1
|
Gharbi Z, Ouni A, Balti G, Bouattour A, Chabchoub A, M'ghirbi Y. First Evidence of Rickettsia conorii Infection in Dogs in Northern Tunisia. Vet Sci 2024; 11:402. [PMID: 39330781 PMCID: PMC11435778 DOI: 10.3390/vetsci11090402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024] Open
Abstract
A cross-sectional study was carried out, between April 2021 and June 2022, to understand the role of dogs in the circulation of rickettsiosis in Tunisia. The presence of specific IgG antibodies against Rickettsia conorii was analyzed by indirect immunofluorescence test. By qPCR, blood and ticks were collected from 136 dogs examined at the Canine Department of National School for Veterinary Medicine of Tunisia. These dogs were also analyzed to detect Rickettsia DNA. The rate of Rickettsia seropositivity in 136 dogs was 55.14%. A total of 51 (53%) seropositive dogs showed clinical and biological signs such as fever and anorexia as well as thrombocytopenia and anemia. By qPCR, targeting the mitochondrial 16S rRNA gene, no Rickettsia DNA was detected in the blood. On the other hand, qPCR followed by sequencing revealed the presence of R. conorii subsp. raoultii in 7 tick pools of the 51 pools composed of the 227 ticks collected. A One Health approach to raise the awareness of dog owners to control tick infestations is imperative, given the dangers of canine zoonoses.
Collapse
Affiliation(s)
- Zeyneb Gharbi
- National School of Veterinary Medicine, Institution of Agricultural Research and Higher Education, University of Manouba, Sidi Thabet 2020, Tunisia
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Ouni
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ghofrane Balti
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ali Bouattour
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Chabchoub
- National School of Veterinary Medicine, Institution of Agricultural Research and Higher Education, University of Manouba, Sidi Thabet 2020, Tunisia
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Youmna M'ghirbi
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
2
|
Do T, Bui LK, Umemiya-Shirafuji R, Inpankaew T, Hasan T, Zafar I, Ma Z, Hang L, Mohanta UK, Amer M, El-Sayed SAES, Xuan X, Kamyingkird K. The detection of zoonotic microorganisms in Rhipicephalus sanguineus (brown dog ticks) from Vietnam and the frequency of tick infestations in owned dogs. Front Vet Sci 2024; 11:1435441. [PMID: 39188899 PMCID: PMC11346341 DOI: 10.3389/fvets.2024.1435441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Dog owners are greatly concerned about tick infestations in their pets. The prevalence and dispersion of ticks and their disease-causing microorganisms have been limited from the viewpoint of dog owners in Vietnam. This study investigated the presence of tick infestation and the pathogens associated with it in canines that were brought to veterinary hospitals in Vietnam. In the survey, 1,423 dogs participated from February to October 2022. Molecular and morphological methods were utilized to identify ticks and the associated pathogens. In addition,risk variables linked to tick infestation were documented and analyzed using statistical methods. The total exposure to the brown dog tick (Rhipicephalus sanguineus sensu lato) was 29.01%. Nam Dinh has the highest tick prevalence among the research areas. Tick infestation reached its highest point between June and September in the northern region of the country, with distinct seasons showing a strong correlation with tick infestation in dogs. Out of 177 tick pools examined, 146(82.49%) tested positive for at least one infection. Mycoplasma spp. (78.53%) was the most common, followed by Anaplasma spp. (37.29%), Rickettsia felis (5.08%), Babesia vogeli, and Hepatozoon canis (2.82%). In the current study, there was a statistically significant link between tick infestation and characteristics such as age, breed, body size, lifestyle, and bathing frequency. Understanding the seasonal behavior of vector ticks is crucial for identifying individuals or animals susceptible to tick-borne diseases. Studying the distribution of ticks and their ability to carry and disseminate zoonotic germs in specific places could assist veterinarians and policymakers in implementing effective strategies to manage zoonotic infections.
Collapse
Affiliation(s)
- Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Linh Khanh Bui
- Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Li Hang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Moaz Amer
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
LeVine DN, Kidd L, Garden OA, Brooks MB, Goggs R, Kohn B, Mackin AJ, Eldermire ERB, Chang Y, Allen J, Christopherson PW, Glanemann B, Maruyama H, Naskou MC, Nielsen LN, Shropshire S, Viall AK, Birkenheuer AJ, Forman MA, Hanzlicek AS, Langner KF, Lashnits E, Lunn KF, Makielski KM, Roura X, Spada E. ACVIM consensus statement on the diagnosis of immune thrombocytopenia in dogs and cats. J Vet Intern Med 2024; 38:1958-1981. [PMID: 38752421 PMCID: PMC11256148 DOI: 10.1111/jvim.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 07/19/2024] Open
Abstract
Immune thrombocytopenia (ITP) is the most common acquired primary hemostatic disorder in dogs. Immune thrombocytopenia less commonly affects cats but is an important cause of mortality and treatment-associated morbidity in both species. Immune thrombocytopenia remains a diagnosis of exclusion for which diagnostic guidelines are lacking. Primary, or non-associative, ITP refers to autoimmune platelet destruction. Secondary, or associative, ITP arises in response to an underlying disease trigger. However, evidence for which comorbidities serve as ITP triggers has not been systematically evaluated. To identify key diagnostic steps for ITP and important comorbidities associated with secondary ITP, we developed 12 Population Evaluation/Exposure Comparison Outcome (PECO) format questions. These questions were addressed by evidence evaluators utilizing a literature pool of 287 articles identified by the panelists using a structured search strategy. Evidence evaluators, using panel-designed templates and data extraction tools, summarized evidence and created guideline recommendations that then were integrated by diagnosis and comorbidity domain chairs. The revised PECO responses underwent a Delphi survey process to reach consensus on final guidelines. A combination of panel expertise and PECO responses were employed to develop algorithms for diagnosis of ITP in dogs and cats, which also underwent 4 iterations of Delphi review. Comorbidity evidence evaluators employed an integrated measure of evidence (IME) tool to determine evidence quality for each comorbidity; IME values combined with evidence summaries for each comorbidity were integrated to develop ITP screening recommendations, which also were subjected to Delphi review. Commentary was solicited from multiple relevant professional organizations before finalizing the consensus. The final consensus statement provides clinical guidelines for the diagnosis of, and underlying disease screening for, ITP in dogs and cats. The systematic consensus process identified numerous knowledge gaps that should guide future studies. This statement is a companion manuscript to the ACVIM Consensus Statement on the Treatment of Immune Thrombocytopenia.
Collapse
Affiliation(s)
- Dana N. LeVine
- Department of Clinical Sciences, College of Veterinary MedicineAuburn UniversityAuburnAlabamaUSA
| | - Linda Kidd
- Western University of Health Sciences College of Veterinary MedicinePomonaCaliforniaUSA
- Zoetis Animal Health DiagnosticsParsippanyNew JerseyUSA
| | - Oliver A. Garden
- School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Barbara Kohn
- Clinic for Small Animals, Faculty of Veterinary Medicine, Freie Universität BerlinBerlinGermany
| | - Andrew J. Mackin
- College of Veterinary MedicineMississippi State UniversityStarkvilleMississippiUSA
| | - Erin R. B. Eldermire
- Flower‐Sprecher Veterinary Library, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Yu‐Mei Chang
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Julie Allen
- Veterinary Information NetworkDavisCaliforniaUSA
| | | | - Barbara Glanemann
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUK
| | - Haruhiko Maruyama
- Department of Veterinary Medicine, College of Bioresource SciencesNihon UniversityChiyoda CityJapan
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary MedicineAuburn UniversityAuburnAlabamaUSA
| | - Lise N. Nielsen
- Department of Veterinary Clinical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sarah Shropshire
- College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Austin K. Viall
- Department of Pathology, Microbiology, and ImmunologySchool of Veterinary Medicine, University of California, DavisDavisCaliforniaUSA
| | - Adam J. Birkenheuer
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | | | | | - Erin Lashnits
- School of Veterinary MedicineUniversity of WisconsinMadisonWisconsinUSA
| | | | - Kelly M. Makielski
- College of Veterinary MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Xavier Roura
- Hospital Clinic Veterinari, Universitat Autonoma de BarcelonaBellaterraSpain
| | - Eva Spada
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal SciencesUniversity of MilanLodiItaly
| |
Collapse
|
4
|
Zurita A, Trujillo I, Cutillas C. New records of pathogenic bacteria in different species of fleas collected from domestic and peridomestic animals in Spain. A potential zoonotic threat? Comp Immunol Microbiol Infect Dis 2024; 107:102153. [PMID: 38460359 DOI: 10.1016/j.cimid.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.
Collapse
Affiliation(s)
- Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| | - Ignacio Trujillo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain.
| |
Collapse
|
5
|
Ma Y, Jian Y, Wang G, Zafar I, Li X, Wang G, Hu Y, Yokoyama N, Ma L, Xuan X. Epidemiological Investigation of Tick-Borne Bacterial Pathogens in Domestic Animals from the Qinghai-Tibetan Plateau Area, China. Pathogens 2024; 13:86. [PMID: 38276159 PMCID: PMC10818765 DOI: 10.3390/pathogens13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The Qinghai-Tibetan Plateau area (QTPA) features a unique environment that has witnessed the selective breeding of diverse breeds of domestic livestock exhibiting remarkable adaptability. Nevertheless, Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. represent tick-borne bacterial pathogens that pose a global threat and have substantial impacts on both human and animal health, as well as on the economy of animal husbandry within the Qinghai-Tibetan plateau area. In this study, a total of 428 samples were systematically collected from 20 distinct areas within the Qinghai Plateau. The samples included 62 ticks and 366 blood samples obtained from diverse animal species to detect the presence of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. The prevalence of infection in this study was determined as follows: Anaplasma bovis accounted for 16.4% (70/428), A. capra for 4.7% (20/428), A. ovis for 5.8% (25/428), Borrelia burgdorferi sensu lato for 6.3% (27/428), Coxiella burnetii for 0.7% (3/428), and Rickettsia spp. for 0.5% (2/428). Notably, no cases of A. marginale and A. phagocytophilum infections were observed in this study. The findings revealed an elevated presence of these pathogens in Tibetan sheep and goats, with no infections detected in yaks, Bactrian camels, donkeys, and horses. To the best of our knowledge, this study represents the first investigation of tick-borne bacterial pathogens infecting goats, cattle, horses, and donkeys within the Qinghai Plateau of the Qinghai-Tibetan Plateau area. Consequently, our findings contribute valuable insights into the distribution and genetic diversity of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. within China.
Collapse
Affiliation(s)
- Yihong Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Yingna Jian
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Geping Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- Veterinary Research Institute, Livestock and Dairy Development Department, Lahore 54810, Pakistan
| | - Xiuping Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Guanghua Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Yong Hu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Liqing Ma
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
6
|
Sato R, Yamada N, Kodani N, Makiishi T, Iwashita Y. Prompt diagnosis and appropriate treatment of Japanese spotted fever: A report of three cases. Heliyon 2024; 10:e23462. [PMID: 38173519 PMCID: PMC10761556 DOI: 10.1016/j.heliyon.2023.e23462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Japanese Spotted Fever (JSF) is a Spotted Fever Group (SFG) rickettsiosis caused by Rickettsia japonica. More than 300 cases are diagnosed annually in Japan, and the number of reported cases has been increasing. Correct diagnoses depend on the triad of symptoms and signs, including fever, rash, and eschar, which can be seen at the site of vector bites. JSF is not life-threatening if treated appropriately without diagnostic delay but there are some fatal cases every year. This negligence leads to disseminated intravascular coagulation (DIC) and multiple organ failure (MOF), and poor prognoses, consequently. Prompt diagnosis of JSF is difficult when the aforementioned triad of signs and symptoms is not initially present. Case report This report describes three JSF cases: an 87-year-old woman with fever, shock, pancytopenia, DIC, and MOF; a 79-year-old man with fever and difficulty in movement; and a 78-year-old man with fever, general fatigue, and appetite loss. All patients had a rash and eschar, which led to prompt diagnosis and appropriate treatment immediately. All patients were treated without any complications. Why should an emergency physician be aware of this? As mentioned above, JFS can be fatal with delayed diagnoses and treatment initiations. The key for a prompt diagnosis is to recognize the triad of symptoms and signs, which are not often present initially, and it makes JSF diagnosis challenging. Repeated comprehensive physical examinations are essential for prompt diagnosis and improve prognosis of JSF.
