1
|
Pusterla N, Lawton K, Barnum S. Investigation of the seroprevalence to equine coronavirus and SARS-CoV-2 in healthy adult horses recently imported to the United States. Vet Q 2024; 44:1-6. [PMID: 38010292 PMCID: PMC10949836 DOI: 10.1080/01652176.2023.2288876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Adult horses are susceptible to equine coronavirus (ECoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), although, only ECoV has been linked to clinical disease. Little information is available regarding the seroprevalence against ECoV and SARS-CoV-2 in adult healthy horses. The goal of the present study was to determine the seroprevalence against two coronaviruses known to infect horses using convenience samples collected from horses recently imported from Europe to the United States from 2019 to 2023. A total of 385 banked serum samples were tested against ECoV and SARS-CoV-2 using previously validated ELISA assays. Prevalence factors including date of arrival in the United States, signalment and country of origin were available for the majority of the horses. A total of 9/385 (2.3%) and 4/385 (1.0%) horses tested seropositive for ECoV and SARS-CoV-2, respectively. The ECoV seropositive horses were all mares, ages 4 to 26 years (median 9 years) and originated from Germany, the Netherlands, Ireland, Belgium and Italy. These mares were predominantly imported during the summer and fall months. All SARS-CoV-2 seropositive horses were mares ages 5 to 10 years (median 7.5 years) imported from the Netherlands and the United Kingdom. The majority of the SARS-CoV-2 seropositive horses were imported during the colder months of the year. The study results support the presence of ECoV in Europe and report on the first SARS-CoV-2 seropositive healthy adult horses outside the United States. Commingling for movements by air and close contact to humans may predispose transmission with ECoV and SARS-CoV-2, respectively.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kaila Lawton
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024; 12:e0086724. [PMID: 39373506 PMCID: PMC11542594 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Stephen D. Shank
- Department of Biology,
Institute for Genomics and Evolutionary Medicine, Temple
University, Philadelphia,
Pennsylvania, USA
| | - Holly McQueary
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Jennifer K. Grenier
- Cornell Institute of
Biotechnology, Transcriptional Regulation and Expression
Facility, Ithaca,
New York, USA
| | - Gary R. Whittaker
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Michael J. Stanhope
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| | - Laura B. Goodman
- James A. Baker
Institute for Animal Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
- Department of Public
and Ecosystem Health, College of Veterinary Medicine, Cornell
University, Ithaca,
New York, USA
| |
Collapse
|
3
|
Kambayashi Y, Nemoto M, Ochi A, Kishi D, Ueno T, Tsujimura K, Bannai H, Kawanishi N, Ohta M, Suzuki T. Equine coronavirus infection and replication in equine intestinal enteroids. Vet Res 2024; 55:135. [PMID: 39390558 PMCID: PMC11468410 DOI: 10.1186/s13567-024-01381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, equine intestinal enteroids (EIEs) were generated from the duodenum, jejunum, and ileum and inoculated with equine coronavirus (ECoV) to investigate their suitability as in vitro models with which to study ECoV infection. Immunohistochemistry revealed that the EIEs were composed of various cell types expressed in vivo in the intestinal epithelium. Quantitative reverse-transcription PCR (qRT-PCR) and virus titration showed that ECoV had infected and replicated in the EIEs. These results were corroborated by electron microscopy. This study suggests that EIEs can be novel in vitro tools for studying the interaction between equine intestinal epithelium and ECoV.
Collapse
Affiliation(s)
- Yoshinori Kambayashi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Akihiro Ochi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Daiki Kishi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Takanori Ueno
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Nanako Kawanishi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Minoru Ohta
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
4
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
5
|
Gomez DE, Arroyo LG, Schoster A, Renaud DL, Kopper JJ, Dunkel B, Byrne D, Toribio RE. Diagnostic approaches, aetiological agents and their associations with short-term survival and laminitis in horses with acute diarrhoea admitted to referral institutions. Equine Vet J 2024; 56:959-969. [PMID: 37984355 DOI: 10.1111/evj.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND An international description of the diagnostic approaches used in different institutions to diagnose acute equine diarrhoea and the pathogens detected is lacking. OBJECTIVES To describe the diagnostic approach, aetiological agents, outcome, and development of laminitis for diarrhoeic horses worldwide. STUDY DESIGN Multicentre retrospective case series. METHODS Information from horses with acute diarrhoea presenting to participating institutions between 2016 and 2020, including diagnostic approaches, pathogens detected and their associations with outcomes, were compared between institutions or geographic regions. RESULTS One thousand four hundred and thirty-eight horses from 26 participating institutions from 4 continents were included. Overall, aetiological testing was limited (44% for Salmonella spp., 42% for Neorickettsia risticii [only North America], 40% for Clostridiodes difficile, and 29% for ECoV); however, 13% (81/633) of horses tested positive for Salmonella, 13% (35/262) for N. risticii, 9% (37/422) for ECoV, and 5% (27/578) for C. difficile. C. difficile positive cases had greater odds of non-survival than horses negative for C. difficile (OR: 2.69, 95%CI: 1.23-5.91). In addition, horses that were positive for N. risticii had greater odds of developing laminitis than negative horses (OR: 2.76, 95%CI: 1.12-6.81; p = 0.029). MAIN LIMITATIONS Due to the study's retrospective nature, there are missing data. CONCLUSIONS This study highlighted limited diagnostic investigations in cases of acute equine diarrhoea. Detection rates of pathogens are similar to previous reports. Non-survival and development of laminitis are related to certain detected pathogens.
Collapse
Affiliation(s)
- Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Angelika Schoster
- Vetsuisse Faculty, Equine Department University of Zurich, Zurich, Switzerland
- Ludwig-Maximilians-University Munich, Equine Clinic, Oberschleissheim, Germany
| | - David L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jamie J Kopper
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Bettina Dunkel
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, UK
| | - David Byrne
- College of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Kawanishi N, Kinoshita Y, Kambayashi Y, Bannai H, Tsujimura K, Yamanaka T, Cullinane A, Nemoto M. Performance of a microfluidic immunofluorescence assay kit for equine influenza virus antigen detection. J Equine Vet Sci 2023; 131:104956. [PMID: 37879453 DOI: 10.1016/j.jevs.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Equine influenza virus (EIV) infection is one of the most important respiratory diseases in the equine industry around the world. Rapid diagnosis, facilitated by point-of-care testing, is essential to implement movement restrictions and control disease outbreaks. This study evaluated a microfluidic immunofluorescence assay kit, which detects influenza virus and SARS-CoV-2 antigens in human specimens with a 12 min turnaround time, for its potential use in detecting EIV. The microfluidic immunofluorescence assay kit succeeded in detecting 11 EIV strains. Using the real-time reverse transcription polymerase chain reaction as a reference assay, the microfluidic immunofluorescence assay kit showed a sensitivity of 60.7% when evaluating nasopharyngeal swab samples of three horses experimentally infected with EIV. Comparing with the other two rapid antigen detection kits based on immunochromatography and silver amplification immunochromatography, the microfluidic immunofluorescence assay kit exhibited higher sensitivity than the former assay (53.6%) and the same sensitivity as the latter (60.7%). The microfluidic immunofluorescence assay kit did not detect nine non-EIV viruses including one equine coronavirus strain and seven bacteria, suggesting a high specificity for EIV antigens. Similar to other rapid antigen detection kits, the microfluidic immunofluorescence assay kit could be an effective diagnostic tool to detect EIV in the field.
