine solvent at 0 dpv and served as challenge control, while group 4 pigs served as strict control. Group 1-3 pigs were challenged intranasally with PRRSV-2 at 28 dpv and immune and clinical parameters were observed from 0 until 49 dpv. Group 1 pigs showed significantly reduced PRRSV viremia, number of viremic pigs, and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3 pigs. Group 2 pigs showed significantly increased mRNA expressions of interferon regulatory factor 3, 2'-5'-oligoadenylatesynthetase 1, osteopontin, IFNα, IFNβ, IFNγ, interleukin-2 (IL-2), IL-13 and tumor necrosis factor alpha, compared to group 1 pigs. The animals demonstrated significantly reduced PRRSV viremia and number of viremic pigs, but did not demonstrate any further improved PRRSV-specific antibody levels, neutralizing antibody titers, rectal temperature, clinical scores, and ADWG as compared to group 1 pigs. Our findings suggest that quil A up-regulates type I IFN-regulated gene, type I and II IFNs, and inflammatory cytokine expressions which may contribute to further reducing PRRSV viremia and number of viremic pigs which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quil A may serve as an effective immunostimulator for potentiating cell-mediated immune defense to PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand.
| | | |
Collapse
|
17
|
Stadler J, Naderer L, Beffort L, Ritzmann M, Emrich D, Hermanns W, Fiebig K, Saalmüller A, Gerner W, Glatthaar-Saalmüller B, Ladinig A. Safety and immune responses after intradermal application of Porcilis PRRS in either the neck or the perianal region. PLoS One 2018; 13:e0203560. [PMID: 30192831 PMCID: PMC6128605 DOI: 10.1371/journal.pone.0203560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to assess safety and immune responses in gilts after intradermal application of Porcilis® PRRS in two different application sites under field conditions. Forty-four gilts were allocated to one of three groups: Gilts of group 1 (n = 10) served as non-vaccinated controls, gilts of group 2 (n = 17) were vaccinated intradermally in the neck and gilts of group 3 (n = 17) received an intradermal vaccination in the perianal region. Clinical observations, local injection site reactions and histopathologic examination of the injection site were used for safety assessments. Frequency and degree of clinical signs were not significantly different between all three groups. Minor local reactions for both vaccination groups were observed; however, at 6, 7, 8, 9 and 15 days post-vaccination (dpv), the mean injection site reaction score was significantly lower in pigs vaccinated in the perianal region. In histopathologic examination, an extended inflammatory dimension was observed more frequently in pigs vaccinated in the neck. Blood samples were analyzed to quantify the post-vaccination humoral (ELISA and virus neutralization test) and cellular (IFN-γ ELISPOT) immune responses. PRRSV-specific antibodies were present in the serum of all vaccinated animals from 14 dpv onwards, whereas all control pigs remained negative throughout the study. Neutralizing antibody titers were significantly higher in pigs vaccinated in the perianal region at 28 dpv. At 14, 21 and 28 dpv, PRRSV-specific IFN-γ secreting cells were significantly increased in both vaccination groups compared to non-vaccinated gilts. Analysis of mean numbers of PRRSV-specific IFN-γ secreting cells did not result in statistically significant differences between both vaccination groups. The results of this study indicate that the perianal region is a safe alternative application site for intradermal vaccination of gilts with Porcilis PRRS. Furthermore, the intradermal application of Porcilis PRRS induced humoral and cellular immune responses independent of the administration site.
Collapse
Affiliation(s)
- Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Lena Naderer
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Lisa Beffort
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Daniela Emrich
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Walter Hermanns
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
18
|
Jeong J, Park C, Oh T, Park KH, Yang S, Kang I, Park SJ, Chae C. Cross-protection of a modified-live porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine against a heterologous PRRSV-1 challenge in late-term pregnancy gilts. Vet Microbiol 2018; 223:119-125. [PMID: 30173737 DOI: 10.1016/j.vetmic.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 11/29/2022]
Abstract
We have evaluated the cross-protection of a modified-live virus (MLV) vaccine based on porcine reproductive and respiratory syndrome virus (PRRSV)-2, against a heterologous PRRSV-1 challenge in late term pregnancy gilts. Gilts were vaccinated 42 days prior to breeding and then challenged intranasally with PRRSV-1 at 93 days of gestation. No local or systemic adverse effects related to vaccination were observed in the vaccinated gilts throughout the study. Vaccination resulted in a longer gestation period, a higher number of live-born and weaned piglets, and a significant decrease in the number of stillborn piglets compared to the unvaccinated group. The PRRSV-2 MLV vaccine was also able to significantly reduce PRRSV-1 viremia. At the time of PRRSV-1 challenge, vaccinated gilts had significantly higher PRRSV-1 specific interferon-γ secreting cells but low neutralizing antibody titers against PRRSV-1 compared to unvaccinated gilts. This correlated with a reduction of PRRSV-1 viremia, indicating that cell-mediated rather than humoral immunity played a role in PRRSV-1 clearance from the blood. Fetal thymic tissues from vaccinated pregnant gilts had fewer PRRSV-1 positive cells compared to unvaccinated gilts. Taken together these results indicate that vaccination of gilts with PRRSV-2 MLV vaccine can provide cross-protection against PRRSV-1 challenge and improve reproductive performance.
