1
|
Mi X, Wu L, Song Y, Wang X, Zhu Z, Zhao J, Su J, Xue J, Lin B, Gao D, Wang F, Feng R, Gao Y, Liu J, Zhang Y. Evolutionary dynamics and regulatory site analysis of AMP family genes in cattle and sheep. Int J Biol Macromol 2024; 290:138922. [PMID: 39708887 DOI: 10.1016/j.ijbiomac.2024.138922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Ruminants possess a rich repository of natural antimicrobial peptides(AMPs) within their bodies, surpassing those found in humans and mice. These peptides, including Defensin, Cathelicidin, and Lysozyme, are integral to the body's innate and adaptive immune responses and represent promising alternatives to antibiotics with significant application potential. RESULTS In the present study, we conducted a systematic analysis of 40 Defensins, 38 Cathelicidins, and 61 Lysozymes in cattle and sheep. Our findings revealed that these peptides have retained functional integrity through the evolutionary history of these species. However, they exhibit unique gene duplication and expansion events when compared to humans and mice, indicating their potent roles in cattle and sheep. Notably, the Cathelicidin gene family experienced the most substantial expansion in these ruminants. The newly expanded genes were highly expressed in tissues and organs such as the tongue surface, intestine, mammary gland, and others, exhibiting tissue-specific preferences. This expression pattern is associated with the unique behaviors and high lactation capacity of ruminants. An in vitro bacterial inhibition assay demonstrated that EBD, LALBA, LYSB, and CATHL4 exhibited significant broad-spectrum antibacterial activity. Additionally, loci dB1, dB5, cB2, cB3, and yB1 were pinpointed as key co-regulatory elements in the antimicrobial peptide motifs within cattle mammary epithelial cells. CONCLUSIONS This research illuminates the structure-function relationship and antimicrobial potency of natural AMP genes in cattle and sheep, providing a theoretical foundation for the development of novel veterinary drugs to treat common bacterial diseases in ruminants and for enhancing animal health care. The identified transcriptional regulatory sites offer a new perspective on the molecular regulation of AMP genes expression, which can be leveraged to improve the disease resistance of domestic animals. This work contributes to a broader understanding of the evolution and regulation of AMP genes, with potential applications for animal health and breeding programs.
Collapse
Affiliation(s)
- Xiaoyu Mi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.; College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Lingyun Wu
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Yanliang Song
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Zhenliang Zhu
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China; National Center of Technology Innovation for Dairy, Hohhot, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Jie Su
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Jiaoxiong Xue
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Benteng Lin
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Dandan Gao
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Fei Wang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Rui Feng
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China.
| | - Jun Liu
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.; College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China.
| |
Collapse
|
2
|
Guccione J, Alterisio MC, Esposito S, D'Onghia G, Tinelli S, Di Loria A, Mercaldo B, Vastolo A, Ciaramella P. Effects of a Dietary Multi-Mineral Bolus on Udder Health in Dairy Cows: A Clinical Assessment. Vet Sci 2024; 11:621. [PMID: 39728961 DOI: 10.3390/vetsci11120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
The clinical effects on the udder health of several trace elements-copper, iodine, cobalt, and selenium-contained in an intraruminal slow-release bolus were explored for the first time. Fifty-four dairy cows received the bolus (treated group, TG), while fifty-three were left untreated (control group, CG). Monthly composite milk samples were collected from 30 to 300 days in milk to measure somatic cell count (SCC); milk production was also recorded on the same days. Cows with SCC > 200 × 103 cells/mL were considered as affected by mastitis (with or without clinical signs). The effects on udder health were evaluated using several clinical indices employed for mastitis monitoring. The TG cows had a higher average daily milk yield than CG (p < 0.001), as well as a lower overall daily average of SCC (p < 0.0001). Fewer overall mastitis cases were detected in TG than in CG (p < 0.0001), although no significant differences were observed in new or cured mastitis cases. Finally, fewer failures of existing mastitis to cure cases were detected in TG as compared to CG (p < 0.0001), as well as fewer chronic mastitis cases (p < 0.0001). By looking at the clinical findings, some potential benefits on udder health might be hypothesized; nevertheless, additional studies are necessary to confirm these encouraging results.
Collapse
Affiliation(s)
- Jacopo Guccione
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Maria Chiara Alterisio
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Sergio Esposito
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | | | - Sebastiano Tinelli
- Public Veterinary Health and Veterinary Assistance Service-Area A, Mottola Town, Taranto, 74017 Puglia, Italy
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Beatrice Mercaldo
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Alessandro Vastolo
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Productions, University of Study of Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| |
Collapse
|
3
|
Hu C, Dou W, Ma X, An Y, Wang D, Ma Y. AMP-activated protein kinase mediates (-)-epigallocatechin-3-gallate (EGCG) to promote lipid synthesis in mastitis cows. Anim Biotechnol 2024; 35:2381080. [PMID: 39087503 DOI: 10.1080/10495398.2024.2381080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Mastitis, a serious threat to the health and milk production function of dairy cows decreases milk quality. Blood from three healthy cows and three mastitis cows were collected in this study and their transcriptome was sequenced using the Illumina HiSeq platform. Differentially expressed genes (DEGs) were screened according to the |log2FoldChange| > 1 and P-value < 0.05 criteria. Pathway enrichment and functional annotation were performed through KEGG and GO analyses. Finally, the mechanism of the AMP-activated protein kinase (AMPK) mediation of (-)-epigallocatechin-3-gallate (EGCG) to promote lipid metabolism in mastitis cows was analyzed in bovine mammary epithelial cells (BMECs). Transcriptome analysis revealed a total of 825 DEGs, with 474 genes showing increased expression and 351 genes showing decreased expression. The KEGG analysis of DEGs revealed that they were mainly linked to tumour necrosis factor, nuclear factor-κB signalling pathway, and lipid metabolism-related signalling pathway, whereas GO functional annotation found that DEGs were enriched in threonine and methionine kinase activity, cellular metabolic processes, and cytoplasm. AMPK expression, which is involved in several lipid metabolism pathways, was downregulated in mastitis cows. The results of in vitro experiments showed that the inhibition of AMPK promoted the expression of lipid synthesis genes in lipopolysaccharide-induced BMECs and that EGCG could promote lipid synthesis by decreasing the expression of AMPK and downregulating the expression of inflammatory factors in inflammatory BMECs. In conclusion, our study demonstrated that AMPK mediated EGCG to inhabit of inflammatory responses and promote of lipid synthesis in inflammatory BMECs.
