1
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
2
|
Giuliano A, Pimentel PAB, Horta RS. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers (Basel) 2024; 16:2003. [PMID: 38893123 PMCID: PMC11171034 DOI: 10.3390/cancers16112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer treatment in people. Immune checkpoints are important regulators of the body's reaction to immunological stimuli. The most studied immune checkpoint molecules are programmed death (PD-1) with its ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with its ligands CD80 (B7-1) and CD86 (B7-2). Certain tumours can evade immunosurveillance by activating these immunological checkpoint targets. These proteins are often upregulated in cancer cells and tumour-infiltrating lymphocytes, allowing cancer cells to evade immune surveillance and promote tumour growth. By blocking inhibitory checkpoints, ICI can help restore the immune system to effectively fight cancer. Several studies have investigated the expression of these and other immune checkpoints in human cancers and have shown their potential as therapeutic targets. In recent years, there has been growing interest in studying the expression of immune checkpoints in dogs with cancer, and a few small clinical trials with ICI have already been performed on these species. Emerging studies in veterinary oncology are centred around developing and validating canine-targeted antibodies. Among ICIs, anti-PD-1 and anti-PD-L1 treatments stand out as the most promising, mirroring the success in human medicine over the past decade. Nevertheless, the efficacy of caninized antibodies remains suboptimal, especially for canine oral melanoma. To enhance the utilisation of ICIs, the identification of predictive biomarkers for treatment response and the thorough screening of individual tumours are crucial. Such endeavours hold promise for advancing personalised medicine within veterinary practice, thereby improving treatment outcomes. This article aims to review the current research literature about the expression of immune checkpoints in canine cancer and the current results of ICI treatment in dogs.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Pedro A. B. Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo S. Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
3
|
Früh SP, Adu OF, López-Astacio RA, Weichert WS, Wasik BR, Parrish CR. Isolation, cloning and analysis of parvovirus-specific canine antibodies from peripheral blood B cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104894. [PMID: 37467826 PMCID: PMC10542859 DOI: 10.1016/j.dci.2023.104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
B-cell cloning methods enable the analysis of antibody responses against target antigens and can be used to reveal the host antibody repertoire, antigenic sites (epitopes), and details of protective immunity against pathogens. Here, we describe improved methods for isolation of canine peripheral blood B cells producing antibodies against canine parvovirus (CPV) capsids by fluorescence-activated cell sorting, followed by cell cloning. We cultured sorted B cells from an immunized dog in vitro and screened for CPV-specific antibody production. Updated canine-specific primer sets were used to amplify and clone the heavy and light chain immunoglobulin sequences directly from the B cells by reverse transcription and PCR. Monoclonal canine IgGs were produced by cloning heavy and light chain sequences into antibody expression vectors, which were screened for CPV binding. Three different canine monoclonal antibodies were analyzed, including two that shared the same heavy chain, and one that had distinct heavy and light chains. The antibodies showed broad binding to CPV variants, and epitopes were mapped to antigenic sites on the capsid. The methods described here are applicable for the isolation of canine B cells and monoclonal antibodies against many antigens.
Collapse
Affiliation(s)
- Simon P Früh
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Oluwafemi F Adu
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Cardama GA, Bucci PL, Lemos JS, Llavona C, Benavente MA, Hellmén E, Fara ML, Medrano E, Spitzer E, Demarco IA, Sabella P, Garona J, Alonso DF. In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma. Animals (Basel) 2023; 13:2507. [PMID: 37570315 PMCID: PMC10417262 DOI: 10.3390/ani13152507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Canine mammary carcinomas (CMC) are associated with major aggressive clinical behavior and high mortality. The current standard of care is based on surgical resection, without an established effective treatment scheme, highlighting the urgent need to develop novel effective therapies. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis and progression in the majority of solid cancers, including human and canine mammary carcinomas. The first therapy developed to target VEGF was bevacizumab, a recombinant humanized monoclonal antibody, which has already been approved as an anticancer agent in several human cancers. The goal of this work was to establish the therapeutic value of MB02 bevacizumab biosimilar in CMC. First, through different in silico approaches using the MUSCLE multiple-sequence alignment tool and the FoldX protein design algorithm, we were able to predict that canine VEGF is recognized by bevacizumab, after showing an extremely high sequence similarity between canine and human VEGF. Further, by using an ELISA-based in vitro binding assay, we confirmed that MB02 biosimilar was able to recognize canine VEGF. Additionally, canine VEGF-induced microvascular endothelial cell proliferation was inhibited in a concentration-dependent manner by MB02 biosimilar. These encouraging results show a high potential for MB02 as a promising therapeutic agent for the management of CMC.
Collapse
Affiliation(s)
- Georgina A. Cardama
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
| | - Paula L. Bucci
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Jesús S. Lemos
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Candela Llavona
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red S.A.M.I.C. El Cruce “Nestor Kirchner”, Florencio Varela B5401, Argentina
| | - Micaela A. Benavente
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
- Laboratorio de Endocrinología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET—CICPBA—Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7000, Argentina
| | - Eva Hellmén
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
| | - María Laura Fara
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | - Eduardo Medrano
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | - Eduardo Spitzer
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | | | | | - Juan Garona
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red S.A.M.I.C. El Cruce “Nestor Kirchner”, Florencio Varela B5401, Argentina
| | - Daniel F. Alonso
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
| |
Collapse
|
5
|
Suzuki H, Asano T, Ohishi T, Yoshikawa T, Suzuki H, Mizuno T, Tanaka T, Kawada M, Kaneko MK, Kato Y. Antitumor Activities in Mouse Xenograft Models of Canine Fibroblastic Tumor by Defucosylated Mouse-Dog Chimeric Anti-HER2 Monoclonal Antibody (H77Bf). Monoclon Antib Immunodiagn Immunother 2023; 42:34-40. [PMID: 36383106 DOI: 10.1089/mab.2022.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a cell surface type I transmembrane glycoprotein that is overexpressed on a variety of solid tumors and transduces the oncogenic signaling upon homo- and heterodimerization with HER families. Anti-HER2 monoclonal antibodies (mAbs) including trastuzumab and its antibody-drug conjugate have been shown to improve patients' survival in HER2-positive breast, gastric, and lung cancers. Canine tumors have advantages as naturally occurring tumor models, and share biological and histological characteristics with human tumors. In this study, we generated a defucosylated version of mouse-dog chimeric anti-HER2 mAb (H77Bf) derived from H2Mab-77 (mouse IgG1, kappa). H77Bf possesses the high binding affinity (a dissociation constant: 8.7 × 10-10 M) for a dog HER2 (dHER2)-expressing canine fibroblastic tumor cell line (A-72). H77Bf exhibited antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity for A-72 cells. Moreover, intraperitoneal administration of H77Bf significantly suppressed the development of A-72 tumor compared with the control dog IgG in a mouse xenograft model. These results indicate that H77Bf exerts antitumor activities against dHER2-expressing canine cancers, which could provide a valuable information for canine cancer treatment.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Numazu-shi, Japan.,Laboratory of Oncology, Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, Sendai Medical Center, Sendai, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Microbial Chemistry Research Foundation, Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Takeuchi H, Nakajima C, Konnai S, Maekawa N, Okagawa T, Usui M, Tamura Y, Suzuki Y, Murata S, Ohashi K. Characterization of SpsQ from Staphylococcus pseudintermedius as an affinity chromatography ligand for canine therapeutic antibodies. PLoS One 2023; 18:e0281171. [PMID: 36701408 PMCID: PMC9879442 DOI: 10.1371/journal.pone.0281171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Coagulase-positive Staphylococci express protein A, which binds to host antibodies, to evade the immune system. Taking advantage of its specific binding to antibodies, protein A from Staphylococcus aureus, which is called SpA, is commonly used as an affinity chromatography ligand for human therapeutic antibodies. However, among four canine IgG subclasses (A, B, C, and D), only IgG-B binds to SpA strongly and establishing an efficient and robust purification scheme for canine therapeutic antibodies whose IgG subclass is A, C, or D remains difficult and depends on finding a suitable substitute to SpA. S. pseudintermedius, a major coagulase-positive Staphylococci found in dogs, expresses spsQ gene which is orthologous to S. aureus spa. We hypothesized that to serve S. pseudintermedius to better adapt to the dog immune system, SpsQ would bind to canine IgGs stronger than SpA, making it a better affinity chromatography ligand for canine therapeutic antibodies. To characterize SpsQ, we first determined the spsQ nucleotide sequence from S. pseudintermedius isolates. Based on the identified sequence, we prepared recombinant proteins containing the immunoglobulin-binding domains of SpA (r-SpA) and SpsQ (r-SpsQ) and determined their binding capacity for each canine IgG subclass. The binding capacity of r-SpsQ for IgG-B was almost as high as that of r-SpA. Interestingly, while both r-SpsQ and r-SpA showed no binding to IgG-C, the binding capacity of r-SpsQ for IgG-A and IgG-D was significantly higher than that of r-SpA. Finally, we performed affinity chromatography using r-SpsQ- or r-SpA-immobilized resin and revealed that the recovery rates of IgG-A and IgG-D using r-SpsQ were significantly higher than those using r-SpA. Our findings indicate that SpsQ has a strong potential to be used as an affinity chromatography ligand for canine therapeutic antibodies of subclass A, B, and D.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
| | - Masaru Usui
- Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yutaka Tamura
- Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasuhiko Suzuki
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Faculty of Veterinary Medicine, Department of Disease Control, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, Department of Advanced Pharmaceutics, Hokkaido University, Sapporo, Japan
- Faculty of Veterinary Medicine, International Affairs Office, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Suzuki H, Ohishi T, Asano T, Tanaka T, Saito M, Mizuno T, Yoshikawa T, Kawada M, Kaneko M, Kato Y. Defucosylated mouse‑dog chimeric anti‑HER2 monoclonal antibody exerts antitumor activities in mouse xenograft models of canine tumors. Oncol Rep 2022; 48:154. [PMID: 35856438 PMCID: PMC9350980 DOI: 10.3892/or.2022.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been reported in various types of cancer, including breast, gastric, lung, colorectal and pancreatic cancer. A humanized anti-HER2 monoclonal antibody (mAb), trastuzumab, has been shown to improve survival of patients in HER2-positive breast and gastric cancer. An anti-HER2 mAb, H2Mab-77 (mouse IgG1, kappa) was previously developed. In the present study, a defucosylated version of mouse-dog chimeric anti-HER2 mAb (H77Bf) was generated. H77Bf possesses a high binding-affinity [a dissociation constant (KD): 7.5×10−10 M, as determined by flow cytometric analysis] for dog HER2-overexpressed CHO-K1 (CHO/dHER2) cells. H77Bf highly exerted antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) for CHO/dHER2 cells by canine mononuclear cells and complement, respectively. Moreover, administration of H77Bf significantly suppressed the development of CHO/dHER2 ×enograft tumor in mice compared with the control dog IgG. H77Bf also possesses a high binding-affinity (KD: 7.2×10−10 M) for a canine mammary gland tumor cell line (SNP), and showed high ADCC and CDC activities for SNP cells. Intraperitoneal administration of H77Bf in mouse xenograft models of SNP significantly suppressed the development of SNP xenograft tumors compared with the control dog IgG. These results indicated that H77Bf exerts antitumor activities against dHER2-positive canine cancers, and could be valuable treatment regimen for canine cancers.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753‑8515, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan
| | - Mika Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
8
|
Zhou L, Wu H, Du M, Song H, Huo N, Chen X, Su X, Li W, Wang L, Wang J, Huang B, Tan F, Tian K. A canine-derived chimeric antibody with high neutralizing activity against canine parvovirus-2. AMB Express 2022; 12:76. [PMID: 35705721 PMCID: PMC9200918 DOI: 10.1186/s13568-022-01416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Canine parvovirus-2 (CPV-2) infection causes serious multisystemic disease in dogs and many animal species worldwide. Previously, a monoclonal antibody (MAb) of CPV-2, 10H4, showed high neutralizing activity and therapeutic effect against CPV-2 in dogs. However, the application of mouse MAb is limited in other animals due to immune rejection. Here, the variable regions of the heavy and light chains of 10H4 were cloned and ligated with constant canine antibody regions to produce a canine-derived chimeric MAb 11D9, in a CHO-S cell expression system. The cell supernatant of the CHO cell line 11D9 exhibited a HI titer of 1:2560 against all the variants of CPV-2 (new CPV-2a, new CPV-2b, and CPV-2c), and had the same average neutralization titer as the new CPV-2a (1:11,046.5) and new CPV-2b (1:11,046.5) variants, which was slightly higher than that of CPV-2c variants (1:10,615.7). In animal experiment, the treatment of chimeric MAb 11D9 had a high therapeutic effect in beagles infected with the new CPV-2a. Overall, the canine-derived chimeric MAb 11D9 produced by CHO-S cells showed a high HI and neutralization titer against CPV-2 and the therapeutic effects against the new CPV-2a in beagles, providing potential for the prevention or treatment of CPV-2 infections in dogs. A canine-derived chimeric MAb 11D9 was produced by CHO cell lines. The MAb 11D9 exhibited high HI and neutralization titers against new CPV-2 variants. The MAb 11D9 had a high therapeutic effect in beagles infected with the new CPV-2a variant.