Collapse
Affiliation(s)
- Rie Sato
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Noriaki Yamada
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Nobuhiro Kodani
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Tetsuya Makiishi
- Department of General Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Yoshiaki Iwashita
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
7
|
Martins-Filho PR, Góes MADO, Sá SLCS, Teles RDCCC, Cavalcante TF, Carneiro MSDS, Bezerra GVB, Sena LOC, Moura KD, Teixeira DCP, Santos VS, Dos Santos CA. First autochthonous case of spotted fever in Sergipe State, Northeast Brazil. Travel Med Infect Dis 2023; 55:102640. [PMID: 37673130 DOI: 10.1016/j.tmaid.2023.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Affiliation(s)
| | - Marco Aurélio de Oliveira Góes
- Epidemiological Surveillance, State Health Department, Government of Sergipe State, Aracaju, SE, Brazil; Department of Medicine, Federal University of Sergipe, Lagarto, SE, Brazil
| | | | | | - Taise Ferreira Cavalcante
- Investigative Pathology Laboratory, Federal University of Sergipe, Aracaju, SE, Brazil; Epidemiological Surveillance, Municipal Health Department, Aracaju, SE, Brazil
| | | | | | | | - Karine Dantas Moura
- Central Laboratory of Public Health (LACEN/SE), Government of Sergipe State, Aracaju, SE, Brazil
| | | | | | - Cliomar Alves Dos Santos
- Central Laboratory of Public Health (LACEN/SE), Government of Sergipe State, Aracaju, SE, Brazil
| |
Collapse
|
8
|
Ma H, Ai J, Kang M, Li J, Sun Y. The life cycle of Dermacentor nuttalli from the Qinghai-Tibetan Plateau under laboratory conditions and detection of spotted fever group Rickettsia spp. Front Vet Sci 2023; 10:1126266. [PMID: 36908514 PMCID: PMC9998488 DOI: 10.3389/fvets.2023.1126266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Dermacentor nuttalli has been a focus of study because tick-borne pathogens have been widely identified in this tick from northern and southwestern China. The aim of this study was to characterize the life cycle of D. nuttalli under laboratory conditions and to detect spotted fever group (SFG) Rickettsia in the midgut and salivary glands of both field-collected and first laboratory generation adults. D. nuttalli ticks were collected in the field on the Qinghai-Tibetan Plateau from March to April 2021 and their life cycle was studied under laboratory conditions. Tick identify was molecularly confirmed, and SFG Rickettsia were detected in the midgut and salivary glands of males and females by PCR targeting different rickettsial genes. The results showed that the life cycle of D. nuttalli under laboratory conditions was completed in an average of 86.1 days. High positivity of Rickettsia spp. was detected in the midgut and salivary glands of both males (92.0%) and females (93.0%) of field-collected D. nuttalli ticks. However, a relatively lower positivity (4.0-6.0%) was detected in first laboratory generation adults. Furthermore, sequencing analysis showed that the Rickettsia sequences obtained in this study shared 98.6 to 100% nucleotide identity with Rickettsia slovaca and Rickettsia raoultii isolated from Dermacentor spp. in China. Phylogenetic analysis of Rickettsia spp. based on the gltA, ompA, ompB and sca4 genes revealed that the Rickettsia sequences obtained could be classified as belonging to R. slovaca and R. raoultii clades. This study described for the first time the life cycle of D. nuttalli from the Qinghai-Tibetan Plateau under laboratory conditions. Two species of SFG Rickettsia were detected in the midgut and salivary glands of males and females in both field-collected and first laboratory-generation adults of D. nuttalli. Our study provides new insights into pathogen detection in ticks in the Qinghai-Tibet Plateau, and the relationships among hosts, ticks, and pathogens.
Collapse
Affiliation(s)
- Hejia Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jingkai Ai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ming Kang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jixu Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China.,Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, China
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China.,Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, China
| |
Collapse
|
9
|
Kidd L. Emerging Spotted Fever Rickettsioses in the United States. Vet Clin North Am Small Anim Pract 2022; 52:1305-1317. [DOI: 10.1016/j.cvsm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Lineberry MW, Grant AN, Sundstrom KD, Little SE, Allen KE. Diversity and geographic distribution of rickettsial agents identified in brown dog ticks from across the United States. Ticks Tick Borne Dis 2022; 13:102050. [PMID: 36194975 DOI: 10.1016/j.ttbdis.2022.102050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Rhipicephalus sanguineus sensu lato, or brown dog ticks, transmit a variety of pathogens of veterinary and public health importance globally. Pathogens vectored by brown dog ticks and identified in the United States include Babesia vogeli, Ehrlichia canis, and several spotted fever group Rickettsia spp. (SFGR). Due to the challenge of collecting canine blood samples nationwide to screen for exposure to these pathogens, we took an indirect approach and tested brown dog ticks for molecular evidence of infection. Brown dog ticks (616 adults and 65 nymphs) collected from dogs and cats across the nation were tested by separate PCR assays detecting Babesia spp., E. canis, and SFGR. While no Babesia sp. was found, we identified rickettsial agents in 3.5% (24/681; 95% CI 2.4-5.2%) of the ticks. Pathogens and related organisms detected in ticks included E. canis (n = 1), Rickettsia amblyommatis (n = 3), Rickettsia massiliae (n = 11), Rickettsia monacensis (n = 3), Rickettsia montanensis (n = 5), and an undefined Rickettsia species (n = 1). These data demonstrate a wider geographic distribution of R. massiliae than previously known, and to the authors' knowledge, reports R. monacensis in brown dog ticks for the first time. Due to the close association that brown dog ticks have with domestic dogs and humans, more research is needed to understand the full array of organisms, some of which are zoonotic, potentially transmitted by this widespread tick complex.
Collapse
Affiliation(s)
- Megan W Lineberry
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Amber N Grant
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Kellee D Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| | - Susan E Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA.
| | - Kelly E Allen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Ngnindji-Youdje Y, Diarra AZ, Lontsi-Demano M, Tchuinkam T, Parola P. Detection of Tick-Borne Pathogens in Ticks from Cattle in Western Highlands of Cameroon. Microorganisms 2022; 10:microorganisms10101957. [PMID: 36296233 PMCID: PMC9609823 DOI: 10.3390/microorganisms10101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to detect and identify microorganisms in ticks collected in the Western Highlands of Cameroon. Quantitative real-time and standard PCR assays, coupled with sequencing, were used. A total of 944 ticks collected from cattle in five distinct sites in Cameroon were selected for the analyses. They belonged to five genera (Amblyomma, Hyalomma, Rhipicephalus, Haemaphysalis, and Ixodes) and twelve species. Real-time PCR revealed that 23% (n = 218) of the ticks were positive for Rickettsia spp., 15% (n = 141) for bacteria of the Anaplasmataceae family, 3% (n = 29) for Piroplasmida, 0.5% (n = 5) for Coxiella burnetii, 0.4% (n = 4) for Borrelia spp., and 0.2% (n = 2) for Bartonella spp. The co-infection rate (3.4%, n = 32) involved mainly Rickettsia spp. and Anaplasmataceae. Of the Rickettsia spp. positive ticks, the targeted PCR and sequencing yielded Rickettsia africae (78.9%), Rickettsia aeschlimannii (6.4%), Rickettsia massiliae (7.8%), Candidatus Rickettsia barbariae (0.9%), and Rickettsia sp. (0.9%). Anaplasmataceae included Anaplasma marginale (4.3%), Anaplasma platys (1.4%), Anaplasma centrale (0.7%), Ehrlichia ruminantium (0.7%), Wolbachia sp., Candidatus Ehrlichia rustica (13.5%), Candidatus Ehrlichia urmitei (7%), and an uncultured Ehrlichia sp. (4.2%). Borrelia theileri was identified in one Rhipicephalus microplus tick. Unfortunately, Piroplasmida could not be identified to the species level. This study demonstrates that in Cameroon, ticks harbour a wide variety of microorganisms and present a risk of zoonotic diseases.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Correspondence: ; Tel.: +33-(0)-4-13-73-24-01; Fax: +33-(0)-4-13-73-24-02
| |
Collapse
|
12
|
Spotted Fever Group Rickettsia spp. Diversity in Ticks and the First Report of Rickettsia hoogstraalii in Romania. Vet Sci 2022; 9:vetsci9070343. [PMID: 35878360 PMCID: PMC9317755 DOI: 10.3390/vetsci9070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Ticks are important parasites that feed on the blood of various host species, representing the most important arthropods transmitting diseases in Europe. Continuous changes in both tick distribution and abundance are related to multiple factors, including climate change. These changes have strong implications for both animal and human health; therefore, continuous surveillance of tickborne diseases is required for an appropriate evaluation of the potential risks faced by animals and humans in a given area. The spotted fever group Rickettsia comprises a large number of zoonotic agents with an increasing importance recognized in the last 30 years. The aim of this study was to evaluate these bacteria in ticks in Romania. Five Rickettsia species were identified in different tick species, with new pathogen–tick associations reported. Rickettsia hoogstraalii, one member of this group, was detected for the first time in Romania and in Rhipicephalus rossicus ticks. This species was first described in 2006 in Croatia, and its pathogenicity is not well known. In addition, the detection of R. raoultii and R. monacensis in unfed larvae of Haemaphysalis punctata reinforce the hypothesis of transmission of Rickettsia from female ticks to larvae; therefore the bite of larvae could pose a health risk. Abstract Tickborne bacterial pathogens have been described worldwide as risk factors for both animal and human health. Spotted fevers caused by Rickettsiae may cause non-specific symptoms, which make clinical diagnosis difficult. The aim of the current study was to evaluate and review the diversity of SFG Rickettsiae in ticks collected in 41 counties in Romania. A total of 2028 questing and engorged ticks collected in Romania belonging to five species were tested by PCR amplification of Rickettsia spp. gltA and 17-D gene fragments: Ixodes ricinus (n = 1128), Dermacentor marginatus (n = 507), D. reticulatus (n = 165), Rhipicephalus rossicus (n = 128) and Haemaphysalis punctata (n = 100). Five Rickettsia species were identified following DNA sequence analysis: R. helvetica, R. monacensis, R. slovaca, R. raoultii, and R. hoogstraalii. The most common species detected was R. monacensis. Moreover, R. hoogstraalii was detected for the first time in Romania and in R. rossicus ticks. The detection of R. raoultii and R. monacensis in questing larvae of Hae. punctata suggests the possible transovarial transmission of these Rickettsia species in ticks. The detection of R. hoogstraalii for the first time in Romania increases the reported SFG Rickettsia diversity in the country.