Collapse
Affiliation(s)
- Chunli Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wenli Dou
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xuehu Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanhao An
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Dezhi Wang
- Ningxia Borui Ruminant Nutrition Research Center Co., Ltd, Yinchuan, China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Wang Z, Riqing D, Ma L, Jiang M, Zhuoma C, Li X, Liu Y. In Situ Expression of Yak IL-22 in Mammary Glands as a Treatment for Bovine Staphylococcus aureus-Induced Mastitis in Mice. Vet Sci 2024; 11:515. [PMID: 39453107 PMCID: PMC11512370 DOI: 10.3390/vetsci11100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Since the development of dairy farming, bovine mastitis has been a problem plaguing the whole industry, which has led to a decrease in milk production, a reduction in dairy product quality, and an increase in costs. The use of antibiotics to treat mastitis can cause a series of problems, which can bring a series of harm to the animal itself, such as the development of bacterial resistance and dramatic changes in the gut flora. However, the in vivo and in vitro antibacterial activity of yak Interleukin-22 (IL-22) and its application in mastitis caused by Staphylococcus aureus have not been reported. In this study, the mammary gland-specific expression plasmid pLF-IL22 of the yak IL-22 gene was constructed and expressed in MAC-T cells and mammary tissue of postpartum female mice. The coding region of the IL-22 gene in yaks is 573 bp, which can encode 190 amino acids, and the homology difference in the IL-22 gene in yaks is less than 30%, which indicates certain conservation. IL-22 is a hydrophilic protein with a total positive charge of four, the presence of a signal peptide, and the absence of a transmembrane domain. Sufficient expression of IL-22 effectively inhibited the high expression of inflammatory factors caused by Staphylococcus aureus, reduced the symptoms of mammary gland histopathology, and alleviated mastitis. Under the action of IL-22, the intestinal flora of mastitis mice also changed, the abundance of intestinal Bacilli, Prevotellaceae, and Alloprevotella in mice increased after treatment, and the pathogenic bacteria decreased. These findings provide new insights into the potential application of the yak IL-22 gene in the treatment of bovine mastitis in the future.
Collapse
Affiliation(s)
- Zening Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Daojie Riqing
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Mingfeng Jiang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Ciren Zhuoma
- Jiali County Agriculture and Animal Husbandry Science and Technology Service Station, Naqu 852413, China;
| | - Xiaowei Li
- Sichuan Longri Livestock Breeding Farm, Hongyuan 624400, China;
| | - Yili Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| |
Collapse
|
5
|
Wang S, Li X, Ji J, Li X, Zhu H, Duan X, Hu D, Qian P. A novel chimeric endolysin Cly2v shows potential in treating streptococci-induced bovine mastitis and systemic infections. Front Microbiol 2024; 15:1482189. [PMID: 39493846 PMCID: PMC11527626 DOI: 10.3389/fmicb.2024.1482189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Streptococcus species are important pathogens implicated in bovine mastitis, causing considerable economic losses within the global dairy industry. With the development of multidrug-resistant bacteria, it is crucial to develop novel antibiotic alternatives. Here, we constructed a novel chimeric endolysin, Cly2v, which comprises the Ply2741 CHAP domain (1-155aa) and the PlyV12 CBD domain (146-314aa). Biochemical characterization analysis indicated that Cly2v exhibits a melting temperature of 50.7°C and retains stable bactericidal activity at pH = 3-10. In vitro experiments demonstrated that Cly2v exhibited more efficient bactericidal activity against Streptococcus compared to the parental endolysin Ply2741. Cly2v (25 μg/mL) can effectively inhibit and reduce biofilms formed by Streptococcus, resulting in a 68 and 44% reduction in OD590nm for S. agalactiae X2 and S. uberis 002-1 biofilms. Notably, in a mouse mastitis model, treatment with Cly2v (50 μg/gland) led to a reduction in bacterial load by 2.16 log10CFU/ml and decreased inflammatory cytokine levels in mammary tissue. To our knowledge, this represents the first application of a chimeric endolysin in the treatment of early-stage mouse mastitis induced by streptococci. Additionally, in a systemic infection model, treatment with Cly2v (400 μg/mouse) provided protection rates of up to 100 and 78% against S. agalactiae ATCC13813 infections when challenged for 1 h and 3 h, respectively. Furthermore, a significant reduction in bacterial loads was observed in the blood and organs compared to the PBS group. In summary, Cly2v possesses significant potential as an alternative antibiotic for the treatment of streptococci-induced bovine mastitis and systemic infections.
Collapse
Affiliation(s)
- Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junrou Ji
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Xiong Y, Shen T, Lou P, Yang J, Kastelic JP, Liu J, Xu C, Han B, Gao J. Colostrum-derived extracellular vesicles: potential multifunctional nanomedicine for alleviating mastitis. J Nanobiotechnology 2024; 22:627. [PMID: 39407245 PMCID: PMC11481564 DOI: 10.1186/s12951-024-02926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Bovine mastitis is an infectious disease that causes substantial economic losses to the dairy industry worldwide. Current antibiotic therapy faces issues of antibiotic misuse and antimicrobial resistance, which has aroused concerns for both veterinary and human medicine. Thus, this study explored the potential of Colo EVs (bovine colostrum-derived extracellular vesicles) to address mastitis. Using LPS-induced murine mammary epithelial cells (HC11), mouse monocyte macrophages (RAW 264.7), and a murine mastitis model with BALB/C mice, we evaluated the safety and efficacy of Colo EVs, in vivo and in vitro. Colo EVs had favorable biosafety profiles, promoting cell proliferation and migration without inducing pathological changes after injection into murine mammary glands. In LPS-induced murine mastitis, Colo EVs significantly reduced inflammation, improved inflammatory scores, and preserved tight junction proteins while protecting milk production. Additionally, in vitro experiments demonstrated that Colo EVs downregulated inflammatory cytokine expression, reduced inflammatory markers, and attenuated NF-κB pathway activation. In summary, we inferred that Colo EVs have promise as a therapeutic approach for mastitis treatment, owing to their anti-inflammatory properties, potentially mediated through the NF-κB signaling pathway modulation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Taiyu Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610213, Chengdu, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610213, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
7
|
Ren X, Lu H, Wang Y, Yan L, Liu C, Chu C, Yang Z, Bao X, Yu M, Zhang Z, Zhang S. Phenotypic and Genetic Analyses of Mastitis, Endometritis, and Ketosis on Milk Production and Reproduction Traits in Chinese Holstein Cattle. Animals (Basel) 2024; 14:2372. [PMID: 39199906 PMCID: PMC11350879 DOI: 10.3390/ani14162372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis (MAS), endometritis (MET), and ketosis (KET) are prevalent diseases in dairy cows that result in substantial economic losses for the dairy farming industry. This study gathered 26,014 records of the health and sickness of dairy cows and 99,102 data of reproduction from 13 Holstein dairy farms in Central China; the milk protein and milk fat content from 56,640 milk samples, as well as the pedigree data of 37,836 dairy cows were obtained. The logistic regression method was used to analyze the variations in the prevalence rates of MAS, MET, and KET among various parities; the mixed linear model was used to examine the effects of the three diseases on milk production, milk quality, and reproductive traits. DMU software (version 5.2) utilized the DMUAI module in conjunction with the single-trait and two-trait animal model, as well as best linear unbiased prediction (BLUP), to estimate the genetic parameters for the three diseases, milk production, milk quality, and reproductive traits in dairy cows. The primary findings of the investigation comprised the following: (1) The prevalence rates of MAS, MET, and KET in dairy farms were 20.04%, 10.68%, and 7.33%, respectively. (2) MAS and MET had a substantial impact (p < 0.01) on milk production, resulting in significant decreases of 112 kg and 372 kg in 305-d Milk Yield (305-d MY), 4 kg and 12 kg in 305-d Protein Yield (305-d PY), and 6 kg and 16 kg in 305-d Fat Yield (305-d FY). As a result of their excessive 305-d MY, some cows were diagnosed with KET due to glucose metabolism disorder. The 305-d MY of cows with KET was significantly higher than that of healthy cows (205 kg, p < 0.01). (3) All three diseases resulted in an increase in the Interval from Calving to First Service (CTFS, 0.60-1.50 d), Interval from First Service to Conception (FSTC, 0.20-16.20 d), Calving Interval (CI, 4.00-7.00 d), and Number of Services (NUMS, 0.07-0.35). (4) The heritabilities of cows with MAS, MET, and KET were found to be low, with values of 0.09, 0.01, and 0.02, respectively. The genetic correlation between these traits ranged from 0.14 to 0.44. This study offers valuable insights on the prevention and control of the three diseases, as well as feeding management and genetic breeding.