Collapse
Affiliation(s)
- Jiwoon Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kee Hwan Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ikjae Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Su-Jin Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Hernández J, Rascón-Castelo E, Bray J, Lokhandwala S, Mwangi W. Immunogenicity of a recombinant adenovirus expressing porcine reproductive and respiratory syndrome virus polyepitopes. Vet Microbiol 2017; 212:7-15. [PMID: 29173591 DOI: 10.1016/j.vetmic.2017.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
The objective of this work was to evaluate the immunogenicity of a chimeric antigen containing characterized PRRSV epitopes. A synthetic gene, designated HEJ, encoding defined epitopes was used to generate a recombinant adenovirus designed Ad-HEJ. The chimeric antigen included T-cell epitopes from structural and nonstructural proteins, and a neutralizing B-cell epitope. Following a homologous prime-boost immunization, the Ad-HEJ virus elicited significant (p<0.05) epitope-specific IFN-γ responses compared to sham-treatment. Two weeks post-challenge, this response was significantly (p<0.05) higher compared to the negative control treatment. IFN-γ response to PRRSV stimulation in vitro were observed in both groups only after challenge. Antibodies against PRRSV and peptides were detectable following prime-boost immunization in the Ad-HEJ treatment group and the responses increased post-challenge against the virus and against most of the peptides. All the swine were viremic one week post-challenge, but four weeks later, five out of the seven Ad-HEJ vaccinees had cleared the PRRSV, whereas only two of the six negative controls had cleared the virus. The outcome suggests that the adenovirus expressing defined epitopes induced a strong immune response against the peptides, but this response was not sufficient to confer protection against PRRSV challenge.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD, A.C.), Hermosillo, Sonora, Mexico.
| | - Edgar Rascón-Castelo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
20
|
Correas I, Osorio FA, Steffen D, Pattnaik AK, Vu HLX. Cross reactivity of immune responses to porcine reproductive and respiratory syndrome virus infection. Vaccine 2017; 35:782-788. [PMID: 28062126 DOI: 10.1016/j.vaccine.2016.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/19/2023]
Abstract
Because porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation among field isolates, characterizing the extent of cross reactivity of immune responses, and most importantly cell-mediated immunity (CMI), could help in the development of broadly cross-protective vaccines. We infected 12 PRRSV-naïve pigs with PRRSV strain FL12 and determined the number of interferon (IFN)-γ secreting cells (SC) by ELISpot assay using ten type 2 and one type 1 PRRSV isolates as recall antigens. The number of IFN-γ SC was extremely variable among animals, and with exceptions, late to appear. Cross reactivity of IFN-γ SC among type 2 isolates was broad, and we found no evidence of an association between increased genetic distance among isolates and the intensity of the CMI response. Comparable to IFN-γ SC, total antibodies evaluated by indirect immunofluorescence assay (IFA) were cross reactive, however, neutralizing antibody titers could only be detected against the strain used for infection. Finally, we observed a moderate association between homologous IFN-γ SC and neutralizing antibodies.
Collapse
Affiliation(s)
- Ignacio Correas
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Fernando A Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Hiep L X Vu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States.
| |
Collapse
|
21
|
Sinn LJ, Klingler E, Lamp B, Brunthaler R, Weissenböck H, Rümenapf T, Ladinig A. Emergence of a virulent porcine reproductive and respiratory syndrome virus (PRRSV) 1 strain in Lower Austria. Porcine Health Manag 2016; 2:28. [PMID: 28405454 PMCID: PMC5382404 DOI: 10.1186/s40813-016-0044-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In spring 2015, an outbreak of porcine reproductive and respiratory syndrome (PRRS) struck Lower Austria caused by a PRRS virus (PRRSV) strain spreading rapidly among both previously PRRSV negative and vaccinated pig herds. This case report describes the first well-documented emergence of the PRRSV strain responsible for this outbreak. CASE PRESENTATION A PRRSV seronegative piglet-producing farm in Lower Austria encountered losses in foetuses and suckling piglets of up to 90 %; clinical signs in sows and nursery piglets included fever and reduced feed intake. Additionally, high percentages of repeat breeders and losses of up to 40 % in nursery piglets occurred. An infection with PRRSV was suggested by the detection of antibodies by enzyme linked immunosorbent assay and confirmed by quantitative real time PCR. The underlying PRRSV strain, termed AUT15-33, was isolated by passage on porcine alveolar macrophages, partially sequenced (ORF2-7) and grouped as PRRSV-1, subtype 1. In phylogenetic analysis of the genome region coding for the structural proteins, ORF2-7, AUT15-33 clustered with Belgian strains but identities were as low as 88 %. In contrast, analysis of ORF7 sequences revealed a close relationship to Croatian strains from 2012 with an identity of 94 - 95 %. CONCLUSIONS In the year following the outbreak, the same PRRSV strain was identified repeatedly in different regions of Austria. It can be speculated that the new strain has novel advantageous properties.
Collapse
Affiliation(s)
- Leonie J Sinn
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | - Benjamin Lamp
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Rene Brunthaler
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Andrea Ladinig
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
22
|
Li Z, He Y, Xu X, Leng X, Li S, Wen Y, Wang F, Xia M, Cheng S, Wu H. Pathological and immunological characteristics of piglets infected experimentally with a HP-PRRSV TJ strain. BMC Vet Res 2016; 12:230. [PMID: 27733150 PMCID: PMC5062860 DOI: 10.1186/s12917-016-0854-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to swine industry all over the world. The aim of this study was to investigate the mechanism of pathogenesis and immune responses caused by a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). RESULTS All piglets experimentally infected with a HP-PRRSV TJ strain virus developed typical clinical signs of PRRS. The percentages of CD3+, CD4+, and CD8+ lymphocytes significantly decreased in the infected group as compared to the uninfected control animals (p < 0.01). Total WBC dropped in the infected animals during the experiment. The level of ELISA antibody against PRRSV increased in 7-10 days after infection and then started to decline. Pathological observations demonstrated various degree lesions, bleeding and necrosis in the lungs of the infected piglets. CONCLUSIONS These results clearly indicated that HP-PRRSV TJ strain infection would activate host humoral immune response at the early period post infection and cause severe pathological damages on lungs and inhibit cellular immune response after infection.