Collapse
|
13
|
Exploring the effects of pathogen infection on tick behaviour from individuals to populations. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
He YC, Li JX, Sun YL, Kang M, He HX, Guo YH, Ma P, Wei YP, Li RS, Chen WK, Chen ZH, Li J, Qi TS, Yang JF, Zhang QX, Wang Y, Cai JS, Zhao QB, Hu GW, Chen JY, Li Y. Spotted Fever Group Rickettsia Infecting Ticks (Acari: Ixodidae), Yak (Bos grunniens), and Tibetan Sheep (Ovis aries) in the Qinghai–Tibetan Plateau Area, China. Front Vet Sci 2022; 8:779387. [PMID: 35211533 PMCID: PMC8861378 DOI: 10.3389/fvets.2021.779387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The Qinghai–Tibet Plateau Area (QTPA) has a complex natural ecosystem, causing a greatly increased risk of spreading various tick-borne diseases including rickettsial infections, which are regarded as one of the oldest known vector-borne zoonoses. However, the information of one of its pathogen, spotted fever group Rickettsia (SFG Rickettsia), is limited in tick vectors and animals in this area. Therefore, this study focused on the investigation of SFG Rickettsia in tick vectors, yaks (Bos grunniens), and Tibetan sheep (Ovis aries) in the QTPA. A total of 1,000 samples were collected from nine sampling sites, including 425 of yaks, 309 of Tibetan sheep, 266 of ticks. By morphological examination, PCR, and sequencing, we confirmed the species of all collected ticks. All tick samples, all yak and Tibetan sheep blood samples were detected based on SFG Rickettsia ompA and sca4 gene. The results showed that all tick samples were identified to be Haemaphysalis qinghaiensis, and the positive rates of SFG Rickettsia were 5.9% (25/425), 0.3% (1/309), and 54.1% (144/266) in yaks, Tibetan sheep, and ticks, respectively. All positive samples were sequenced, and BLASTn analysis of the ompA gene sequences of SFG Rickettsia showed that all positive samples from animals and ticks had 99.04–100% identity with yak and horse isolates from Qinghai Province, China. BLASTn analysis of the sca4 gene sequences of SFG Rickettsia showed that all positive samples had 97.60–98.72% identity with tick isolates from Ukraine. In addition, the phylogenetic analysis showed that all the SFG Rickettsia ompA and sca4 sequences obtained from this study belong to the same clade as Rickettsia raoultii isolated from livestock and ticks from China and other countries. Molecularly, this study detected and characterized SFG Rickettsia both in the tick vectors and animals, suggesting that the relationship between SFG Rickettsia, tick species and animal hosts should be explored to understand their interrelationships, which provide a theoretical basis for preventing control of this pathogen.
Collapse
Affiliation(s)
- Yong-Cai He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ji-Xu Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ya-Li Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ming Kang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Hong-Xuan He
- National Research Center for Wildlife-Born Diseases, University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Hai Guo
- National Institute of Parasitic Diseases Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Ping Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yao-Ping Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Rui-Shan Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Wang-Kai Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhi-Hong Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jing Li
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Tong-Sheng Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jin-Fang Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Qing-Xun Zhang
- National Research Center for Wildlife-Born Diseases, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Wang
- National Research Center for Wildlife-Born Diseases, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Shan Cai
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Quan-Bang Zhao
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Guang-Wei Hu
- Qinghai Provincial Center for Animal Disease Control and Prevention, Xining, China
| | - Ji-Yong Chen
- Animal Disease Prevention and Control Center of Yushu, Yushu, China
| | - Ying Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- *Correspondence: Ying Li
| |
Collapse
|
15
|
Aouadi N, Benkacimi L, Zan Diarra A, Laroche M, Bérenger JM, Bitam I, Parola P. Microorganisms associated with the North African hedgehog Atelerix algirus and its parasitizing arthropods in Algeria. Comp Immunol Microbiol Infect Dis 2021; 80:101726. [PMID: 34933167 DOI: 10.1016/j.cimid.2021.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Hedgehogs are small mammals. They are potential reservoirs of various zoonotic agents. This study was conducted in Bouira, a north-central region of Algeria. A total of 21 Atelerix algirus corpses were picked up on roadsides and gardens. Hedgehog kidneys, spleens and ectoparasites were collected. Twelve hedgehogs were infested with ectoparasites, including Archaeopsylla erinacei, Rhipicephalus sanguineus s.l. and Haemaphysalis erinacei. Hedgehog organs and randomly selected arthropods were screened for microorganisms using molecular methods. Coxiella burnetii was detected in kidneys, spleens, A. erinacei, Hae. erinacei and Rh. sanguineus s.l. Leptospira interrogans was detected in kidneys. Rickettsia felis and Rickettsia massiliae were detected respectively in A. erinacei and in Rh. sanguineus s.l. DNA of an uncultivated Rickettsia spp. was found in Hae. erinacei. Wolbachia spp. DNA was detected in fleas. The DNA of potential new Bartonella and Ehrlichia species were found respectively in fleas and ticks. This study highlights the presence of DNA from a broad range of microorganisms in hedgehogs and their ectoparasites that may be responsible for zoonoses in Algeria.
Collapse
Affiliation(s)
- Nawal Aouadi
- Laboratoire de Valorisation et Conservation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara, Boumerdes, Algeria
| | - Linda Benkacimi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- IHU Méditerranée Infection, 13005 Marseille, France; École Supérieure en Sciences de l'Aliment et des Industries Agroalimentaires (ESSAIA), El Harrach, Alger, Algeria
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
16
|
The effects of habitat type and pathogen infection on tick host-seeking behaviour. Parasitology 2021; 149:59-64. [PMID: 35184779 PMCID: PMC8862009 DOI: 10.1017/s0031182021001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tick-borne pathogens pose a significant risk to livestock, wildlife and public health. Host-seeking behaviours may depend on a combination of infection status and environmental factors. Here, we assessed the effects of habitat type and pathogen infection on host-seeking behaviour (questing) in the lone star tick, Amblyomma americanum. Ticks were collected using a tick drag from two different habitat types: xeric hammock and successional hardwood forests. Using a standardized assay, we recorded the likelihood of questing for each tick, the average height quested and total time spent questing and then tested each tick for the presence of Rickettsia spp. and Ehrlichia spp. using conventional polymerase chain reaction. We did not detect Ehrlichia in any ticks, although 30% tested positive for Rickettsia amblyommatis, a member of the Rickettsia spotted fever group. Ticks infected with R. amblyommatis spent less time questing compared to uninfected ticks, with infected ticks spending 85 s on average questing and uninfected ticks spending 112 s. Additionally, ticks collected from xeric hammock habitats spent over twice as long questing compared to ticks from successional hardwood forests. Ticks from xeric hammock spent 151 s on average questing while ticks from successional hardwood forest spent only 58 s during a 10-min observation period. These results demonstrate that habitat type and infection status can influence tick host-seeking behaviours, which can play a pivotal role in disease dynamics.
Collapse
|
17
|
Huynh LN, Diarra AZ, Pham QL, Le-Viet N, Berenger JM, Ho VH, Nguyen XQ, Parola P. Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl Trop Dis 2021; 15:e0009813. [PMID: 34582467 PMCID: PMC8500424 DOI: 10.1371/journal.pntd.0009813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/08/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising and reliable tool for arthropod identification, including the identification of alcohol-preserved ticks based on extracted leg protein spectra. In this study, the legs of 361 ticks collected in Vietnam, including 251 Rhiphicephalus sanguineus s.l, 99 Rhipicephalus (Boophilus) microplus, two Amblyomma varanensis, seven Dermacentor auratus, one Dermacentor compactus and one Amblyomma sp. were submitted for MALDI-TOF MS analyses. Spectral analysis showed intra-species reproducibility and inter-species specificity and the spectra of 329 (91%) specimens were of excellent quality. The blind test of 310 spectra remaining after updating the database with 19 spectra revealed that all were correctly identified with log score values (LSV) ranging from 1.7 to 2.396 with a mean of 1.982 ± 0.142 and a median of 1.971. The DNA of several microorganisms including Anaplasma platys, Anaplasma phagocytophilum, Anaplasma marginale, Ehrlichia rustica, Babesia vogeli, Theileria sinensis, and Theileria orientalis were detected in 25 ticks. Co-infection by A. phagocytophilum and T. sinensis was found in one Rh. (B) microplus.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Quang Luan Pham
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Nhiem Le-Viet
- School of Medicine and Pharmacy, The University of Da Nang (UD), Da Nang, Vietnam
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
18
|
Tucker NSG, Weeks ENI, Beati L, Kaufman PE. Prevalence and distribution of pathogen infection and permethrin resistance in tropical and temperate populations of Rhipicephalus sanguineus s.l. collected worldwide. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:147-157. [PMID: 32918501 DOI: 10.1111/mve.12479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The brown dog tick, Rhipicephalus sanguineus sensu lato (s.l.) Latreille (Acari: Ixodidae), is a peridomestic, cosmopolitan parasite of dogs known to vector numerous pathogens of veterinary and medical importance. Recent phylogenetic analyses separate this tick into temperate and tropical lineages. Populations of Rh. sanguineus s.l. have been reported to exhibit sodium channel target site insensitivity to permethrin and etofenprox, which is likely due to the prolonged use of pyrethroids against many pests in and around the home. In this study, populations collected in the Caribbean, Africa, Asia, Europe and North America, were tested to identify the distribution of a known resistance mechanism, pathogen-vector interactions and phylogeny in relation to latitude. Using molecular assays, populations from 29 distinct locations were simultaneously geographically typed and screened for bacterial infection by Rickettsia, Ehrlichia, Babesia and Hepatozoon species, and for the presence of a sodium channel single nucleotide polymorphism known to confer permethrin resistance. Implications of these results on Rh. sanguineus s.l. management in association with geographical distribution will be discussed.
Collapse
Affiliation(s)
- N S G Tucker
- Entomology and Nematology Department, University of Florida, Gainesville, FL, U.S.A
| | - E N I Weeks
- Entomology and Nematology Department, University of Florida, Gainesville, FL, U.S.A
| | - L Beati
- U.S. National Tick Collection, Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, U.S.A
| | - P E Kaufman
- Entomology and Nematology Department, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
19
|
Current tools for the diagnosis and detection of spotted fever group Rickettsia. Acta Trop 2021; 218:105887. [PMID: 33713627 DOI: 10.1016/j.actatropica.2021.105887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Spotted fever group (SFG) rickettsiae causes a number of diseases in humans worldwide, which can range from mild to highly lethal. Since the clinical presentations of rickettsioses caused by SFG rickettsiae are variable and may be similar to the diseases caused by other rickettsiae, such as Orientia tsutsugamushi (agent for scrub typhus), Coxiella burnetii (agent for Q fever) and the typhus group rickettsiae (agents for epidemic and murine typhus), the accurate diagnosis of infections caused by SFG Rickettsia remains challenging especially in resource-poor settings in developing countries. This review summarizes the various diagnostic and detection tools that are currently available for the confirmation of infections by SFG rickettsiae. The advantages and challenges pertaining to the different serological and molecular detections methods, as well as new assays in development, are discussed. The utility of the detection tools contributing to the surveillance of SFG rickettsiae in arthropods and animals are reviewed.
Collapse
|
20
|
Meyers AC, Auckland L, Meyers HF, Rodriguez CA, Kontowicz E, Petersen CA, Travi BL, Sanders JP, Hamer SA. Epidemiology of Vector-Borne Pathogens Among U.S. Government Working Dogs. Vector Borne Zoonotic Dis 2021; 21:358-368. [PMID: 33601954 PMCID: PMC8086402 DOI: 10.1089/vbz.2020.2725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Surveillance of U.S. domestic dogs for exposure to vector-borne pathogens can identify regions of transmission that are relevant for human and animal health. Working dogs with high levels of outdoor exposure may be sensitive indicators of local risk, owing to increased contact with vectors. We randomly selected 476 high-value government working dogs from 40 states to determine the prevalence of infection with Dirofilaria immitis and Rickettsia spp., and exposure to Ehrlichia spp., Anaplasma spp., and Borrelia burgdorferi, and identify risk factors for positivity. Additionally, we tested 100 of these dogs from Texas for Leishmania spp. where sand fly vectors occur. Previously published Trypanosoma cruzi infection data on these dogs were used to identify coinfection or co-exposures. Infection prevalence was 0.84% for D. immitis, and all dogs were negative for Rickettsia spp. DNA. Seroprevalence of each pathogen was: B. burgdorferi 0.84%, Ehrlichia spp. 1.3%, Anaplasma spp. 1.5%, Leishmania spp. 2.0%, and T. cruzi 12.2%. Coinfection or co-exposure took place in four (0.84%) dogs. In bivariable analysis, we found that D. immitis-positive and Ehrlichia-seropositive dogs were significantly older than negative dogs (p < 0.05). Furthermore, seroprevalence of Anaplasma spp. was significantly higher among dogs in the Northeast United States relative to other areas of the country (4.7% vs. ≤1.4%; p = 0.041). Although autochthonous Leishmania infections have been described in the United States, the cases reported herein may represent imported Leishmania infection. Most federal working dogs are bred in Europe, where the parasite is endemic and congenitally transmitted. Serological cross-reaction between T. cruzi and Leishmania spp. complicates diagnosis. In this study, the use of multiple testing strategies in a comparative complementary manner provided evidence for these dogs' true exposures. Comprehensive surveillance for vector-borne pathogens in dogs can improve clinician awareness and target prevention and treatment in a One Health manner.