Collapse
Affiliation(s)
- Xiaoli Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (C.C.); (Z.Y.); (X.B.); (M.Y.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Henan Dairy Herd Improvement Center, Zhengzhou 450046, China
| | - Haibo Lu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (Y.W.)
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (Y.W.)
| | - Lei Yan
- Henan Seed Industry Development Center, Zhengzhou 450046, China;
| | - Changlei Liu
- Henan Dairy Herd Improvement Co., Ltd., Zhengzhou 450046, China;
| | - Chu Chu
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (C.C.); (Z.Y.); (X.B.); (M.Y.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Yang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (C.C.); (Z.Y.); (X.B.); (M.Y.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangnan Bao
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (C.C.); (Z.Y.); (X.B.); (M.Y.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (C.C.); (Z.Y.); (X.B.); (M.Y.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Zhang
- Henan Seed Industry Development Center, Zhengzhou 450046, China;
| | - Shujun Zhang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (C.C.); (Z.Y.); (X.B.); (M.Y.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Guo M, Zhang Y, Wu L, Xiong Y, Xia L, Cheng Y, Ma J, Wang H, Sun J, Wang Z, Yan Y. Development and mouse model evaluation of a new phage cocktail intended as an alternative to antibiotics for treatment of Staphylococcus aureus-induced bovine mastitis. J Dairy Sci 2024; 107:5974-5987. [PMID: 38522833 DOI: 10.3168/jds.2024-24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Bovine mastitis is a prevalent infectious disease in dairy herds worldwide, resulting in substantial economic losses. Staphylococcus aureus is a major cause of mastitis in animals, and its antibiotic resistance poses challenges for treatment. Recently, renewed interest has focused on the development of alternative methods to antibiotic therapy, including bacteriophages (phages), for controlling bacterial infections. In this study, 2 lytic phages, vB_SauM_JDYN (JDYN) and vB_SauM_JDF86 (JDF86), were isolated from the cattle sewage effluent samples collected from dairy farms in Shanghai. The 2 phages have a broad bactericidal spectrum against Staphylococcus of various origins. Genomic and morphological analyses revealed that the 2 phages belonged to the Myoviridae family. Moreover, JDYN and JDF86 remained stable under a wide temperature and pH range and were almost unaffected in chloroform. In this study, we prepared a phage cocktail (PHC-1) which consisted of a 1:1:1 ratio of JDYN, JDF86, and SLPW (a previously characterized phage). We found that PHC-1 showed the strongest bacteriolytic effect and the lowest frequency of emergence of bacteriophage insensitive mutants compared with monophages. Bovine mammary epithelial cells and lactating mice mastitis models were used to evaluate the effectiveness of PHC-1 in vitro and in vivo, respectively. The results demonstrated that PHC-1 treatment significantly reduced bacterial load, alleviated inflammatory response, and improved mastitis pathology. Altogether, these results suggest that PHC-1 has the potential to treat S. aureus-induced bovine mastitis and that phage cocktails can combat antibiotic-resistant S. aureus infections.
Collapse
Affiliation(s)
- Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lifei Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yangjing Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lu Xia
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| |
Collapse
|
9
|
Carvalho HGAC, Silva DM, Rodrigues GRD, Gameiro AH, Dos Santos RF, Raineri C, Lima AMC. Estimation of economic losses due to leptospirosis in dairy cattle. Prev Vet Med 2024; 229:106255. [PMID: 38889484 DOI: 10.1016/j.prevetmed.2024.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
There are few studies that effectively quantify the economic losses resulting from problems caused by leptospirosis in naturally infected dairy cattle. Given this gap, the objective of this study was to propose and apply a method to quantify the economic losses resulting from productive and reproductive problems in a commercial dairy herd naturally infected by Leptospira spp. For this study, the zootechnical and economic indicators at a property with Jersey cattle were analyzed during the period from 2014 to 2017. The leptospirosis outbreak occurred in 2014, and the therapeutic approach was carried out between 2015 and 2017, with the latter considered the year of control of the outbreak. The adopted integrated control strategy consisted of dividing the herd according to the serological results obtained through the microscopic agglutination test, the treatment of reagents with streptomycin, and vaccination against leptospirosis of non-reagent heifers and cows. The method used to evaluate the economic indicators of the property was the calculation of the gross margin by taking into account the implicit and explicit cost parameters associated with the manifestation of leptospirosis. The prevalence rate of leptospirosis decreased from 49.4 % in 2015 to 21.6 % in 2017. There was a reduction in the abortion rate (from 40.00 % in 2014 to 9.00 % in 2017), in the stillborn rate (from 2.63 % in 2014 to 1.69 % in 2017) and an increase in the calving rate (from 65.00 % in 2014 to 86.00 % in 2017). In addition, there were increases in the number of lactating cows (from 38 in 2014-57 in 2017) and the mean times of lactation duration, which increased from 275 days in 2014-295 days in 2017. As a result, the average annual production of milk increased from 164,655 liters in 2014-248,521 liters in 2017. In 2014, when treatment hadn't yet started, the gross margin per liter of milk sold, considering implicit and explicit costs, was US$0.00. In 2015 and 2016, US$0.27 and US$0.30 were obtained, respectively, for this variable. In 2017, with the disease under control on the property, the gross margin per liter of milk reached US$0.36. The gross margin per liter of milk sold was higher in the period when the disease was controlled, showing losses of up to 84 % of the gross margin during the outbreak. Immediate treatment of positive cows and preventive measures had a significant impact on improving the productive and economic efficiency of the property.