Collapse
Affiliation(s)
- Lixuan Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hongchao Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,National Research Center for Veterinary Medicine, Luoyang, China
| | - Mengmeng Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Huanhuan Song
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Ningning Huo
- National Research Center for Veterinary Medicine, Luoyang, China.,Luoyang Huizhong Biotech Co., Ltd., Luoyang, China
| | - Xiao Chen
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Xiaorui Su
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Weiguo Li
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Lulu Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Jie Wang
- National Research Center for Veterinary Medicine, Luoyang, China.,Luoyang Huizhong Biotech Co., Ltd., Luoyang, China
| | - Baicheng Huang
- National Research Center for Veterinary Medicine, Luoyang, China.
| | - Feifei Tan
- National Research Center for Veterinary Medicine, Luoyang, China.
| | - Kegong Tian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China. .,National Research Center for Veterinary Medicine, Luoyang, China.
| |
Collapse
|
9
|
Hullsiek R, Li Y, Snyder KM, Wang S, Di D, Borgatti A, Lee C, Moore PF, Zhu C, Fattori C, Modiano JF, Wu J, Walcheck B. Examination of IgG Fc Receptor CD16A and CD64 Expression by Canine Leukocytes and Their ADCC Activity in Engineered NK Cells. Front Immunol 2022; 13:841859. [PMID: 35281028 PMCID: PMC8907477 DOI: 10.3389/fimmu.2022.841859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Human natural killer (NK) cells can target tumor cells in an antigen-specific manner by the recognition of cell bound antibodies. This process induces antibody-dependent cell-mediated cytotoxicity (ADCC) and is exclusively mediated by the low affinity IgG Fc receptor CD16A (FcγRIIIA). Exploiting ADCC by NK cells is a major area of emphasis for advancing cancer immunotherapies. CD64 (FcγRI) is the only high affinity IgG FcR and it binds to the same IgG isotypes as CD16A, but it is not expressed by human NK cells. We have generated engineered human NK cells expressing recombinant CD64 with the goal of increasing their ADCC potency. Preclinical testing of this approach is essential for establishing efficacy and safety of the engineered NK cells. The dog provides particular advantages as a model, which includes spontaneous development of cancer in the setting of an intact and outbred immune system. To advance this immunotherapy model, we cloned canine CD16A and CD64 and generated specific mAbs. We report here for the first time the expression patterns of these FcγRs on dog peripheral blood leukocytes. CD64 was expressed by neutrophils and monocytes, but not lymphocytes, while canine CD16A was expressed at high levels by a subset of monocytes and lymphocytes. These expression patterns are similar to that of human leukocytes. Based on phenotypic characteristics, the CD16A+ lymphocytes consisted of T cells (CD3+ CD8+ CD5dim α/β TCR+) and NK cells (CD3− CD5− CD94+), but not B cells. Interestingly, the majority of canine CD16A+ lymphocytes were from the T cell population. Like human CD16A, canine CD16A was downregulated by a disintegrin and metalloproteinase 17 (ADAM17) upon leukocyte activation, revealing a conserved means of regulation. We also directly demonstrate that both canine CD16A and CD64 can induce ADCC when expressed in the NK cell line NK-92. These findings pave the way to engineering canine NK cells or T cells with high affinity recombinant canine CD64 to maximize ADCC and to test their safety and efficacy to benefit both humans and dogs.
Collapse
Affiliation(s)
- Robert Hullsiek
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kristin M Snyder
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States
| | - Sam Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Da Di
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Antonella Borgatti
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Clinical Investigation Center, University of Minnesota, St. Paul, MN, United States
| | - Chae Lee
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Peter F Moore
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Cong Zhu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Chiara Fattori
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022; 9:803093. [PMID: 35224082 PMCID: PMC8873926 DOI: 10.3389/fvets.2022.803093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine 2022; 40:912-923. [PMID: 35012775 DOI: 10.1016/j.vaccine.2021.12.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/06/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
Toxocariasis is a neglected parasitic zoonosis of global importance. The development of a formulation that can be used as a vaccine would help the definitive control of the infection. Preclinical studies selected two recombinant T. canis proteins (rTcVcan and rTcCad) which significantly protected mice against larval migration. In the present work, these proteins plus three adjuvants (Alhydrogel®, PAM3CSK4®, and Quil-A®) were used to immunize mice against toxocariasis; blood samples were collected three times to measure IgG (total, IgG1, IgG2a), IgA, and IgE via indirect ELISA. Cytokines (IL-5, TNF-α, and IL-10) were measured in splenocytes supernatant, and T. canis larvae were quantified in tissues. The best protein + adjuvant pair found (rTVcan + QuialA®) was then used to immunize T. canis-free puppies (n = 18) that were experimentally infected with T. canis and T. canis naturally-infected puppies (n = 6). Immunoglobulin (IgA, IgE, IgG, IgG1, and IgG2a), parasite load (eggs in feces), number of expelled adults and eggs extracted from the female uterus, and their fertility percentages were analyzed. In mice, it was observed a highly significant reduction (73%) of tissue larvae, a mixed cytokine profile (Th1/Th2), and anti-T. canis antibody titers (IgG, IgG1, IgG2a) using rTVcan + QuialA® mix. In canines, rTVcan + QuialA® promoted reduction in the parasite eggs in feces (95%) and eggs reduction obtained from the uteri of pharmacologically expelled adult females (58.38%). In our knowledge this is the first canine clinical trial of a vaccine with T. canis recombinant proteins. The formulation used has been shown to efficiently stimulate the production of antibodies against infection by T. canis. In the canine, a significant reduction in the number of eggs expelled by the experimental animals that received the formulation prophylactically was evidenced. Future tests should be developed to evaluate the duration of the protective effect and analyze other immune pathways that could be stimulated by the formulation used.
Collapse
|
12
|
Mason NJ, Chester N, Xiong A, Rotolo A, Wu Y, Yoshimoto S, Glassman P, Gulendran G, Siegel DL. Development of a fully canine anti-canine CTLA4 monoclonal antibody for comparative translational research in dogs with spontaneous tumors. MAbs 2021; 13:2004638. [PMID: 34856888 PMCID: PMC8726733 DOI: 10.1080/19420862.2021.2004638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immune checkpoint inhibitor (ICI) ipilimumab has revolutionized the treatment of patients with different cancer histologies, including melanoma, renal cell carcinoma, and non-small cell lung carcinoma. However, only a subset of patients shows dramatic clinical responses to treatment. Despite intense biomarker discovery efforts linked to clinical trials using CTLA4 checkpoint blockade, no single prognostic correlate has emerged as a valid predictor of outcome. Client-owned, immune competent, pet dogs develop spontaneous tumors that exhibit similar features to human cancers, including shared chromosome aberrations, molecular subtypes, immune signatures, tumor heterogeneity, metastatic behavior, and response to chemotherapy. As such, they represent a valuable parallel patient population in which to investigate novel predictive biomarkers and rational therapeutic ICI combinations. However, the lack of validated, non-immunogenic, canine ICIs for preclinical use hinders this comparative approach. To address this, fully canine single-chain variable fragments (scFvs) that bind canine CTLA4 were isolated from a comprehensive canine scFv phage display library. A lead candidate for clinical development was selected based on its subnanomolar binding affinity to canine CTLA4 and its ability to prevent CTLA4 binding to CD80/CD86 and promote T cell proliferation and effector function. In vivo mouse studies revealed pharmacokinetics similar to isotype control IgG with no evidence of short-term adverse effects. This work paves the way for in vivo analysis of the first fully canine, anti-canine CTLA4 antibody to promote anti-tumor immunity in dogs with immune-responsive cancers and provide an important comparative tool to investigate correlative biomarkers of response and mechanisms of resistance to CTLA4 checkpoint inhibition.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapy, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ailian Xiong
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonia Rotolo
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Wu
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Sho Yoshimoto
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Patrick Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gayathri Gulendran
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Don L Siegel
- Center for Cellular Immunotherapy, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Rodriguez-Valle M, McAlister S, Moolhuijzen PM, Booth M, Agnew K, Ellenberger C, Knowles AG, Vanhoff K, Bellgard MI, Tabor AE. Immunomic Investigation of Holocyclotoxins to Produce the First Protective Anti-Venom Vaccine Against the Australian Paralysis Tick, Ixodes holocyclus. Front Immunol 2021; 12:744795. [PMID: 34671357 PMCID: PMC8522651 DOI: 10.3389/fimmu.2021.744795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Venom producing animals are ubiquitously disseminated among vertebrates and invertebrates such as fish, snakes, scorpions, spiders, and ticks. Of the ~890 tick species worldwide, 27 have been confirmed to cause paralysis in mammalian hosts. The Australian paralysis tick (Ixodes holocyclus) is the most potent paralyzing tick species known. It is an indigenous three host tick species that secretes potent neurotoxins known as holocyclotoxins (HTs). Holocyclotoxins cause a severe and harmful toxicosis leading to a rapid flaccid paralysis which can result in death of susceptible hosts such as dogs. Antivenins are generally polyclonal antibody treatments developed in sheep, horses or camels to administer following bites from venomous creatures. Currently, the methods to prevent or treat tick paralysis relies upon chemical acaricide preventative treatments or prompt removal of all ticks attached to the host followed by the administration of a commercial tick-antiserum (TAS) respectively. However, these methods have several drawbacks such as poor efficacies, non-standardized dosages, adverse effects and are expensive to administer. Recently the I. holocyclus tick transcriptome from salivary glands and viscera reported a large family of 19 holocyclotoxins at 38-99% peptide sequence identities. A pilot trial demonstrated that correct folding of holocyclotoxins is needed to induce protection from paralysis. The immunogenicity of the holocyclotoxins were measured using commercial tick antiserum selecting HT2, HT4, HT8 and HT11 for inclusion into the novel cocktail vaccine. A further 4 HTs (HT1, HT12, HT14 and HT17) were added to the cocktail vaccine to ensure that the sequence variation among the HT protein family was encompassed in the formulation. A second trial comparing the cocktail of 8 HTs to a placebo group demonstrated complete protection from tick challenge. Here we report the first successful anti-venom vaccine protecting dogs from tick paralysis.
