1
|
Manirarora JN, Walker KE, Patil V, Renukaradhya GJ, LaBresh J, Sullivan Y, Francis O, Lunney JK. Development and Characterization of New Monoclonal Antibodies Against Porcine Interleukin-17A and Interferon-Gamma. Front Immunol 2022; 13:786396. [PMID: 35185884 PMCID: PMC8850701 DOI: 10.3389/fimmu.2022.786396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 01/13/2023] Open
Abstract
Current research efforts require a broad range of immune reagents, but those available for pigs are limited. The goal of this study was to generate priority immune reagents for pigs and pipeline them for marketing. Our efforts were aimed at the expression of soluble swine cytokines and the production of panels of monoclonal antibodies (mAbs) to these proteins. Swine interleukin-17A (IL-17A) and Interferon-gamma (IFNγ) recombinant proteins were produced using yeast expression and used for monoclonal antibody (mAb) production resulting in panels of mAbs. We screened each mAb for cross-species reactivity with orthologs of IL-17A or IFNγ and checked each mAb for inhibition by other related mAbs, to assign mAb antigenic determinants. For porcine IL-17A, the characterization of a panel of 10 mAbs identified eight different antigenic determinants; interestingly, most of the mAbs cross-reacted with the dolphin recombinant ortholog. Likewise, the characterization of a panel of nine anti-PoIFNγ mAbs identified four different determinants; most of the mAbs cross-reacted with dolphin, bovine, and caprine recombinant orthologs. There was a unique reaction of one anti-PoIFNγ mAb that cross-reacted with the zebrafish recombinant ortholog. The αIL-17A mAbs were used to develop a quantitative sandwich ELISA detecting the yeast expressed protein as well as native IL-17A in stimulated peripheral blood mononuclear cell (PBMC) supernatants. Our analyses showed that phorbol myristate acetate/ionomycin stimulation of PBMC induced significant expression of IL-17A by CD3+ T cells as detected by several of our mAbs. These new mAbs expand opportunities for immunology research in swine.
Collapse
Affiliation(s)
- Jean N Manirarora
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | | | | | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, United States
| |
Collapse
|
2
|
Mwangi W, Maccari G, Hope JC, Entrican G, Hammond JA. The UK Veterinary Immunological Toolbox Website: promoting vaccine research by facilitating communication and removing reagent barriers. Immunology 2020; 161:25-27. [PMID: 32548865 PMCID: PMC7450168 DOI: 10.1111/imm.13227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/01/2023] Open
Abstract
Using the best animal models to study immune responses against specific pathogens or vaccines can dramatically accelerate our understanding. Veterinary species are well studied, particularly livestock, to reduce their disease burden. They have also proven to be powerful models, especially for zoonotic pathogens and novel vaccination strategies. A prerequisite for any model selection is having the right quality and range of species‐specific immunological reagents. To help promote the widest possible use of veterinary species, an open access website (https://www.immunologicaltoolbox.co.uk) has been created as a central community annotated hub for veterinary immunological reagents. The website is also the portal into services offered by the UK Immunological Toolbox project that includes antibody generation, sequencing and recombinant expression. The funding for this effort is linked into sustainable sources, but ultimate success relies on community engagement to continually increase the quality and quantity of information. It is hoped that as more users and reagent owners engage, it will become an essential resource for researchers, veterinarians and clinicians alike by removing barriers that prevent the use of the most informative animal models.