Collapse
Affiliation(s)
- Hanna Gabryella Andrade Costa Carvalho
- School of Veterinary Medicine, Laboratory of Infectious Diseases, Preventive Veterinary Medicine, Federal University of Uberlândia, Block 2D, Ceara Street, Room 33, Zip Code, Uberlândia, MG 38405-315, Brazil
| | - Danilo Mundim Silva
- School of Veterinary Medicine, Laboratory of Infectious Diseases, Preventive Veterinary Medicine, Federal University of Uberlândia, Block 2D, Ceara Street, Room 33, Zip Code, Uberlândia, MG 38405-315, Brazil
| | - Gustavo Roberto Dias Rodrigues
- School of Veterinary Medicine, Laboratory of Studies on Agribusiness, Federal University of Uberlândia, BR 050, km 78. 38410-337. Campus Glória, Bloco 1CCG, Brazil.
| | - Augusto Hauber Gameiro
- Department of Nutrition and Animal Production, Laboratory of Socioeconomic Analyses and Animal Science, School of Veterinary Medicine and Animal Science of University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, São Paulo 133635-900, Brazil
| | - Renata Ferreira Dos Santos
- School of Veterinary Medicine, Laboratory of Infectious Diseases, Preventive Veterinary Medicine, Federal University of Uberlândia, Block 2D, Ceara Street, Room 33, Zip Code, Uberlândia, MG 38405-315, Brazil
| | - Camila Raineri
- School of Veterinary Medicine, Laboratory of Studies on Agribusiness, Federal University of Uberlândia, BR 050, km 78. 38410-337. Campus Glória, Bloco 1CCG, Brazil
| | - Anna Monteiro Correia Lima
- School of Veterinary Medicine, Laboratory of Infectious Diseases, Preventive Veterinary Medicine, Federal University of Uberlândia, Block 2D, Ceara Street, Room 33, Zip Code, Uberlândia, MG 38405-315, Brazil
| |
Collapse
|
10
|
Zhang L, Ma H, Tang W, Zeng J, Kulyar MF, Hu J. Changes in the Microbiome in Yak Mastitis: Insights Based on Full-Length 16S rRNA Sequencing. Vet Sci 2024; 11:335. [PMID: 39195789 PMCID: PMC11359330 DOI: 10.3390/vetsci11080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Mastitis is an inflammation of the mammary gland that can be caused by various factors, including biological, chemical, mechanical, or physical. Microbiological culture, DNA techniques, and high-throughput next-generation sequencing have been used to identify mastitis-causing pathogens in various animal species. However, little is known about microbiota and microbiome changes linked to yak milk mastitis. This study aimed to characterize the milk microbiota of healthy and mastitis-infected yaks using full-length 16S rRNA sequencing. The results showed that the bacterial microbiota comprises 7 phyla, 9 classes, 20 orders, 39 families, 59 genera, and 72 species. Proteobacteria and Firmicutes were the predominant microbial communities, with lower abundances of Bacteroidota, Actinobacteriota, Acidobacteriota, and other minor groupings also observed. Proteobacteria dominated the clinical and subclinical mastitis groups (95.36% and 89.32%, respectively), in contrast to the healthy group (60.17%). Conversely, Firmicutes were more common in the healthy group (39.7%) than in the subclinical and clinical mastitis groups (10.49% and 2.92%, respectively). The predominant organisms found in the healthy group were Leuconostoc mesenteroides, Lactococcus piscium, Carnobacterium maltaromaticum, and Lactococcus raffinolactis. Low abundances of Staphylococcus aureus species were found in both subclinical and clinical mastitis groups, with Moraxella osloensis and Psychrobacter cibarius dominating the subclinical mastitis group and Pseudomonas fluorescens dominating the clinical mastitis group. An alpha diversity study revealed that the healthy group had a higher microbial diversity than the clinical and subclinical mastitis groups. According to beta-diversity analysis, the principal coordinate analysis identified that mastitis-infected samples significantly differed from healthy ones. The milk microbiota of healthy yaks is more varied, and specific prominent taxa within various groups can act as marker microorganisms for mastitis risk. The genera Leuconostoc and Lactococcus are promising candidates for creating probiotics.
Collapse
Affiliation(s)
- Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hongcai Ma
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Wenqiang Tang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (H.M.); (W.T.); (J.Z.)
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
11
|
de Souza MMS, Dubenczuk FC, Melo DA, Holmström TCN, Mendes MB, Reinoso EB, Coelho SMO, Coelho IS. Antimicrobial therapy approaches in the mastitis control driven by one health insights. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e002624. [PMID: 39104804 PMCID: PMC11299703 DOI: 10.29374/2527-2179.bjvm002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
The use of antimicrobials in the dairy production environment for mastitis control must take etiology, clinical signs, economic impacts, and regulatory frameworks into consideration. The objective of the present review is to highlight important aspects of the dynamics of antimicrobial use in dairy production and the potential impacts on the main pathogens circulating in this environment, considering the parameters set by the World Health Organization (WHO) regarding the priority of monitoring as well as control strategies for these agents, such as the methicillin-resistant Staphylococcus and the beta-lactamase-producing Escherichia coli. Understanding the animal-environment-pathogen triad is crucial for establishing control measures and preventing the spread of bacterial resistance. Implementing mastitis prevention and control measures in dairy farms, considering process flow and personnel qualification, enables a reduction in antimicrobial usage and contributes to prevent the spread of resistant bacterial agents in the dairy production environment, minimizing the relapses and the chronicity of the infectious process.
Collapse
Affiliation(s)
- Miliane Moreira Soares de Souza
- Veterinarian, DSc., Departamento de Microbiologia e Imunologia Veterinária (DMIV), Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro (UFRRJ). Seropédica, RJ, Brazil.
| | - Felipe Carlos Dubenczuk
- Veterinarian, DSc. Programa de Pós-Graduação em Ciência e Tecnologia Agrária (PPGCTIA), DMIV, IV, UFRRJ. Seropédica, RJ, Brazil.
| | - Dayanne Araújo Melo
- Veterinarian, DSc., Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), DMIV, IV, UFRRJ. Seropédica, RJ. Brazil.
| | | | | | | | | | | |
Collapse
|
12
|
Leghari A, Sabir R, Laghari S, Khand FM, Chandio MA, Magsi AS, Bhutto KUR, Hassan MF, Lakho SA, Lin H, Fan H. Comparative analysis of Streptococcus agalactiae serotypes Ia and II isolates from China and Pakistan in a murine model: A focus on pathogenesis and immune response. Microb Pathog 2024; 191:106675. [PMID: 38705216 DOI: 10.1016/j.micpath.2024.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-β) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 μl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 μL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1β, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-β, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.