Collapse
Affiliation(s)
- Nanako Kawanishi
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Yuta Kinoshita
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | | | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Ann Cullinane
- Virology Unit, Irish Equine Centre, Naas, Kildare, Ireland
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
7
|
Stummer M, Frisch V, Glitz F, Hinney B, Spergser J, Krücken J, Diekmann I, Dimmel K, Riedel C, Cavalleri JMV, Rümenapf T, Joachim A, Lyrakis M, Auer A. Presence of Equine and Bovine Coronaviruses, Endoparasites, and Bacteria in Fecal Samples of Horses with Colic. Pathogens 2023; 12:1043. [PMID: 37624003 PMCID: PMC10458731 DOI: 10.3390/pathogens12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Acute abdominal pain (colic) is one of the major equine health threats worldwide and often necessitates intensive veterinary medical care and surgical intervention. Equine coronavirus (ECoV) infections can cause colic in horses but are rarely considered as a differential diagnosis. To determine the frequency of otherwise undetected ECoV infections in horses with acute colic, fresh fecal samples of 105 horses with acute colic and 36 healthy control horses were screened for viruses belonging to the Betacoronavirus 1 species by RT-PCR as well as for gastrointestinal helminths and bacteria commonly associated with colic. Horses with colic excreted significantly fewer strongyle eggs than horses without colic. The prevalence of anaerobic, spore-forming, gram-positive bacteria (Clostridium perfringens and Clostridioides difficile) was significantly higher in the feces of horses with colic. Six horses with colic (5.7%) and one horse from the control group (2.8%) tested positive for Betacoronaviruses. Coronavirus-positive samples were sequenced to classify the virus by molecular phylogeny (N gene). Interestingly, in three out of six coronavirus-positive horses with colic, sequences closely related to bovine coronaviruses (BCoV) were found. The pathogenic potential of BCoV in horses remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Moritz Stummer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Vicky Frisch
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (V.F.); (J.-M.V.C.)
| | | | - Barbara Hinney
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Katharina Dimmel
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, 69364 Lyon, France;
| | | | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Anja Joachim
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Manolis Lyrakis
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Angelika Auer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| |
Collapse
|
8
|
Pusterla N. Equine Coronaviruses. Vet Clin North Am Equine Pract 2023; 39:55-71. [PMID: 36737293 DOI: 10.1016/j.cveq.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In equids, equine coronavirus has been associated with diarrhea in foals and lethargy, fever, anorexia, and occasional gastrointestinal signs in adult horses. Although horses seem to be susceptible to the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) based on the high homology to the ACE-2 receptor, they seem to be incidental hosts because of occasional SARS-CoV-2 spillover from humans. However, until more clinical and seroepidemiological data are available, it remains important to monitor equids for possible transmission from humans with clinical or asymptomatic COVID-19.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Taylor SD. Potomac Horse Fever. Vet Clin North Am Equine Pract 2023; 39:37-45. [PMID: 36737286 DOI: 10.1016/j.cveq.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Potomac horse fever (PHF) is a common cause of equine colitis in endemic areas. Until recently, the only causative agent known to cause PHF was Neorickettsia risticii. However, N. findlayensis has been isolated from affected horses. Horses typically become infected upon ingestion of Neorickettsia spp.-infected trematodes within aquatic insects. The most common clinical signs include diarrhea, fever, anorexia, lethargy and colic. The diagnostic test of choice for PHF is PCR of blood and feces. Tetracyclines remain an effective treatment. Supportive care, including fluid therapy, colloid administration, NSAID and anti-endotoxin medication, and digital cryotherapy, is also necessary in some cases.
Collapse
Affiliation(s)
- Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
11
|
BANNAI H, KAMBAYASHI Y, OHTA M, NEMOTO M, TSUJIMURA K. Prevalence of serum and salivary virus-neutralizing antibodies against equine coronavirus in four riding stables in Japan. J Equine Sci 2023; 34:13-18. [PMID: 37155492 PMCID: PMC10122986 DOI: 10.1294/jes.34.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 03/29/2023] Open
Abstract
To assess the prevalence of equine coronavirus infection in riding horses, virus-neutralizing tests were performed on serum and saliva samples collected at four facilities in Japan. Seropositivity rates ranged from 79.2% to 94.6%, suggesting widespread circulation of the virus in these populations. Antibody prevalence in saliva samples from two facilities that had experienced outbreaks in the previous year (67.6% and 71.4%) was significantly higher than at the other facilities without reported outbreaks (41.7% and 45.2%, P<0.05). The presence of salivary antibodies in a high proportion of horses is therefore suggestive of recent exposure to the virus.
Collapse
Affiliation(s)
- Hiroshi BANNAI
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412,
Japan
- *Corresponding author:
| | | | - Minoru OHTA
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412,
Japan
| | - Manabu NEMOTO
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412,
Japan
| | - Koji TSUJIMURA
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412,
Japan
| |
Collapse
|
12
|
Hepworth-Warren KL, Erwin SJ, Moore CB, Talbot JR, Young KAS, Neault MJ, Haugland JC, Robertson JB, Blikslager AT. Risk factors associated with an outbreak of equine coronavirus at a large farm in North Carolina. Front Vet Sci 2023; 10:1060759. [PMID: 36937023 PMCID: PMC10020641 DOI: 10.3389/fvets.2023.1060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Equine coronavirus (ECoV) leads to outbreaks with variable morbidity and mortality. Few previous reports of risk factors for infection are available in the literature. Objectives To describe unique clinical findings and risk factors for infection and development of clinical disease. Animals 135 horses on a farm affected by ECoV outbreak. Methods Retrospective cohort study. Data obtained included age, breed, gender, activity level, housing, and feed at the onset of the outbreak. Factors were evaluated for assessment of risk of infection using simple logistic regression or Fisher's exact test. Significance was set at p ≤ 0.05. Results and findings Forty-three of 54 (79.6%) horses tested on the farm were positive on fecal PCR for ECoV, and 17 horses (12.6%) developed clinical signs consistent with ECoV. Out of 17 horses in which the presence or absence of signs of colic was noted, 6 of 17 (35.3%) showed signs of colic. Three of these horses had small colon impactions, 2 of which required surgical intervention. Significant risk factors for having positive PCR results included being primarily stalled (OR 167.1, 95% CI 26.4-1719), housing next to a positive horse (OR 7.5, 95% CI 3.1-19.0), being in work (OR 26.9, 95% CI 4.6-281.9), being fed rationed hay vs. ad libitum (OR 1,558, 95% CI 130.8-15,593), and being fed alfalfa hay (OR 1,558, 95% CI 130.8-15,593). Conclusions and clinical importance This report describes risk factors for ECoV infection many of which were associated with intensive management of show horses. Clinicians should be aware that clinical signs vary and can include severe colic.
Collapse
Affiliation(s)
- Kate L. Hepworth-Warren
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Kate L. Hepworth-Warren
| | - Sara J. Erwin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | | | - Kimberly A. S. Young
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Michael J. Neault
- North Carolina Department of Agricultures and Consumer Services, Raleigh, NC, United States
| | - Jennifer C. Haugland
- Rollins Animal Disease Diagnostic Laboratory, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, United States
- North Carolina Veterinary Diagnostic Laboratory System, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, United States
| | - James B. Robertson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
13
|
Qi PF, Gao XY, Ji JK, Zhang Y, Yang SH, Cheng KH, Cui N, Zhu ML, Hu T, Dong X, Yan B, Wang CF, Yang HJ, Shi WF, Zhang W. Identification of a recombinant equine coronavirus in donkey, China. Emerg Microbes Infect 2022; 11:1010-1013. [PMID: 35311478 PMCID: PMC8986280 DOI: 10.1080/22221751.2022.2056522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Equine coronavirus (ECoV) was first identified in the USA and has been previously described in several countries. In order to test the presence of ECoV in China, we collected 51 small intestinal samples from donkey foals with diarrhoea from a donkey farm in Shandong Province, China between August 2020 and April 2021. Two samples tested positive for ECoV and full-length genome sequences were successfully obtained using next-generation sequencing, one of which was further confirmed by Sanger sequencing. The two strains shared 100% sequence identity at the scale of whole genome. Bioinformatics analyses further showed that the two Chinese strains represent a novel genetic variant of ECoV and shared the highest sequence identity of 97.05% with the first identified ECoV strain - NC99. In addition, it may be a recombinant, with the recombination region around the NS2 gene. To our knowledge, this is the first documented report of ECoV in China, highlighting its risk to horse/donkey breeding. In addition, its potential risk to public health also warrants further investigation.
Collapse
Affiliation(s)
- Peng-Fei Qi
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Xing-Yi Gao
- School of Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, People's Republic of China
| | - Jing-Kai Ji
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yan Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Shao-Hua Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Kai-Hui Cheng
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Ning Cui
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Man-Ling Zhu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Tao Hu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Bin Yan
- School of Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, People's Republic of China
| | - Chang-Fa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong-Jun Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Wei-Feng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| |
Collapse
|
14
|
Kambayashi Y, Nemoto M, Tsujimura K, Ohta M, Bannai H. Serosurveillance of equine coronavirus infection among Thoroughbreds in Japan. Equine Vet J 2022; 55:481-486. [PMID: 35822940 DOI: 10.1111/evj.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Equine coronavirus (ECoV) causes fever, lethargy, anorexia and gastrointestinal signs in horses. There has been limited information about the prevalence and seasonality of ECoV among Thoroughbreds in Japan. OBJECTIVES To understand the epidemiology and to evaluate the potential risk of ECoV infection to the horse industry in Japan. STUDY DESIGN Longitudinal. METHODS The virus-neutralisation (VN) test was performed using sera collected three times a year at 4 months intervals from 161 yearlings and at 6-7 months intervals from 181 active racehorses in Japan in 2017-18, 2018-19 and 2019-20. VN titre ≥1:8 was defined as seropositive, and ≥ 4-fold increase in titres between paired sera was regarded as indicative of infection. RESULTS The VN test showed that 44.1% (71/161) of yearlings were seropositive in August, when they first entered the yearling farm. The infection rate was significantly higher between August and December (60.9%, 98/161) than between December and the following April (5.6%, 9/161; P = 0.002). Among the racehorses, it was significantly higher between November and the following May (15.5%, 28/181) than between the preceding April/May and November (0%; P = 0.02). The morbidity rates during the estimated periods of viral exposure were 39.2% in the yearlings and 4% in the racehorses. No horses showed any severe clinical signs. MAIN LIMITATIONS Clinical records did not cover the period during horses' absence from the training centre. CONCLUSIONS ECoV was substantially prevalent in Thoroughbred yearlings and racehorses in Japan, and there was a difference in epizootic pattern between these populations in terms of predominant periods of infection. ECoV infection was considered to be responsible for some of the pyretic cases in the yearlings. However, no diseased horses were severely affected in either population, suggesting that the potential risk of ECoV infection to the horse industry in Japan is low.