Collapse
Affiliation(s)
| | - Giuseppe Maccari
- The Pirbright Institute, Woking, UK.,Royal Free Hospital, Anthony Nolan Research Institute, London, UK
| | - Jayne C Hope
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Gary Entrican
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | | |
Collapse
|
3
|
Entrican G, Lunney JK, Wattegedera SR, Mwangi W, Hope JC, Hammond JA. The Veterinary Immunological Toolbox: Past, Present, and Future. Front Immunol 2020; 11:1651. [PMID: 32849568 PMCID: PMC7399100 DOI: 10.3389/fimmu.2020.01651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 12/02/2022] Open
Abstract
It is well-recognized that research capability in veterinary species is restricted by a lack of immunological reagents relative to the extensive toolboxes for small rodent biomedical model species and humans. This creates a barrier to the strategic development of disease control solutions for livestock, companion animals and wildlife that not only affects animal health but can affect human health by increasing the risk of transmission of zoonotic pathogens. There have been a number of projects aimed at reducing the capability gaps in the veterinary immunological toolbox, the majority of these focusing on livestock species. Various approaches have been taken to veterinary immunological reagent development across the globe and technological advances in molecular biology and protein biochemistry have accelerated toolbox development. While short-term funding initiatives can address specific gaps in capability, they do not account for long-term sustainability of reagents and databases that requires a different funding model. We review the past, present and future of the veterinary immunological toolbox with specific reference to recent developments discussed at the International Union of Immunological Societies (IUIS) Veterinary Immunology Committee (VIC) Immune Toolkit Workshop at the 12th International Veterinary Immunology Symposium (IVIS) in Seattle, USA, 16–19 August 2019. The future availability of these reagents is critical to research for improving animal health, responses to infectious pathogens and vaccine design as well as for important analyses of zoonotic pathogens and the animal /human interface for One Health initiatives.
Collapse
Affiliation(s)
- Gary Entrican
- The Roslin Institute at The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD, United States
| | - Sean R Wattegedera
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom
| | | | - Jayne C Hope
- The Roslin Institute at The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | | |
Collapse
|
4
|
Dawson HD, Sang Y, Lunney JK. Porcine cytokines, chemokines and growth factors: 2019 update. Res Vet Sci 2020; 131:266-300. [PMID: 32442727 DOI: 10.1016/j.rvsc.2020.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Pigs are a major food source worldwide as well as major biomedical models for human physiology and therapeutics. A thorough understanding of porcine immunity is essential to prevent and treat infectious diseases, and develop effective vaccines and therapeutics. The use of pigs as biomedical models is dependent on the growing molecular and immune toolbox. This paper summarizes current knowledge of swine cytokines, chemokines and growth factors, identifying 289 pig proteins, characterizing knowledge of their gene structures and families. It identifies areas in the current swine genome build that need to be clarified. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal and polyclonal antibodies reacting with porcine cytokines, chemokines, growth factors along with availability of cloned recombinant proteins and assays for their quantitation. This process identified numerous reagents that are reportedly reactive with 170 pig cytokines, chemokines, growth factors: 118 have at least one commercial antibody reagent, 66 a cloned recombinant peptide, and 97 with quantitative assays. This affirms the great need to develop and characterize additional reagents. There are panels of reagents for numerous high priority targets that have been essential reagents for characterizing porcine immunity, disease and vaccine responses, and factors regulating development of innate immune responses, polarized macrophages and lymphoid cells including T regulatory cells. Yet there are many areas requiring investment of efforts to more effectively explore the pig immune system. The development of more reagents to understand the complex of cytokines, chemokines, and growth factors will clearly advance these initiatives.
Collapse
Affiliation(s)
- Harry D Dawson
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, MD 20705-2350, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209-1561, USA
| | - Joan K Lunney
- USDA, ARS, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
5
|
Elnaggar MM, Abdellrazeq GS, Dassanayake RP, Fry LM, Hulubei V, Davis WC. Characterization of αβ and γδ T cell subsets expressing IL-17A in ruminants and swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:115-124. [PMID: 29627456 DOI: 10.1016/j.dci.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
As part of our ongoing program to expand immunological reagents available for research in cattle, we developed a monoclonal antibody (mAb) to bovine interleukin-17A (IL-17A), a multifunctional cytokine centrally involved in regulating innate and adaptive immune responses. Initial comparative studies demonstrated the mAb recognizes a conserved epitope expressed on orthologues of IL-17A in sheep, goats and pigs. Comparative flow cytometric analyses of lymphocyte subsets stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin revealed differences in expression of IL-17A by CD4, CD8, and γδ T cells across ruminants and swine species. Results in cattle showed the largest proportion of IL-17A+ cells were CD4+ followed by γδ and CD8+ T cells. Further analysis revealed the IL-17A+ γδ T cell subset was comprised of WC1.1+, WC1.2+, and WC1- subsets. Analysis of the IL-17A+ CD8+ T cell subset revealed it was comprised of αβ and γδ T cell subsets. Results in sheep and goats revealed IL-17A is expressed mainly by CD4+ and CD8+ T cells, with little expression by γδ T cells. Analysis of IL-17A+ CD8+ T cells showed the majority were CD8+ αβ in sheep, whereas they were CD8+ γδ in goats. The majority of the sheep and goat IL-17A+ γδ T cells were WC1+. Results obtained in swine showed expression of IL-17A by CD4, CD8, and γδ T cell subsets were similar to results reported in other studies. Comparison of expression of IL-17A with IFN-γ revealed subsets co-expressed IL-17A and IFN-γ in cattle, sheep, and goats. The new mAb expands opportunities for immunology research in ruminants and swine.