Collapse
Affiliation(s)
- Zhenguang Li
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China.,State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Yanliang He
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Xiaoqin Xu
- Jiangyan Animal Health Inspection Institute, Jiangguan Road 251, Taizhou, Jiangsu, 225529, China
| | - Xue Leng
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Shufen Li
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Yongjun Wen
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Fengxue Wang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Mingqi Xia
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Shipeng Cheng
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Hua Wu
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China. .,State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China.
| |
Collapse
|
23
|
Vu HLX, Pattnaik AK, Osorio FA. Strategies to broaden the cross-protective efficacy of vaccines against porcine reproductive and respiratory syndrome virus. Vet Microbiol 2016; 206:29-34. [PMID: 27692670 DOI: 10.1016/j.vetmic.2016.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens currently affecting swine production worldwide. Although PRRS vaccines have been commercially available for over 20 years, the available vaccines are considered inadequately effective for control and eradication of the virus. Major obstacles for the development of a highly effective PRRS vaccine include the highly variable nature of the viral genome, the viral ability to subvert the host immune system, and the incomplete understanding of the immune protection against PRRSV infection. This article summarizes the impediments for the development of a highly protective PRRS vaccine and reviews the vaccinology approaches that have been attempted to overcome one of the most formidable challenges, which is the substantial genetic variation among PRRSV isolates, to broaden the antigenic coverage of PRRS vaccines.
Collapse
Affiliation(s)
- Hiep L X Vu
- Nebraska Center for Virology, and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States.
| | - Asit K Pattnaik
- Nebraska Center for Virology, and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Fernando A Osorio
- Nebraska Center for Virology, and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| |
Collapse
|
24
|
Yu Z, Huang C, Zhang Q, Feng WH. Porcine reproductive and respiratory syndrome virus (PRRSV) induces IL-12p40 production through JNK-AP-1 and NF-κB signaling pathways. Virus Res 2016; 225:73-81. [PMID: 27663131 DOI: 10.1016/j.virusres.2016.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects monocyte/macrophage cells and modulates cytokine production to regulate host immune response. IL-12p40 is the basic subunit of IL-12, a heterodimeric cytokine, which plays key roles in the cell-mediated immune response. In the present study, we demonstrated that PRRSV infection induced IL-12p40 production in vitro and in vivo. Subsequently, we showed that inhibitors of p38 MAPK, JNK, and NF-κB dramatically reduced PRRSV-induced IL-12p40 expression. To further characterize the molecular mechanism of IL-12p40 production induced by PRRSV infection, we cloned and analyzed the porcine IL-12p40 promoter, in which AP-1 and NF-κB motifs were found. In addition, both JNK-AP-1 and NF-κB signaling pathways were activated by PRRSV infection. Taken together, these data indicate that PRRSV induces IL-12p40 expression through the JNK-AP-1 and NF-κB signaling pathways. Our findings might facilitate our understanding of the molecular mechanisms of IL-12 production induced by PRRSV infection.
Collapse
Affiliation(s)
- Zhibin Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiong Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Assessment of safety and reproductive performance after vaccination with a modified live-virus PRRS genotype 1 vaccine in pregnant sows at various stages of gestation. Vaccine 2016; 34:3862-6. [PMID: 27269056 DOI: 10.1016/j.vaccine.2016.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to assess safety and efficacy of a new modified live-virus porcine reproductive and respiratory syndrome (PRRS) genotype 1 vaccine in pregnant sows at various stages of gestation under field conditions. A total of 505 sows and gilts were allocated to two treatment groups and maintained in separate facilities. Animals of group 1 were vaccinated with a commercial modified live genotype 1 PRRSV vaccine (control product, CP), while animals of group 2 were immunized with a new modified live genotype 1 PRRSV vaccine (investigational veterinary product, IVP) (ReproCyc® PRRS EU, Boehringer Ingelheim Vetmedica GmbH). Injection site reactions were noted to be significantly less frequent in the IVP group compared to the CP group for pain (p=0.039), redness (p=0.030), heat (p=0.016) and swelling (p=0.002). The mean total number of piglets alive at weaning did not differ significantly between both study groups (10.6 vs. 11.0, p=0.375). However, pre-weaning mortality was significantly higher (p=0.005) in piglets from the CP group (14.1% vs. 10.9%). Analyses of reproductive performance data for both groups did not result in statistically significant differences between CP group and IVP group for number of piglets alive (12.7 and 12.6, respectively), healthy live (11.9 and 11.8), weak (0.7 and 0.5), stillborn (1.0 and 0.8) and mummified piglets (0.3 and 0.2) per litter. No differences were detected between both groups for piglet birth weights, while body weights at weaning (7.2kg vs. 6.6kg, p=0.026) and average daily gain (0.2445kg vs. 0.2211kg, p=0.037) were significantly higher in piglets from the IVP group. In conclusion, the administration of a single dose of ReproCyc® PRRS EU to sows and gilts at various stages of gestation confirmed non-inferiority to a commercial PRRS vaccine regarding safety and efficacy parameters under field conditions.