Collapse
Affiliation(s)
- Alyssa C. Meyers
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lisa Auckland
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah F. Meyers
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan, USA
| | - Carlos A. Rodriguez
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | - Eric Kontowicz
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Bruno L. Travi
- Department of Internal Medicine (Infectious Diseases) and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John P. Sanders
- Office of Workforce Health and Safety, Department of Homeland Security, Office of the Chief Human Capital Officer, Washington, District of Columbia, USA
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Address correspondence to: Sarah A. Hamer, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| |
Collapse
|
21
|
Zurita A, Benkacimi L, El Karkouri K, Cutillas C, Parola P, Laroche M. New records of bacteria in different species of fleas from France and Spain. Comp Immunol Microbiol Infect Dis 2021; 76:101648. [PMID: 33895462 DOI: 10.1016/j.cimid.2021.101648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
In this study, we assessed the presence of vector-borne microorganisms in different species of fleas collected from different hosts in diverse areas of South-Western Europe by molecular methods. A total of 319 fleas belonging to eight different species was tested for the presence of eight microorganisms. Wolbachia spp. endosymbionts were detected in Ctenocephalides felis, Pulex irritans, Archaeopsylla erinacei and Ctenophthalmus baeticus boisseauorum specimens. Rickettsia felis, an emerging pathogen, was detected in C. felis, A. erinacei and Ct. b. boisseauorum. Rickettsia typhi, the agent of murine typhus was detected for the first time in A. erinacei and Mycobacterium spp. were detected for the first time in fleas (C. felis, P. irritans and A. erinacei). Lastly, five different species of Bartonella were detected in fleas' DNA in this study, including a possible new bacterium belonging to this genus. With this study, we updated the knowledge of the flea-borne bacteria present in the South-West of Europe reinforcing the idea about the necessity to expand and increase the current knowledge on flea-borne pathogens.
Collapse
Affiliation(s)
- Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Linda Benkacimi
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Khalid El Karkouri
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
22
|
Blanda V, D’Agostino R, Giudice E, Randazzo K, La Russa F, Villari S, Vullo S, Torina A. New Real-Time PCRs to Differentiate Rickettsia spp. and Rickettsia conorii. Molecules 2020; 25:molecules25194431. [PMID: 32992475 PMCID: PMC7582818 DOI: 10.3390/molecules25194431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Rickettsia species are an important cause of emerging infectious diseases in people and animals, and rickettsiosis is one of the oldest known vector-borne diseases. Laboratory diagnosis of Rickettsia is complex and time-consuming. This study was aimed at developing two quantitative real-time PCRs targeting ompB and ompA genes for the detection, respectively, of Rickettsia spp. and R. conorii DNA. Primers were designed following an analysis of Rickettsia gene sequences. The assays were optimized using SYBR Green and TaqMan methods and tested for sensitivity and specificity. This study allowed the development of powerful diagnostic methods, able to detect and quantify Rickettsia spp. DNA and differentiate R. conorii species.
Collapse
Affiliation(s)
- Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Rosalia D’Agostino
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Elisabetta Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, Università degli Studi di Messina, 98122 Messina, Italy;
| | - Kety Randazzo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
- Correspondence:
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Stefano Vullo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| | - Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (V.B.); (R.D.); (K.R.); (S.V.); (S.V.); (A.T.)
| |
Collapse
|
23
|
Human Spotted Fever Group Rickettsia Infecting Yaks ( Bos grunniens) in the Qinghai-Tibetan Plateau Area. Pathogens 2020; 9:pathogens9040249. [PMID: 32231020 PMCID: PMC7238049 DOI: 10.3390/pathogens9040249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
The Qinghai-Tibetan Plateau Area (QTPA) is a plateau with the highest average altitude, located in Northwestern China. There is a risk for interspecies disease transmission, such as spotted fever rickettsioses. However, information on the molecular characteristics of the spotted fever group (SFG) Rickettsia spp. in the area is limited. This study performed screenings, and detected the DNA of human pathogen, SFG Rickettsia spp., with 11.3% (25/222) infection rates in yaks (Bosgrunniens). BLASTn analysis revealed that the Rickettsia sequences obtained shared 94.3–100% identity with isolates of Rickettsia spp. from ticks in China. One Rickettsia sequence (MN536161) had 100% nucleotide identity to two R. raoultii isolates from Chinese Homo sapiens, and one isolate from Qinghai Dermacentorsilvarum. Meanwhile, another Rickettsia sequence (MN536157) shared 99.1–99.5% identity to one isolate from Dermacentor spp. in China. Furthermore, the phylogenetic analysis of SFG Rickettsia spp. ompA gene revealed that these two sequences obtained from yaks in the present study grouped with the R. slovaca and R. raoultii clades with isolates identified from Dermacentor spp. and Homo sapiens. Our findings showed the first evidence of human pathogen DNA, SFG Rickettsia spp., from animals, in the QTPA.
Collapse
|
24
|
Cozad RA, Hernandez SM, Norton TM, Tuberville TD, Stacy NI, Stedman NL, Aresco MJ. Epidemiological Investigation of a Mortality Event in a Translocated Gopher Tortoise ( Gopherus polyphemus) Population in Northwest Florida. Front Vet Sci 2020; 7:120. [PMID: 32211432 PMCID: PMC7067046 DOI: 10.3389/fvets.2020.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 11/13/2022] Open
Abstract
Nokuse Plantation, a 22,055 ha private conservation preserve in northwest Florida, is a recipient site for gopher tortoises translocated from development sites in Florida. Since 2006, Nokuse has received over 5,000 tortoises from multiple development sites. During 2013-2015, 52 tortoises were found sick (n = 14) or dead (n = 38) in multiple soft-release enclosures in which tortoises consistently exhibited clinical signs, with additional sick (n = 5) and dead (n = 5) tortoises presenting similarly during 2016-2017. When found alive, tortoises behaved abnormally (e.g., frequently out of burrows during cold weather, pacing along enclosure fencing), appeared emaciated, were lethargic, and had developed redness under plastron scutes. Similar numbers of male (n = 28) and female (n = 32) tortoises were recovered along with two of unidentified sex, including mainly adults (n = 59) and three subadults. Physical examination, blood analysis, and other diagnostics were indicative of starvation and dehydration. Most sick tortoises provided with supportive care recovered. Necropsy findings generally confirmed starvation, with no evidence of infectious pathogens or contaminants. There were no apparent differences in quality of habitat, plant community, or soil or water among affected and unaffected enclosures. Botanical surveys indicated adequate forage quality and quantity, with no poisonous exotic or native plants detected. No land management practices changed prior to this event. Analysis of epidemiological data and demographic factors from before and during this mortality event identified initial density of tortoises in the enclosures as exerting the strongest influence on detection of tortoise morbidity and mortality. We believe that the stress associated with mixing tortoises from different populations and at higher densities during translocation impacted an individual tortoise's ability to obtain or absorb adequate nutrients from foraging, ultimately leading to a wasting condition consistent with starvation. Based on our findings, we recommend a maximum of 3 gopher tortoises per ha in soft-release enclosures for translocation, but further research is warranted to investigate the complexity of stress and social pressures associated with translocation.
Collapse
Affiliation(s)
- Rebecca A Cozad
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Nokuse Plantation, Bruce, FL, United States
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Terry M Norton
- St. Catherines Island Foundation, Midway, GA, United States.,Georgia Sea Turtle Center, Jekyll Island Authority, Jekyll Island, GA, United States
| | - Tracey D Tuberville
- University of Georgia's Savannah River Ecology Laboratory, Aiken, SC, United States
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
25
|
Purswell EK, Lashnits EW, Breitschwerdt EB, Vaden SL. A retrospective study of vector-borne disease prevalence in dogs with proteinuria: Southeastern United States. J Vet Intern Med 2020; 34:742-753. [PMID: 31916316 PMCID: PMC7096618 DOI: 10.1111/jvim.15610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background Proteinuria is a risk factor for progressive kidney injury in dogs. Enhanced understanding of potential associations between canine vector‐borne diseases (CVBD) and proteinuria is needed. Objectives To determine the proportion of evaluated proteinuric dogs exposed to ≥1 CVBD, including Babesia spp., Ehrlichia spp., spotted‐fever group Rickettsia, Bartonella spp., Anaplasma spp., hemotropic Mycoplasma spp., Borrelia burgdorferi, and Dirofilaria immitis, and to determine if demographic or clinicopathologic differences exist between proteinuric dogs exposed to CVBD versus proteinuric dogs with no evidence of CVBD exposure. Animals Two‐hundred nine proteinuric dogs, concurrently tested for CVBD, which were examined at a single academic veterinary hospital between January 2008 and December 2015. Methods Retrospective cross‐sectional study. Demographic, clinicopathologic, and CVBD test results were extracted from medical records. A multivariable logistic regression model was used to assess associations between CVBD and selected variables. Results Based on serology and polymerase chain reaction testing, 34% of proteinuric dogs (72/209) were exposed to ≥1 CVBD. Exposure to Rickettsia spp. (19%), Ehrlichia spp. (12%), and B. burgdorferi (9%) were most common. The CVBD exposure was lower in dogs tested in autumn or spring, higher in intact dogs, and higher in dogs with lower serum albumin and higher serum creatinine concentrations. Conclusions and Clinical Importance Exposure to CVBD, particularly exposure to Rickettsia spp., Ehrlichia spp., and B. burgdorferi was found in proteinuric dogs from the southeast United States. Additional controlled prospective studies examining a potential causal relationship between CVBD and proteinuria are warranted.
Collapse
Affiliation(s)
- Emily K Purswell
- The Department of Clinical Sciences and North Carolina State University, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Erin W Lashnits
- The Department of Clinical Sciences and North Carolina State University, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Edward B Breitschwerdt
- The Department of Clinical Sciences and North Carolina State University, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Shelly L Vaden
- The Department of Clinical Sciences and North Carolina State University, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
26
|
Lashnits E, Neupane P, Maggi RG, Linder KE, Bradley JM, Balakrishnan N, Southern BL, McKeon GP, Chandrashekar R, Breitschwerdt EB. Detection of Bartonella spp. in dogs after infection with Rickettsia rickettsii. J Vet Intern Med 2019; 34:145-159. [PMID: 31891215 PMCID: PMC6979086 DOI: 10.1111/jvim.15675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023] Open
Abstract
Background Dynamics of infection by Bartonella and Rickettsia species, which are epidemiologically associated in dogs, have not been explored in a controlled setting. Objectives Describe an outbreak investigation of occult Bartonella spp. infection among a group of dogs, discovered after experimentally induced Rickettsia rickettsii (Rr) infection. Animals Six apparently healthy purpose‐bred Beagles obtained from a commercial vendor. Methods Retrospective and prospective study. Dogs were serially tested for Bartonella spp. and Rr using serology, culture, and PCR, over 3 study phases: 3 months before inoculation with Rr (retrospective), 6 weeks after inoculation with Rr (retrospective), and 8 months of follow‐up (prospective). Results Before Rr infection, 1 dog was Bartonella henselae (Bh) immunofluorescent antibody assay (IFA) seroreactive and 1 was Rickettsia spp. IFA seroreactive. After inoculation with Rr, all dogs developed mild Rocky Mountain spotted fever compatible with low‐dose Rr infection, seroconverted to Rickettsia spp. within 4‐11 days, and recovered within 1 week. When 1 dog developed ear tip vasculitis with intra‐lesional Bh, an investigation of Bartonella spp. infection was undertaken. All dogs had seroconverted to 1‐3 Bartonella spp. between 7 and 18 days after Rr inoculation. Between 4 and 8 months after Rr inoculation, Bh DNA was amplified from multiple tissues from 2 dogs, and Bartonella vinsonii subsp. berkhoffii (Bvb) DNA was amplified from 4 of 5 dogs' oral swabs. Conclusions and Clinical Importance Vector‐borne disease exposure was demonstrated in research dogs from a commercial vendor. Despite limitations, our results support the possibilities of recrudescence of chronic subclinical Bartonella spp. infection after Rr infection and horizontal direct‐contact transmission between dogs.