Collapse
Affiliation(s)
- Mahmoud M Elnaggar
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, WA, USA; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Gaber S Abdellrazeq
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, WA, USA; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Rohana P Dassanayake
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, USA
| | - Lindsay M Fry
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, WA, USA; Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA
| | - Victoria Hulubei
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, WA, USA
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, WA, USA
| |
Collapse
|
6
|
Washington EA, Barber SR, Murray CM, Davies HMS, Kimpton WG, Yen HH. Lymphatic cannulation models in sheep: Recent advances for immunological and biomedical research. J Immunol Methods 2018; 457:6-14. [PMID: 29625076 DOI: 10.1016/j.jim.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Lymphatic cannulation models are useful tools for studying the immunobiology of the lymphatic system and the immunopathology of specific tissues in diseases. Sheep cannulations have been used extensively, as models for human physiology, fetal and neonatal development, human diseases, and for studies of ruminant pathobiology. The development of new and improved cannulation techniques in recent years has meant that difficult to access sites, such as mucosal associated tissues, are now more readily available to researchers. This review highlights the new approaches to cannulation and how these, in combination with advanced omics technologies, will direct future research using the sheep model.
Collapse
Affiliation(s)
- Elizabeth A Washington
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart R Barber
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina M Murray
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Helen M S Davies
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wayne G Kimpton
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hung-Hsun Yen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia..
| |
Collapse
|
7
|
Morrison LJ, Vezza L, Rowan T, Hope JC. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species. Trends Parasitol 2016; 32:599-607. [PMID: 27167665 DOI: 10.1016/j.pt.2016.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Animal African trypanosomiasis (AAT), caused by Trypanosoma congolense and Trypanosoma vivax, remains one of the most important livestock diseases in sub-Saharan Africa, particularly affecting cattle. Despite this, our detailed knowledge largely stems from the human pathogen Trypanosoma brucei and mouse experimental models. In the postgenomic era, the genotypic and phenotypic differences between the AAT-relevant species of parasite or host and their model organism counterparts are increasingly apparent. Here, we outline the timeliness and advantages of increasing the research focus on both the clinically relevant parasite and host species, given that improved tools and resources for both have been developed in recent years. We propose that this shift of emphasis will improve our ability to efficiently develop tools to combat AAT.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Laura Vezza
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tim Rowan
- GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh, EH25 0PZ, UK
| | - Jayne C Hope
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
8
|
Doull L, Wattegedera SR, Longbottom D, Mwangi D, Nath M, Glass EJ, Entrican G. Late production of CXCL8 in ruminant oro-nasal turbinate cells in response to Chlamydia abortus infection. Vet Immunol Immunopathol 2015; 168:97-102. [PMID: 26342452 DOI: 10.1016/j.vetimm.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/06/2015] [Accepted: 08/26/2015] [Indexed: 11/15/2022]
Abstract
Chlamydia abortus is an obligate intracellular bacterium that is an important cause of ovine abortion worldwide. There are reports of abortions in cattle, but these are very rare compared to the reported incidence in sheep. The bacterium is transmitted oro-nasally and can establish a sub-clinical infection until pregnancy, when it can invade the placenta and induce an inflammatory cascade leading to placentitis and abortion. Early host-pathogen interactions could explain differential pathogenesis and subsequent disease outcome in ruminant species. In this study, we assessed the ability of sheep and cattle oro-nasal turbinate cells to sense and respond to C. abortus infection. The cells expressed toll like receptor (TLR) 2, TLR4, nucleotide oligomerization domain (NOD) 1 and NOD-like receptor pyrin domain containing 3 (NLRP3) mRNA. In response to C. abortus infection, both ovine and bovine turbinate cells produce CXCL8 mRNA and protein late in the bacterial developmental cycle, but do not produce IL-1β or TNF-α. The UV-inactivated bacteria did not elicit a CXCL8 response, suggesting that intracellular multiplication of the bacteria is important for activating the signalling pathways. The production of innate immune cytokines from cattle and sheep turbinate cells in response to C. abortus infection was found to be largely similar.