Collapse
|
26
|
Peng J, Yuan Y, Du Y, Wu J, Li B, Li J, Yu J, Hu L, Shen S, Wang J, Zhu R. Potentiation of Taishan Pinus massoniana pollen polysaccharide on the immune response and protection elicited by a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit in pigs. Mol Cell Probes 2016; 30:83-92. [PMID: 26828953 DOI: 10.1016/j.mcp.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yanmei Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoquan Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jun Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Hu
- Shandong Center for Animal Disease Prevention and Control, Jinan, China
| | - Si Shen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China.
| | - Ruiliang Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China.
| |
Collapse
|
27
|
Peng J, Yuan Y, Shen S, Niu Z, Du Y, Wu J, Li J, Yu J, Wang T, Wang J. Immunopotentiation of four natural adjuvants co-administered with a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit. Virus Genes 2016; 52:261-9. [DOI: 10.1007/s11262-016-1299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
|
28
|
A Synthetic Porcine Reproductive and Respiratory Syndrome Virus Strain Confers Unprecedented Levels of Heterologous Protection. J Virol 2015; 89:12070-83. [PMID: 26401031 DOI: 10.1128/jvi.01657-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine. IMPORTANCE The extraordinary genetic variation of RNA viruses poses a monumental challenge for the development of broadly protective vaccines against these viruses. To minimize the genetic dissimilarity between vaccine immunogens and contemporary circulating viruses, computational strategies have been developed for the generation of artificial immunogen sequences (so-called "centralized" sequences) that have equal genetic distances to the circulating viruses. Thus far, the generation of centralized vaccine immunogens has been carried out at the level of individual viral proteins. We expand this concept to PRRSV, a highly variable RNA virus, by creating a synthetic PRRSV strain based on a centralized PRRSV genome sequence. This study provides the first example of centralizing the whole genome of an RNA virus to improve vaccine coverage. This concept may be significant for the development of vaccines against genetically variable viruses that require active viral replication in order to achieve complete immune protection.
Collapse
|
29
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
30
|
Production and evaluation of virus-like particles displaying immunogenic epitopes of porcine reproductive and respiratory syndrome virus (PRRSV). Int J Mol Sci 2015; 16:8382-96. [PMID: 25874763 PMCID: PMC4425087 DOI: 10.3390/ijms16048382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most significant infectious disease currently affecting the swine industry worldwide. Several inactivated and modified live vaccines (MLV) have been developed to curb PRRSV infections. However, the efficacy and safety of these vaccines are unsatisfactory, and hence, there is a strong demand for the development of new PRRS universal vaccines. Virus-like particle (VLP)-based vaccines are gaining increasing acceptance compared to subunit vaccines, as they present the antigens in a more veritable conformation and are readily recognized by the immune system. Hepatitis B virus core antigen (HBcAg) has been successfully used as a carrier for more than 100 viral sequences. In this study, hybrid HBcAg VLPs were generated by fusion of the conserved protective epitopes of PRRSV and expressed in E. coli. An optimized purification protocol was developed to obtain hybrid HBcAg VLP protein from the inclusion bodies. This hybrid HBcAg VLP protein self-assembled to 23-nm VLPs that were shown to block virus infection of susceptible cells when tested on MARC 145 cells. Together with the safety of non-infectious and non-replicable VLPs and the low cost of production through E. coli fermentation, this hybrid VLP could be a promising vaccine candidate for PRRS.
Collapse
|
31
|
Yu L, Zhou Y, Jiang Y, Tong W, Yang S, Gao F, Wang K, Li L, Xia T, Cheng Q, Tong G. Construction and in vitro evaluation of a recombinant live attenuated PRRSV expressing GM-CSF. Virol J 2014; 11:201. [PMID: 25420583 PMCID: PMC4255968 DOI: 10.1186/s12985-014-0201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be an important problem for the swine industry. Inactivated vaccines and modified-live virus vaccines are widely used in the field; however, the efficacy of these PRRSV vaccines is suboptimal due to poor immunogenicity. Granulocyte–macrophage colony stimulating factor (GM-CSF) has been extensively used as an effective genetic and protein adjuvant to enhance the efficiencies vaccines expressing tumor or pathogen antigens. The purpose of this study was to determine if GM-CSF could increase the efficiency of PRRSV vaccine. Methods The GM-CSF gene was inserted in the HuN4-F112 vaccine strain by overlap PCR. The expression of GM-CSF by the recombinant virus was confirmed with methods of indirect immunofluorescent assay (IFA) and Western blotting. The stability of recombinant virus was assessed by cDNA sequence and IFA after 20 passages. To detect the biological activity of GM-CSF expressed by the recombinant virus, bone marrow-derived dendritic cells (BMDCs) were isolated and co-cultured with the recombinant virus or parental virus and the surface phenotypes of BMDCs were examined by flow cytometric analysis. The cytokines secreted by BMDCs infected with PRRSV, or treated with LPS, GM-CSF or medium alone were evaluated by ProcartaPlexTM Multiplex Immunoassays and qRT-PCR. Results A novel modified-live PRRSV vaccine strain expressing GM-CSF (rHuN4-GM-CSF) was successfully constructed and rescued. The GM-CSF protein was stable expressed in recombinant virus-infected cells after 20 passages. Analysis of virus replication kinetics showed that the novel vaccine strain expressing GM-CSF had a similar replication rate as the parental virus. In vitro studies showed that infection of porcine BMDCs with rHuN4-GM-CSF resulted in increased surface expression of MHCI+, MHCII + and CD80/86+ that was dependent on virus expressed GM-CSF. The expression of representative cytokines was significantly up-regulated when BMDCs were incubated with the recombinant GM-CSF expressing virus. Conclusions Our results indicated that the expression of GM-CSF during infection with a vaccine strain could enhance the activation of BMDCs and increase cytokine response, which is expected to result in higher immune responses and may improve vaccine efficacy against PRRSV infection.