Collapse
Affiliation(s)
- Erin Lashnits
- Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Pradeep Neupane
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Ricardo G Maggi
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Keith E Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Julie M Bradley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Nandhakumar Balakrishnan
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Brittany L Southern
- Laboratory Animal Resources, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Gabriel P McKeon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Laboratory Animal Resources, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | | | - Edward B Breitschwerdt
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
27
|
Li J, Li Y, Moumouni PFA, Lee SH, Galon EM, Tumwebaze MA, Yang H, Liu M, Guo H, Gao Y, Benedicto B, Zhang W, Fan X, Chahan B, Xuan X. First description of Coxiella burnetii and Rickettsia spp. infection and molecular detection of piroplasma co-infecting horses in Xinjiang Uygur Autonomous Region, China. Parasitol Int 2019; 76:102028. [PMID: 31759172 DOI: 10.1016/j.parint.2019.102028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Q fever, spotted fever rickettsioses and equine piroplasmosis, are some of the most serious equine tick-borne diseases caused by Coxiella burnetii, Rickettsia spp., Babesia caballi and/or Theileria equi. This study surveyed and molecularly characterized these pathogens infecting horses in ten ranches from XUAR, China using molecular technology. Among 200 horse blood samples, 163 (81.5%) were infected with at least one of the pathogens. Rickettsia spp. was the most prevalent pathogen (n = 114, 57.0%), followed by C. burnetii (n = 79, 39.5%), T. equi (n = 79, 39.5%) and B. caballi (n = 49, 24.5%). Co-infections were observed in 61.3% of positive samples in this study. Statistically significant differences were observed between the sampling regions for C. burnetii, B. caballi and T. equi, and also in different age group for C. burnetii and T. equi. The genotype analysis indicated that C. burnetii htpB, Rickettsia spp. ompA, B. caballi rap-1, B. caballi 18S rRNA, T. equi EMA-1 and T. equi 18S rRNA gene sequences from horses in XUAR were variable. To the best of our knowledge, this study is the first report of C. burnetii and Rickettsia spp. infection and co-infected with piroplasma in horses in China. Overall, this study revealed the high infection rate of the pathogens in horses in XUAR, China. The current findings are expected to provide a basis for better tick-borne disease control in the region.
Collapse
Affiliation(s)
- Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Maria Agnes Tumwebaze
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Hongxia Yang
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Uygur, Xuar 830052, China
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Byamukama Benedicto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Wei Zhang
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Uygur, Xuar 830052, China
| | - Xinli Fan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Uygur, Xuar 830052, China
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Uygur, Xuar 830052, China.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
28
|
Eberhardt AT, Fernandez C, Fargnoli L, Beldomenico PM, Monje LD. A putative novel strain of Ehrlichia infecting Amblyomma tigrinum associated with Pampas fox (Lycalopex gymnocercus) in Esteros del Iberá ecoregion, Argentina. Ticks Tick Borne Dis 2019; 11:101318. [PMID: 31711730 DOI: 10.1016/j.ttbdis.2019.101318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022]
Abstract
The current work evaluated road-killed Pampas foxes (Lycalopex gymnocercus) and their ticks for the presence of vector-borne agents in the ecoregion Esteros del Iberá in northeastern Argentina. Spleen, lung and blood samples and Amblyomma tigrinum adult ticks collected from the foxes were tested by polymerase chain reaction (PCR) assays targeting bacteria of the genera Ehrlichia, Anaplasma, and Rickettsia. All foxes tested were negative for the three genera, but evidence of Ehrlichia and Rickettsia infection was detected in the ticks. One A. tigrinum (out of 12 tested) was infected by an ehrlichial agent, here named Ehrlichia sp. strain Iberá, related to ehrlichial agents recently detected in platypuses in Tasmania (Ornithorhynchus anatinus) and in voles (Myodes rutilus and Myodes rufocanus) and shrews (Sorex araneus) in the Russian Far East. Regarding Rickettsia, all A. tigrinum ticks (100%) were infected by ´Candidatus Rickettsia andeanae´, a member of the spotted fever group rickettsia of unknown pathogenicity. Further research is necessary to unveil the ecology of Ehrlichia sp. strain Iberá as well as its zoonotic relevance. The species of the genus Ehrlichia are known to be pathogenic to mammals, including humans and domestic animals, thus the presence of this ehrlichial agent in A. tigrinum is a potential risk for veterinary and public health, as the adults of A. tigrinum are common parasites of dogs in rural and peri-urban environments, and humans are also frequently bitten by this tick species.
Collapse
Affiliation(s)
- Ayelen T Eberhardt
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Camilo Fernandez
- Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Lucía Fargnoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Pablo M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Lucas D Monje
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
29
|
Santos MF, Alexandre-Pires G, Pereira MA, Marques CS, Gomes J, Correia J, Duarte A, Gomes L, Rodrigues AV, Basso A, Reisinho A, Meireles J, Santos-Mateus D, Brito MTV, Tavares L, Santos-Gomes GM, da Fonseca IP. Meglumine Antimoniate and Miltefosine Combined With Allopurinol Sustain Pro-inflammatory Immune Environments During Canine Leishmaniosis Treatment. Front Vet Sci 2019; 6:362. [PMID: 31681815 PMCID: PMC6813190 DOI: 10.3389/fvets.2019.00362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023] Open
Abstract
Canine leishmaniosis (CanL) caused by Leishmania infantum is a zoonotic disease of global concern. Antileishmanial drug therapies commonly used to treat sick dogs improve their clinical condition, although when discontinued relapses can occur. Thus, the current study aims to evaluate the effect of CanL treatments in peripheral blood, lymph node, and bone marrow cytokine profile associated with clinical recovery. Two groups of six dogs diagnosed with CanL were treated with miltefosine combined with allopurinol and meglumine antimoniate combined with allopurinol (MT+A and MG+A), respectively. At diagnosis and after treatment, during a 3-month follow-up, clinical signs, hematological and biochemical parameters, urinalysis results and antileishmanial antibody titers were registered. Furthermore, peripheral blood, popliteal lymph node, and bone marrow samples were collected to assess the gene expression of IL-2, IL-4, IL-5, IL-10, IL-12, TNF-α, TGF-β, and IFN-γ by qPCR. In parallel, were also evaluated samples obtained from five healthy dogs. Both treatment protocols promoted the remission of clinical signs as well as normalization of hematological and biochemical parameters and urinalysis values. Antileishmanial antibodies returned to non-significant titers in all dogs. Sick dogs showed a generalized upregulation of IFN-γ and downregulation of IL-2, IL-4, and TGF-β, while gene expression of IL-12, TNF-α, IL-5, and IL-10 varied between groups and according to evaluated tissue. A trend to the normalization of cytokine gene expression was induced by both miltefosine and meglumine antimoniate combined therapies. However, IFN-γ gene expression was still up-regulated in the three evaluated tissues. Furthermore, the effect of treatment in the gene expression of cytokines that were not significantly changed by infection, indicates that miltefosine and meglumine antimoniate combined therapy directly affects cytokine generation. Both combined therapies are effective in CanL treatment, leading to sustained pro-inflammatory immune environments that can compromise parasite survival and favor dogs' clinical cure. In the current study, anti-inflammatory and regulatory cytokines do not seem to play a prominent role in CanL or during clinical recovery.
Collapse
Affiliation(s)
- Marcos Ferreira Santos
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Graça Alexandre-Pires
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria A Pereira
- GHTM-Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisbon (UNL), Lisbon, Portugal
| | - Cátia S Marques
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gomes
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge Correia
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Duarte
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Lídia Gomes
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Armanda V Rodrigues
- GHTM-Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisbon (UNL), Lisbon, Portugal
| | - Alexandra Basso
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Reisinho
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - José Meireles
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - David Santos-Mateus
- GHTM-Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisbon (UNL), Lisbon, Portugal
| | - Maria Teresa Villa Brito
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Luís Tavares
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela M Santos-Gomes
- GHTM-Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisbon (UNL), Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
30
|
Abstract
Spotted fever group rickettsiae (SFG) are a neglected group of bacteria, belonging to the genus Rickettsia, that represent a large number of new and emerging infectious diseases with a worldwide distribution. The diseases are zoonotic and are transmitted by arthropod vectors, mainly ticks, fleas and mites, to hosts such as wild animals. Domesticated animals and humans are accidental hosts. In Asia, local people in endemic areas as well as travellers to these regions are at high risk of infection. In this review we compare SFG molecular and serological diagnostic methods and discuss their limitations. While there is a large range of molecular diagnostics and serological assays, both approaches have limitations and a positive result is dependent on the timing of sample collection. There is an increasing need for less expensive and easy-to-use diagnostic tests. However, despite many tests being available, their lack of suitability for use in resource-limited regions is of concern, as many require technical expertise, expensive equipment and reagents. In addition, many existing diagnostic tests still require rigorous validation in the regions and populations where these tests may be used, in particular to establish coherent and worthwhile cut-offs. It is likely that the best strategy is to use a real-time quantitative polymerase chain reaction (qPCR) and immunofluorescence assay in tandem. If the specimen is collected early enough in the infection there will be no antibodies but there will be a greater chance of a PCR positive result. Conversely, when there are detectable antibodies it is less likely that there will be a positive PCR result. It is therefore extremely important that a complete medical history is provided especially the number of days of fever prior to sample collection. More effort is required to develop and validate SFG diagnostics and those of other rickettsial infections.
Collapse
|
31
|
TickPath Layerplex: adaptation of a real-time PCR methodology for the simultaneous detection and molecular surveillance of tick-borne pathogens. Sci Rep 2019; 9:6950. [PMID: 31061487 PMCID: PMC6502835 DOI: 10.1038/s41598-019-43424-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Tick-borne diseases (TBD) are common across the United States and can result in critical and chronic diseases in a variety of veterinary patients. Moreover, borreliosis, anaplasmosis, rickettsiosis, ehrlichiosis, and babesiosis are zoonotic and have been cited as the most common TBDs. Molecular diagnostic methodologies utilized for screening domestic dogs for these causative agents include real-time PCR (qPCR) assays in both singleplex and multiplex formats. However, current limitations of qPCR instruments restrict the number of fluorogenic labels that can be differentiated by the instrument for a given reaction. This study describes the development of the TickPath Layerplex, a diagnostic assay based on qPCR methodology that was adapted for the simultaneous detection and characterization of 11 pathogens responsible for causing 5 common TBDs in domestic dogs. The analytical and diagnostic performance of the layerplex assay was evaluated and shown to be compatible with common instruments utilized in molecular diagnostic laboratories. Test results revealed no inhibition or reduction in sensitivity during validation of the layerplex assay, and the limit of detection was determined to be near 16 genome copy equivalents per microliter. Overall, the high sensitivity, specificity, and screening capability of the assay demonstrate its utility for broadly screening dogs for common TBDs.
Collapse
|
32
|
Kidd L. Optimal Vector-borne Disease Screening in Dogs Using Both Serology-based and Polymerase Chain Reaction-based Diagnostic Panels. Vet Clin North Am Small Anim Pract 2019; 49:703-718. [PMID: 30975506 DOI: 10.1016/j.cvsm.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vector-borne disease and idiopathic immune-mediated disease present similarly. Diagnostic panels that include multiple organisms help detect infection and identify coinfections. Comprehensive diagnostic panels that combine polymerase chain reaction (PCR) and serology should be used in initial screening to maximize sensitivity and identify infection. Repeat testing using PCR is warranted in dogs at high risk of infection with organisms that circulate in blood in low numbers or intermittently. Convalescent serologic testing can help diagnose acute infection. This article discusses the pathophysiology and epidemiology of the organisms, panel selection, and how to recognize when more aggressive testing for an organism is warranted.