Collapse
Affiliation(s)
- Manuel Rodriguez-Valle
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia
| | - Sonia McAlister
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia
| | | | - Mitchell Booth
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia
| | - Kim Agnew
- Paul Dick & Associates Ltd, Castle Hill, NSW, Australia
| | - Claudia Ellenberger
- Elanco Animal Health, Yarrandoo Research and Development Centre, Kemps Creek, NSW, Australia
| | | | - Kathleen Vanhoff
- Elanco Animal Health, Yarrandoo Research and Development Centre, Kemps Creek, NSW, Australia
| | - Matthew I Bellgard
- eResearch Office, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ala E Tabor
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
14
|
Nanobody-based CTLA4 inhibitors for immune checkpoint blockade therapy of canine cancer patients. Sci Rep 2021; 11:20763. [PMID: 34675296 PMCID: PMC8531395 DOI: 10.1038/s41598-021-00325-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is the leading cause of death in the geriatric dog population. Currently, the use of immune checkpoint inhibitors (ICIs) such as anti-CTLA4 antibodies has markedly improved the prognosis of several cancers in their advanced stages. However, ICIs targeting CTLA4 blockade to treat canine cancer patients are yet to define. In this study, we sought to develop, characterize and assess whether chimeric heavy chain only antibodies (cHcAbs) against CTLA4 are viable therapeutic candidates for the treatment of canine cancers. Anti-CTLA4 nanobodies (Nbs) were identified from a yeast nanobody (Nb) library using magnetic-assisted cell sorting (MACS) and flow cytometry. cHcAbs were engineered by genetically fusing the DNA sequences coding for anti-CTLA4 Nbs with the Fc domain of the subclass B of canine IgG. Recombinant cHcAbs were purified from ExpiCHO-S cells. Stable cell lines expressing canine CTLA4 and FcγRI were used to elucidate the binding ability and specificity of cHcAbs. PBMCs isolated from healthy dogs were used to evaluate the ability of cHcAbs to activate canine PBMCs (cPBMCs). Novel Nbs were identified using the extracellular domain of canine CTLA4 protein to screen a fully synthetic yeast nanobody library. Purified Nbs bind specifically to natïve canine CTLA4. We report that chimeric HcAbs, which were engineered by fusing the anti-CTLA4 Nbs and Fc region of subclass B of canine IgG, were half the size of a conventional mAb and formed dimers. The chimeric HcAbs specifically binds both with canine CTLA4 and Fcγ receptors. As the binding of Nbs overlapped with the MYPPPY motif of canine CTLA4, these Nbs were expected to sterically disrupt the interaction of canine CTLA4 to B-7s. Like their human counterpart, canine CTLA4 was expressed on helper T cells and a small subset of cytotoxic T cells. Canine Tregs also constitutively expressed CTLA4, and stimulation with PMA/Ionomycin dramatically increased expression of CTLA4 on the cell surface. Stimulation of cPBMCs in the presence of agonistic anti-CD3 Ab and cHcAb6 significantly increased the expression of IFN-γ as compared to the isotype control. This study identifies a novel nanobody-based CTLA4 inhibitor for the treatment of canine cancer patients.
Collapse
|
15
|
Klingemann H. Immunotherapy for Dogs: Still Running Behind Humans. Front Immunol 2021; 12:665784. [PMID: 34421888 PMCID: PMC8374065 DOI: 10.3389/fimmu.2021.665784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Despite all good intentions, dogs are still running behind humans in effective cancer immunotherapies. The more effective treatments in humans, like infusions of CAR-T and NK-cells are not broadly pursued for canines due to significant costs, the rather complicated logistics and the lack of targetable surface antigens. Monoclonal antibodies are challenging to develop considering the limited knowledge about canine target antigens and about their mode of action. Although immunogenic vaccines could be less costly, this approach is hampered by the fact that cancer by itself is immuno-suppressive and any preceding chemotherapy may suppress any clinically meaningful immune response. This review - rather than providing a comprehensive listing of all available immunotherapies for dogs, aims at pointing out the issues that are holding back this field but which hopefully can be addressed so that dogs can "catch up" with what is available to humans.
Collapse
|
16
|
Krautmann M, Walters R, Cole P, Tena J, Bergeron LM, Messamore J, Mwangi D, Rai S, Dominowski P, Saad K, Zhu Y, Guillot M, Chouinard L. Laboratory safety evaluation of bedinvetmab, a canine anti-nerve growth factor monoclonal antibody, in dogs. Vet J 2021; 276:105733. [PMID: 34391918 DOI: 10.1016/j.tvjl.2021.105733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
Nerve growth factor (NGF), a critical mediator of nociception, is a novel analgesic therapeutic target. Bedinvetmab, a canine monoclonal antibody (mAb), binds NGF and inhibits its interaction with tropomyosin receptor kinase A (trkA) and p75 neurotrophin receptor (p75NTR) receptors. The objective of three integrated laboratory studies was to demonstrate the safety of bedinvetmab in adult laboratory Beagle dogs. Daily health, veterinary, clinical pathology, systemic exposure, and anti-drug antibody evaluations were performed. Study 1 additionally included electrocardiography, neurologic, and ophthalmic assessments, and radiographic monitoring of joints of the appendicular skeleton. Study 2 evaluated T-lymphocyte-dependent immune function. Study 3 evaluated the safety of short-term concurrent administration of carprofen, a nonsteroidal anti-inflammatory drug (NSAID), with bedinvetmab. Studies 1 and 3 included terminal pathology and histopathology evaluations. Study designs and procedures included directed complementary morphologic and functional evaluations of a literature- and in vitro-based list of potential safety issues related to the NGF signaling pathway and characteristics engineered into this mAb. Screening-level general procedures evaluated effects associated with mAbs that target and inhibit soluble agonist cytokines. There were no treatment-related adverse changes in clinical evaluations, clinical neurological and ophthalmic examinations, joints, immune morphology or function, and no effects of short-term concurrent NSAID usage. Treatment-emergent immunogenicity was not observed. Bedinvetmab (1 mg/kg SC monthly; 3× and 10× dose multiples) was well tolerated in normal laboratory Beagle dogs for 6 months and with 2 weeks' concurrent NSAID administration.
Collapse
Affiliation(s)
- M Krautmann
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA.
| | - R Walters
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - P Cole
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - J Tena
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - L M Bergeron
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - J Messamore
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - D Mwangi
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - S Rai
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - P Dominowski
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - K Saad
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - Y Zhu
- Zoetis Inc, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - M Guillot
- Charles River Laboratories Montreal, ULC, Senneville, Quebec, Canada
| | - L Chouinard
- Charles River Laboratories Montreal, ULC, Senneville, Quebec, Canada
| |
Collapse
|
17
|
Fujisawa K, Silcott-Niles C, Simonson P, Lamattina D, Humeres CA, Bhattacharyya T, Mertens P, Thunissen C, O’Rourke V, Pańczuk M, Whitworth JA, Salomón OD, Miles MA. Emergent canine visceral leishmaniasis in Argentina: Comparative diagnostics and relevance to proliferation of human disease. PLoS Negl Trop Dis 2021; 15:e0009552. [PMID: 34280201 PMCID: PMC8289008 DOI: 10.1371/journal.pntd.0009552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a zoonotic protozoal vector-borne disease that is a major public health challenge. In Argentina, canine (CVL) and human visceral leishmaniasis (HVL) have recently emerged. There is a lack of standardised diagnostic tests for CVL, which hinders control of CVL and HVL. METHODOLOGY/PRINCIPAL FINDINGS Sampling was carried out in Puerto Iguazú, Argentina, comprising 190 asymptomatic, oligosymptomatic and polysymptomatic dogs. The following diagnostics were applied: microscopy of lymph node aspirate (LNA); three immunochromatographic rapid diagnostic tests (RDTs), prototype rK28-ICT, rK39-ICT (both Coris BioConcept), commercial rK39 (InBios); ELISA for IgG, IgG1 and IgG2, against rK28, rK39 or crude lysate antigen. DNA detection and analysis, with 30 dogs, was of the ITS1 region using skin samples, and loop-mediated isothermal amplification (LAMP; Eiken Loopamp) of buffy coat, skin scrape or LNA. 15.4% of dogs were positive by LNA microscopy. The rK28 RDT had higher seropositivity rate (61%) than either a prototype rK39 RDT (31.4%) or commercial rK39 RDT (18.8%), without cross-reactivity with six other pathogens. IgG anti-rK39 ELISA antibody titres, but not IgG2, were positively correlated with number of clinical signs. LAMP with LNA had a higher positivity rate than PCR; buffy coat sampling was more sensitive than skin scrape. ITS1 confirmed Leishmania (Leishmania) infantum as the agent of CVL. Leishmania (Viannia) spp. was detected in skin samples from two dogs, compatible with Leishmania (Viannia) braziliensis. CONCLUSIONS/SIGNIFICANCE Seroprevalence confirmed rapid increase in CVL in Puerto Iguazú. The rK28 RDT test potentially has great value for improved point-of-care diagnosis. Given cost reduction and accessibility, commercial LAMP may be applicable to buffy coat. RDT biomarkers of CVL clinical status are required to combat spread of CVL and HVL. The presence of Viannia, perhaps as an agent of human mucocutaneous leishmaniasis (MCL), highlights the need for vigilance and surveillance.
Collapse
Affiliation(s)
- Kyoko Fujisawa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Charlotte Silcott-Niles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Poppy Simonson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniela Lamattina
- Instituto Nacional de Medicina Tropical (INMeT), ANLIS, Ministerio de Salud de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Iguazú, Misiones, Argentina
| | - Cristian A. Humeres
- Instituto Nacional de Medicina Tropical (INMeT), ANLIS, Ministerio de Salud de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Iguazú, Misiones, Argentina
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Victoria O’Rourke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Magdalena Pańczuk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James A. Whitworth
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oscar Daniel Salomón
- Instituto Nacional de Medicina Tropical (INMeT), ANLIS, Ministerio de Salud de la Nación, Puerto Iguazú, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Iguazú, Misiones, Argentina
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Kisseberth WC, Lee DA. Adoptive Natural Killer Cell Immunotherapy for Canine Osteosarcoma. Front Vet Sci 2021; 8:672361. [PMID: 34164452 PMCID: PMC8215197 DOI: 10.3389/fvets.2021.672361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in both humans and dogs. It is a highly metastatic cancer and therapy has not improved significantly since the inclusion of adjuvant chemotherapy into disease treatment strategies. Osteosarcoma is an immunogenic tumor, and thus development of immunotherapies for its treatment, especially treatment of microscopic pulmonary metastases might improve outcomes. NK cells are lymphocytes of the innate immune system and can recognize a variety of stressed cells, including cancer cells, in the absence of major histocompatibility complex (MHC)-restricted receptor ligand interactions. NK cells have a role in controlling tumor progression and metastasis and are important mediators of different therapeutic interventions. The core hypothesis of adoptive natural killer (NK) cell therapy is there exists a natural defect in innate immunity (a combination of cancer-induced reduction in NK cell numbers and immunosuppressive mechanisms resulting in suppressed function) that can be restored by adoptive transfer of NK cells. Here, we review the rationale for adoptive NK cell immunotherapy, NK cell biology, TGFβ and the immunosuppressive microenvironment in osteosarcoma, manufacturing of ex vivo expanded NK cells for the dog and provide perspective on the present and future clinical applications of adoptive NK cell immunotherapy in spontaneous osteosarcoma and other cancers in the dog.