Collapse
Affiliation(s)
- Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Shen Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Kang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Qun Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
32
|
Jeong J, Aly SS, Cano JP, Polson D, Kass PH, Perez AM. Stochastic model of porcine reproductive and respiratory syndrome virus control strategies on a swine farm in the United States. Am J Vet Res 2014; 75:260-7. [PMID: 24564311 DOI: 10.2460/ajvr.75.3.260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To use mathematical modeling to assess the effectiveness of control strategies for porcine reproductive and respiratory syndrome (PRRS) virus on a swine farm. SAMPLE A hypothetical small, medium, or large farrow-to-weaning swine farm in the Midwestern United States. PROCEDURES Stochastic models were formulated to simulate an outbreak of PRRS on a farm. Control strategies assessed in those models included none (baseline) and various combinations of mass immunization, herd closure, and gilt acclimatization. Nine different models resulting from the combination of low, moderate, or high PRRS virus virulence and small, medium, or large herd size were simulated. A stabilized status, the outcome of interest, was defined as the absence of positive PCR assay results for PRRS virus in 3-week-old piglets. For each scenario, the percentage of simulations with a stabilized status was used as a proxy for the probability of disease control. RESULTS Increasing PRRS virus virulence and herd size were negatively associated with the probability of achieving a stabilized status. Repeated mass immunization with herd closure or gilt acclimitization was a better alternative than was single mass immunization for disease control within a farm. CONCLUSIONS AND CLINICAL RELEVANCE Repeated mass immunization with a PRRS modified-live virus vaccine with herd closure or gilt acclimitization was the scenario most likely to achieve a stabilized status. Estimation of the cost of various PRRS control strategies is necessary.
Collapse
Affiliation(s)
- Jaewoon Jeong
- Graduate Group in Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
UNLABELLED Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status functionally interacts with antiviral immunity remains largely unknown. This is a significant omission because many economically important porcine viruses are monocytotropic, including our focus, PRRSV, which alone causes nearly $800 million economic loss annually in the U.S. swine industries. PRRSV is ideal for deciphering how monocytic cell activation statuses interact with antiviral immunity, because it directly infects subsets of monocytic cells and subverts overall immune responses. In this study, we systematically investigate the activation status of porcine monocytic cells to determine the intricate interaction of viral infection with activation statuses and functionally regulate antiviral immunity within the framework of the activation paradigm. Our findings may provide a means of potentiating antiviral immunity and leading to novel vaccines for PRRS prevention.
Collapse
|
34
|
Park C, Seo HW, Han K, Kang I, Chae C. Evaluation of the efficacy of a new modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Fostera PRRS) against heterologous PRRSV challenge. Vet Microbiol 2014; 172:432-42. [PMID: 24970363 DOI: 10.1016/j.vetmic.2014.05.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to evaluate a new modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Fostera PRRS, Zoetis, Florham, NJ, USA) that was based on a virulent US PRRSV isolate (P129) attenuated using CD163-expressing cell lines. Sixty-four PRRSV-seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (group 1), vaccinated unchallenged (group 2), unvaccinated challenged (group 3), and unvaccinated unchallenged (group 4). The pigs in groups 1 and 2 were immunized with a 2.0 mL dose of modified live PRRSV vaccine at 21 days of age, according to the manufacturer's recommendations. At 56 days of age (0 days post-challenge), the pigs in groups 1 and 3 were inoculated intranasally with 3 mL of tissue culture fluid containing 10(5) 50% tissue culture infective dose (TCID50)/mL of PRRSV (SNUVR090851 strain, fourth passage in MARC-145 cells). Vaccinated challenged pigs exhibited significantly lower (P<0.05) respiratory scores, viremia, macroscopic and microscopic lung lesion scores, and PRRSV-antigen with interstitial pneumonia than unvaccinated challenged pigs. The induction of PRRSV-specific IFN-γ-SCs by the new modified live PRRSV vaccine produced a protective immune response, leading to the reduction of PRRSV viremia. Although the new modified live PRRSV vaccine is not effective against heterologous PRRSV challenge, the new modified live PRRSV vaccine was able to reduce the levels of viremia and nasal shedding, and severity of PRRSV-induced lesions after challenging virus under experimental conditions.
Collapse
Affiliation(s)
- Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| | - Hwi Won Seo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| | - Kiwon Han
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| | - Ikjae Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
35
|
Abstract
In veterinary animal species, vaccines are the primary tool for disease prevention, a key tool for treatment of infection, and essential for helping maintain animal welfare and productivity. Traditional vaccine development by trial-and-error has achieved many successes. However, effective vaccines that provide solid cross-protective immunity with excellent safety are still needed for many diseases. The path to development of vaccines against difficult pathogens requires recognition of uniquely evolved immunological interactions of individual animal hosts and their specific pathogens. Here, general principles that currently guide veterinary immunology and vaccinology research are reviewed, with an emphasis on examples from swine. Advances in genomics and proteomics now provide the community with powerful tools for elucidation of regulatory and effector mechanisms of protective immunity that provide new opportunities for successful translation of immunological discoveries into safe and effective vaccines.
Collapse
|
36
|
Anti-idiotypic antibodies reduce efficacy of the attenuated vaccine against highly pathogenic PRRSV challenge. BMC Vet Res 2014; 10:39. [PMID: 24507659 PMCID: PMC3921987 DOI: 10.1186/1746-6148-10-39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background The inability of current vaccines to provide effective protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection is not fully understood. One of the reasons might be the presence of anti-idiotypic antibodies (Ab2s) to the envelope glycoprotein GP5 induced by PRRSV infection since our previous studies demonstrated the presence of auto-Ab2s (aAb2s) in pigs infected with PRRSV. To test this hypothesis, PRRSV negative piglets were injected with a monoclonal Ab2 (Mab2-5G2) and aAb2s that are specific for anti-GP5 antibody, vaccinated with the attenuated PRRSV vaccine CH-1R and then challenged with the highly pathogenic PRRSV HuN4 strain. The animals were evaluated for clinical signs, pathological changes of the thymus and lungs, viremia, levels of serum antibodies and cytokines. Results The piglets injected with Mab2-5G2 or aAb2, and who received the attenuated PRRSV vaccine CH-1R before challenge, produced high levels of anti-N antibodies, IL-2 and IL-4, but low levels of neutralizing antibodies. After PRRSV HuN4 challenge, the animals showed obvious clinical signs, including lung lesions, severe thymus atrophy and decreased production of IL-4 and higher level of viremia. Conclusion When anti-GP5 Ab2s are present, the use of attenuated PRRSV vaccine CH-1R against HP-PRRSV infection is not recommended. It can result in poor health status with pneumonia and thymus atrophy.