Collapse
Affiliation(s)
- Ambreen Leghari
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, 67210, Sindh, Pakistan
| | - Rabia Sabir
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheereen Laghari
- Department of Food Engineering, Quaid-e-Awam University of Engineering, Science & Technology Nawabshah 67450, Sindh, Pakistan
| | - Faiz Muhammad Khand
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, 67210, Sindh, Pakistan
| | - Muhammad Ali Chandio
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, 67210, Sindh, Pakistan
| | - Abdul Samad Magsi
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, 67210, Sindh, Pakistan
| | | | - Mohammad Farooque Hassan
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, 67210, Sindh, Pakistan
| | - Shakeel Ahmed Lakho
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, 67210, Sindh, Pakistan
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Yao R, Wang M, Zhao Y, Ji Q, Feng X, Bai L, Bao L, Wang Y, Hao H, Li X, Wang Z. Chlorogenic acid enhances PPARγ-mediated lipogenesis through preventing Lipin 1 nuclear translocation in Staphylococcus aureus-exposed bovine mammary epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159396. [PMID: 37717905 DOI: 10.1016/j.bbalip.2023.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Hohhot No. 1 High School, Hohhot 010030, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lili Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
14
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Velázquez-Ordoñez V, Delgadillo-Ruiz L, Zaragoza-Bastida A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet Anim Sci 2023; 21:100306. [PMID: 37547227 PMCID: PMC10400929 DOI: 10.1016/j.vas.2023.100306] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Bovine mastitis is globally considered one of the most important diseases within dairy herds, mainly due to the associated economic losses. The most prevalent etiology are bacteria, classified into contagious and environmental, with Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Escherichia coli and Klebsiella pneumoniae being the most common pathogens associated with mastitis cases. To date these pathogens are resistant to the most common active ingredients used for mastitis treatment. According to recent studies resistance to new antimicrobials has increased, which is why developing of alternative treatments is imperative. Therefore the present review aims to summarize the reports about bovine mastitis along 10 years, emphasizing bacterial etiology, its epidemiology, and the current situation of antimicrobial resistance, as well as the development of alternative treatments for this pathology. Analyzed data showed that the prevalence of major pathogens associated with bovine mastitis varied according to geographical region. Moreover, these pathogens are classified as multidrug-resistant, since the effectiveness of antimicrobials on them has decreased. To date, several studies have focused on the research of alternative treatments, among them vegetal extracts, essential oils, or peptides. Some other works have reported the application of nanotechnology and polymers against bacteria associated with bovine mastitis. Results demonstrated that these alternatives may be effective on bacteria associated with bovine mastitis.
Collapse
Affiliation(s)
- Ana Lizet Morales-Ubaldo
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Benjamín Valladares-Carranza
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Valente Velázquez-Ordoñez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Lucía Delgadillo-Ruiz
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, CP. 98068, Zacatecas, Zacatecas, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| |
Collapse
|
16
|
El-Razik KAA, Arafa AA, Fouad EA, Soror AH, Abdalhamed AM, Elgioushy M. Phenotypic and genotypic characterization of erythromycin-resistant Staphylococcus aureus isolated from bovine subclinical mastitis in Egypt. Vet World 2023; 16:1562-1571. [PMID: 37621528 PMCID: PMC10446729 DOI: 10.14202/vetworld.2023.1562-1571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Subclinical mastitis (SCM) caused by erythromycin-resistant Staphylococcus aureus is a significant disease in lactating animals. Therefore, it is crucial to understand the genetic factors contributing to erythromycin resistance in S. aureus. This study aimed to estimate the prevalence of S. aureus in milk from subclinical mastitic cattle and buffaloes and tank milk samples as identified by probe-based real-time polymerase chain reaction (PCR) and the genotypic assessment of macrolide and erythromycin resistance profiles, as well as to analyze the phylogenetic relatedness of our local isolates of S. aureus. Materials and Methods In total, 285 milk samples were analyzed using the California mastitis test to detect SCM. Milk samples were cultured on different specific Staphylococcus media. The presence of S. aureus was confirmed by Gram staining, the catalase and coagulase tests, the detection of hemolytic activity, DNase agar testing, and biofilm activity in Congo red medium. The genotypic identification of S. aureus (nuc) was performed. The determinants of erythromycin (ermA, ermB, ermC, and ermT) and macrolide resistance (msrA) were screened in all isolates. DNA sequencing of our local isolates of S. aureus was used to analyze their phylogenetic relatedness. Moreover, histopathological examination of tissue specimens of mammary gland was performed. Results The S. aureus positivity rates were 36.4%, 48.8%, and 63.6% in cattle, buffalo, and bulk tank milk, respectively. Probe-based real-time PCR molecularly confirmed all 62 S. aureus isolates. Thirty-one isolates were subjected to PCR to create profiles of their genotypic erythromycin resistance. ermA, ermB, ermC, and ermT were present in 5 (8%), 26 (41.9%), 18 (29%), and 15 (24.1%) S. aureus isolates, respectively. Moreover, msrA was found in three (4.8%) strains. Eight PCR products were produced using standard PCR for DNA sequencing. Multiple sequence alignment, phylogenetic tree construction, and analysis of nuc in S. aureus revealed a high degree of homology (100%) with S. aureus strains isolated from milk in cases of bovine mastitis in India and Kenya. Histological analysis of udder tissues revealed extensive aggregation of mononuclear inflammatory cells in the interstitial connective tissue, primarily lymphocytes, and macrophages. Conclusion This study showed a high prevalence of erythromycin resistance in S. aureus isolates. This information is vital for controlling mastitis and the spread of resistance genes between bacterial strains and hosts. Moreover, the probe-based real-time PCR approach is helpful for the rapid screening of S. aureus isolates and the consequent efficient treatment and control of S. aureus mastitis.