Collapse
Affiliation(s)
- William C Kisseberth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| | - Dean A Lee
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
19
|
Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, Bettschart-Wolfensberger R, Rohrer Bley C, Läubli H, vom Berg J. Cross-Reactivity and Functionality of Approved Human Immune Checkpoint Blockers in Dogs. Cancers (Basel) 2021; 13:785. [PMID: 33668625 PMCID: PMC7918463 DOI: 10.3390/cancers13040785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine. METHODS Here, we assessed suitability of seven FDA-approved human ICIs to target CTLA-4 or PD-1/PD-L1 in dogs. Cross-reactivity and blocking potential was assessed using ELISA and flow cytometry. Functional responses were assessed on peripheral blood mononuclear cells (PBMCs) derived from healthy donors (n = 12) and cancer patient dogs (n = 27) as cytokine production after stimulation. Immune composition and target expression of healthy donors and cancer patients was assessed via flow cytometry. RESULTS Four candidates showed cross-reactivity and two blocked the interaction of canine PD-1 and PD-L1. Of those, only atezolizumab significantly increased cytokine production of healthy and patient derived PBMCs in vitro. Especially lymphoma patient PBMCs responded with increased cytokine production. In other types of cancer, response to atezolizumab appeared to correlate with a lower frequency of CD8 T cells. CONCLUSIONS Cross-functionality of atezolizumab encourages reverse translational efforts using (combination) immunotherapies in companion dog tumor patients to benefit both veterinary and human medicine.
Collapse
Affiliation(s)
- Stanislav Pantelyushin
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Elisabeth Ranninger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Diego Guerrera
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Department of Neurosurgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Department of Clinical and Diagnostic Services, Section of Anesthesiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (E.R.); (R.B.-W.)
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Heinz Läubli
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland; (G.H.); (H.L.)
- Division of Medical Oncology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, CH-8952 Schlieren, Switzerland; (S.P.); (D.G.)
| |
Collapse
|
20
|
Priest JW, Ngandolo BNR, Lechenne M, Cleveland CA, Yabsley MJ, Weiss AJ, Roy SL, Cama V. Development of a Multiplex Bead Assay for the Detection of Canine IgG 4 Antibody Responses to Guinea Worm. Am J Trop Med Hyg 2021; 104:303-312. [PMID: 33124546 DOI: 10.4269/ajtmh.20-0914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased levels of guinea worm (GW) disease transmission among dogs in villages along the Chari River in Chad threaten the gains made by the GW Eradication Program. Infected dogs with preemergent worm blisters are difficult to proactively identify. If these dogs are not contained, blisters can burst upon submersion in water, leading to the contamination of the water supply with L1 larvae. Guinea worm antigens previously identified using sera from human dracunculiasis patients were coupled to polystyrene beads for multiplex bead assay analysis of 41 non-endemic (presumed negative) dog sera and 39 sera from GW-positive dogs from Chad. Because commercially available anti-dog IgG secondary antibodies did not perform well in the multiplex assay, dog IgGs were partially purified, and a new anti-dog IgG monoclonal antibody was developed. Using the new 4E3D9 monoclonal secondary antibody, the thioredoxin-like protein 1-glutathione-S-transferase (GST), heat shock protein (HSP1)-GST, and HSP2-GST antigen multiplex assays had sensitivities of 69-74% and specificities of 73-83%. The domain of unknown function protein 148 (DUF148)-GST antigen multiplex assay had a sensitivity of 89.7% and a specificity of 85.4%. When testing samples collected within 1 year of GW emergence (n = 20), the DUF148-GST assay had a sensitivity of 90.0% and a specificity of 97.6% with a receiver-operating characteristic area under the curve of 0.94. Using sera from two experimentally infected dogs, antibodies to GW antigens were detected within 6 months of exposure. Our results suggest that, when used to analyze paired, longitudinal samples collected 1-2 months apart, the DUF148/GST multiplex assay could identify infected dogs 4-8 months before GW emergence.
Collapse
Affiliation(s)
- Jeffrey W Priest
- 1Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Christopher A Cleveland
- 4Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Michael J Yabsley
- 4Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia.,5Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
| | | | - Sharon L Roy
- 7Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,8World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vitaliano Cama
- 7Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,8World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
21
|
te Kamp V, Friedrichs V, Freuling CM, Vos A, Potratz M, Klein A, Zaeck LM, Eggerbauer E, Schuster P, Kaiser C, Ortmann S, Kretzschmar A, Bobe K, Knittler MR, Dorhoi A, Finke S, Müller T. Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9010049. [PMID: 33466701 PMCID: PMC7828770 DOI: 10.3390/vaccines9010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
The live genetically-engineered oral rabies virus (RABV) variant SPBN GASGAS induces long-lasting immunity in foxes and protection against challenge with an otherwise lethal dose of RABV field strains both after experimental oral and parenteral routes of administration. Induction of RABV-specific binding antibodies and immunoglobulin isotypes (IgM, total IgG, IgG1, IgG2) were comparable in orally and parenterally vaccinated foxes. Differences were only observed in the induction of virus-neutralizing (VNA) titers, which were significantly higher in the parenterally vaccinated group. The dynamics of rabies-specific antibodies pre- and post-challenge (365 days post vaccination) suggest the predominance of type-1 immunity protection of SPBN GASGAS. Independent of the route of administration, in the absence of IgG1 the immune response to SPBN GAGAS was mainly IgG2 driven. Interestingly, vaccination with SPBN GASGAS does not cause significant differences in inducible IFN-γ production in vaccinated animals, indicating a relatively weak cellular immune response during challenge. Notably, the parenteral application of SPBN GASGAS did not induce any adverse side effects in foxes, thus supporting safety studies of this oral rabies vaccine in various species.
Collapse
Affiliation(s)
- Verena te Kamp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
- Boehringer Ingelheim GmbH, 55216 Ingelheim am Rhein, Germany
| | - Virginia Friedrichs
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (V.F.); (M.R.K.); (A.D.)
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Ad Vos
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Madlin Potratz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Antonia Klein
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
- Thüringer Landesamt für Verbraucherschutz, 99947 Bad Langensalza, Germany
| | - Peter Schuster
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Christian Kaiser
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Steffen Ortmann
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Antje Kretzschmar
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Katharina Bobe
- Ceva Innovation Center, 06861 Dessau-Rosslau, Germany; (A.V.); (P.S.); (C.K.); (S.O.); (A.K.); (K.B.)
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (V.F.); (M.R.K.); (A.D.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany; (V.F.); (M.R.K.); (A.D.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (V.t.K.); (C.M.F.); (M.P.); (A.K.); (L.M.Z.); (E.E.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71659
| |
Collapse
|
22
|
Abstract
Comparative oncology clinical trials play an important and growing role in cancer research and drug development efforts. These trials, typically conducted in companion (pet) dogs, allow assessment of novel anticancer agents and combination therapies in a veterinary clinical setting that supports serial biologic sample collections and exploration of dose, schedule and corresponding pharmacokinetic/pharmacodynamic relationships. Further, an intact immune system and natural co-evolution of tumour and microenvironment support exploration of novel immunotherapeutic strategies. Substantial improvements in our collective understanding of the molecular landscape of canine cancers have occurred in the past 10 years, facilitating translational research and supporting the inclusion of comparative studies in drug development. The value of the approach is demonstrated in various clinical trial settings, including single-agent or combination response rates, inhibition of metastatic progression and randomized comparison of multiple agents in a head-to-head fashion. Such comparative oncology studies have been purposefully included in the developmental plan for several US FDA-approved and up-and-coming anticancer drugs. Challenges for this field include keeping pace with technology and data dissemination/harmonization, improving annotation of the canine genome and immune system, and generation of canine-specific validated reagents to support integration of correlative biology within clinical trial efforts.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christina N Mazcko
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Infection of dogs by Leishmania infantum elicits a general response of IgG subclasses. Sci Rep 2020; 10:18826. [PMID: 33139752 PMCID: PMC7606601 DOI: 10.1038/s41598-020-75569-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis. In endemic areas, canine infections are considered the main source of infection for human populations. Therefore, any control of human leishmaniasis must include the control of canine infections. Chemotherapy of leishmaniasis is inadequate and canine immunoprophylaxis has important limitations. Reports on the response of infected dogs are abundant but no clear picture of immune events has emerged. To shed some light on these shortcomings the specific IgG subclass response was followed in 20 Beagle dogs experimentally infected with L. infantum using monoclonal antibodies (MAb) specific for canine IgG1, IgG2, IgG3 and IgG4, along with ELISA and flow cytometry. Results showed that parasitic infection elicits a general response of all IgG subclasses, with a predominant IgG1 response and without any evidence of IgG1/IgG2 dichotomy. These findings suggest that the inconsistent results reported previously could be related to the lack of specific reagents and not to the actual differences in the immune response of infected animals. Differential IgG subclass reactivity in ELISA and cytometry and the analysis of the reacting antigens could facilitate the diagnosis and prognosis of the disease and provide a useful tool for adequate therapeutics and vaccine development against leishmaniasis.
Collapse
|
24
|
A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci Rep 2020; 10:18311. [PMID: 33110170 PMCID: PMC7591904 DOI: 10.1038/s41598-020-75533-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition of programmed death 1 (PD-1), expressed on activated T cells, can break through immune resistance and elicit durable responses in human melanoma as well as other types of cancers. Canine oral malignant melanoma is one of the most aggressive tumors bearing poor prognosis due to its high metastatic potency. However, there are few effective treatments for the advanced stages of melanoma in veterinary medicine. Only one previous study indicated the potential of the immune checkpoint inhibitor, anti-canine PD-L1 therapeutic antibody in dogs, and no anti-canine PD-1 therapeutic antibodies are currently available. Here, we developed two therapeutic antibodies, rat-dog chimeric and caninized anti-canine PD-1 monoclonal antibodies and evaluated in vitro functionality for these antibodies. Moreover, we conducted a pilot study to determine their safety profiles and clinical efficacy in spontaneously occurring canine cancers. In conclusion, the anti-canine PD-1 monoclonal antibody was relatively safe and effective in dogs with advanced oral malignant melanoma and other cancers. Thus, our study suggests that PD-1 blockade may be an attractive treatment option in canine cancers.