Collapse
Affiliation(s)
- Yoshinori Kambayashi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Minoru Ohta
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| |
Collapse
|
15
|
Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses. Nat Commun 2022; 13:3547. [PMID: 35729237 PMCID: PMC9210341 DOI: 10.1038/s41467-022-31276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
The origin and host range of SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), are important scientific questions as they might provide insight into understanding of the potential future spillover to infect humans. Here, we tested the binding between equine angiotensin converting enzyme 2 (eqACE2) and the receptor binding domains (RBDs) of SARS-CoV, SARS-CoV-2 prototype (PT) and variant of concerns (VOCs), as well as their close relatives bat-origin coronavirus (CoV) RaTG13 and pangolin-origin CoVs GX/P2V/2017 and GD/1/2019. We also determined the crystal structures of eqACE2/RaTG13-RBD, eqACE2/SARS-CoV-2 PT-RBD and eqACE2/Omicron BA.1-RBD. We identified S494 of SARS-COV-2 PT-RBD as an important residue in the eqACE2/SARS-COV-2 PT-RBD interaction and found that N501Y, the commonly recognized enhancing mutation, attenuated the binding affinity with eqACE2. Our work demonstrates that horses are potential targets for SARS-CoV-2 and highlights the importance of continuous surveillance on SARS-CoV-2 and related CoVs to prevent spillover events. This study documents equine ACE2 (eqACE2) binding to the RBDs of SARS-CoV-2 and related CoVs, revealing a mechanism of eqACE2 binding with RaTG13-RBD, SARS-CoV-2 prototype-RBD and Omicron BA.1-RBD.
Collapse
|
16
|
Kambayashi Y, Kishi D, Ueno T, Ohta M, Bannai H, Tsujimura K, Kinoshita Y, Nemoto M. Distribution of equine coronavirus RNA in the intestinal and respiratory tracts of experimentally infected horses. Arch Virol 2022; 167:1611-1618. [PMID: 35639190 PMCID: PMC9152306 DOI: 10.1007/s00705-022-05488-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Yoshinori Kambayashi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Daiki Kishi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Takanori Ueno
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Minoru Ohta
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Yuta Kinoshita
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
17
|
Hierweger MM, Remy-Wohlfender F, Franzen J, Koch MC, Blau D, Schoster A, Nicholson P, Gerber V, Gurtner C, Fouché N, Unger L, Seuberlich T. Outbreak of equine coronavirus disease in adult horses, Switzerland 2021. Transbound Emerg Dis 2022; 69:1691-1694. [PMID: 35243797 DOI: 10.1111/tbed.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Coronaviruses are causing severe respiratory and enteric diseases in humans and animals. Here, we report an outbreak of equine coronavirus disease in adult horses, detected by a voluntary syndromic surveillance scheme for equine diseases in Switzerland. This scheme allowed a rapid concerted action to diagnose and contain the disease.
Collapse
Affiliation(s)
- Melanie M Hierweger
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jan Franzen
- Institute of Animal Pathology, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Michel C Koch
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Hospital, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Corinne Gurtner
- Institute of Animal Pathology, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Fouché
- Swiss Institute of Equine Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Lucia Unger
- Swiss Institute of Equine Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Korath ADJ, Janda J, Untersmayr E, Sokolowska M, Feleszko W, Agache I, Adel Seida A, Hartmann K, Jensen‐Jarolim E, Pali‐Schöll I. One Health: EAACI Position Paper on coronaviruses at the human-animal interface, with a specific focus on comparative and zoonotic aspects of SARS-CoV-2. Allergy 2022; 77:55-71. [PMID: 34180546 PMCID: PMC8441637 DOI: 10.1111/all.14991] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
The latest outbreak of a coronavirus disease in 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evolved into a worldwide pandemic with massive effects on health, quality of life, and economy. Given the short period of time since the outbreak, there are several knowledge gaps on the comparative and zoonotic aspects of this new virus. Within the One Health concept, the current EAACI position paper dwells into the current knowledge on SARS-CoV-2's receptors, symptoms, transmission routes for human and animals living in close vicinity to each other, usefulness of animal models to study this disease and management options to avoid intra- and interspecies transmission. Similar pandemics might appear unexpectedly and more frequently in the near future due to climate change, consumption of exotic foods and drinks, globe-trotter travel possibilities, the growing world population, the decreasing production space, declining room for wildlife and free-ranging animals, and the changed lifestyle including living very close to animals. Therefore, both the society and the health authorities need to be aware and well prepared for similar future situations, and research needs to focus on prevention and fast development of treatment options (medications, vaccines).
Collapse
Affiliation(s)
- Anna D. J. Korath
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
| | - Jozef Janda
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF),University of ZurichZurichSwitzerland
| | - Wojciech Feleszko
- Department of Paediatric Allergy and PulmonologyThe Medical University of WarsawWarsawPoland
| | | | - Ahmed Adel Seida
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineCairo UniversityCairoEgypt
| | - Katrin Hartmann
- Medizinische KleintierklinikZentrum für Klinische TiermedizinLMUMunichGermany
| | - Erika Jensen‐Jarolim
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Isabella Pali‐Schöll
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
19
|
Uzal FA, Arroyo LG, Navarro MA, Gomez DE, Asín J, Henderson E. Bacterial and viral enterocolitis in horses: a review. J Vet Diagn Invest 2021; 34:354-375. [PMID: 34763560 DOI: 10.1177/10406387211057469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteritis, colitis, and enterocolitis are considered some of the most common causes of disease and death in horses. Determining the etiology of these conditions is challenging, among other reasons because different causes produce similar clinical signs and lesions, and also because some agents of colitis can be present in the intestine of normal animals. We review here the main bacterial and viral causes of enterocolitis of horses, including Salmonella spp., Clostridium perfringens type A NetF-positive, C. perfringens type C, Clostridioides difficile, Clostridium piliforme, Paeniclostridium sordellii, other clostridia, Rhodococcus equi, Neorickettsia risticii, Lawsonia intracellularis, equine rotavirus, and equine coronavirus. Diarrhea and colic are the hallmark clinical signs of colitis and enterocolitis, and the majority of these conditions are characterized by necrotizing changes in the mucosa of the small intestine, colon, cecum, or in a combination of these organs. The presumptive diagnosis is based on clinical, gross, and microscopic findings, and confirmed by detection of some of the agents and/or their toxins in the intestinal content or feces.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA.,Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Javier Asín
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| |
Collapse
|
20
|
Outbreak of equine coronavirus infection among riding horses in Tokyo, Japan. Comp Immunol Microbiol Infect Dis 2021; 77:101668. [PMID: 34004508 DOI: 10.1016/j.cimid.2021.101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022]
Abstract
In 2020, an outbreak of equine coronavirus (ECoV) infection occurred among 41 horses at a riding stable in Tokyo, Japan. This stable had 16 Thoroughbreds and 25 horses of other breeds, including Andalusians, ponies and miniature horses. Fifteen horses (37 %) showed mild clinical signs such as fever, lethargy, anorexia and diarrhoea, and they recovered within 3 days of onset. A virus neutralization test showed that all 41 horses were infected with ECoV, signifying that 26 horses (63 %) were subclinical. The results suggest that subclinical horses played an important role as spreaders. A genome sequence analysis revealed that the lengths from genes p4.7 to p12.7 or NS2 in ECoV differed from those of ECoVs detected previously, suggesting that this outbreak was caused by a virus different from those that caused previous outbreaks among draughthorses in Japan. Among 30 horses that tested positive by real-time RT-PCR, ECoV shedding periods of non-Thoroughbreds were significantly longer than those of Thoroughbreds. The difference in shedding periods may indicate that some breeds excrete ECoV longer than other breeds and can contribute to the spread of ECoV.