Collapse
Affiliation(s)
- L Doull
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - S R Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| | - D Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| | - D Mwangi
- Zoetis, 333 Portage Street, KZO-300-385.6SE, Kalamazoo, MI 49007, USA
| | - M Nath
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - E J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| |
Collapse
|
9
|
Entrican G, Wattegedera SR, Griffiths DJ. Exploiting ovine immunology to improve the relevance of biomedical models. Mol Immunol 2014; 66:68-77. [PMID: 25263932 PMCID: PMC4368439 DOI: 10.1016/j.molimm.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022]
Abstract
Sheep make a valuable contribution to immunology research. Lessons to be learned from studying infections in the natural host. Factors to consider when selecting biomedical models.
Animal models of human disease are important tools in many areas of biomedicine; for example, in infectious disease research and in the development of novel drugs and medical devices. Most studies involving animals use rodents, in particular congenic mice, due to the availability of a wide number of strains and the ease with which they can be genetically manipulated. The use of mouse models has led to major advances in many fields of research, in particular in immunology but despite these advances, no animal model can exactly reproduce all the features of human disease. It is increasingly becoming recognised that in many circumstances mice do not provide the best model and that alternative species may be more appropriate. Here, we describe the relative merits of sheep as biomedical models for human physiology and disease in comparison to mice, with a particular focus on reproductive and respiratory pathogens.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK.
| | - Sean R Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| |
Collapse
|
10
|
Lunney JK, Kai C, Inumaru S, Onodera T. The 9th International Veterinary Immunology Symposium. Vet Immunol Immunopathol 2012; 148:1-5. [PMID: 22766039 DOI: 10.1016/j.vetimm.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
This special issue of Veterinary Immunology and Immunopathology summarizes the Proceedings of the 9th International Veterinary Immunology Symposium (9th IVIS) held August 2010, in Tokyo, Japan. Over 340 delegates from 30 countries discussed research progress analyzing the immune systems of numerous food animals and wildlife, probing basic immunity and the influence of stress, genetics, nutrition, endocrinology and reproduction. Major presentations addressed defense against pathogens and alternative control and prevention strategies including vaccines, adjuvants and novel biotherapeutics. A special Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme Sponsored Conference on "Vaccination and Diagnosis for Food Safety in Agriculture" highlighted the particular issue of "Immunology in Bovine Paratuberculosis". In April 2010 there was an outbreak of foot-and-mouth disease (FMD) in the southern part of Japan. This stimulated a special 9th IVIS session on FMD, sponsored by the World Organization for Animal Health (OIE) and the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, to discuss improvements of FMD vaccines, their use in FMD control, and risk assessment for decision management. The 9th IVIS was supported by the Veterinary Immunology Committee (VIC) of the International Union of Immunological Societies (IUIS) and included workshops for its MHC and Toolkit Committees. Finally VIC IUIS presented its 2010 Distinguished Service Award to Dr. Kazuya Yamanouchi for "outstanding contributions to the veterinary immunology community" and its 2010 Distinguished Veterinary Immunologist Award to Dr. Douglas F. Antczak for "outstanding research on equine immunology".
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, ARS, USDA, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
11
|
Rocchi MS, Wattegedera SR, Frew D, Entrican G, Huntley JF, McNeilly TN. Identification of CD4+CD25high Foxp3+ T cells in ovine peripheral blood. Vet Immunol Immunopathol 2011; 144:172-7. [DOI: 10.1016/j.vetimm.2011.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/01/2011] [Accepted: 07/12/2011] [Indexed: 11/17/2022]
|