Collapse
|
37
|
Geldhof MF, Van Breedam W, De Jong E, Lopez Rodriguez A, Karniychuk UU, Vanhee M, Van Doorsselaere J, Maes D, Nauwynck HJ. Antibody response and maternal immunity upon boosting PRRSV-immune sows with experimental farm-specific and commercial PRRSV vaccines. Vet Microbiol 2013; 167:260-71. [PMID: 24041768 DOI: 10.1016/j.vetmic.2013.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/17/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in pigs of all ages. Despite the frequent use of vaccines to maintain PRRSV immunity in sows, little is known on how the currently used vaccines affect the immunity against currently circulating and genetically divergent PRRSV variants in PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity due to previous infection with or vaccination against the virus. Therefore, this study aimed to assess the capacity of commercially available attenuated/inactivated PRRSV vaccines and autogenous inactivated PRRSV vaccines - prepared according to a previously optimized in-house protocol - to boost the antibody immunity against currently circulating PRRSV variants in PRRSV-immune sows. PRRSV isolates were obtained from 3 different swine herds experiencing PRRSV-related problems, despite regular vaccination of gilts and sows against the virus. In a first part of the study, the PRRSV-specific antibody response upon booster vaccination with commercial PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-neutralizing antibodies against the farm-specific isolate was observed in all sow groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of the commercial attenuated EU type vaccine boosted neutralizing antibodies against the farm-specific isolate in sows derived from 2 farms, while use of the commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing antibodies in any of the sow groups. Interestingly, the commercial inactivated EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. In the second part of the study, a field trial was performed at one of the farms to evaluate the booster effect of an inactivated farm-specific vaccine and a commercial attenuated EU-type vaccine in immune sows at 60 days of gestation. The impact of this vaccination on maternal immunity and on the PRRSV infection pattern in piglets during their first weeks of life was evaluated. Upon vaccination with the farm-specific inactivated vaccine, a significant increase in farm-specific virus-neutralizing antibodies was detected in all sows. Virus-neutralizing antibodies were also transferred to the piglets via colostrum and were detectable in the serum of these animals until 5 weeks after parturition. In contrast, not all sows vaccinated with the commercial attenuated vaccine showed an increase in farm-specific virus-neutralizing antibodies and the piglets of this group generally had lower virus-neutralizing antibody titers. Interestingly, the number of viremic animals (i.e. animals that have infectious virus in their bloodstream) was significantly lower among piglets of both vaccinated groups than among piglets of mock-vaccinated sows and this at least until 9 weeks after parturition. The results of this study indicate that inactivated farm-specific PRRSV vaccines and commercial attenuated vaccines can be useful tools to boost PRRSV-specific (humoral) immunity in sows and reduce viremia in weaned piglets.
Collapse
Affiliation(s)
- Marc F Geldhof
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Charerntantanakul W, Yamkanchoo S, Kasinrerk W. Plasmids expressing porcine interferon gamma up-regulate pro-inflammatory cytokine and co-stimulatory molecule expression which are suppressed by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2013; 153:107-17. [PMID: 23507439 DOI: 10.1016/j.vetimm.2013.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 01/15/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the pro-inflammatory immune response following infection of myeloid antigen-presenting cells. A reduced pro-inflammatory immune response modulates PRRSV replication, clinical disease, and persistent infection of the virus. Numerous efforts have been made to enhance the pro-inflammatory immune response to PRRSV, but only a few attempts have so far elicited satisfactory results. The present study aims to evaluate in vitro the potential of plasmids expressing porcine interferon gamma (pcDNA-IFNγ) to enhance the expression of pro-inflammatory immune parameters in PRRSV-inoculated monocytes. Naïve blood monocytes from eight PRRSV-seronegative pigs were inoculated with PRRSV and subsequently transfected with pcDNA-IFNγ or pcDNA (empty plasmid vector) and stimulated with lipopolysaccharide (LPS). The mRNA expression levels of IFNγ, interleukin-1 beta (IL-1β), IL-10, IL-12p40, tumor necrosis factor alpha (TNFα), transforming growth factor beta (TGFβ), CD80, and CD86 were evaluated by real-time PCR. The IFNγ, IL-10, and TNFα protein production was determined by ELISA. Compared with PRRSV-inoculated monocyte control, transfection with pcDNA-IFNγ, but not pcDNA, significantly enhanced IFNγ, TNFα, CD80, and CD86 mRNA expression, and IFNγ and TNFα protein production. A slight increase in IL-1β and IL-12p40 mRNA expression was also observed. Neither pcDNA-IFNγ nor pcDNA transfection affected IL-10 and TGFβ expression. Our results thus suggest that pcDNA-IFNγ may be an effective immunostimulator for potentiating the pro-inflammatory immune response to PRRSV.