Collapse
|
21
|
Seroprevalence and Risk Factors for Exposure to Equine Coronavirus in Apparently Healthy Horses in Israel. Animals (Basel) 2021; 11:ani11030894. [PMID: 33800990 PMCID: PMC8004030 DOI: 10.3390/ani11030894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Equine coronavirus (ECoV) is a β-coronavirus that, together with other coronaviruses, are pathogenic to both human and animals, as seen in the recent COVID-19 pandemic. ECoV is considered as a diarrheic pathogen in foals and is included in the list of viral causes of enteritis. During the last decade, outbreaks of ECoV were reported in adult horses in the USA, EU and Japan. In Israel, other coronaviruses were reported in cattle, camels and in humans; however, coronaviruses have not been reported in horses. In this study, we aimed to determine the exposure of healthy horses to ECoV and determine the selected risk factors for infection. For this purpose, serum samples were collected from 333 healthy horses, 41 (12.3%) of which had anti-ECoV antibodies. Seropositive horses were found in more than half (58.6%) of the farms and horses located in central Israel were more likely to be positive. ECoV should be included in the differential diagnosis list of pathogens in cases of adult horses with acute onset of anorexia, lethargy, fever and gastrointestinal signs in Israel. Abstract Equine coronavirus (ECoV) infection is the cause of an emerging enteric disease of adult horses. Outbreaks have been reported in the USA, EU and Japan, as well as sporadic cases in the UK and Saudi Arabia. Infection of ECoV in horses in Israel has never been reported, and the risk of exposure is unknown. Importation and exportation of horses from and into Israel may have increased the exposure of horses in Israel to ECoV. While the disease is mostly self-limiting, with or without supportive treatment, severe complications may occur in some animals, and healthy carriers may pose a risk of infection to other horses. This study was set to evaluate the risk of exposure to ECoV of horses in Israel by using a previously validated, S1-based enzyme-linked immunosorbent assay (ELISA). A total of 41 out of 333 horses (12.3%) were seropositive. Exposure to ECoV was detected in 17 of 29 farms (58.6%) and the seroprevalence varied between 0 and 37.5% amongst farms. The only factor found to be significantly associated with ECoV exposure in the multivariable model was the geographical area (p < 0.001). ECoV should be included in the differential diagnosis list of pathogens in cases of adult horses with anorexia, lethargy, fever and gastrointestinal signs in Israel.
Collapse
|
22
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
23
|
Zappulli V, Ferro S, Bonsembiante F, Brocca G, Calore A, Cavicchioli L, Centelleghe C, Corazzola G, De Vreese S, Gelain ME, Mazzariol S, Moccia V, Rensi N, Sammarco A, Torrigiani F, Verin R, Castagnaro M. Pathology of Coronavirus Infections: A Review of Lesions in Animals in the One-Health Perspective. Animals (Basel) 2020; 10:E2377. [PMID: 33322366 PMCID: PMC7764021 DOI: 10.3390/ani10122377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are worldwide distributed RNA-viruses affecting several species, including humans, and causing a broad spectrum of diseases. Historically, they have not been considered a severe threat to public health until two outbreaks of COVs-related atypical human pneumonia derived from animal hosts appeared in 2002 and in 2012. The concern related to CoVs infection dramatically rose after the COVID-19 global outbreak, for which a spill-over from wild animals is also most likely. In light of this CoV zoonotic risk, and their ability to adapt to new species and dramatically spread, it appears pivotal to understand the pathophysiology and mechanisms of tissue injury of known CoVs within the "One-Health" concept. This review specifically describes all CoVs diseases in animals, schematically representing the tissue damage and summarizing the major lesions in an attempt to compare and put them in relation, also with human infections. Some information on pathogenesis and genetic diversity is also included. Investigating the lesions and distribution of CoVs can be crucial to understand and monitor the evolution of these viruses as well as of other pathogens and to further deepen the pathogenesis and transmission of this disease to help public health preventive measures and therapies.
Collapse
Affiliation(s)
- Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, 35020 Padua, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Calore
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Giorgia Corazzola
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Steffen De Vreese
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Laboratory of Applied Bioacoustics, Technical University of Catalunya, BarcelonaTech, Vilanova i la Geltrù, 08800 Barcelona, Spain
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Nicolò Rensi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| |
Collapse
|
24
|
Haake C, Cook S, Pusterla N, Murphy B. Coronavirus Infections in Companion Animals: Virology, Epidemiology, Clinical and Pathologic Features. Viruses 2020; 12:E1023. [PMID: 32933150 PMCID: PMC7551689 DOI: 10.3390/v12091023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses are enveloped RNA viruses capable of causing respiratory, enteric, or systemic diseases in a variety of mammalian hosts that vary in clinical severity from subclinical to fatal. The host range and tissue tropism are largely determined by the coronaviral spike protein, which initiates cellular infection by promoting fusion of the viral and host cell membranes. Companion animal coronaviruses responsible for causing enteric infection include feline enteric coronavirus, ferret enteric coronavirus, canine enteric coronavirus, equine coronavirus, and alpaca enteric coronavirus, while canine respiratory coronavirus and alpaca respiratory coronavirus result in respiratory infection. Ferret systemic coronavirus and feline infectious peritonitis virus, a mutated feline enteric coronavirus, can lead to lethal immuno-inflammatory systemic disease. Recent human viral pandemics, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and most recently, COVID-19, all thought to originate from bat coronaviruses, demonstrate the zoonotic potential of coronaviruses and their potential to have devastating impacts. A better understanding of the coronaviruses of companion animals, their capacity for cross-species transmission, and the sharing of genetic information may facilitate improved prevention and control strategies for future emerging zoonotic coronaviruses. This article reviews the clinical, epidemiologic, virologic, and pathologic characteristics of nine important coronaviruses of companion animals.
Collapse
Affiliation(s)
- Christine Haake
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Sarah Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Brian Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
25
|
Pusterla N. Science-in-brief: Equine coronavirus - a decade long journey to investigate an emerging enteric virus of adult horses. Equine Vet J 2020; 52:651-653. [PMID: 32589298 DOI: 10.1111/evj.13288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Nicola Pusterla
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
26
|
Mattei DN, Kopper JJ, Sanz MG. Equine Coronavirus-Associated Colitis in Horses: A Retrospective Study. J Equine Vet Sci 2020; 87:102906. [PMID: 32172908 PMCID: PMC7126555 DOI: 10.1016/j.jevs.2019.102906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 12/26/2019] [Indexed: 12/04/2022]
Abstract
Equine coronavirus (ECoV) is a known cause of fever, anorexia, and lethargy in adult horses. Although there are multiple reports of ECoV outbreaks, less is known about the clinical presentation of individual horses during a nonoutbreak situation. The purpose of this study was to describe the clinical presentation of horses diagnosed with ECoV infection that were not associated with an outbreak. Medical records of all horses admitted to Washington State University, Veterinary Teaching Hospital, during an 8-year period were reviewed (2010-2018). The five horses included in this study were older than 1 year of age, were diagnosed with colitis, tested positive for ECoV using real-time polymerase chain reaction, and were negative to other enteric pathogens. Interestingly, 4 of 5 horses had moderate to severe diarrhea, 3 had abnormal large colon ultrasonography, 2 had transient ventricular tachycardia and 2 had clinicopathologic evidence of liver dysfunction. ECoV should be included as a differential diagnosis for individual horses presenting with anorexia, fever, lethargy, and colitis. Early identification of ECoV cases is key to implement appropriate biosecurity measures to prevent the potential spread of this disease.
Collapse
Affiliation(s)
- Debora N Mattei
- Equine Veterinary Medical Center, Member of Qatar Foundation, Doha, Qatar
| | - Jamie J Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - Macarena G Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA.
| |
Collapse
|
27
|
Development and Validation of a S1 Protein-Based ELISA for the Specific Detection of Antibodies against Equine Coronavirus. Viruses 2019; 11:v11121109. [PMID: 31801275 PMCID: PMC6950238 DOI: 10.3390/v11121109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Equine coronavirus (ECoV) is considered to be involved in enteric diseases in foals. Recently, several outbreaks of ECoV infection have also been reported in adult horses from the USA, France and Japan. Epidemiological studies of ECoV infection are still limited, and the seroprevalence of ECoV infection in Europe is unknown. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) method utilizing ECoV spike S1 protein was developed in two formats, and further validated by analyzing 27 paired serum samples (acute and convalescent sera) from horses involved in an ECoV outbreak and 1084 sera of horses with unknown ECoV exposure. Both formats showed high diagnostic accuracy compared to virus neutralization (VN) assay. Receiver-operating characteristic (ROC) analyses were performed to determine the best cut-off values for both ELISA formats, assuming a test specificity of 99%. Employing the developed ELISA method, we detected seroconversion in 70.4% of horses from an ECoV outbreak. Among the 1084 horse sera, seropositivity varied from 25.9% (young horses) to 82.8% (adult horses) in Dutch horse populations. Further, sera of Icelandic horses were included in this study and a significant number of sera (62%) were found to be positive. Overall, the results demonstrated that the ECoV S1-based ELISA has reliable diagnostic performance compared to the VN assay and is a useful assay to support seroconversion in horses involved with ECoV outbreaks and to estimate ECoV seroprevalence in populations of horses.