Collapse
|
25
|
Pre-existing canine anti-IgG antibodies: implications for immunotherapy, immunogenicity testing and immunoassay analysis. Sci Rep 2020; 10:12696. [PMID: 32728049 PMCID: PMC7391631 DOI: 10.1038/s41598-020-69618-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
One of the most enigmatic features of humoral immunity is the prevalent presence of circulating autoantibodies against IgG. These autoantibodies consist of several subsets, including rheumatoid factors, anti-Fab/anti-F(ab′)2-autoantibodies, and anti-idiotypic antibodies. Anti-IgG autoantibodies can impair the safety and efficacy of therapeutic antibodies and interfere with immunogenicity tests in clinical trials. They can also cross-react with allospecific IgG, presenting as heterophilic antibodies that interfere with diagnostic immunoassays. Owing to these factors, recent years have seen a resurgent interest in anti-IgG autoantibodies, but their underlying clinical significance, as well as biological roles and origins, remain opaque. Increased knowledge about canine anti-IgG autoantibodies could facilitate the development of canine immunotherapies and help in understanding and counteracting immunoassay interference. This study investigated the clinical significance and interconnection of heterophilic antibodies, anti-Fab, and anti-F(ab′)2-autoantibodies in dogs. We performed a 2-year prospective follow-up of dogs with heterophilic antibodies and analyzed serum for anti-Fab and anti-F(ab′)2-autoantibodies. Canine heterophilic antibodies can persist for at least 2 years in serum. A widespread occurrence of anti-Fab and anti-F(ab′)2-autoantibodies was found, with reactivity to cryptic epitopes in the IgG hinge region and sporadic cross-reactivity with mouse IgG. Canine anti-Fab and anti-F(ab′)2-autoantibodies are thus potential sources of clinical immunogenicity and immunoassay interference.
Collapse
|
26
|
Generation of a canine anti-canine CD20 antibody for canine lymphoma treatment. Sci Rep 2020; 10:11476. [PMID: 32651429 PMCID: PMC7351721 DOI: 10.1038/s41598-020-68470-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphoma is the most common hematological cancer in dogs. Canine diffuse large B cell lymphoma shows a relatively good response to treatment with multi-agent cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy; however, the 2-year survival rate is as low as 20%. For human B cell type lymphoma, the anti-CD20 chimeric antibody, rituximab, was developed two decades ago. The combination of rituximab and CHOP chemotherapy was highly successful in improving patient prognosis. However, no anti-canine CD20 antibody is available for the treatment of canine lymphoma. During this study, a rat anti-canine CD20 monoclonal antibody was established. We also generated a rat-canine chimeric antibody against canine CD20 designed for clinical application. This chimeric antibody (4E1-7-B) showed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against the canine B cell lymphoma cell line CLBL-1. Moreover, to obtain stronger ADCC activity, a defucosylated 4E1-7-B antibody (4E1-7-B_f) was also generated, and it showed tenfold stronger ADCC activity compared with 4E1-7-B. 4E1-7-B_f as well as 4E1-7-B suppressed the growth of CLBL-1 tumors in an immunodeficient xenotransplant mouse model. Finally, a single administration of 4E1-7-B_f induced considerable peripheral B cell depletion in healthy beagles. Thus, 4E1-7-B_f is a good antibody drug candidate for canine B cell type lymphoma.
Collapse
|
27
|
Wong J, Tai CM, Hurt AC, Tan HX, Kent SJ, Wheatley AK. Sequencing B cell receptors from ferrets (Mustela putorius furo). PLoS One 2020; 15:e0233794. [PMID: 32470013 PMCID: PMC7259655 DOI: 10.1371/journal.pone.0233794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The domestic ferret (Mustela putorius furo) provides a critical animal model to study human respiratory diseases. However immunological insights are restricted due to a lack of ferret-specific reagents and limited genetic information about ferret B and T cell receptors. Here, variable, diversity and joining genes within the ferret kappa, lambda and heavy chain immunoglobulin loci were annotated using available genomic information. A multiplex PCR approach was derived that facilitated the recovery of paired heavy and light chain immunoglobulin sequences from single sorted ferret B cells, allowing validation of predicted germline gene sequences and the identification of putative novel germlines. Eukaryotic expression vectors were developed that enabled the generation of recombinant ferret monoclonal antibodies. This work advances the ferret as an informative immunological model for viral diseases by allowing the in-depth interrogation of antibody-based immunity.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celeste M. Tai
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Aeron C. Hurt
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AKW); (SJK)
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AKW); (SJK)
| |
Collapse
|
28
|
Coddou MF, Constantino-Casas F, Scase T, Day MJ, Blacklaws B, Watson PJ. Chronic Inflammatory Disease in the Pancreas, Kidney and Salivary Glands of English Cocker Spaniels and Dogs of Other Breeds Shows Similar Histological Features to Human IgG4-related Disease. J Comp Pathol 2020; 177:18-33. [PMID: 32505237 DOI: 10.1016/j.jcpa.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Chronic pancreatitis (CP) is a common disease in the English cocker spaniel (ECS) and is characterized histologically by duct destruction, interlobular fibrosis and dense periductular and perivenous lymphocytic aggregates. These features are also found in human autoimmune pancreatitis type 1, part of a glucocorticoid-responsive, multiorgan syndrome, newly recognized as IgG4-related disease (IgG4-RD). Human IgG4-RD affects one or several organs, often showing a predominance of IgG4+ plasma cells histologically, with an IgG4+:total IgG+ plasma cell ratio of >40%. This study investigated whether ECSs with CP and/or inflammatory disease in several organs show an increase in IgG4+ plasma cells within affected tissues. Histological sections of pancreas, liver, kidney, salivary gland and conjunctiva were obtained from ECSs with idiopathic chronic inflammatory disease affecting those tissues. Tissue samples from age-matched dogs of other breeds with similar diseases were also sampled. Control diseased tissue samples, from dogs without a suspected immune-mediated disease, were included. A subset of ECSs and dogs of other breeds presented with disease in more than one organ. Immunohistochemistry was performed with primary reagents detecting total IgG and three of the four canine IgG subclasses (IgG2, IgG3 and IgG4). Normal sections of pancreas and liver showed an absence of labelled plasma cells of any subclass. Normal kidney and salivary gland sections showed the presence of a few labelled plasma cells (<10 plasma cells/high-power field). Fourteen tissue sections from 12 ECSs and seven sections from six dogs of other breeds showed elevated numbers of IgG4+ plasma cells and IgG4+:IgG+ ratios >40%. Individual dogs (ECSs and other breeds) showed marked increases in IgG4+ cells. There were no significant differences in the number of IgG4+ plasma cells between ECSs and dogs of other breeds for affected pancreas, liver, salivary glands and conjunctiva. Kidney sections had more IgG4+ cells, for both ECSs and dogs of other breeds, than did sections from other organs. Dogs of other breeds had significantly more IgG4+ plasma cells in affected kidneys than ECSs. In conclusion, several ECSs and dogs of other breeds fulfilled the histological criteria for the diagnosis of IgG4-RD, supporting the existence of a multiorgan immune-mediated disease in ECSs and some dogs of other breeds.
Collapse
Affiliation(s)
- M F Coddou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - T Scase
- Bridge Pathology Ltd, Bristol, UK
| | - M J Day
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - B Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - P J Watson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Kato Y, Ito Y, Ohishi T, Kawada M, Nakamura T, Sayama Y, Sano M, Asano T, Yanaka M, Okamoto S, Handa S, Komatsu Y, Takei J, Kaneko MK. Antibody-Drug Conjugates Using Mouse-Canine Chimeric Anti-Dog Podoplanin Antibody Exerts Antitumor Activity in a Mouse Xenograft Model. Monoclon Antib Immunodiagn Immunother 2020; 39:37-44. [PMID: 32182186 PMCID: PMC7185362 DOI: 10.1089/mab.2020.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibody-drug conjugates (ADCs), which consist of a monoclonal antibody (mAb), a linker, and a payload, can deliver a drug to cancer tissues. We previously produced an anti-dog podoplanin (dPDPN) mAb, PMab-38, which reacts with dPDPN-expressing canine melanomas and squamous cell carcinomas (SCCs), but not with dPDPN-expressing canine type I alveolar cells or lymphatic endothelial cells, indicating that PMab-38 possesses cancer specificity. In this study, we developed an ADC, P38B-DM1, using the mouse-canine chimeric anti-dPDPN antibody, P38B as the antibody, a peptide linker, and emtansine as the payload using the chemical conjugation by affinity peptide (CCAP) method. We investigated its cytotoxicity against dPDPN-overexpressed Chinese hamster ovary (CHO/dPDPN) cells in vitro and its antitumor activity using a mouse xenograft model of CHO/dPDPN cells. P38B-DM1 showed cytotoxicity to CHO/dPDPN cells in a dose-dependent manner in vitro. Furthermore, P38B-DM1 exhibited higher antitumor activity than P38B in the mouse xenograft model. These results suggest that P38B-DM1, developed using the CCAP method, is useful for antibody therapy against dPDPN-expressing canine SCCs and melanomas.
Collapse
Affiliation(s)
- Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saki Okamoto
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Komatsu
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Etienne F, Berthaud M, Nguyen F, Bernardeau K, Maurel C, Bodet-Milin C, Diab M, Abadie J, Gouilleux-Gruart V, Vidal A, Bourgeois M, Chouin N, Ibisch C, Davodeau F. SPECT-CT Imaging of Dog Spontaneous Diffuse Large B-Cell Lymphoma Targeting CD22 for the Implementation of a Relevant Preclinical Model for Human. Front Oncol 2020; 10:20. [PMID: 32117707 PMCID: PMC7018706 DOI: 10.3389/fonc.2020.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Antibodies directed against CD22 have been used in radioimmunotherapy (RIT) clinical trials to treat patients with diffuse large B-cell lymphoma (DLBCL) with promising results. However, relevant preclinical models are needed to facilitate the evaluation and optimization of new protocols. Spontaneous DLBCL in dogs is a tumor model that may help accelerate the development of new methodologies and therapeutic strategies for RIT targeting CD22. Seven murine monoclonal antibodies specific for canine CD22 were produced by the hybridoma method and characterized. The antibodies' affinity and epitopic maps, their internalization capability and usefulness for diagnosis in immunohistochemistry were determined. Biodistribution and PET imaging on a mouse xenogeneic model of dog DLBCL was used to choose the most promising antibody for our purposes. PET-CT results confirmed biodistribution study observations and allowed tumor localization. The selected antibody, 10C6, was successfully used on a dog with spontaneous DLBCL for SPECT-CT imaging in the context of disease staging, validating its efficacy for diagnosis and the feasibility of future RIT assays. This first attempt at phenotypic imaging on dogs paves the way to implementing quantitative imaging methodologies that would be transposable to humans in a theranostic approach. Taking into account the feedback of existing human radioimmunotherapy clinical trials targeting CD22, animal trials are planned to investigate protocol improvements that are difficult to consider in humans due to ethical concerns.