Collapse
Affiliation(s)
| | - Amany A. Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Ehab A. Fouad
- Department of Zoonosis, National Research Centre, Dokki, Egypt
| | - Ashraf H. Soror
- Department of Animal Reproduction, National Research Centre, Dokki, Egypt
| | - Abeer M. Abdalhamed
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Magdy Elgioushy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Aswan University, Egypt
| |
Collapse
|
17
|
Chen S, Zhang H, Zhai J, Wang H, Chen X, Qi Y. Prevalence of clinical mastitis and its associated risk factors among dairy cattle in mainland China during 1982-2022: a systematic review and meta-analysis. Front Vet Sci 2023; 10:1185995. [PMID: 37275611 PMCID: PMC10233030 DOI: 10.3389/fvets.2023.1185995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Background Bovine mastitis is one of the most common and prevalent diseases affecting dairy cattle worldwide. It adversely affects the quality and quantity of milk production and leads to a significant economic loss for the farmers. Methods This article aimed to estimate the prevalence of clinical mastitis (CM) infection in mainland China using a systematic review and meta-analysis. The research reports published during 1983-2022 in English or Chinese from databases (PubMed, Google Scholar, Cochrane Library, Science Direct, Web of Science, VIP Database for Chinese Technical Periodicals (VIP), Chinese National Knowledge Infrastructure (CNKI), and Wan Fang database) were identified after reviewing the relevant scientific literature. Based on our inclusion criteria, this study analyzed the prevalence of CM in 47 published studies prevalence extracted the total number of cattle infected with CM from the available studies, allowing us to estimate the prevalence of CM infection among these in mainland China. Results The pooled prevalence with the 95% CI for the clinical mastitis was 10% (95% CI: 9.00, 12.00). The majority of CM was associated with lactation, parity, and age, with higher prevalence observed in late lactation 15% (95% CI: 11.00, 18.00) and mid-lactation 10% (95% CI: 6.00, 13.00) in comparison to early lactation 8% (95% CI: 5.00, 10.00). The incidence of CM increased significantly with the increase of parity and age, and the highest incidence rates were 19% (95% CI: 15.00, 23.00) and 16% (95% CI: 12.00, 19.00) at parity and age ≥7, respectively. Among the seasons, the highest prevalence of CM infection was found in autumn 9% (95% CI: 2.00, 17.00). Interestingly, no significant effects were evident regarding the influence of quarter on the prevalence of CM. Conclusion Thus, estimating the prevalence of CM among cattle in mainland China. through meta-analysis can provide adequate measures to control CM, reduce economic losses, and prevent the spread and transmission of CM in Chinese herds.
Collapse
Affiliation(s)
- Shuiyun Chen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Huiying Zhang
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Junjun Zhai
- Shanxi Province Engineering & Technology Research Center of Shanbei Cashmere Goats, Yulin University, Yulin, Shanxi, China
| | - Honghai Wang
- Daqing Agricultural and Rural Bureau, Daqing, Heilongjiang, China
| | - Xuelong Chen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Yanping Qi
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
18
|
Shoaib M, Xu J, Meng X, Wu Z, Hou X, He Z, Shang R, Zhang H, Pu W. Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Front Cell Infect Microbiol 2023; 13:1183390. [PMID: 37265496 PMCID: PMC10230075 DOI: 10.3389/fcimb.2023.1183390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Non-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China. Methods In this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively. Results In total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7. Conclusion These findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jie Xu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoqin Meng
- Lanzhou Center for Animal Disease Control and Prevention, Lanzhou, China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| |
Collapse
|
19
|
Ouyang L, Tang H, Liu Z, Tian Y, Gao X, Peng T, Wang Z, Lan X, Shen W, Xiao D, Wan F, Liu L. Resveratrol inhibits LPS-induced apoptosis in bovine mammary epithelial cells: the role of PGC1α-SIRT3 axis. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00766-2. [PMID: 37173557 DOI: 10.1007/s11626-023-00766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Resveratrol (Res) is a bioactive dietary component and alleviates apoptosis in multiple cell types. However, its effect and mechanism on lipopolysaccharide (LPS)-induced bovine mammary epithelial cells (BMEC) apoptosis, which commonly happens in dairy cows with mastitis, is unknown. We hypothesized that Res would inhibit LPS-induced apoptosis in BMEC through SIRT3, a NAD + -dependent deacetylase activated by Res. To test the dose-response effect on apoptosis, 0-50 μM Res were incubated with BMEC for 12 h, followed by 250 μg/mL LPS treatment for 12 h. To investigate the role of SIRT3 in Res-mediated alleviation of apoptosis, BMEC were pretreated with 50 μM Res for 12 h, then incubated with si-SIRT3 for 12 h and were finally treated with 250 μg/mL LPS for 12 h. Res dose-dependently promoted the cell viability and protein levels of Bcl-2 (Linear P < 0.001) but decreased protein levels of Bax, Caspase-3 and Bax/Bcl-2 (Linear P < 0.001). TUNEL assays indicated that cellular fluorescence intensity declined with the rising doses of Res. Res also dose-dependently upregulated SIRT3 expression, but LPS had the opposite effect. SIRT3 silencing abolished these results with Res incubation. Mechanically, Res enhanced the nuclear translocation of PGC1α, the transcriptional cofactor for SIRT3. Further molecular docking analysis revealed that Res could directly bind to PGC1α by forming a hydrogen bond with Tyr-722. Overall, our data suggested that Res relieved LPS-induced BMEC apoptosis through the PGC1α-SIRT3 axis, providing a basis for further in vivo investigations of applying Res to relieve mastitis in dairy cows.
Collapse
Affiliation(s)
- Lu Ouyang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Huilun Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zilin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuan Tian
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Gao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Peng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zuo Wang
- College of Animal Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xinyi Lan
- College of Animal Science, Hunan Agricultural University, Changsha, 410128, China
| | - Weijun Shen
- College of Animal Science, Hunan Agricultural University, Changsha, 410128, China
| | - Dingfu Xiao
- College of Animal Science, Hunan Agricultural University, Changsha, 410128, China.
| | - Fachun Wan
- College of Animal Science, Hunan Agricultural University, Changsha, 410128, China.
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
20
|
Su J, Li Z, Gao P, Ahmed I, Liu Q, Li R, Cui K, Rehman SU. Comparative evolutionary and molecular genetics based study of Buffalo lysozyme gene family to elucidate their antibacterial function. Int J Biol Macromol 2023; 234:123646. [PMID: 36775226 DOI: 10.1016/j.ijbiomac.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Lysozyme is used as a food preservative, biological medicine, and infant food additive as a natural anti-infective chemical having bactericidal activity and abundantly secreted in mammals' milk, saliva, etc. We systematically analyzed the 16 coding LYZ genes (C and G-type) in buffalo and cattle to elucidate their evolutionary perspective thoroughly by evaluating an evolutionary relationship, motif patterning, physicochemical attributes, gene, and protein structure, as well as the functional role of the mammary gland-specific expressed buffalo and cattle LYZ genes precisely while considering expression levels difference and the interaction sites variation with bacteria envisaged the potential ability of buffalo LYZ protein with enhanced antibacterial effect. Thus, we speculated that the buffalo mammary glands expressed lysozyme has good antibacterial activity. This study on the buffalo lysozyme gene family not only provides comprehensive insights into the genetic architecture and their antibacterial effect but also offers a theoretical basis for the development of new veterinary drugs and animal health care for mastitis, as well as a new molecular genetic basis to study food or medical lysozyme.