Collapse
|
28
|
Nemoto M, Schofield W, Cullinane A. The First Detection of Equine Coronavirus in Adult Horses and Foals in Ireland. Viruses 2019; 11:E946. [PMID: 31615132 PMCID: PMC6832964 DOI: 10.3390/v11100946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the presence of equine coronavirus (ECoV) in clinical samples submitted to a diagnostic laboratory in Ireland. A total of 424 clinical samples were examined from equids with enteric disease in 24 Irish counties between 2011 and 2015. A real-time reverse transcription polymerase chain reaction was used to detect ECoV RNA. Nucleocapsid, spike and the region from the p4.7 to p12.7 genes of positive samples were sequenced, and sequence and phylogenetic analyses were conducted. Five samples (1.2%) collected in 2011 and 2013 tested positive for ECoV. Positive samples were collected from adult horses, Thoroughbred foals and a donkey foal. Sequence and/or phylogenetic analysis showed that nucleocapsid, spike and p12.7 genes were highly conserved and were closely related to ECoVs identified in other countries. In contrast, the region from p4.7 and the non-coding region following the p4.7 gene had deletions or insertions. The differences in the p4.7 region between the Irish ECoVs and other ECoVs indicated that the Irish viruses were distinguishable from those circulating in other countries. This is the first report of ECoV detected in both foals and adult horses in Ireland.
Collapse
Affiliation(s)
- Manabu Nemoto
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi 329-0412, Japan.
| | - Warren Schofield
- Troytown Grey Abbey Equine Hospital, Green Road, Co. Kildare R51 YV04, Ireland.
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare W91 RH93, Ireland.
| |
Collapse
|
29
|
Prutton JSW, Barnum S, Pusterla N. Evaluation of safety, humoral immune response and faecal shedding in horses inoculated with a modified-live bovine coronavirus vaccination. EQUINE VET EDUC 2019; 32:33-36. [PMID: 32427191 PMCID: PMC7228322 DOI: 10.1111/eve.13175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Equine coronavirus (ECoV) is considered an emerging enteric virus with reported morbidity rates ranging from 10 to 83% and fatality rates ranging from 7 to 27% in adult horses; a vaccine for ECoV is currently not available. This study investigated the safety, humoral response and viral shedding in horses inoculated with a commercially available modified‐live bovine coronavirus (BCoV) vaccine. Twelve healthy adult horses were vaccinated twice, 3 weeks apart, either orally, intranasally or intrarectally. Two healthy unvaccinated horses served as sentinel controls. Following each vaccine administration, horses were monitored daily for physical abnormalities whilst the onset and duration of BCoV shedding was determined by quantitative PCR (qPCR) in nasal secretions and faeces. Whole blood was collected every 3 weeks to determine BCoV‐specific antibody response. With the exception of transient and self‐limiting changes in faecal character observed in seven vaccinated and one control horse, no additional abnormal clinical findings were found in the study horses. Following the first and second vaccine administration, two and one horse, respectively, tested qPCR‐positive for BCoV in nasal secretions 1‐day post intranasal vaccination. No vaccinated horses tested qPCR‐positive for BCoV in faeces following each vaccine administration. One of the two horses that shed BCoV seroconverted to BCoV after the first vaccine administration and an additional two vaccinated horses (oral and intrarectal) seroconverted to BCoV after the second vaccine administration. In conclusion, the results show that the modified‐live BCoV is safe to administer to horses via various routes, causes minimal virus shedding and results in detectable antibodies to BCoV in 27% of the vaccinates.
Collapse
Affiliation(s)
- J S W Prutton
- Department of Medicine and Epidemiology School of Veterinary Medicine University of California Davis California USA.,Present address: Liphook Equine Hospital Forest Mere Liphook Hampshire GU30 7JG UK
| | - S Barnum
- Department of Medicine and Epidemiology School of Veterinary Medicine University of California Davis California USA
| | - N Pusterla
- Department of Medicine and Epidemiology School of Veterinary Medicine University of California Davis California USA
| |
Collapse
|
30
|
Clinical presentation, diagnostic findings, and outcome of adult horses with equine coronavirus infection at a veterinary teaching hospital: 33 cases (2012-2018). Vet J 2019; 248:95-100. [PMID: 31113572 PMCID: PMC7110482 DOI: 10.1016/j.tvjl.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 11/21/2022]
Abstract
Equine coronavirus (ECoV) is a differential diagnosis for adult horses with fever, mild colic signs, and anorexia. Leukopenia tends to be more severe in ECoV-infected horses than uninfected horses with similar signs. Horses shedding ECoV should be evaluated for co-infections. ECoV-infected horses may require intensive care to treat systemic inflammation, dehydration, and electrolyte derangements.
Equine coronavirus (ECoV) is a recently described enteric virus with worldwide outbreaks; however, there are little data available on clinical presentation, diagnosis, and outcome. The study objective was to document case management of ECoV in adult horses presented to a referral hospital and compare to a cohort of horses that tested negative for ECoV. A retrospective case series was performed based on positive real-time quantitative PCR results for ECoV on faeces from horses treated at the UC Davis Veterinary Medical Teaching Hospital from 1 March 2012 to 31 March 2018. Horses negative for ECoV were matched to the ECoV-positive group as controls. Data collected included signalment, history, exam findings, diagnostics, treatment, and follow-up. Thirty-three horses (median age, 11 years; range, 2–37 years) tested ECoV-positive, including three horses with co-infections. Presenting complaints for ECoV-infected horses included historic fevers (n = 25/30; 83%), anorexia (n = 14/30; 47%), and colic (n = 13/30; 43%). ECoV-positive horses had significantly lower white blood cell (median, 3.0 × 109/L; range, 0.68–16.2 × 109/L), neutrophil (median, 1.26 × 109/L; range, 0.15–14.4 × 109/L), and lymphocyte (median, 0.86 × 109/L; range, 0.42–3.47 × 109/L) counts than ECoV-negative horses. Electrolyte and metabolic derangements and scant faeces were common. Twenty-seven horses were hospitalised for a median of 5 days (range, 0.5–14 days), with 26/27 (96%) horses surviving to discharge. ECoV infection should be a differential diagnosis for adult horses with fever, colic, anorexia, and leukopenia. The disease has a low mortality rate, but horses may require intensive care to resolve severe leukopenia, systemic inflammation, and metabolic disturbances.