Collapse
Affiliation(s)
- Floriane Etienne
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Nantes, France
| | - Maxime Berthaud
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Frédérique Nguyen
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Nantes, France
| | - Karine Bernardeau
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,P2R "Production de Protéines Recombinantes", CRCINA, SFR-Santé, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Catherine Maurel
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Caroline Bodet-Milin
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - Maya Diab
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Jérôme Abadie
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Nantes, France
| | | | - Aurélien Vidal
- Groupement d'Intérêt Public ARRONAX Cyclotron, Saint-Herblain, France
| | - Mickaël Bourgeois
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,Groupement d'Intérêt Public ARRONAX Cyclotron, Saint-Herblain, France
| | - Nicolas Chouin
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Nantes, France
| | - Catherine Ibisch
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Nantes, France
| | - François Davodeau
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| |
Collapse
|
31
|
Donaghy D, Moore AR. Identification of canine IgG and its subclasses, IgG1, IgG2, IgG3 and IgG4, by immunofixation and commercially available antisera. Vet Immunol Immunopathol 2020; 221:110014. [PMID: 32004910 DOI: 10.1016/j.vetimm.2020.110014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Immunofixation is a diagnostic and research tool used for characterizing the electrophoretic location of immunoglobulin fractions in serum and urine. Commercially available polyclonal antisera which discriminate two IgG subclasses (IgG1 and IgG2) are available and commonly used. More recently, four IgG subclasses have been defined in the dog based on cDNA data. Archived serum from 16 dogs with naturally occurring monoclonal or biclonal gammopathies were characterized using routine serum protein electrophoresis, routine immunofixation and LCMS/MS as 3 IgA, 3 IgM, 2 IgG2, 7 IgG3 and 2 IgG4 heavy chain predominant cases. Immunofixation reactivity of a panel of commercially available antisera to these cases was characterized. The anti-human IgG antisera was the only tested antisera which bound all canine IgG restricted bands without also labelling IgA or IgM heavy chains or light chains. The tested polyclonal antisera labeled as reacting with canine IgG2 bound canine IgG2, IgG3, IgA and IgM and may label IgG1. The tested polyclonal antisera labeled as reacting with canine IgG1 bound the canine IgG4 bands but not those identified as IgA, IgM, IgG2 or IgG3 and likely did not bind IgG1. This data suggests that commercially available polyclonal IgG1 antisera (Bethyl A40 - 120A and Bio-Rad AHP947) can be used to positively but possibly not selectively identify canine IgG4 by immunofixation.
Collapse
Affiliation(s)
- Dillon Donaghy
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - A Russell Moore
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
32
|
Dow S. A Role for Dogs in Advancing Cancer Immunotherapy Research. Front Immunol 2020; 10:2935. [PMID: 32010120 PMCID: PMC6979257 DOI: 10.3389/fimmu.2019.02935] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/29/2019] [Indexed: 12/27/2022] Open
Abstract
While rodent cancer models are essential for early proof-of-concept and mechanistic studies for immune therapies, these models have limitations with regards to predicting the ultimate effectiveness of new immunotherapies in humans. As a unique spontaneous, large animal model of cancer, the value of conducting studies in pet dogs with cancer has been increasingly recognized by the research community. This review will therefore summarize key aspects of the dog cancer immunotherapy model and the role that these studies may play in the overall immunotherapy drug research effort. We will focus on cancer types and settings in which the dog model is most likely to impact clinical immuno-oncology research and drug development. Immunological reagent availability is discussed, along with some unique opportunities and challenges associated with the dog immunotherapy model. Overall it is hoped that this review will increase awareness of the dog cancer immunotherapy model and stimulate additional collaborative studies to benefit both man and man's best friend.
Collapse
Affiliation(s)
- Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
33
|
Khantavee N, Chanthick C, Sookrung N, Prapasarakul N. Antibody levels to Malassezia pachydermatis and Staphylococcus pseudintermedius in atopic dogs and their relationship with lesion scores. Vet Dermatol 2019; 31:111-115. [PMID: 31696563 DOI: 10.1111/vde.12802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elevated immunoglobulin E (IgE) levels to Malassezia or Staphylococcus species in human atopic dermatitis are related to the skin severity index; a similar association has not been reported in atopic dogs. OBJECTIVES To investigate serum levels of allergen-specific IgE, total specific IgG and IgG subclasses (IgG1 and IgG2) for M. pachydermatis and S. pseudintermedius, and to correlate them with the severity of dermatitis in dogs. ANIMALS Serum samples were collected from dogs categorized by age and disease status. Groups 1 and 2: <3-year-old healthy (n = 9) and atopic dogs (n = 9), respectively; and groups 3 and 4: ≥3-year-old healthy (n = 11) and atopic dogs (n = 14), respectively. METHODS AND MATERIALS Antibody levels were measured by ELISA. The Canine Atopic Dermatitis Lesion Index (CADLI) was analyzed in relation to antibody levels. RESULTS Specific IgE and total IgG against M. pachydermatis and S. pseudintermedius were significantly increased in atopic dogs of all ages. Although differences between atopic and healthy dogs, with regard to specific IgG1 and IgG2 levels to each microbe, varied in significance within age groups. No significant relationships were found between the CADLI and any specific immunoglobulin levels for both microbe types. CONCLUSIONS AND CLINICAL IMPORTANCE In dog skin, microbes may act as allergens triggering inflammatory responses via IgE- and IgG-dependent pathway(s). The affinity of the IgG subclass produced may vary according to antigen type. Specific IgE levels may be related to clinical disease in dogs and not to skin lesion severity.
Collapse
Affiliation(s)
- Nathrada Khantavee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanettee Chanthick
- Dermatology Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, 50 Paholyothin Road, Ladyao, Chatuchuk, Bangkok, 10900, Thailand
| | - Nitat Sookrung
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok, 10700, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.,Diagnosis and Monitoring of Animal Pathogens Research Unit, Chulalongkorn University, 39 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
34
|
Wong J, Layton D, Wheatley AK, Kent SJ. Improving immunological insights into the ferret model of human viral infectious disease. Influenza Other Respir Viruses 2019; 13:535-546. [PMID: 31583825 PMCID: PMC6800307 DOI: 10.1111/irv.12687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ferrets are a well-established model for studying both the pathogenesis and transmission of human respiratory viruses and evaluation of antiviral vaccines. Advanced immunological studies would add substantial value to the ferret models of disease but are hindered by the low number of ferret-reactive reagents available for flow cytometry and immunohistochemistry. Nevertheless, progress has been made to understand immune responses in the ferret model with a limited set of ferret-specific reagents and assays. This review examines current immunological insights gained from the ferret model across relevant human respiratory diseases, with a focus on influenza viruses. We highlight key knowledge gaps that need to be bridged to advance the utility of ferrets for immunological studies.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Daniel Layton
- CSIRO Health and BiosecurityAustralian Animal Health LaboratoriesGeelongVic.Australia
| | - Adam K. Wheatley
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Stephen J. Kent
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- ARC Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
35
|
Colopy LJ, Shiu KB, Snyder LA, Avery AC, Rout ED, Moore AR. Immunoglobulin G4-related disease in a dog. J Vet Intern Med 2019; 33:2732-2738. [PMID: 31654456 PMCID: PMC6872619 DOI: 10.1111/jvim.15624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin G4-related disease (IgG4-RD), which affects many organ systems, has been recognized as a distinct clinical entity in human medicine for just over a decade but has not been previously identified in dogs. In humans, IgG4-RD is characterized by diffuse IgG4-positive lymphoplasmacytic infiltrates that commonly lead to increased serum concentrations of IgG4 and IgE, peripheral eosinophilia, tumorous swellings that often include the parotid salivary glands, obliterative phlebitis, and extensive fibrosis. Herein we describe the diagnosis, clinical progression, and successful treatment of IgG4-RD in an 8-year-old female spayed Husky mixed breed dog. Immunoglobulin G4-related disease should be considered as a differential diagnosis for dogs with vague clinical signs, lymphoplasmacytic swellings, restricted polyclonal gammopathy, eosinophilia or some combination of these findings.
Collapse
Affiliation(s)
- Lydia J Colopy
- Veterinary Emergency Service, Veterinary Specialty Center, Middleton, Wisconsin
| | - Kai-Biu Shiu
- Veterinary Emergency Service, Veterinary Specialty Center, Middleton, Wisconsin
| | - Laura A Snyder
- Veterinary Services, Marshfield Labs, Marshfield, Wisconsin
| | - Anne C Avery
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, Colorado
| | - Emily D Rout
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, Colorado
| | - A R Moore
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
36
|
Kim Y, Lee SH, Kim CJ, Lee JJ, Yu D, Ahn S, Shin DJ, Kim SK. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells. BMC Vet Res 2019; 15:339. [PMID: 31610784 PMCID: PMC6790994 DOI: 10.1186/s12917-019-2068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background The antibody-dependent cellular cytotoxicity (ADCC) is a cell-mediated immune defense mechanism in which effector immune cells actively lyse antibody-coated target cells. The ADCC of tumor cells is employed in the treatment of various cancers overexpressing unique antigens, and only natural killer (NK) cells are known to be major effectors of antibody mediated ADCC activity. Canine NK cells are still defined as non-B, non-T large granular lymphocytes because of the lack of information regarding the NK cell-restricted specific marker in dogs, and it has never been demonstrated that canine NK cells have ADCC ability against tumor cells. In the present study, we investigated whether canine non-B, non-T NK cells have ADCC ability against target antibody-coated tumor cells, using cetuximab and trastuzumab, the only human antibodies reported binding to canine cancer cells. Results Activated canine non-B, non-T NK cells (CD3−CD21−CD5−TCRαβ−TCRγδ−) for 13~17 days ex vivo showed ADCC ability against trastuzumab- or cetuximab-coated target tumor cells expressing various levels of human epidermal growth factor receptor 2 (HER-2) and epidermal growth factor receptor (EGFR). Trastuzumab and cetuximab induced significant ADCC responses of canine NK cells even in CMT-U334 and CF41.Mg cells expressing low levels of HER-2 and/or EGFR, as well as in SKBR3 and DU145 cells overexpressing HER-2 and/or EGFR. The trastuzumab-mediated ADCC activity of NK cells was significantly enhanced by treatment with rcIL-21. Conclusions The results of this study suggest that canine non-B, non-T NK lymphocytes have a potential ADCC function and that combinational strategies of monoclonal antibodies with either cytokines, which activate NK cells in vivo, or adoptive transfer of NK cells may be a feasible method for amplifying the efficacy of immunotherapy against malignant cancers even with very low expression of target molecules in dogs. Electronic supplementary material The online version of this article (10.1186/s12917-019-2068-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoseop Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.,Present Address: Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jellanamdo, Republic of Korea
| | - Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.,Present Address: CHABiolab Co.,Ltd, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Cheol-Jung Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea
| | - Je-Jung Lee
- Department of Hemotology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Dohyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Soomin Ahn
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong-Jun Shin
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea. .,Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea. .,Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, 32439, Republic of Korea.