Collapse
|
39
|
Li X, Galliher-Beckley A, Nietfeld JC, Faaberg KS, Shi J. Montanide<sup>TM</sup> Gel01 ST Adjuvant Enhances PRRS Modified Live Vaccine Efficacy by Regulating Porcine Humoral and Cellular Immune Responses. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/wjv.2013.31001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ferrari L, Martelli P, Saleri R, De Angelis E, Cavalli V, Bresaola M, Benetti M, Borghetti P. Lymphocyte activation as cytokine gene expression and secretion is related to the porcine reproductive and respiratory syndrome virus (PRRSV) isolate after in vitro homologous and heterologous recall of peripheral blood mononuclear cells (PBMC) from pigs vaccinated and exposed to natural infection. Vet Immunol Immunopathol 2012; 151:193-206. [PMID: 23228653 DOI: 10.1016/j.vetimm.2012.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
The present study evaluated the lymphocyte activation in PRRSV-vaccinated pigs subsequently exposed to natural infection by in vitro stimulation of peripheral blood mononuclear cells (PBMC) with homologous vaccine and two heterologous PRRSV isolates. The responsiveness was assessed by determining IFN-γ secreting cells by ELISpot assay, lymphocyte CD8 phenotype by intracellular staining/flow cytometry, cytokine gene expression by real-time quantitative PCR and cytokine secretion by ELISA. Conventional pigs were weaned at 28 days of age and inoculated intramuscularly (IM) or needle-less intradermally (ID) with a modified-live PRRSV vaccine suspended in adjuvant, while control pigs were injected with adjuvant alone (ADJ). Blood samples were collected at vaccination, 35 days post-vaccination and after 35 days post-exposure to natural infection by a heterologous field strain. Thirty-five days post-vaccination, PRRSV vaccine induced a low but significant virus-specific IFN-γ secreting cell response upon stimulation with both the vaccine strain and the two isolates in vaccinated pigs. Conversely, after 35 days post-exposure, only the vaccine strain and the BS/114/S isolate triggered this response. Intracellular staining showed that PRRSV-specific immune cells reacting upon vaccine strain and BS/114/S stimulation were mostly CD8(+) IFN-γ producing cells whereas the stimulation with BS/55 isolate induced an IFN-γ production associated to the CD8(-)IFN-γ(+) phenotype. At 35 days post-vaccination, PBMC from vaccinated pigs showed lower IL-10 expression and release, and higher TNF-α gene expression upon stimulation with both the vaccine and viral isolates. After infection, both cytokines were not differently modulated in different groups. Immune parameters give evidence that IFN-γ secreting cells in the peripheral blood can be elicited upon PRRSV infection although vaccination itself does not stimulate high levels of these reactive cells. Moreover, the cross-reactivity against divergent PRRS viruses can show a different intensity and be differently associated with cytotoxic CD8(+)IFN-γ(+) as well as CD8(-)IFN-γ(+) cells. Overall, the obtained data confirmed that the immune activation against PRRSV is not dependent on the genetic divergence of the virus. Especially after infection, a different immune reactivity was evident upon stimulation with the different isolates in terms of frequency and CD8 phenotype of PRRSV-specific IFN-γ producing cells. The modulation of cytokines in vaccinated pigs appeared to be more dependent on vaccination or infection conditions than on stimulation by different isolates, and the changes of IL-10 more relevant than those of TNF-α at gene and protein levels. Moreover, under the conditions of this study, the PRRSV vaccine administered via the intradermal route by a needle-less device was confirmed to induce an immune response comparable or in some cases higher than the intramuscular route.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10 - 43126 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Geldhof MF, Vanhee M, Van Breedam W, Van Doorsselaere J, Karniychuk UU, Nauwynck HJ. Comparison of the efficacy of autogenous inactivated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) vaccines with that of commercial vaccines against homologous and heterologous challenges. BMC Vet Res 2012; 8:182. [PMID: 23031319 PMCID: PMC3514241 DOI: 10.1186/1746-6148-8-182] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/23/2012] [Indexed: 11/11/2022] Open
Abstract
Background The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving pathogen of swine. At present, there is a high demand for safe and more effective vaccines that can be adapted regularly to emerging virus variants. A recent study showed that, by the use of a controlled inactivation procedure, an experimental BEI-inactivated PRRSV vaccine can be developed that offers partial protection against homologous challenge with the prototype strain LV. At present, it is however not known if this vaccine can be adapted to currently circulating virus variants. In this study, two recent PRRSV field isolates (07 V063 and 08 V194) were used for BEI-inactivated vaccine production. The main objective of this study was to assess the efficacy of these experimental BEI-inactivated vaccines against homologous and heterologous challenge and to compare it with an experimental LV-based BEI-inactivated vaccine and commercial inactivated and attenuated vaccines. In addition, the induction of challenge virus-specific (neutralizing) antibodies by the different vaccines was assessed. Results In a first experiment (challenge with 07 V063), vaccination with the experimental homologous (07 V063) inactivated vaccine shortened the viremic phase upon challenge with approximately 2 weeks compared to the mock-vaccinated control group. Vaccination with the commercial attenuated vaccines reduced the duration of viremia with approximately one week compared to the mock-vaccinated control group. In contrast, the experimental heterologous (LV) inactivated vaccine and the commercial inactivated vaccine did not influence viremia. Interestingly, both the homologous and the heterologous experimental inactivated vaccine induced 07 V063-specific neutralizing antibodies upon vaccination, while the commercial inactivated and attenuated vaccines failed to do so. In the second experiment (challenge with 08 V194), use of the experimental homologous (08 V194) inactivated vaccine shortened viremia upon challenge with approximately 3 weeks compared to the mock-vaccinated control group. Similar results were obtained with the commercial attenuated vaccine. The experimental heterologous (07 V063 and LV) inactivated vaccines did not significantly alter viremia. In this experiment, 08 V194-specific neutralizing antibodies were induced by the experimental homologous and heterologous inactivated vaccines and a faster appearance post challenge was observed with the commercial attenuated vaccine. Conclusions The experimental homologous inactivated vaccines significantly shortened viremia upon challenge. Despite the concerns regarding the efficacy of the commercial attenuated vaccines used on the farms where the field isolates were obtained, use of commercial attenuated vaccines clearly shortened the viremic phase upon challenge. In contrast, the experimental heterologous inactivated vaccines and the commercial inactivated vaccine had no or only a limited influence on viremia. The observation that homologous BEI-inactivated vaccines can provide a more or less standardized, predictable degree of protection against a specific virus variant suggests that such vaccines may prove useful in case virus variants emerge that escape the immunity induced by the attenuated vaccines.