Collapse
|
31
|
Pusterla N, James K, Mapes S, Bain F. Frequency of molecular detection of equine coronavirus in faeces and nasal secretions in 277 horses with acute onset of fever. Vet Rec 2019; 184:385. [PMID: 30850426 DOI: 10.1136/vr.104919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Abstract
CONTEXT Due to the inconsistent development of enteric signs associated with ECoV infection in adult horses, many practitioners collect nasal secretions rather than feces for the molecular diagnostic work-up of such horses. MAIN CONCLUSION ECoV infection should be considered in horses presenting with acute onset of fever, especially when nasal discharge is absent as one of the cardinal clinical sign. APPROACH A total of 277 adult horses with acute onset of fever were enrolled in this study. Feces were tested for ECoV and nasal secretions for common respiratory pathogens (equine herpesvirus (EHV)-1, EHV-4, equine influenza virus (EIV), equine rhinitis viruses (ERVs) and Streptococcus equi ss. equi) and ECoV by qPCR. Each submission was accompanied by a questionnaire requesting information pertaining to signalment, use, recent transportation, number of affected horses on the premise and presence of clinical signs at the time of sample collection. RESULTS The total number of horses testing qPCR-positive for ECoV in feces was 20 (7.2%), 4 of which also tested qPCR-positive for ECoV in nasal secretions. In the same population 9.0% of horses tested qPCR-positive for EHV-4, 6.1% for EIV, 4.3% for Streptococcus equi ss. equi, 3.2% for ERVs and 0.7% for EHV-1. Draft horses, pleasure use, multiple horses affected on a premise and lack of nasal discharge were significantly associated with ECoV qPCR-positive horses. INTERPRETATION The present study results showed that 7.2% of horses with acute onset of fever tested qPCR-positive for ECoV in feces, highlighting the importance of testing such horses for ECoV in feces. The various prevalence factors associated with ECoV qPCR-positive status likely relate to the high infectious nature of ECoV and breed-specific differences in management and husbandry practices. SIGNIFICANCE OF FINDINGS ECoV infection should be suspected and tested for in horses presenting with acute onset of fever, lethargy and anorexia with no respiratory signs. A two-step approach should be consider in which respiratory secretions and feces should be collected from such horses and submitted to a diagnostic laboratory. If the respiratory secretions test negative by qPCR for a panel of respiratory pathogens, feces already submitted to the laboratory should be tested for ECoV.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Kaitlyn James
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Samantha Mapes
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | | |
Collapse
|
32
|
Sanz MG, Kwon S, Pusterla N, Gold JR, Bain F, Evermann J. Evaluation of equine coronavirus fecal shedding among hospitalized horses. J Vet Intern Med 2019; 33:918-922. [PMID: 30788861 PMCID: PMC6430884 DOI: 10.1111/jvim.15449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/29/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Currently, diagnosis of equine coronavirus (ECoV) relies on the exclusion of other infectious causes of enteric disease along with molecular detection of ECoV in feces or tissue. Although this approach is complete, it is costly and may not always be achievable. OBJECTIVE We hypothesized that the overall fecal shedding of ECoV in hospitalized horses is low. Our objective was to determine whether systemically healthy horses and horses with gastrointestinal disorders shed ECoV in their feces at the time of admission to a referral hospital and after 48 hours of stress associated with hospitalization. ANIMALS One-hundred thirty adult horses admitted to the Washington State University Veterinary Teaching Hospital for gastrointestinal disease (n = 65) or for imaging under anesthesia (n = 65) that were hospitalized for 48 hours. Owner consent was obtained before sampling. METHODS Fecal samples were collected at admission and 48 hours later. Polymerase chain reaction (PCR) for ECoV and electron microscopy (EM) were performed on all samples. RESULTS Only 1 of 258 fecal samples was PCR-positive for ECoV. Electron microscopy identified ECoV-like particles in 9 of 258 samples, parvovirus-like particles in 4 of 258 samples, and rotavirus-like particles in 1 of 258 samples. CONCLUSIONS AND CLINICAL IMPORTANCE The presence of ECoV in feces of hospitalized adult horses was low. Thus, fecal samples that are PCR-positive for ECoV in adult horses that have clinical signs consistent with this viral infection are likely to be of diagnostic relevance. The clinical relevance of the viruses observed using EM remains to be investigated.
Collapse
Affiliation(s)
- Macarena G. Sanz
- Department of Veterinary Clinical SciencesWashington State UniversityPullmanWashington
| | - SoYoung Kwon
- Department of Veterinary Clinical SciencesWashington State UniversityPullmanWashington
| | - Nicola Pusterla
- Department of Medicine and EpidemiologyUniversity of CaliforniaDavisCalifornia
| | - Jenifer R. Gold
- Department of Veterinary Clinical SciencesWashington State UniversityPullmanWashington
| | - Fairfield Bain
- Department of Veterinary Clinical SciencesWashington State UniversityPullmanWashington
| | - Jim Evermann
- Washington Animal Disease Diagnostic LaboratoryWashington State UniversityPullmanWashington
| |
Collapse
|
33
|
Manship AJ, Blikslager AT, Elfenbein JR. Disease features of equine coronavirus and enteric salmonellosis are similar in horses. J Vet Intern Med 2019; 33:912-917. [PMID: 30632200 PMCID: PMC6430874 DOI: 10.1111/jvim.15386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Equine coronavirus (ECoV) is an emerging pathogen associated with fever and enteric disease in adult horses. Clinical features of ECoV infection have been described, but no study has compared these features to those of Salmonella infections. OBJECTIVES Compare the clinical features of ECoV infection with enteric salmonellosis and establish a disease signature to increase clinical suspicion of ECoV infection in adult horses. ANIMALS Forty-three horses >1 year of age with results of CBC, serum biochemistry, and fecal diagnostic testing for ECoV and Salmonella spp. METHODS Medical records of horses presented to the North Carolina State University Equine and Farm Animal Veterinary Center (2003-016) were retrospectively reviewed. Horses were divided into 3 groups based on fecal diagnostic test results: ECoV-positive, Salmonella-positive, or unknown diagnosis (UNK). Time of year presented, clinical signs, CBC, and serum biochemistry test results were recorded. Data were analyzed by 1-way analysis of variance, Kruskal-Wallis test, or Fisher's exact test with significance set at P < .05. RESULTS Most common presenting complaints were fever and colic and were similar across groups. Horses with ECoV had significantly decreased neutrophil counts when compared to those with no diagnosis but were not different from horses with Salmonella. Horses with Salmonella had significantly lower mean leukocyte counts compared to those with UNK. No significant differences were found among groups for any other examined variable. CONCLUSIONS AND CLINICAL IMPORTANCE Equine coronavirus and Salmonella infections share clinical features, suggesting both diseases should be differential diagnoses for horses with fever and enteric clinical signs.
Collapse
Affiliation(s)
- Arlie J. Manship
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
| | - Anthony T. Blikslager
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
| | - Johanna R. Elfenbein
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
34
|
Bryan J, Marr CM, Mackenzie CJ, Mair TS, Fletcher A, Cash R, Phillips M, Pusterla N, Mapes S, Foote AK. Detection of equine coronavirus in horses in the United Kingdom. Vet Rec 2019; 184:123. [DOI: 10.1136/vr.105098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Jill Bryan
- Rossdales Laboratories, Rossdale and Partners; Suffolk UK
| | - Celia M Marr
- Rossdales Equine Hospital and Diagnostic Centre; Suffolk UK
| | | | - Tim S Mair
- Bell Equine Veterinary Clinic; Maidstone UK
| | - Adam Fletcher
- Rossdales Laboratories, Rossdale and Partners; Suffolk UK
| | - Robert Cash
- Rossdales Laboratories, Rossdale and Partners; Suffolk UK
| | | | - Nicola Pusterla
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - Samantha Mapes
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | | |
Collapse
|
35
|
Schaefer E, Harms C, Viner M, Barnum S, Pusterla N. Investigation of an experimental infection model of equine coronavirus in adult horses. J Vet Intern Med 2018; 32:2099-2104. [PMID: 30353949 PMCID: PMC6271284 DOI: 10.1111/jvim.15318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/02/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
Background Equine coronavirus (ECoV) is a recently reported enteric disease of adult horses. Natural infection by ECoV has been reported in adult horses worldwide, whereas experimental infection has only been reported in juvenile horses. An experimental infection model is needed to study the clinical presentation, laboratory abnormalities, and pathophysiological changes associated with ECoV. Objectives To investigate the clinical, hematologic, molecular, and serological features of adult horses experimentally infected with ECoV. Animals Eight adult horses. Methods Four horses were intragastrically infected with fecal material containing 109 genome equivalents of ECoV. Four additional horses were exposed daily to the feces from the experimentally‐infected horses. Monitoring included physical examinations, as well as daily nasal swab, whole blood, and fecal collection for molecular detection of ECoV. Blood was collected every other day for hematologic analysis and weekly for serologic analysis. Results All 8 horses shed ECoV in feces. Six of the 8 horses (75%) exhibited mild, clinical disease with soft, formed manure; 1 horse exhibited transient pyrexia. All horses maintained total white cell counts within normal limits, but 3 horses developed transient lymphopenia. No statistically significant differences (P = .20) were observed in quantity of fecal shedding of ECoV between the 2 groups. Conclusions and Clinical Importance Experimental infection of adult horses with ECoV was associated with mild and self‐limiting clinical signs, transient lymphopenia, and fecal shedding of ECoV, which mimics natural infection. No differences between experimentally‐infected horses and horses exposed to ECoV‐containing feces were identified. Results of our study support a fecal‐oral route of transmission.