| |
Collapse
|
37
|
Rossa C, D'Silva NJ. Non-murine models to investigate tumor-immune interactions in head and neck cancer. Oncogene 2019; 38:4902-4914. [PMID: 30872793 PMCID: PMC6586515 DOI: 10.1038/s41388-019-0776-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
The immune response has important roles in the biology of solid tumors, including oncogenesis, tumor growth, invasion and metastasis, and response to treatment. Improved understanding of tumor-immune system interactions has provided promising therapeutic options that are based on the rescue and enhancement of the anti-tumoral host response. Immune-based treatments have been approved for clinical use in various types of cancer, including head and neck cancer (HNC); other strategies involving combination therapies are currently in development. These novel therapies were developed based on knowledge derived from in vitro, in silico, and in vivo pre-clinical studies. However, clinical trials seldom replicate the efficacy observed in pre-clinical animal studies. This lack of correlation between pre-clinical studies and clinical trials may be related to limitations of the models used; which highlights the relevance of considering immune-related aspects of different pre-clinical models. Murine models are the most frequently used pre-clinical models of HNC and are discussed elsewhere. Non-murine models have characteristics that offer unique opportunities for the study of HNC etiology, therapeutic strategies, and tumor-immune system interactions. The current review focuses on immune-related aspects of non-murine models, including dog, cat, pig, zebrafish, and frog, that could be used to investigate tumor-immune interactions in HNC.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, UNESP-State University of Sao Paulo, School of Dentistry at Araraquara, Araraquara, SP, Brazil. .,Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA. .,Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Tabrizi M, Neupane D, Elie SE, Shankaran H, Juan V, Zhang S, Hseih S, Fayadat-Dilman L, Zhang D, Song Y, Ganti V, Judo M, Spellman D, Seghezzi W, Escandon E. Pharmacokinetic Properties of Humanized IgG1 and IgG4 Antibodies in Preclinical Species: Translational Evaluation. AAPS JOURNAL 2019; 21:39. [PMID: 30868312 DOI: 10.1208/s12248-019-0304-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Assessment of the factors that regulate antibody exposure-response relationships in the relevant animal models is critical for the design of successful translational strategies from discovery to the clinic. Depending on the specific clinical indication, preclinical development paradigms may require that the efficacy or dosing-related attributes for the existing antibody be assessed in various species when cross-reactivity of the lead antibody to the intended species is justified. Additionally, with the success of monoclonal antibodies for management of various human conditions, a parallel interest in therapeutic use of these novel modalities in various veterinary species has followed. The protective role of neonatal Fc receptor (FcRn) in regulation of IgG homeostasis and clearance is now well recognized and the "nonspecific clearance" of antibodies through bone marrow-derived phagocytic and vascular endothelial cells (via lysosomal processes) is modulated by interactions with FcRn receptors. In this study, we have attempted to examine the PK properties of human IgG antibodies in dog and monkey. These studies establish a translational framework for evaluation of IgG antibody PK properties across species.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Zhang
- Merck & Co., Inc, Palo Alto, California, USA
| | | | | | | | - Yaoli Song
- Merck & Co., Inc, Palo Alto, California, USA
| | | | | | | | | | | |
Collapse
|
39
|
Fan TM, Selting KA. Exploring the Potential Utility of Pet Dogs With Cancer for Studying Radiation-Induced Immunogenic Cell Death Strategies. Front Oncol 2019; 8:680. [PMID: 30697532 PMCID: PMC6340932 DOI: 10.3389/fonc.2018.00680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy serves as a foundational pillar for the therapeutic management of diverse solid tumors through the generation of lethal DNA damage and induction of cell death. While the direct cytotoxic effects of radiation therapy remain a cornerstone for cancer management, in the era of immunooncology there is renewed and focused interest in exploiting the indirect bystander activities of radiation, termed abscopal effects. In radioimmunobiologic terms, abscopal effects describe the radiotherapy-induced regression of cancerous lesions distant from the primary site of radiation delivery and rely upon the induction of immunogenic cell death and consequent systemic anticancer immune activation. Despite the promise of radiation therapy for awaking potent anticancer immune responses, the purposeful harnessing of abscopal effects with radiotherapy remain clinically elusive. In part, failure to fully leverage and clinically implement the promise of radiation-induced abscopal effects stems from limitations associated with existing conventional tumor models which inadequately recapitulate the complexity of malignant transformation and the dynamic nature of tumor immune surveillance. To supplement this existing gap in modeling systems, pet dogs diagnosed with solid tumors including melanoma and osteosarcoma, which are both metastatic and immunogenic in nature, could potentially serve as unique resources for exploring the fundamental underpinnings required for maximizing radiation-induced abscopal effects. Given the spontaneous course of cancer development in the context of operative immune mechanisms, pet dogs treated with radiotherapy for metastatic solid tumors might be leveraged as valuable model systems for realizing the science and best clinical practices necessary to generate potent abscopal effects with anti-metastatic immune activities.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| | - Kimberly A Selting
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| |
Collapse
|
40
|
Kato Y, Mizuno T, Yamada S, Nakamura T, Itai S, Yanaka M, Sano M, Kaneko MK. Establishment of P38Bf, a Core-Fucose-Deficient Mouse-Canine Chimeric Antibody Against Dog Podoplanin. Monoclon Antib Immunodiagn Immunother 2019; 37:218-223. [PMID: 30362926 PMCID: PMC6208159 DOI: 10.1089/mab.2018.0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Podoplanin (PDPN), a type I transmembrane sialoglycoprotein, is expressed in normal tissues, including lymphatic endothelial cells, pulmonary type I alveolar cells, and renal podocytes. The overexpression of PDPN in cancers is associated with hematogenous metastasis by interactions with the C-type lectin-like receptor 2 (CLEC-2). We have previously reported the development of a mouse monoclonal antibody (mAb) clone, PMab-38 (IgG1, kappa), against dog PDPN (dPDPN). PMab-38 reacted strongly with canine squamous cell carcinomas and melanomas, but not with lymphatic endothelial cells, indicating its cancer specificity. In this study, we developed and produced several mouse-canine chimeric antibodies originating from PMab-38. A mouse-canine chimeric antibody of subclass A (P38A) and a mouse-canine chimeric antibody of subclass B (P38B) were transiently produced using ExpiCHO-S cells. Core-fucose-deficient P38B (P38Bf) was developed using FUT8 knockout ExpiCHO-S cells. We compared the binding affinities, antibody-dependent cellular cytotoxicity (ADCC), and complement-dependent cytotoxicity (CDC) of P38A, P38B, and P38Bf against Chinese hamster ovary (CHO)/dPDPN cells. Flow cytometry analysis showed that the KD of P38A, P38B, and P38Bf were 1.9 × 10−7, 5.2 × 10−9, and 6.5 × 10−9, respectively. Both P38B and P38Bf revealed high ADCC activities against CHO/dPDPN cells; P38Bf demonstrated significantly higher ADCC compared with P38B, especially at low concentrations. P38B and P38Bf exhibited higher CDC activities against CHO/dPDPN cells. Conversely, P38A did not exhibit any ADCC or CDC activity. In summary, P38Bf is a good candidate for antibody therapy against dPDPN-expressing canine cancers.
Collapse
Affiliation(s)
- Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan .,2 New Industry Creation Hatchery Center, Tohoku University , Sendai, Japan
| | - Takuya Mizuno
- 3 Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University , Yamaguchi, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Takuro Nakamura
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Miyuki Yanaka
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Masato Sano
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
41
|
Cellular Immunotherapy of Canine Cancer. Vet Sci 2018; 5:vetsci5040100. [PMID: 30563208 PMCID: PMC6313932 DOI: 10.3390/vetsci5040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/11/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Infusions with immune cells, such as lymphocytes or natural killer (NK) cells, represent one of several modalities of immunotherapy. In human patients with advanced B-cell leukemia or lymphoma, infusions with chimeric antigen receptor (CAR) T-lymphocytes have shown promising responses. However, the scientific and clinical development of cell-based therapies for dogs, who get cancer of similar types as humans, is lagging behind. One reason is that immune cells and their functionality in dogs are less well characterized, largely due a lack of canine-specific reagents to detect surface markers, and specific cytokines to isolate and expand their immune cells. This review summarizes the current status of canine cancer immunotherapies, with focus on autologous and allogeneic T-lymphocytes, as well as NK cells, and discusses potential initiatives that would allow therapies with canine immune cells to “catch up” with the advances in humans.
Collapse
|
42
|
Kato Y, Ohishi T, Kawada M, Maekawa N, Konnai S, Itai S, Yamada S, Kaneko MK. The mouse-canine chimeric anti-dog podoplanin antibody P38B exerts antitumor activity in mouse xenograft models. Biochem Biophys Rep 2018; 17:23-26. [PMID: 30519645 PMCID: PMC6260363 DOI: 10.1016/j.bbrep.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Podoplanin (PDPN) is a type I transmembrane heavily glycosylated sialoglycoprotein that is expressed in normal tissues such as pulmonary type I alveolar cells, renal podocytes, and lymphatic endothelial cells. PDPN overexpression in cancerous tissue is associated with hematogenous metastasis through interactions with the C-type lectin-like receptor 2 (CLEC-2). Previously, we have reported the development of a mouse monoclonal antibody (mAb), PMab-38 (IgG1, kappa) against dog PDPN (dPDPN). PMab-38 was found to strongly react with canine squamous cell carcinomas (SCCs) and melanomas; however, it showed no reaction with lymphatic endothelial cells. Recently, we have developed and produced the mouse–canine mAb of subclass B, P38B that showed antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against Chinese hamster ovary (CHO)/dPDPN cells. In the present study, we investigated the antitumor activity using mouse xenograft model. To induce ADCC activity by P38B, canine mononuclear cells were injected surrounding the tumors in a xenograft model. It was demonstrated that P38B exerted antitumor activity against the mouse xenograft model using CHO/dPDPN. These results suggest that P38B is useful for antibody therapy against dPDPN-expressing canine SCCs and melanomas. Dog PDPN is expressed in canine squamous cell carcinomas and melanomas. A mouse-canine mAb of canine subclass B, P38B against dog PDPN was produced. P38B exerted antitumor activities via ADCC and CDC. P38B could be useful for antibody therapy against dPDPN-expressing canine tumors.