Collapse
Affiliation(s)
- Jie Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Peipei Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Ruijia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| | - Saif Ur Rehman
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| |
Collapse
|
21
|
Genetical analysis of mastitis and reproductive traits in first-parity Holstein cows using standard and structural equation modelling. Animal 2023; 17:100777. [PMID: 37043934 DOI: 10.1016/j.animal.2023.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The present study aimed to investigate the causal relationships between clinical mastitis and some reproductive traits, including success at first insemination (SFI), the number of inseminations to pregnancy (INS), the interval from calving to first service (CTFS), first and last service interval (IFL), and open days (OD) in first-parity Holstein cows. For this purpose, the records of 58 281 first parity Holstein cows were analysed. These data sets were collected from 17 large dairy herds from 2008 to 2017. Recursive Mixed Models (RMMs) were applied and compared with the estimations under Standard Mixed Models. Then, one trivariate and three bivariate Gaussian-threshold models were used for the analyses. Recursive models were applied, considering that clinical mastitis can influence fertility traits. Mastitis is considered a covariate for the reproductive traits to determine their causal relationship. The results of this study indicated that causal effects of mastitis on SFI (on the observed scale, %), CTFS, IFL, OD, and INS were -5.7%, 3.3 days, 12.27 days, seven days, and 0.26 services, respectively. The estimated structural coefficients of the recursive models in the first parity imply that mastitis significantly lengthened the fertility interval and decreased the conception rate. In addition, genetic, residual, and phenotypic correlations between mastitis and the reproductive traits under both models were statistically significant. Results of genetic correlations between mastitis and fertility traits suggest that more incidence of mastitis during lactation is related to the delays in the heat show and pregnancy rate after insemination. In summary, considering the causal effects under RMMs may be advantageous to comprehend complicated relationships between complex traits better.
Collapse
|
22
|
Dobrut A, Wójcik-Grzybek D, Młodzińska A, Pietras-Ożga D, Michalak K, Tabacki A, Mroczkowska U, Brzychczy-Włoch M. Detection of immunoreactive proteins of Escherichia coli, Streptococcus uberis, and Streptococcus agalactiae isolated from cows with diagnosed mastitis. Front Cell Infect Microbiol 2023; 13:987842. [PMID: 36844415 PMCID: PMC9950269 DOI: 10.3389/fcimb.2023.987842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Mastitis is a widespread mammary gland disease of dairy cows that causes severe economic losses to dairy farms. Mastitis can be caused by bacteria, fungi, and algae. The most common species isolated from infected milk are, among others, Streptococcus spp., and Escherichia coli. The aim of our study was protein detection based on both in silico and in vitro methods, which allowed the identification of immunoreactive proteins representative of the following species: Streptococcus uberis, Streptococcus agalactiae, and Escherichia coli. Methods The study group included 22 milk samples and 13 serum samples obtained from cows with diagnosed mastitis, whereas the control group constituted 12 milk samples and 12 serum samples isolated from healthy animals. Detection of immunoreactive proteins was done by immunoblotting, while amino acid sequences from investigated proteins were determined by MALDI-TOF. Then, bioinformatic analyses were performed on detected species specific proteins in order to investigate their immunoreactivity. Results As a result, we identified 13 proteins: 3 (molybdenum cofactor biosynthesis protein B, aldehyde reductase YahK, outer membrane protein A) for E. coli, 4 (elongation factor Tu, tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG, GTPase Obg, glyceraldehyde-3-phosphate dehydrogenase) for S. uberis, and 6 (aspartate carbamoyltransferase, elongation factor Tu, 60 kDa chaperonin, elongation factor G, galactose-6-phosphate isomerase subunit LacA, adenosine deaminase) for S. agalactiae, which demonstrated immunoreactivity to antibodies present in serum from cows with diagnosed mastitis. Discussion Due to the confirmed immunoreactivity, specificity and localization in the bacterial cell, these proteins can be considered considered potential targets in innovative rapid immunodiagnostic assays for bovine mastitis, however due to the limited number of examined samples, further examination is needed.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Anna Dobrut,
| | - Dagmara Wójcik-Grzybek
- Department of Experimental Physiology, Chair of Physiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | | | | | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
23
|
Paramasivam R, Gopal DR, Dhandapani R, Subbarayalu R, Elangovan MP, Prabhu B, Veerappan V, Nandheeswaran A, Paramasivam S, Muthupandian S. Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infect Drug Resist 2023; 16:155-178. [PMID: 36636377 PMCID: PMC9831082 DOI: 10.2147/idr.s384776] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Background Bovine mastitis is the most frequent and costly illness impacting dairy herds worldwide. The presence of subclinical mastitis in dairy cows has an impact on the decreased output of milk and milk quality, culling of affected cows, mortality rate, as well as mastitis-related treatment expenses, generating significant financial loss to the dairy industry. The pathogenic bacteria invade through the mammary gland, which then multiply in the milk-producing tissues causing infection, and the presence of pathogenic bacteria in milk is concerning, jeopardizes human health, and also has public health consequences. Intervention to promote herd health is essential to protect public health and the economy. Results This review attempts to provide an overview of subclinical mastitis, including mastitis in different species, the effect of mastitis on human health and its pathogenic mechanism, the prevalence and incidence of subclinical mastitis, and current preventive, diagnostic, and treatment methods for subclinical mastitis. It also elaborates on the management practices that should be followed by the farms to improve herd immunity and health. Conclusion This review brings the importance of the threat of antimicrobial resistance organisms to the dairy industry. Furthermore, this review gives a glimpse of the economic consequences faced by the farmers and a futuristic mastitis market analysis in the dairy industry.