Collapse
Affiliation(s)
- Emily Schaefer
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Corey Harms
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Molly Viner
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California
| |
Collapse
|
36
|
Goodrich EL, Mittel LD, Glaser A, Ness SL, Radcliffe RM, Divers TJ. Novel findings from a beta coronavirus outbreak on an American Miniature Horse breeding farm in upstate New York. EQUINE VET EDUC 2018; 32:150-154. [PMID: 32313400 PMCID: PMC7163602 DOI: 10.1111/eve.12938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This case report describes an outbreak and novel findings associated with a beta coronavirus (BCoV) infection that occurred on an American Miniature Horse (AMH) breeding farm in upstate New York, in January and February of 2013. Twenty-nine AMH and one donkey were present on the farm when the outbreak occurred. One 10-year-old Quarter Horse mare, stabled at a separate location and owned by an employee of the farm, also tested positive. A polymerase chain reaction (PCR) assay for the detection of BCoV was performed at the Animal Health Diagnostic Center (AHDC) at Cornell on all faecal samples. The PCR assay used detects multiple beta coronaviruses, including, but not limited to, equine enteric coronavirus (ECoV). Novel findings regarding this BCoV infection in horses were recognised in this outbreak study. To the authors' knowledge, this is the largest outbreak of BCoV described thus far in a closed herd on a single premise. The case fatality rate was 0% unlike that described in a previous outbreak of ECoV involving miniature horses and a miniature donkey (Fielding et al. 2015). The morbidity rate was lower in this outbreak than in previously described studies (Oue et al. 2013; Pusterla et al. 2013). This outbreak also demonstrated the potential for BCoV transmission via farm personnel. The duration of shedding of virus in the faeces among some asymptomatic horses in this outbreak was longer than previously described clinical cases of ECoV (Pusterla et al. 2013; Nemoto et al. 2014). This study suggests that asymptomatic animals may play a role in the maintenance of BCoV during an outbreak; therefore, the need for diagnostic testing of both clinically affected and apparently clinically normal horses on a premises followed by appropriate biosecurity and control measures.
Collapse
Affiliation(s)
- E L Goodrich
- Department of Population Medicine and Diagnostic Sciences Animal Health Diagnostic Center College of Veterinary Medicine Cornell University Ithaca New York USA
| | - L D Mittel
- Department of Population Medicine and Diagnostic Sciences Animal Health Diagnostic Center College of Veterinary Medicine Cornell University Ithaca New York USA
| | - A Glaser
- Department of Population Medicine and Diagnostic Sciences Animal Health Diagnostic Center College of Veterinary Medicine Cornell University Ithaca New York USA
| | - S L Ness
- Department of Clinical Sciences College of Veterinary Medicine Cornell University Ithaca New York USA
| | - R M Radcliffe
- Department of Clinical Sciences College of Veterinary Medicine Cornell University Ithaca New York USA
| | - T J Divers
- Department of Clinical Sciences College of Veterinary Medicine Cornell University Ithaca New York USA
| |
Collapse
|
37
|
Shaw SD, Stämpfli H. Diagnosis and Treatment of Undifferentiated and Infectious Acute Diarrhea in the Adult Horse. Vet Clin North Am Equine Pract 2018; 34:39-53. [PMID: 29426709 PMCID: PMC7134835 DOI: 10.1016/j.cveq.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Acute, infectious, diarrhea in adult horses is a major cause of morbidity and is associated with numerous complications. Common causes include salmonellosis, clostridiosis, Coronavirus, and infection with Neorickettsia risticii (Potomac horse fever). Treatment is empirical and supportive until results of specific diagnostic tests are available. Supportive care is aimed at restoring hydration, correcting electrolyte imbalances, and limiting the systemic inflammatory response. The mainstays of therapy are intravenous fluid therapy, electrolyte supplementation where necessary, nonsteroidal anti-inflammatory agents, and nutritional support. Specific therapies include colloid oncotic support, antibiotics, hyperimmune plasma, polymyxin B, pentoxifylline, probiotics, binding agents, gastroprotectants, laminitis prevention, and coagulation prophylaxis.
Collapse
Affiliation(s)
- Sarah D Shaw
- Rotenberg Veterinary P.C., Palgrave, Ontario LOG 1WO, Canada; Large Animal Medicine, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Henry Stämpfli
- Large Animal Medicine, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
38
|
|
39
|
Hines MT. Clinical Approach to Commonly Encountered Problems. EQUINE INTERNAL MEDICINE 2018. [PMCID: PMC7158300 DOI: 10.1016/b978-0-323-44329-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Pusterla N, Vin R, Leutenegger CM, Mittel LD, Divers TJ. Enteric coronavirus infection in adult horses. Vet J 2018; 231:13-18. [PMID: 29429482 PMCID: PMC7110460 DOI: 10.1016/j.tvjl.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 01/10/2023]
Abstract
A new enteric virus of adult horses, equine coronavirus (ECoV), has recently been recognized. It is associated with fever, lethargy, anorexia, and less frequently, colic and diarrhea. This enteric virus is transmitted via the feco-oral route and horses become infected by ingesting fecally contaminated feed and water. Various outbreaks have been reported since 2010 from Japan, Europe and the USA. While the clinical signs are fairly non-specific, lymphopenia and neutropenia are often seen. Specific diagnosis is made by the detection of ECoV in feces by either quantitative real-time PCR, electron microscopy or antigen-capture ELISA. Supportive treatment is usually required, as most infections are self-limiting. However, rare complications, such as endotoxemia, septicemia and hyperammonemia-associated encephalopathy, have been reported, and have been related to the loss of barrier function at the intestinal mucosa. This review article will focus on the latest information pertaining to the virus, epidemiology, clinical signs, diagnosis, pathology, treatment and prevention of ECoV infection in adult horses.
Collapse
Affiliation(s)
- N Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - R Vin
- Myhre Equine Clinic, Rochester, NH 03867, USA
| | | | - L D Mittel
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - T J Divers
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
NEMOTO M, KANNO T, BANNAI H, TSUJIMURA K, YAMANAKA T, KOKADO H. Antibody response to equine coronavirus in horses inoculated with a bovine coronavirus vaccine. J Vet Med Sci 2017; 79:1889-1891. [PMID: 28993568 PMCID: PMC5709570 DOI: 10.1292/jvms.17-0414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/24/2017] [Indexed: 11/22/2022] Open
Abstract
A vaccine for equine coronavirus (ECoV) is so far unavailable. Bovine coronavirus (BCoV) is antigenically related to ECoV; it is therefore possible that BCoV vaccine will induce antibodies against ECoV in horses. This study investigated antibody response to ECoV in horses inoculated with BCoV vaccine. Virus neutralization tests showed that antibody titers against ECoV increased in all six horses tested at 14 days post inoculation, although the antibody titers were lower against ECoV than against BCoV. This study showed that BCoV vaccine provides horses with antibodies against ECoV to some extent. It is unclear whether antibodies provided by BCoV vaccine are effective against ECoV, and therefore ECoV challenge studies are needed to evaluate efficacy of the vaccine in the future.
Collapse
Affiliation(s)
- Manabu NEMOTO
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Toru KANNO
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Hiroshi BANNAI
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Koji TSUJIMURA
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Takashi YAMANAKA
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Hiroshi KOKADO
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| |
Collapse
|
42
|
Gomez DE, Arroyo LG, Poljak Z, Viel L, Weese JS. Detection of Bovine Coronavirus in Healthy and Diarrheic Dairy Calves. J Vet Intern Med 2017; 31:1884-1891. [PMID: 28913936 PMCID: PMC5697193 DOI: 10.1111/jvim.14811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/02/2017] [Accepted: 07/20/2017] [Indexed: 01/24/2023] Open
Abstract
Background BCoV is identified in both healthy and diarrheic calves, complicating its assessment as a primary pathogen. Objectives To investigate the detection rates of bovine coronavirus (BCoV) in feces of healthy and diarrheic calves and to describe the usefulness of a pancoronavirus reverse transcriptase (RT) PCR (PanCoV‐RT‐PCR) assay to identify BCoV in samples of diarrheic calves. Animals Two hundred and eighty‐six calves <21 days. Calves with liquid or semiliquid feces, temperature >39.5°C, and inappetence were considered as cases, and those that had pasty or firm feces and normal physical examination were designated as controls. Methods Prospective case–control study. A specific BCoV‐RT‐PCR assay was used to detect BCoV in fecal samples. Association between BCoV and health status was evaluated by exact and random effect logistic regression. Fecal (n = 28) and nasal (n = 8) samples from diarrheic calves were tested for the presence of BCoV by both the PanCoV‐RT‐PCR and a specific BCoV‐RT‐PCR assays. A Kappa coefficient test was used to assess the level of agreement of both assays. Results BCoV was detected in 55% (157/286) of calves; 46% (66/143), and 64% (91/143) of healthy and diarrheic calves, respectively. Diarrheic calves had higher odds of BCoV presence than healthy calves (OR: 2.16, 95% CI: 1.26 to 3.83, P = 0.004). A good agreement between PanCoV‐RT‐PCR and BCoV‐RT‐PCR to detect BCoV was identified (κ = 0.68, 95% CI: 0.392 to 0.967; P < 0.001). Conclusions and Clinical Importance BCoV was more likely to be detected in diarrheic than healthy calves. The PanCoV‐RT‐PCR assay can be a useful tool to detect CoV samples from diarrheic calves.