Collapse
Affiliation(s)
- Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
43
|
Grosenbaugh DA, De Luca K, Durand PY, Feilmeier B, DeWitt K, Sigoillot-Claude C, Sajous ML, Day MJ, David F. Characterization of recombinant OspA in two different Borrelia vaccines with respect to immunological response and its relationship to functional parameters. BMC Vet Res 2018; 14:312. [PMID: 30326885 PMCID: PMC6191903 DOI: 10.1186/s12917-018-1625-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background Prevention of Lyme disease in dogs in North America depends on effective vaccination against infection by the tick vector-born spirochete Borrelia burgdorferi. Most vaccines effectively prevent spirochete transmission to dogs during tick feeding based on immunization with the outer-surface lipoprotein A (OspA) of B. burgdorferi. More recently, vaccines containing additional OspC protein moieties have been introduced. These are designed to enhance protection by forming a second line of defense within the vertebrate host, where OspC expression replaces OspA as the dominant surface antigen. However, supportive data for demonstration of OspC mediated protection is still lacking. Since OspA immunogenicity is of paramount importance to protection against spirochete transmission; this study was designed to compare the immunogenicity of two commercially available vaccines against the Borrelia burgdorferi OspA. We further characterized OspA antigen fractions of these vaccines with respect to their biochemical and biophysical properties. Results Two groups of beagle dogs (n = 9) were administered either: (1) a nonadjuvanted/monovalent, recombinant OspA vaccine (Recombitek® Lyme) or (2) an adjuvanted, recombinant OspA /OspC chimeric fusion vaccine (Vanguard® crLyme). The onset of the anti-OspA antibody response elicited by the nonadjuvanted/monovalent OspA vaccine was significantly earlier than that for the bivalent OspA /OspC vaccine and serum borreliacidal activity was significantly greater at all post-vaccination time points. As expected, only dogs inoculated with the bivalent OspA/OspC vaccine mounted a humoral anti-OspC response. However, only three out of nine dogs in that group had a positive response. Comparison of the OspA vaccine structures revealed that the OspA in the nonadjuvanted/monovalent vaccine was primarily in the lipidated form, eluting (SEC-HPLC) at a high molecular weight, suggestive of micelle formation. Conversely, the OspA moiety of the OspA/OspC vaccine was found to be nonlipidated and eluted as the monomeric protein. Conclusions We hypothesize that these structural differences may account for the superior immunogenicity of the nonadjuvanted monovalent recombinant OspA vaccine in dogs over the adjuvanted OspA fraction of the OspA/OspC vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael J Day
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | |
Collapse
|
44
|
Mueller RS, Jensen‐Jarolim E, Roth‐Walter F, Marti E, Janda J, Seida AA, DeBoer D. Allergen immunotherapy in people, dogs, cats and horses - differences, similarities and research needs. Allergy 2018; 73:1989-1999. [PMID: 29675865 DOI: 10.1111/all.13464] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
Abstract
In human patients with seasonal allergic rhinoconjunctivitis sensitized to grass pollen, the first successful allergen immunotherapy (AIT) was reported in 1911. Today, immunotherapy is an accepted treatment for allergic asthma, allergic rhinitis and hypersensitivities to insect venom. AIT is also used for atopic dermatitis and recently for food allergy. Subcutaneous, epicutaneous, intralymphatic, oral and sublingual protocols of AIT exist. In animals, most data are available in dogs where subcutaneous AIT is an accepted treatment for atopic dermatitis. Initiating a regulatory response and a production of "blocking" IgG antibodies with AIT are similar mechanisms in human beings and dogs with allergic diseases. Although subcutaneous immunotherapy is used for atopic dermatitis in cats, data for its efficacy are sparse. There is some evidence for successful treatment of feline asthma with AIT. In horses, most studies evaluate the effect of AIT on insect hypersensitivity with conflicting results although promising pilot studies have demonstrated the prophylaxis of insect hypersensitivity with recombinant antigens of biting midges (Culicoides spp.). Optimizing AIT using allergoids, peptide immunotherapy, recombinant allergens and new adjuvants with the different administration types of allergen extracts will further improve compliance and efficacy of this proven treatment modality.
Collapse
Affiliation(s)
- R. S. Mueller
- Centre for Clinical Veterinary Medicine LMU Munich Munich Germany
| | - E. Jensen‐Jarolim
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology Infectiology and Immunology, Medical University Vienna Austria
| | - F. Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health University of Bern Bern Switzerland
| | - J. Janda
- Faculty of Science Charles University Prague Czech Republic
| | - A. A. Seida
- Immunology and Microbiology Department Faculty of Veterinary Medicine Cairo University Giza Egypt
| | - D. DeBoer
- School of Veterinary Medicine University of Wisconsin Madison WI USA
| |
Collapse
|
45
|
Shropshire S, Olver C, Lappin M. Characteristics of hemostasis during experimental Ehrlichia canis infection. J Vet Intern Med 2018; 32:1334-1342. [PMID: 29704268 PMCID: PMC6060328 DOI: 10.1111/jvim.15130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/09/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background Ehrlichia canis infection in dogs can cause thrombocytopenia and clinical evidence of bleeding. It is unknown why some dogs show signs of bleeding whereas others do not despite clinically relevant thrombocytopenia. Hypothesis/Objectives Activated platelets, decreased fibrinolysis or both mitigate bleeding tendency. Assess standard hemostatic variables, platelet dynamics, and specialized coagulation testing in dogs experimentally infected with E. canis to evaluate this clinical discrepancy. Animals Four healthy laboratory beagles. Methods Dogs were given blood infected with E. canis IV. Platelet indices of activation, platelet aggregometry, antiplatelet antibodies (percent IgG), complete coagulation panel, and thromboelastography (TEG) were measured before inoculation and on weeks 1‐8. Dogs were treated with doxycycline at approximately 5 mg/kg PO q12h between weeks 3 and 4 (day 24). For each variable, 1‐way repeated measures analysis (1‐way ANOVA) with post‐hoc analysis was performed with statistical significance set at P < .05. Results Dogs had significantly lower platelet counts, evidence of activated platelets, and antiplatelet antibodies during E. canis infection. Dogs also appeared hypercoagulable and hypofibrinolytic using TEG as compared with baseline, changes that persisted for variable amounts of time after doxycycline administration. No overt signs of bleeding were noted during the study. Conclusions and Clinical Importance Activated platelets and a hypercoagulable, hypofibrinolytic state could explain the lack of a bleeding phenotype in some dogs despite clinically relevant thrombocytopenia. Findings from our pilot study indicate that additional studies are warranted.
Collapse
Affiliation(s)
- Sarah Shropshire
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, CO
| | - Christine Olver
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, CO
| | - Michael Lappin
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, CO
| |
Collapse
|
46
|
Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F, Riccardo F. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs' Revolution for Immunotherapy. Int J Mol Sci 2018. [PMID: 29534457 PMCID: PMC5877660 DOI: 10.3390/ijms19030799] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Buracco
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
47
|
Klingemann H. Immunotherapy for Dogs: Running Behind Humans. Front Immunol 2018; 9:133. [PMID: 29459862 PMCID: PMC5807660 DOI: 10.3389/fimmu.2018.00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
A number of excellent reviews on the potential of canine cancer immunotherapy are available, but many extrapolate from observations in humans when in fact only very few immunotherapies have been developed for canines that have shown efficacy in well-designed studies. Pharmaceutical and biotech companies are aware that the market for more expensive immunotherapies in canines is limited resulting in limited funding for clinical trials. However, dogs and other pets deserve access to this new form of cancer therapy. The purpose of this brief review is to summarize the current status of available immunotherapies for dogs and their near-term prospects, provided we can effectively translate discoveries and progress in humans to canines.
Collapse
|
48
|
A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci Rep 2017; 7:8951. [PMID: 28827658 PMCID: PMC5567082 DOI: 10.1038/s41598-017-09444-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy targeting immune checkpoint molecules, programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), using therapeutic antibodies has been widely used for some human malignancies in the last 5 years. A costimulatory receptor, PD-1, is expressed on T cells and suppresses effector functions when it binds to its ligand, PD-L1. Aberrant PD-L1 expression is reported in various human cancers and is considered an immune escape mechanism. Antibodies blocking the PD-1/PD-L1 axis induce antitumour responses in patients with malignant melanoma and other cancers. In dogs, no such clinical studies have been performed to date because of the lack of therapeutic antibodies that can be used in dogs. In this study, the immunomodulatory effects of c4G12, a canine-chimerised anti-PD-L1 monoclonal antibody, were evaluated in vitro, demonstrating significantly enhanced cytokine production and proliferation of dog peripheral blood mononuclear cells. A pilot clinical study was performed on seven dogs with oral malignant melanoma (OMM) and two with undifferentiated sarcoma. Objective antitumour responses were observed in one dog with OMM (14.3%, 1/7) and one with undifferentiated sarcoma (50.0%, 1/2) when c4G12 was given at 2 or 5 mg/kg, every 2 weeks. c4G12 could be a safe and effective treatment option for canine cancers.
Collapse
|
49
|
DeBoer DJ. The future of immunotherapy for canine atopic dermatitis: a review. Vet Dermatol 2017; 28:25-e6. [PMID: 28133873 DOI: 10.1111/vde.12416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 01/20/2023]
Abstract
Allergen specific immunotherapy (ASIT) is a foundation treatment for canine atopic dermatitis (CAD), though few critical studies have documented its effectiveness as a disease-modifying treatment in dogs. The mechanisms by which ASIT works in dogs have not been elucidated, although they are likely to parallel those known for humans. Current ASIT approaches in CAD focus on either subcutaneous or sublingual administration. Greater knowledge of major allergens in dogs, ideal dosage regimes and details of allergen admixture are likely to lead to better efficacy in CAD. Evaluation of biomarkers for successful therapy may also be of benefit. Potentially important advances in human medicine, that have yet to be explored in dogs, include use of modified allergen preparations such as allergoids, recombinant major allergens or allergen peptides; modification with adjuvants; or packaging of the above in virus-like particles. Co-administration of immunomodulators such as CpG oligodeoxynucleotides or specific monoclonal antibodies might direct the immune response in the desired direction while calming the "cytokine storm" of active disease. Initial trials of alternative routes of administration such as intralymphatic immunotherapy have yielded exciting results in humans, and continuing study in dogs is underway. Progress in ASIT of human food allergy may provide clues that will assist with improved diagnosis and patient management of CAD. Importantly, further study must be undertaken to clarify the conditions under which ASIT is a valuable treatment modality for dogs.
Collapse
Affiliation(s)
- Douglas J DeBoer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
50
|
Park JS, Withers SS, Modiano JF, Kent MS, Chen M, Luna JI, Culp WTN, Sparger EE, Rebhun RB, Monjazeb AM, Murphy WJ, Canter RJ. Canine cancer immunotherapy studies: linking mouse and human. J Immunother Cancer 2016; 4:97. [PMID: 28031824 PMCID: PMC5171656 DOI: 10.1186/s40425-016-0200-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Despite recent major clinical breakthroughs in human cancer immunotherapy including the use of checkpoint inhibitors and engineered T cells, important challenges remain, including determining the sub-populations of patients who will respond and who will experience at times significant toxicities. Although advances in cancer immunotherapy depend on preclinical testing, the majority of in-vivo testing currently relies on genetically identical inbred mouse models which, while offering critical insights regarding efficacy and mechanism of action, also vastly underrepresent the heterogeneity and complex interplay of human immune cells and cancers. Additionally, laboratory mice uncommonly develop spontaneous tumors, are housed under specific-pathogen free conditions which markedly impacts immune development, and incompletely model key aspects of the tumor/immune microenvironment. The canine model represents a powerful tool in cancer immunotherapy research as an important link between murine models and human clinical studies. Dogs represent an attractive outbred combination of companion animals that experience spontaneous cancer development in the setting of an intact immune system. This allows for study of complex immune interactions during the course of treatment while also directly addressing long-term efficacy and toxicity of cancer immunotherapies. However, immune dissection requires access to robust and validated immune assays and reagents as well as appropriate numbers for statistical evaluation. Canine studies will need further optimization of these important mechanistic tools for this model to fulfill its promise as a model for immunotherapy. This review aims to discuss the canine model in the context of existing preclinical cancer immunotherapy models to evaluate both its advantages and limitations, as well as highlighting its growth as a powerful tool in the burgeoning field of both human and veterinary immunotherapy.
Collapse
Affiliation(s)
- Jiwon S Park
- Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Sita S Withers
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Animal Cancer Care and Research Center, Center for Immunology, Masonic Cancer Center, and Stem Cell Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Michael S Kent
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - Jesus I Luna
- Laboratory of Cancer Immunology, Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - William T N Culp
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Ellen E Sparger
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Robert B Rebhun
- The Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA 95817 USA
| | - William J Murphy
- Dermatology and Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817 USA.,Department of Dermatology, Department of Internal Medicine, Division of Hematology/Oncology, School of Medicine, University of California, Davis, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA 95817 USA
| |
Collapse
|