Collapse
Affiliation(s)
- Linda Kidd
- Western University of Health Sciences College of Veterinary Medicine, 309 East Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
33
|
Modarelli JJ, Tomeček JM, Piccione J, Ferro PJ, Esteve‐Gasent MD. Molecular prevalence and ecoregion distribution of select tick‐borne pathogens in Texas dogs. Transbound Emerg Dis 2019; 66:1291-1300. [DOI: 10.1111/tbed.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Joseph J. Modarelli
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical SciencesTexas A&M University College Station Texas
| | - John M. Tomeček
- Department of Wildlife and Fisheries SciencesTexas A&M University College Station Texas
| | - Julie Piccione
- Texas A&M Veterinary Medical Diagnostic LaboratoryTexas A&M University College Station Texas
| | - Pamela J. Ferro
- Texas A&M Veterinary Medical Diagnostic LaboratoryTexas A&M University College Station Texas
| | - Maria D. Esteve‐Gasent
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical SciencesTexas A&M University College Station Texas
| |
Collapse
|
34
|
Garden OA, Kidd L, Mexas AM, Chang YM, Jeffery U, Blois SL, Fogle JE, MacNeill AL, Lubas G, Birkenheuer A, Buoncompagni S, Dandrieux JRS, Di Loria A, Fellman CL, Glanemann B, Goggs R, Granick JL, LeVine DN, Sharp CR, Smith-Carr S, Swann JW, Szladovits B. ACVIM consensus statement on the diagnosis of immune-mediated hemolytic anemia in dogs and cats. J Vet Intern Med 2019; 33:313-334. [PMID: 30806491 PMCID: PMC6430921 DOI: 10.1111/jvim.15441] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
Immune-mediated hemolytic anemia (IMHA) is an important cause of morbidity and mortality in dogs. IMHA also occurs in cats, although less commonly. IMHA is considered secondary when it can be attributed to an underlying disease, and as primary (idiopathic) if no cause is found. Eliminating diseases that cause IMHA may attenuate or stop immune-mediated erythrocyte destruction, and adverse consequences of long-term immunosuppressive treatment can be avoided. Infections, cancer, drugs, vaccines, and inflammatory processes may be underlying causes of IMHA. Evidence for these comorbidities has not been systematically evaluated, rendering evidence-based decisions difficult. We identified and extracted data from studies published in the veterinary literature and developed a novel tool for evaluation of evidence quality, using it to assess study design, diagnostic criteria for IMHA, comorbidities, and causality. Succinct evidence summary statements were written, along with screening recommendations. Statements were refined by conducting 3 iterations of Delphi review with panel and task force members. Commentary was solicited from several professional bodies to maximize clinical applicability before the recommendations were submitted. The resulting document is intended to provide clinical guidelines for diagnosis of, and underlying disease screening for, IMHA in dogs and cats. These should be implemented with consideration of animal, owner, and geographical factors.
Collapse
Affiliation(s)
- Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linda Kidd
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Angela M Mexas
- College of Veterinary Medicine, Midwestern University, Downers Grove, Illinois
| | - Yu-Mei Chang
- Royal Veterinary College, University of London, London, United Kingdom
| | - Unity Jeffery
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Shauna L Blois
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan E Fogle
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Amy L MacNeill
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - George Lubas
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Adam Birkenheuer
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Simona Buoncompagni
- Internal Medicine Service, Central Oklahoma Veterinary Specialists, Oklahoma City, Oklahoma
| | - Julien R S Dandrieux
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Claire L Fellman
- Cummings School of Veterinary Medicine, Tufts University, Massachusetts
| | - Barbara Glanemann
- Royal Veterinary College, University of London, London, United Kingdom
| | - Robert Goggs
- College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jennifer L Granick
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Claire R Sharp
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | - James W Swann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Balazs Szladovits
- Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
35
|
Monje LD, Fernandez C, Percara A. Detection of Ehrlichia sp. strain San Luis and Candidatus Rickettsia andeanae in Amblyomma parvum ticks. Ticks Tick Borne Dis 2018; 10:111-114. [PMID: 30243567 DOI: 10.1016/j.ttbdis.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 11/26/2022]
Abstract
Owing to the sanitary importance of the tick Amblyomma parvum, this study evaluated the infection by Ehrlichia, Anaplasma and Rickettsia species of questing A. parvum collected in northwestern Argentina. Our results showed that A. parvum ticks in this region are infected with the recently reported Ehrlichia sp. strain San Luis, closely related to Ehrlichia chaffeensis. A high prevalence of Candidatus Rickettsia andeanae was observed. Most of the infected ticks presented rickettsial loads lower than those previously reported for other spotted fever group rickettsiae. The presence of Ehrlichia sp. strain San Luis in A. parvum is a potential risk for public health as the principal hosts of this tick are domestic mammals in rural areas and humans are frequently bitten by this tick species.
Collapse
Affiliation(s)
- Lucas D Monje
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Esperanza, Argentina.
| | - Camilo Fernandez
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Esperanza, Argentina
| | - Alejandro Percara
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Esperanza, Argentina
| |
Collapse
|
36
|
Development of a tick-borne pathogen QPCR panel for detection of Anaplasma, Ehrlichia, Rickettsia, and Lyme disease Borrelia in animals. J Microbiol Methods 2018; 151:83-89. [PMID: 29802869 DOI: 10.1016/j.mimet.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022]
Abstract
Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Lyme disease associated Borrelia spp. are the most common tick-borne pathogens reported to infect human beings worldwide and other animals, such as dogs and horses. In the present study, we developed a broad-coverage SYBR Green QPCR panel consisting of four individual assays for the detection and partial differentiation of the aforementioned pathogens. All assays were optimized to the same thermocycling condition and had a detection limit of 10 copies per reaction. The assays remained sensitive when used to test canine and equine blood DNA samples spiked with known amounts of synthetic DNA (gBlock) control template. The assays were specific, as evidenced by lack of cross reaction to non-target gBlock or other pathogens commonly tested in veterinary diagnostic labs. With appropriate Ct cutoff values for positive samples and negative controls and the melting temperature (TM) ranges established in the present study, the QPCR panel is suitable for accurate, convenient and rapid screening and confirmation of tick-borne pathogens in animals.
Collapse
|
37
|
Boucheikhchoukh M, Laroche M, Aouadi A, Dib L, Benakhla A, Raoult D, Parola P. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp Immunol Microbiol Infect Dis 2018; 57:39-49. [PMID: 30017077 DOI: 10.1016/j.cimid.2018.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/04/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Recent studies have reported the reliability of MALDI-TOF MS for arthropod identification, including fresh or alcohol-preserved ticks based on leg-derived mass spectra. The aim of this study was to evaluate the performance of MALDI-TOF MS for the identification of alcohol-preserved Algerian ticks collected from different domestic and wild hosts. Secondly, we conducted a molecular survey to detect the presence of bacterial DNA in all ticks that were previously subjected to MALDI-TOF MS. A total of 2635 ixodid and 1401 argasid ticks belonging to 9 distinct species were collected in nine different regions of northeastern Algeria. The legs of 230 specimens were subjected to MALDI-TOF MS assays. Spectral analysis revealed intra-species similarity and inter-species specificity for the MS spectra, which was consistent with the morphological identification. Blind tests against the in-lab database revealed that 93.48% of the tested specimens were correctly identified. The accuracy of the morphological and MALDI-TOF MS identifications was validated by sequencing the 12S ribosomal RNA gene (rRNA) for 33 specimens and all the ticks were correctly identified. The quantitative PCR screening showed that for 219 tested ticks, 15 were positive for Rickettsia spp., 8 for Borrelia spp. and 17 for Anaplasmataceae. The PCR tests were negative for Coxiella burnetii and Bartonella spp. This study supports MALDI-TOF MS being a reliable tool for the identification of arthropods and brings new data that sheds light on tick species diversity and tick-borne diseases in Algeria.
Collapse
Affiliation(s)
- Mehdi Boucheikhchoukh
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| | - Atef Aouadi
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria; Université Cherif Messaadia, Département des Sciences Vétérinaires, Souk Ahras, 41000, Algeria.
| | - Loubna Dib
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Ahmed Benakhla
- Université Chadli Bendjdid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
38
|
Diarra AZ, Almeras L, Laroche M, Berenger JM, Koné AK, Bocoum Z, Dabo A, Doumbo O, Raoult D, Parola P. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl Trop Dis 2017; 11:e0005762. [PMID: 28742123 PMCID: PMC5542699 DOI: 10.1371/journal.pntd.0005762] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/03/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.
Collapse
Affiliation(s)
- Adama Zan Diarra
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Lionel Almeras
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Maureen Laroche
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Jean-Michel Berenger
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | | | - Abdoulaye Dabo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Ogobara Doumbo
- Malaria Research and Training Center, Département d’Epidémiologie des Affections Parasitaires, Faculté de Médecine et d’Odontostomatologie, Faculté de Pharmacie, USTTB, Bamako, Mali
| | - Didier Raoult
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
39
|
Bennett MD, Abdad MY, Stenos J. Serological Evidence of Rickettsia spp. in Western Australian Dogs. Am J Trop Med Hyg 2017; 97:407-412. [PMID: 28722591 DOI: 10.4269/ajtmh.16-0998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It has been claimed that dogs can be useful sentinels for public health monitoring of vector-borne infectious diseases, including Rickettsia spp. We used 153 canine blood samples opportunistically collected at Murdoch University Veterinary Hospital and 156 canine sera collected from Aboriginal communities in northwest Western Australia to test for evidence of Rickettsia spp. exposure, using microimmunofluorescence (MIF) in the latter case, and both MIF and polymerase chain reaction (PCR) in the former. Conventional and real-time PCR failed to amplify any Rickettsia spp. DNA. The seroprevalence for spotted fever group/transitional group Rickettsia spp. in Western Australian dogs was 17.3% (54/312), and for typhus group (TG) Rickettsia spp., 18.4% (57/310), with a cut-off titer of 1:128. Young dogs (≤ 2 years) from Aboriginal communities had significantly lower seropositivity to TG Rickettsia spp. compared with all other groups, and young Perth dogs had a significantly higher seropositivity to TG Rickettsia spp. than all Aboriginal community dogs.
Collapse
Affiliation(s)
| | - Mohammad Yazid Abdad
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Victoria, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Victoria, Australia
| |
Collapse
|
40
|
Portillo A, de Sousa R, Santibáñez S, Duarte A, Edouard S, Fonseca IP, Marques C, Novakova M, Palomar AM, Santos M, Silaghi C, Tomassone L, Zúquete S, Oteo JA. Guidelines for the Detection of Rickettsia spp. Vector Borne Zoonotic Dis 2017; 17:23-32. [PMID: 28055574 DOI: 10.1089/vbz.2016.1966] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genus Rickettsia (Rickettsiales: Rickettsiaceae) includes Gram-negative, small, obligate intracellular, nonmotile, pleomorphic coccobacilli bacteria transmitted by arthropods. Some of them cause human and probably also animal disease (life threatening in some patients). In these guidelines, we give clinical practice advices (microscopy, serology, molecular tools, and culture) for the microbiological study of these microorganisms in clinical samples. Since in our environment rickettsioses are mainly transmitted by ticks, practical information for the identification of these arthropods and for the study of Rickettsia infections in ticks has also been added.