Collapse
Affiliation(s)
- D E Gomez
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Z Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L Viel
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
43
|
Kooijman LJ, James K, Mapes SM, Theelen MJP, Pusterla N. Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA. Vet J 2017; 220:91-94. [PMID: 28190504 PMCID: PMC7110631 DOI: 10.1016/j.tvjl.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
Abstract
Equine coronavirus has only recently been associated with emerging infections in adult horses. Seroprevalence data is needed to better understand the epidemiology of equine coronavirus in adult horses. The seroprevalence to equine coronavirus was 9.6% in 5247 healthy, adult horses from 18 states in the USA. Seropositivity was significantly associated with horses from the Mid-West, draft horses and ranch/farm and breeding use.
Equine coronavirus (ECoV) is considered an enteric pathogen of foals and has only recently been associated with infections in adult horses. Seroprevalence data is needed to better understand the epidemiology of ECoV in adult horses, evaluate diagnostic modalities and develop preventive measures. The objective of this study was to investigate the seroprevalence and selective risk factors for ECoV in 5247 healthy adult horses in the USA, using a recently established and validated IgG enzyme-linked immunosorbent assay. Prevalence factors analysed in this study included geographic region, age, breed, sex and use. A total of 504/5247 horses (9.6%) horses tested seropositive. Geographic region (Mid-West; P = 0.008), breed (Draft horses; P = 0.003) and specific uses of horses (ranch/farm, P = 0.034; breeding use, P = 0.016) were all statistically significant risk factors for seropositivity.
Collapse
Affiliation(s)
- L J Kooijman
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht 3584CM, The Netherlands
| | - K James
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - S M Mapes
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - M J P Theelen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht 3584CM, The Netherlands
| | - N Pusterla
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
44
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
|
46
|
Kooijman LJ, Mapes SM, Pusterla N. Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses. J Vet Diagn Invest 2016; 28:414-8. [PMID: 27216723 DOI: 10.1177/1040638716649643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Equine coronavirus (EqCoV) infection has been documented in most reports through quantitative qPCR analysis of feces and viral genome sequencing. Although qPCR is used to detect antigen during the acute disease phase, there is no equine-specific antibody test available to study EqCoV seroprevalence in various horse populations. We developed an enzyme-linked immunosorbent assay (ELISA) targeting antibodies to the spike (S) protein of EqCoV and validated its use, using acute and convalescent sera from 83 adult horses involved in 6 outbreaks. The EqCoV S protein-based ELISA was able to reliably detect antibodies to EqCoV in naturally infected horses. The greatest seroconversion rate was observed in horses with clinical signs compatible with EqCoV infection and EqCoV qPCR detection in feces. The EqCoV S protein-based ELISA could be used effectively for seroepidemiologic studies in order to better characterize the overall infection rate of EqCoV in various horse populations.
Collapse
Affiliation(s)
- Lotte J Kooijman
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Samantha M Mapes
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| | - Nicola Pusterla
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
47
|
Pusterla N, Vin R, Leutenegger C, Mittel LD, Divers TJ. Equine coronavirus: An emerging enteric virus of adult horses. EQUINE VET EDUC 2015; 28:216-223. [PMID: 32313392 PMCID: PMC7163714 DOI: 10.1111/eve.12453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Equine coronavirus (ECoV) is an emerging virus associated clinically and epidemiologically with fever, depression, anorexia and less frequently colic and diarrhoea in adult horses. Sporadic cases and outbreaks have been reported with increased frequency since 2010 from Japan, the USA and more recently from Europe. A faeco‐oral transmission route is suspected and clinical or asymptomatic infected horses appear to be responsible for direct and indirect transmission of ECoV. A presumptive clinical diagnosis of ECoV infection may be suggested by clinical presentation, haematological abnormalities such as leucopenia due to lymphopenia and/or neutropenia. Confirmation of ECoV infection is provided by specific ECoV nucleic acid detection in faeces by quantitative PCR (qPCR) or demonstration of coronavirus antigen by immunohistochemistry or electron microscopy in intestinal biopsy material obtained ante or post mortem. The disease is generally self‐limiting and horses typically recover with symptomatic supportive care. Complications associated with disruption of the gastrointestinal barrier have been reported in some infected horses and include endotoxaemia, septicaemia and hyperammonaemia‐associated encephalopathy. Although specific immunoprophylactic measures have been shown to be effective in disease prevention for closely‐related coronaviruses such as bovine coronavirus (BCoV), such strategies have yet not been investigated for horses and disease prevention is limited to basic biosecurity protocols. This article reviews current knowledge concerning the aetiology, epidemiology, clinical signs, diagnosis, pathology, treatment and prevention of ECoV infection in adult horses.
Collapse
Affiliation(s)
- N Pusterla
- Department of Medicine and Epidemiology School of Veterinary Medicine University of California Davis USA
| | - R Vin
- IDEXX Laboratories, Inc. West Sacramento California USA
| | - C Leutenegger
- IDEXX Laboratories, Inc. West Sacramento California USA
| | - L D Mittel
- The Animal Health Diagnostic Center Cornell University Ithaca New York USA
| | - T J Divers
- College of Veterinary Medicine Cornell University Ithaca New York USA
| |
Collapse
|
48
|
Nemoto M, Oue Y, Higuchi T, Kinoshita Y, Bannai H, Tsujimura K, Yamanaka T, Kondo T. Low prevalence of equine coronavirus in foals in the largest thoroughbred horse breeding region of Japan, 2012-2014. Acta Vet Scand 2015; 57:53. [PMID: 26395082 PMCID: PMC4579792 DOI: 10.1186/s13028-015-0149-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/30/2015] [Indexed: 12/04/2022] Open
Abstract
Background Equine coronavirus (ECoV) is considered to be a diarrheic pathogen in foals. In central Kentucky in the United States, it has been shown that approximately 30 % of thoroughbred foals are infected with ECoV and thus it is considered widely prevalent. In contrast, the epidemiology of ECoV and its relationship to diarrhea in foals are poorly understood in Japan. We investigated ECoV in rectal swabs collected from thoroughbred foals in Japan. Results We collected 337 rectal swabs from 307 diarrheic foals in the Hidaka district of Hokkaido, the largest thoroughbred horse breeding region in Japan, between 2012 and 2014. In addition, 120 rectal swabs were collected from 120 healthy foals in 2012. These samples were tested by reverse transcription loop-mediated isothermal amplification and a real-time reverse transcription-polymerase chain reaction. All samples collected from diarrheic foals were negative, and only three samples (2.5 %) collected from healthy foals were positive for ECoV. Compared with central Kentucky, ECoV is not prevalent among thoroughbred foals in the Hidaka district of Hokkaido. Conclusion ECoV is not prevalent and was not related to diarrhea in thoroughbred foals in the Hidaka district of Hokkaido between 2012 and 2014.
Collapse
|
49
|
Nemoto M, Oue Y, Murakami S, Kanno T, Bannai H, Tsujimura K, Yamanaka T, Kondo T. Complete genome analysis of equine coronavirus isolated in Japan. Arch Virol 2015; 160:2903-6. [PMID: 26271151 PMCID: PMC7086706 DOI: 10.1007/s00705-015-2565-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/04/2015] [Indexed: 11/27/2022]
Abstract
Equine coronavirus has been responsible for several outbreaks of disease in the United States and Japan. Only one complete genome sequence (NC99 isolated in the US) had been reported for this pathogenic RNA virus. Here, we report the complete genome sequences of three equine coronaviruses isolated in 2009 and 2012 in Japan. The genome sequences of Tokachi09, Obihiro12-1 and Obihiro12-2 were 30,782, 30,916 and 30,916 nucleotides in length, respectively, excluding the 3'-poly (A) tails. All three isolates were genetically similar to NC99 (98.2-98.7%), but deletions and insertions were observed in the genes nsp3 of ORF1a, NS2 and p4.7.
Collapse
Affiliation(s)
- Manabu Nemoto
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan.
| | - Yasuhiro Oue
- Hokkaido Kushiro Livestock Hygiene Service Center, 127-1 Otanoshike, Kushiro, Hokkaido, 084-0917, Japan
| | - Satoshi Murakami
- Thermo Fisher Scientific, Life technologies Japan Ltd., Sumitomo Fudosan Mita Twin Bldg., 4-2-8 Shibaura, Minato-ku, Tokyo, 108-0023, Japan
| | - Toru Kanno
- Dairy Hygiene Research Division, Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Hiroshi Bannai
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Koji Tsujimura
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Takashi Yamanaka
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Takashi Kondo
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| |
Collapse
|
50
|
Pusterla N, Holzenkaempfer N, Mapes S, Kass P. Prevalence of equine coronavirus in nasal secretions from horses with fever and upper respiratory tract infection. Vet Rec 2015; 177:289. [PMID: 26260064 DOI: 10.1136/vr.103263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 11/04/2022]
Affiliation(s)
- N Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - N Holzenkaempfer
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - S Mapes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - P Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|