Collapse
Affiliation(s)
- Marc F Geldhof
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | | | | | | | | | | |
Collapse
|
42
|
Parida R, Choi IS, Peterson DA, Pattnaik AK, Laegreid W, Zuckermann FA, Osorio FA. Location of T-cell epitopes in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Res 2012; 169:13-21. [PMID: 22771938 DOI: 10.1016/j.virusres.2012.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant swine pathogen which exhibits considerable sequence diversity. In an attempt to identify highly conserved T-cell epitopes contained in proteins of this virus, we examined heptadecamer peptides spanning the sequence of the PRRSV nonstructural proteins (NSPs) 9 and 10, both of which are highly conserved, for their ability to elicit a recall proliferative and interferon-gamma response in peripheral blood mononuclear cells obtained from pigs immunized against the type-II PRRSV strain FL-12. These studies led to the identification of four peptides, two from each NSP9 and NSP10 that appear to contain T-cell epitopes. Comparison of the amino acid sequence of these four peptide sequences to the analogous sequences from a diverse sample of type-II PRRSV strains indicated that these sequences are highly conserved and thus contain highly conserved T-cell epitopes. The identified epitopes may be important in the formulation of immunogens to provide broad cross-protection against diverse PRRSV strains.
Collapse
Affiliation(s)
- Rajeshwari Parida
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States
| | | | | | | | | | | | | |
Collapse
|
43
|
Charerntantanakul W, Kasinrerk W. Plasmids expressing interleukin-10 short hairpin RNA mediate IL-10 knockdown and enhance tumor necrosis factor alpha and interferon gamma expressions in response to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2012; 146:159-68. [DOI: 10.1016/j.vetimm.2012.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/25/2012] [Accepted: 02/29/2012] [Indexed: 12/18/2022]
|
44
|
Charerntantanakul W. Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. World J Virol 2012; 1:23-30. [PMID: 24175208 PMCID: PMC3782261 DOI: 10.5501/wjv.v1.i1.23] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 02/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the leading cause of economic casualty in swine industry worldwide. The virus can cause reproductive failure, respiratory disease, and growth retardation in the pigs. This review deals with current status of commercial PRRS vaccines presently used to control PRRS. The review focuses on the immunogenicity, protective efficacy and safety aspects of the vaccines. Commercial PRRS modified-live virus (MLV) vaccine elicits delayed humoral and cell-mediated immune responses following vaccination. The vaccine confers late but effective protection against genetically homologous PRRSV, and partial protection against genetically heterologous virus. The MLV vaccine is of concern for its safety as the vaccine virus can revert to virulence and cause diseases. PRRS killed virus (KV) vaccine, on the other hand, is safe but confers limited protection against either homologous or heterologous virus. The KV vaccine yet helps reduce disease severity when administered to the PRRSV-infected pigs. Although efforts have been made to improve the immunogenicity, efficacy and safety of PRRS vaccines, a better vaccine is still needed in order to protect against PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Wasin Charerntantanakul, Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
45
|
Kick AR, Tompkins MB, Mark Hammer J, Routh PA, Almond GW. Evaluation of peripheral lymphocytes after weaning and vaccination for Mycoplasma hyopneumoniae. Res Vet Sci 2011; 91:e68-72. [DOI: 10.1016/j.rvsc.2010.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/07/2010] [Accepted: 11/11/2010] [Indexed: 11/30/2022]
|
46
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
47
|
Cutler TD, Wang C, Hoff SJ, Kittawornrat A, Zimmerman JJ. Median infectious dose (ID50) of porcine reproductive and respiratory syndrome virus isolate MN-184 via aerosol exposure. Vet Microbiol 2011; 151:229-37. [DOI: 10.1016/j.vetmic.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/16/2022]
|
48
|
Identification of immunodominant T-cell epitopes in membrane protein of highly pathogenic porcine reproductive and respiratory syndrome virus. Virus Res 2011; 158:108-15. [DOI: 10.1016/j.virusres.2011.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
|
49
|
Platt R, Vincent AL, Gauger PC, Loving CL, Zanella EL, Lager KM, Kehrli ME, Kimura K, Roth JA. Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Vet Immunol Immunopathol 2011; 142:252-7. [PMID: 21664701 DOI: 10.1016/j.vetimm.2011.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/01/2011] [Accepted: 05/02/2011] [Indexed: 11/29/2022]
Abstract
Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were vaccinated intramuscularly twice with adjuvanted UV-inactivated A/SW/MN/02011/08 (MN/08) H1N2 SIV vaccine at 6 and 9 weeks of age. Whole blood samples for multi-parameter flow cytometry (MP-FCM) and serum samples for hemagglutination inhibition (HI) assay were collected at 23 and 28 days after the second vaccination, respectively. A standard HI assay and MP-FCM were performed against UV-inactivated homologous MN/08 and heterologous pandemic A/CA/04/2009 (CA/09) H1N1 viruses. While the HI assay detected humoral responses only to the MN/08 virus, the MP-FCM detected strong cellular responses against the MN/08 virus and significant heterologous responses to the CA/09 virus, especially in the CD4+CD8+ T cell subset. The cellular heterologous responses to UV-inactivated virus by MP-FCM suggested that the assay was sensitive and potentially detected a wider range of antigens than what was detected by the HI assay. Overall, the adjuvanted UV-inactivated A/SW/MN/02011/08 H1N2 SIV vaccine stimulated both humoral and cellular immune responses including the CD4-CD8+ T cell subset.
Collapse
Affiliation(s)
- Ratree Platt
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Weeman M, Renukaradhya GJ. Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces protective immune responses to a modified live porcine reproductive and respiratory syndrome virus vaccine in pigs. Vaccine 2011; 29:4067-76. [PMID: 21419164 PMCID: PMC7126640 DOI: 10.1016/j.vaccine.2011.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8(+)and CD4(+) T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|