Collapse
Affiliation(s)
- Aránzazu Portillo
- 1 Center of Rickettsiosis and Arthropod-Borne Diseases , Hospital San Pedro-CIBIR, Logroño, Spain
| | - Rita de Sousa
- 2 National Institute of Health Dr. Ricardo Jorge , Águas de Moura, Portugal
| | - Sonia Santibáñez
- 1 Center of Rickettsiosis and Arthropod-Borne Diseases , Hospital San Pedro-CIBIR, Logroño, Spain
| | - Ana Duarte
- 3 Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon , Lisbon, Portugal
| | - Sophie Edouard
- 4 Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut Hospitalo-Universitaire Méditerranée-Infection , Marseille, France
| | - Isabel P Fonseca
- 3 Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon , Lisbon, Portugal
| | - Cátia Marques
- 3 Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon , Lisbon, Portugal
| | - Marketa Novakova
- 5 Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno , Brno, Czech Republic .,6 CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno , Brno, Czech Republic
| | - Ana M Palomar
- 1 Center of Rickettsiosis and Arthropod-Borne Diseases , Hospital San Pedro-CIBIR, Logroño, Spain
| | - Marcos Santos
- 3 Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon , Lisbon, Portugal
| | - Cornelia Silaghi
- 7 National Centre for Vector Entomology, Institute of Parasitology, University of Zurich , Zurich, Switzerland
| | - Laura Tomassone
- 8 Department of Veterinary Sciences, University of Torino , Grugliasco, Italy
| | - Sara Zúquete
- 3 Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon , Lisbon, Portugal
| | - José A Oteo
- 1 Center of Rickettsiosis and Arthropod-Borne Diseases , Hospital San Pedro-CIBIR, Logroño, Spain
| |
Collapse
|
41
|
Barradas PF, Vilhena H, Oliveira AC, Granada S, Amorim I, Ferreira P, Cardoso L, Gärtner F, de Sousa R. Serological and molecular detection of spotted fever group Rickettsia in a group of pet dogs from Luanda, Angola. Parasit Vectors 2017; 10:271. [PMID: 28569177 PMCID: PMC5450355 DOI: 10.1186/s13071-017-2216-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background Infections with tick-borne rickettsiae can cause diseases well known in humans but still not so well characterized in dogs. Susceptibility to infection depends on the virulence of Rickettsia spp. and only a few of them have been described to cause disease in dogs. The aim of this study was to investigate the exposure to Rickettsia spp. among a group of pet dogs from Luanda, Angola. Results Out of 103 dogs included in the study, 62 (60.2%) were infested with ticks. Plasma specimens tested for serology by an immunofluorescence assay (IFA) revealed that six (5.8%) dogs had detectable immunoglobulin G (IgG) antibodies to spotted fever group Rickettsia (SFGR), with endpoint titers of 64 for two dogs, 128 for three dogs and 1024 for one dog. From the seropositive group of dogs, five (83%) of them were males, with their age ranging from 1 to 8 years old. Among the seropositive dogs, four (66.7%) were parasitized with ticks and no breed (or cross) was found to be associated with specific antibodies. Rickettsia spp. DNA was detected by nested-polymerase chain reaction (PCR) in two (1.9%) dogs that were found to be seronegative. Conclusions Seroprevalence and molecular detection of Rickettsia spp. infection in this group of pet dogs from Luanda is low compared with other studies performed in the same type of hosts in other areas. Although many dogs were parasitized with ticks, a low prevalence of Rickettsia spp. could be related with the hypothesis of a low rickettsial prevalence in the infesting ticks. This study provides evidence that dogs in Luanda are exposed to Rickettsia spp., but further studies are needed to better characterize the bacterial infections in dogs and in their ectoparasites.
Collapse
Affiliation(s)
- Patrícia F Barradas
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Oporto, Portugal
| | - Hugo Vilhena
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Department of Veterinary Medicine, Escola Universitária Vasco da Gama, Coimbra, Portugal.,Baixo Vouga Veterinary Hospital, Águeda, Portugal
| | | | - Sara Granada
- Casa dos Animais Veterinary Clinic, Luanda, Angola
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Oporto, Portugal.,Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Oporto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Oporto, Portugal
| | - Paula Ferreira
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Oporto, Portugal.,Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Oporto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Oporto, Portugal
| | - Luís Cardoso
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.
| | - Fátima Gärtner
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Oporto, Portugal.,Instituto de Inovação e Investigação em Saúde (i3S), Universidade do Porto, Oporto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Oporto, Portugal
| | - Rita de Sousa
- National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| |
Collapse
|
42
|
Kidd L, Qurollo B, Lappin M, Richter K, Hart JR, Hill S, Osmond C, Breitschwerdt EB. Prevalence of Vector-Borne Pathogens in Southern California Dogs With Clinical and Laboratory Abnormalities Consistent With Immune-Mediated Disease. J Vet Intern Med 2017; 31:1081-1090. [PMID: 28558145 PMCID: PMC5508353 DOI: 10.1111/jvim.14735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/24/2017] [Accepted: 04/12/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Studies investigating the prevalence of vector-borne pathogens in southern California dogs are limited. Occult infections might be misdiagnosed as idiopathic immune-mediated disease. HYPOTHESIS/OBJECTIVES (1) To determine the prevalence of vector-borne pathogens in southern California dogs with compatible clinical findings using PCR and serologic panels and (2) to determine whether testing convalescent samples and repeating PCR on acute samples using the same and different gene targets enhance detection. ANIMALS Forty-two client-owned dogs with clinical signs of vector-borne disease presenting to specialty practices in San Diego County. METHODS Combined prospective and retrospective observational study. Forty-two acute and 27 convalescent samples were collected. Acute samples were prospectively tested for antibodies to Rickettsia, Ehrlichia, Bartonella, Babesia, Borrelia, and Anaplasma species. PCR targeting Ehrlichia, Babesia, Anaplasma, hemotropic Mycoplasma, and Bartonella species was also performed. Retrospectively, convalescent samples were tested for the same organisms using serology, and for Ehrlichia, Babesia, Anaplasma, and Bartonella species using PCR. Acute samples were retested using PCR targeting Ehrlichia and Babesia species. RESULTS Evidence of exposure to or infection with a vector-borne pathogen was detected in 33% (14/42) of dogs. Ehrlichia and Babesia species were most common; each was identified in 5 dogs. Convalescent serologic testing, repeating PCR, and using novel PCR gene targets increased detection by 30%. CONCLUSIONS AND CLINICAL IMPORTANCE Repeated testing using serology and PCR enhances detection of infection by vector-borne pathogens in dogs with clinical signs of immune-mediated disease. Larger prevalence studies of emerging vector-borne pathogens in southern California dogs are warranted.
Collapse
Affiliation(s)
- L Kidd
- Western University of Health Sciences College of Veterinary Medicine, Pomona, CA
| | - B Qurollo
- Vector Borne Disease Diagnostic Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - M Lappin
- Center for Companion Animal Studies, Colorado State University College of Veterinary Medicine, Fort Collins, CO
| | - K Richter
- Veterinary Specialty Hospital, San Diego, CA
| | - J R Hart
- Veterinary Specialty Hospital, San Diego, CA
| | - S Hill
- Veterinary Specialty Hospital, San Diego, CA
| | - C Osmond
- California Veterinary Specialists, Carlsbad, CA
| | - E B Breitschwerdt
- Vector Borne Disease Diagnostic Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
43
|
Genetic characterization of spotted fever group rickettsiae in questing ixodid ticks collected in Israel and environmental risk factors for their infection. Parasitology 2017; 144:1088-1101. [PMID: 28330517 DOI: 10.1017/s0031182017000336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to genetically characterize spotted fever group rickettsiae (SFGR) in questing ixodid ticks from Israel and to identify risk factors associated with SFGR-positive ticks using molecular techniques and geographic information systems (GIS) analysis. 1039 ticks from the genus Rhipicephalus were collected during 2014. 109/1039 (10·49%) carried SFGR-DNA of either Rickettsia massiliae (95), 'Candidatus Rickettsia barbariae' (8) or Rickettsia conorii (6). Higher prevalence of SFGR was found in Rhipicephalus turanicus (18·00%) compared with Rhipicephalus sanguineus sensu lato (3·22%). Rickettsia massiliae was the most commonly detected species and the most widely disseminated throughout Israel (87·15% of all Rickettsia-positive ticks). GIS analysis revealed that Central and Northern coastal regions are at high risk for SFGR. The presence of ticks was significantly associated with normalized difference vegetation index and temperature variation over the course of the year. The presence of rickettsiae was significantly associated with brown type soils, higher land surface temperature and higher precipitation. The latter parameters may contribute to infection of the tick with SFGR. Health care professionals should be aware of the possible exposure of local communities and travellers to R. massillae. Molecular and geographical information can help professionals to identify areas that are susceptible to SFGR-infected ticks.
Collapse
|
44
|
Teshale S, Kumsa B, Menandro ML, Cassini R, Martini M. Anaplasma, Ehrlichia and rickettsial pathogens in ixodid ticks infesting cattle and sheep in western Oromia, Ethiopia. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:231-237. [PMID: 27411938 DOI: 10.1007/s10493-016-0067-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Although ticks are widely distributed in all agro-ecological zones of Ethiopia, information on tick-borne pathogens is scarce. This study was conducted to determine the presence of Anaplasma spp., Ehrlichia spp., and Rickettsia spp. in Rhipicephalus evertsi and Rhipicephalus (Boophilus) decoloratus collected from cattle and sheep at Bako, western Oromia, Ethiopia, using polymerase chain reaction and sequencing. Anaplasma ovis and Anaplasma spp., Ehrlichia ruminantium and Ehrlichia spp. were detected in Rh. decoloratus, whereas only A. ovis was detected in Rh. evertsi. Both tick species were found to harbor DNA belonging to Rickettsia spp., and Rickettsia africae. Our findings highlight the risk of infection of animals and humans with these zoonotic tick-borne bacteria in Ethiopia.
Collapse
Affiliation(s)
- Sori Teshale
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Bersissa Kumsa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| | - Marco Martini
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
45
|
Sayler K, Rowland J, Boyce C, Weeks E. Borrelia burgdorferi DNA absent, multiple Rickettsia spp. DNA present in ticks collected from a teaching forest in North Central Florida. Ticks Tick Borne Dis 2016; 8:53-59. [PMID: 27720381 DOI: 10.1016/j.ttbdis.2016.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023]
Abstract
Tick-borne diseases are an emerging public health threat in the United States. In Florida, there has been public attention directed towards the possibility of locally acquired Borrelia burgdorferi sensu stricto, the causative agent of Lyme disease, in association with the lone star tick. The aim of this study was to determine the prevalence of ticks and the pathogens they carry and potentially transmit, such as B. burgdorferi, in a highly utilized teaching and research forest in North Central Florida. Ticks were collected by dragging and flagging methods over a four month period in early 2014, identified, and tested by PCR for multiple pathogens including Anaplasma, Borrelia, Rickettsia, and Ehrlichia species. During the study period the following ticks were collected: 2506 (96.5%) Amblyomma americanum L., 64 (2.5%) Ixodes scapularis Say, 19 (0.7%) Dermacentor variabilis Say, and 5 (0.2%) Ixodes affinis Neuman. Neither Borrelia spp. (0/846) nor Anaplasma spp. (0/69; Ixodes spp. only) were detected by PCR in any of the ticks tested. However, Rickettsia DNA was present in 53.7% (86/160), 62.5% (40/64), 60.0% (3/5) and 31.6% (6/19) of A. americanum, I. scapularis, I. affinis and D. variabilis, respectively. Furthermore, E. chaffeensis and E. ewingii DNA were detected in 1.3% and 4.4% of adult A. americanum specimens tested, respectively. Although receiving an A. americanum bite is likely in wooded areas in North Central Florida due to the abundance of this tick, the risk of contracting a tick-borne pathogen in this specific area during the spring season appears to be low. The potential for pathogen prevalence to be highly variable exists, even within a single geographical site and longitudinal studies are needed to assess how tick-borne pathogen prevalence is changing over time in North Central Florida.
Collapse
Affiliation(s)
- Katherine Sayler
- College of Veterinary Medicine, 2015 SW 16th Avenue, Veterinary Academic Building, University of Florida, Gainesville, FL, 32611, USA
| | - Jessica Rowland
- Department of Entomology and Nematology, PO Box 110620, 1881 Natural Area Drive, University of Florida, Gainesville, FL, 32611, USA; Emerging Pathogens Institute, 2055 Mowry Rd, University of Florida, Gainesville, FL, 32611, USA
| | - Carisa Boyce
- College of Veterinary Medicine, 2015 SW 16th Avenue, Veterinary Academic Building, University of Florida, Gainesville, FL, 32611, USA; Department of Entomology and Nematology, PO Box 110620, 1881 Natural Area Drive, University of Florida, Gainesville, FL, 32611, USA
| | - Emma Weeks
- Department of Entomology and Nematology, PO Box 110620, 1881 Natural Area Drive, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
46
|
Laroche M, Marie J, Mediannikov O, Almeras L, Berenger JM, Musso D, Raoult D, Parola P. A novel ehrlichial agent detected in tick in French Polynesia. Ticks Tick Borne Dis 2016; 7:1203-1208. [PMID: 27522945 DOI: 10.1016/j.ttbdis.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 06/29/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022]
Abstract
Ticks are hematophageous arthropods that are known to host and transmit miscellaneous pathogens including zoonotic bacteria. The aim of this study was to investigate the presence of tick-associated microorganisms in Tahiti, French Polynesia with molecular tools. A total of 658 ticks from two species including Rhipicephalus sanguineus s.l. and Rh. annulatus were collected with forceps on dogs and cattle respectively, or with a flag on pasture in several locations of Tahiti in 2013. Two Rickettsia belonging to the spotted fever group different from R. conorii and R. massiliae were detected by qPCR in two Rh. sanguineus s.l. ticks, but sequencing failed. A Rh. annulatus tick was found positive for a new ehrlichial agent characterized by amplification and sequencing of fragments of the Anaplasmataceae 23S and Ehrlichia 16S genes. Phylogenetic analyses based on the 23S and 16S sequences reveals that this bacterium is a new genotype, genetically close to Ehrlichia minasensis, a recently described Ehrlichia sp. close to Ehrlichia canis.
Collapse
Affiliation(s)
- Maureen Laroche
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Jérôme Marie
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, PO Box 30, 98713 Tahiti, French Polynesia
| | - Oleg Mediannikov
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Michel Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Musso
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, PO Box 30, 98713 Tahiti, French Polynesia
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France.
| |
Collapse
|
47
|
Sayler KA, Loftis AD, Beatty SK, Boyce CL, Garrison E, Clemons B, Cunningham M, Alleman AR, Barbet AF. Prevalence of Tick-Borne Pathogens in Host-Seeking Amblyomma americanum (Acari: Ixodidae) and Odocoileus virginianus (Artiodactyla: Cervidae) in Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:949-956. [PMID: 27117680 DOI: 10.1093/jme/tjw054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
Amblyomma americanum (L.), the lone star tick, is an aggressive tick that is expanding its geographic range within the United States. This tick is the vector for the human and veterinary pathogens Ehrlichia chaffeensis and Ehrlichia ewingii and is associated with other microbes of unspecified pathogenicity including Rickettsia amblyommii, Panola Mountain Ehrlichia, and Borrelia lonestari In Florida, there has been sparse contemporary data on the prevalence of these organisms in host-seeking lone star ticks. To determine the prevalence of this tick and associated microbes in North Central Florida state parks, ∼1,500 lone star tick specimens were collected between 2010 and 2012 analyzed by polymerase chain reaction (PCR) sequencing. Additionally, 393 white-tailed deer, Odocoileus virginianus (Zimmerman), samples were analyzed for pathogen prevalence using molecular methods and serology. In lone star ticks, 14.6, 15.6, and 57.1% were positive for E. chaffeensis, E. ewingii, and Rickettsia spp. DNA, respectively. Panola Mountain Ehrlichia or B. lonestari DNA were each detected in nearly 2% of tick specimens. In white-tailed deer, 7.3% were PCR positive for E. chaffeensis, 6.0% for E. ewingii, and 3.2% for rickettsial species. Approximately 45% of white-tailed deer specimens had antibodies to Ehrlichia spp., and <1% had antibodies to Borrelia burgdorferi In summary, E. chaffeensis, E. ewingii, and spotted fever group rickettsia are highly prevalent in host-seeking lone star ticks and in white-tailed deer in Florida. The molecular and serological evidence of these microbes underscore their zoonotic potential in this region.
Collapse
Affiliation(s)
- Katherine A Sayler
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave., Gainesville, FL 32608 (; ; ; ),
- Department of Infectious Disease and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave., Gainesville, FL 32608
| | - Amanda D Loftis
- Department of Microbiology, Midwestern University Glendale, 19555 N 59th Ave., Glendale, AZ 85308 , and
| | - Sarah K Beatty
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave., Gainesville, FL 32608 (; ; ; )
| | - Carisa L Boyce
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave., Gainesville, FL 32608 (; ; ; )
| | - Elina Garrison
- Florida Fish and Wildlife Conservation Commission, Fish & Wildlife Research Institute, 1105 SW Williston Rd., Gainesville, FL 32601 (; ; )
| | - Bambi Clemons
- Florida Fish and Wildlife Conservation Commission, Fish & Wildlife Research Institute, 1105 SW Williston Rd., Gainesville, FL 32601 (; ; )
| | - Mark Cunningham
- Florida Fish and Wildlife Conservation Commission, Fish & Wildlife Research Institute, 1105 SW Williston Rd., Gainesville, FL 32601 (; ; )
| | - Arthur R Alleman
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave., Gainesville, FL 32608 (; ; ; )
| | - Anthony F Barbet
- Department of Infectious Disease and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16th Ave., Gainesville, FL 32608
| |
Collapse
|
48
|
Khrouf F, Sellami H, Elleuch E, Hattab Z, Ammari L, Khalfaoui M, Souissi J, Harrabi H, M'ghirbi Y, Tiouiri H, Ben Jemaa M, Hammami A, Letaief A, Bouattour A, Znazen A. Molecular diagnosis of Rickettsia infection in patients from Tunisia. Ticks Tick Borne Dis 2016; 7:653-656. [PMID: 26897395 DOI: 10.1016/j.ttbdis.2016.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 11/17/2022]
Abstract
Diagnosis of rickettsioses had largely benefited from the development of molecular techniques. Unfortunately, in Tunisia, despite the large number of rickettsial cases registered every year, the Rickettsia species remain unidentified. In this study, we aimed to detect the Rickettsia species in clinical samples using molecular tests. A study was established to analyze skin biopsies, cutaneous swabs, and cerebrospinal fluid samples taken from clinically suspected patients to have rickettsial infection. Two molecular techniques were used to detect Rickettsia DNA: quantitative real time PCR (qPCR) and reverse line blot test (RLB). An analysis of the RLB hybridization assay results revealed the presence of Rickettsia DNA in skin biopsies (40.6%) and swabs (46.7%). Rickettsia conorii was the most prevalent identified species among tested samples. Other species of interest include Rickettsia typhi and Rickettsia massiliae. Using qPCR positivity rates in skin biopsies was 63.7% against 80% in swabs. R. conorii was the most frequently detected species, followed by R. typhi. The agreement between the two techniques was 68.6% (kappa=0.33). Molecular tests, especially using specific probes qPCR, allow for a rapid, better and confident diagnosis in clinical practice. They improve the survey of Mediterranean spotted fever which is considered to be the most important rickettsial infection in humans in Tunisia.
Collapse
Affiliation(s)
- Fatma Khrouf
- Laboratory of Entomology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Hanene Sellami
- Laboratory of Microbiology, Research Laboratory "MPH", Habib Bourguiba University Hospital of Sfax, Sfax University, Sfax, Tunisia
| | - Emna Elleuch
- Infectious Diseases Department, Hedi Chaker University Hospital of Sfax, Sfax University, Sfax, Tunisia
| | - Zouhour Hattab
- Infectious Diseases Department, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Lamia Ammari
- Infectious Diseases Department, La Rabta University Hospital of Tunis, Tunis University, Tunisia
| | - Moncef Khalfaoui
- Infectious Diseases Department, Menzel Bourguiba Regional Hospital, Bizerte, Tunisia
| | - Jihed Souissi
- Infectious Diseases Department, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Hejer Harrabi
- Infectious Diseases Department, La Rabta University Hospital of Tunis, Tunis University, Tunisia
| | - Youmna M'ghirbi
- Laboratory of Entomology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Hanene Tiouiri
- Infectious Diseases Department, La Rabta University Hospital of Tunis, Tunis University, Tunisia
| | - Mounir Ben Jemaa
- Infectious Diseases Department, Hedi Chaker University Hospital of Sfax, Sfax University, Sfax, Tunisia
| | - Adnene Hammami
- Laboratory of Microbiology, Research Laboratory "MPH", Habib Bourguiba University Hospital of Sfax, Sfax University, Sfax, Tunisia
| | - Amel Letaief
- Infectious Diseases Department, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Ali Bouattour
- Laboratory of Entomology, Pasteur Institute of Tunis, Tunis, Tunisia.
| | - Abir Znazen
- Laboratory of Microbiology, Research Laboratory "MPH", Habib Bourguiba University Hospital of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
49
|
Luce-Fedrow A, Mullins K, Kostik AP, St John HK, Jiang J, Richards AL. Strategies for detecting rickettsiae and diagnosing rickettsial diseases. Future Microbiol 2016; 10:537-64. [PMID: 25865193 DOI: 10.2217/fmb.14.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rickettsial diseases and scrub typhus constitute a group of the oldest known vector-borne diseases. The cosmopolitan distribution of the vectors that transmit rickettsiae and orientiae leads to a worldwide prevalence of these diseases. Despite their significant historical status, detection and diagnosis of these diseases are still evolving today. Serological methods remain among the most prevalent techniques used for the detection/diagnosis of rickettsial diseases and scrub typhus. Molecular techniques have been instrumental in increasing the sensitivity/specificity of diagnosis, identifying new Rickettsia and Orientia species and have enhanced epidemiological capabilities when used in combination with serological methods. In this review, we discuss these techniques and their associated pros and cons.
Collapse
Affiliation(s)
- Alison Luce-Fedrow
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
50
|
Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia. Ticks Tick Borne Dis 2015; 7:199-203. [PMID: 26565929 DOI: 10.1016/j.ttbdis.2015.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/07/2015] [Accepted: 10/13/2015] [Indexed: 01/10/2023]
Abstract
Ticks play an important role in disease transmission globally due to their capability to serve as vectors for human and animal pathogens. The Republic of Serbia is an endemic area for a large number of tick-borne diseases. However, current knowledge on these diseases in Serbia is limited. The aim of this study was to investigate the presence of new emerging tick-borne pathogens in ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 187 ticks, including 124 Rhipicephalus sanguineus, 45 Ixodes ricinus and 18 Dermacentor reticulatus were collected from dogs. In addition, 26 questing I. ricinus ticks were collected from the vegetation, using the flagging method, from 4 different localities in Vojvodina, Serbia. DNA was extracted from each tick individually and samples were tested by either conventional or real-time PCR assays for the presence of Rickettsia spp.-DNA (gltA and ompA gene fragments), Ehrlichia/Anaplasma spp.-DNA (16S rRNA gene fragment) and Hepatozoon spp./Babesia spp.-DNA (18S rRNA gene fragment). In addition, all I. ricinus DNA samples were tested for Bartonella spp.-DNA (ITS locus) by real-time PCR. In this study, the presence of novel emerging tick-borne pathogens including Rickettsia raoultii, Rickettsia massiliae, Babesia venatorum, Babesia microti, Hepatozoon canis and Candidatus Neoehrlichia mikurensis was identified for the first time in Serbia. Our findings also confirmed the presence of Rickettsia monacensis, Babesia canis and Anaplasma phagocytophilum in ticks from Serbia. The findings of the current study highlight the great diversity of tick-borne pathogens of human and animal importance in Serbia. Physicians, public health workers and veterinarians should increase alertness to the presence of these tick-borne pathogens in this country.
Collapse
|