Collapse
Affiliation(s)
- Ragul Paramasivam
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Dhinakar Raj Gopal
- Department of Animal Biotechnology, Madras Veterinary College, Tamilnadu Veterinary and Animal Science University (TANUVAS), Chennai, 600007, India
| | | | | | | | - Bhavadharani Prabhu
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | - Veeramani Veerappan
- Research and Development Division, Chimertech Private Limited, Chennai, India
| | | | | | - Saravanan Muthupandian
- AMR and Nanotherapeutics Lab, Centre for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India,Division of Biomedical Science, College of Health Sciences, School of Medicine, Mekelle University, Mekelle, Ethiopia,Correspondence: Saravanan Muthupandian, Email
| |
Collapse
|
24
|
Association of Mastitis and Farm Management with Contamination of Antibiotics in Bulk Tank Milk in Southwest, China. Animals (Basel) 2022; 12:ani12233392. [PMID: 36496914 PMCID: PMC9738700 DOI: 10.3390/ani12233392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Bovine mastitis could reduce the milk production and the quality of the bulk tank milk (BTM). Antibiotic treatments through intramammary or parenteral methods are being widely used in dairy farms. A cross-sectional study to investigate for general farm management and pre-test the questionnaire was performed in Southwestern Yunnan province, China. A total of 134 dairy farms were included. Milking cows of each farm were determined for the presence of clinical (CM) and sub-clinical (SCM) mastitis using the California Mastitis Test (CMT). Rates of CM and SCM in studied farms ranged from 2-11%, and 24-69%, respectively. The incidence of antibiotic residues in BTM of all farms was very high (32%, 44/134). All antibiotic contaminated samples were from smallholder dairy farms. Factors significantly associated with the presence of antibiotic contamination included farm region, antibiotics usage, persons performing mastitis treatment, and rates of CM. Rates of CM were significantly associated with the farm region, cleanliness of udders before milking, and the number of milking cows. Our results emphasize that the risk factors of dairy farm management should be paid attention, which can reduce mastitis prevalence and antibiotic contamination in BTM in Southwestern China.
Collapse
|
25
|
Zhao C, Hu X, Bao L, Wu K, Zhao Y, Xiang K, Li S, Wang Y, Qiu M, Feng L, Meng X, Zhang N, Fu Y. Gut dysbiosis induces the development of mastitis through a reduction in host anti-inflammatory enzyme activity by endotoxemia. MICROBIOME 2022; 10:205. [PMID: 36451232 PMCID: PMC9714159 DOI: 10.1186/s40168-022-01402-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/24/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mounting experimental evidence has shown that the gut microbiota plays a significant role in the pathogenesis of mastitis, and clinical investigations have found that the occurrence of mastitis is correlated with ruminal dysbiosis. However, the underlying mechanism by which the ruminal microbiota participates in the development of mastitis remains unknown. RESULTS In the present study, we found that cows with clinical mastitis had marked systemic inflammation, which was associated with significant ruminal dysbiosis, especially enriched Proteobacteria in the rumen. Ruminal microbiota transplantation from mastitis cows (M-RMT) to mice induced mastitis symptoms in recipient mice along with increased mammary proinflammatory signature activation of the TLR4-cGAS-STING-NF-κB/NLRP3 pathways. M-RMT also induced mucosal inflammation and impaired intestinal barrier integrity, leading to increased endotoxemia and systemic inflammation. Moreover, we showed that M-RMT mirrored ruminal microbiota disruption in the gut of recipient mice, as evidenced by enriched Proteobacteria and similar bacterial functions, which were correlated with most proinflammatory parameters and serum lipopolysaccharide (LPS) levels in mice. Recurrent low-grade LPS treatment mirrored gut dysbiosis-induced endotoxemia and caused severe mastitis in mice. Furthermore, we found that gut dysbiosis-derived LPS reduced host alkaline phosphatase activity by activating neuraminidase (Neu), which facilitates low-grade LPS exposure and E. coli-induced mastitis in mice. Conversely, treatment with calf intestinal alkaline phosphatase or the Neu inhibitor zanamivir alleviated low-grade LPS exposure and E. coli-induced mastitis in mice. CONCLUSIONS Our results suggest that ruminal dysbiosis-derived low-grade endotoxemia can cause mastitis and aggravate pathogen-induced mastitis by impairing host anti-inflammatory enzymes, which implies that regulating the ruminal or gut microbiota to prevent low-grade systemic inflammation is a potential strategy for mastitis intervention. Video Abstract.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiangyue Meng
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
26
|
Zong W, Zhang T, Chen B, Lu Q, Cao X, Wang K, Yang Z, Chen Z, Yang Y. Emerging roles of noncoding micro RNAs and circular RNAs in bovine mastitis: Regulation, breeding, diagnosis, and therapy. Front Microbiol 2022; 13:1048142. [PMID: 36458189 PMCID: PMC9707628 DOI: 10.3389/fmicb.2022.1048142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2024] Open
Abstract
Bovine mastitis is one of the most troublesome and costly problems in the modern dairy industry, which is not only difficult to monitor, but can also cause economic losses while having significant implications on public health. However, efficacious preventative methods and therapy are still lacking. Moreover, new drugs and therapeutic targets are in increasing demand due to antibiotic restrictions. In recent years, noncoding RNAs have gained popularity as a topic in pathological and genetic studies. Meanwhile, there is growing evidence that they play a role in regulating various biological processes and developing novel treatment platforms. In light of this, this review focuses on two types of noncoding RNAs, micro RNAs and circular RNAs, and summarizes their characterizations, relationships, potential applications as selection markers, diagnostic or treatment targets and potential applications in RNA-based therapy, in order to shed new light on further research.
Collapse
Affiliation(s)
- Weicheng Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational MedicineXi’an Medical University, Xi’an, China
| | - Bing Chen
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, China
| | - Qinyue Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers. DAIRY 2022. [DOI: 10.3390/dairy3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Periparturient diseases continue to be the greatest challenge to both farmers and dairy cows. They are associated with a decrease in productivity, lower profitability, and a negative impact on cows’ health as well as public health. This review article discusses the pathophysiology and diagnostic opportunities of mastitis, the most common disease of dairy cows. To better understand the disease, we dive deep into the causative agents, traditional paradigms, and the use of new technologies for diagnosis, treatment, and prevention of mastitis. This paper takes a systems biology approach by highlighting the relationship of mastitis with other diseases and introduces the use of omics sciences, specifically metabolomics and its analytical techniques. Concluding, this review is backed up by multiple studies that show how earlier identification of mastitis through predictive biomarkers can benefit the dairy industry and improve the overall animal health.
Collapse
|
28
|
The Characteristics of Multilocus Sequence Typing, Virulence Genes and Drug Resistance of Klebsiella pneumoniae Isolated from Cattle in Northern Jiangsu, China. Animals (Basel) 2022; 12:ani12192627. [PMID: 36230368 PMCID: PMC9558562 DOI: 10.3390/ani12192627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) induced bovine mastitis has been becoming one of the dominantly pathogenic bacteria in cases of bovine mastitis, and is threatening public health through dairy products. In order to explore the characteristics of multilocus sequence typing (MLST), virulence gene carrying, and the relationship between virulence genes and the antibiotic resistance of Klebsiella pneumoniae from dairy cattle in northern Jiangsu, 208 dairy milk samples were collected from four dairy farms in northern Jiangsu. A total of 68 isolates were obtained through bacterial isolation, purification, and 16S rDNA identification. Eleven virulence genes were detected by specific PCR. The susceptibility of the isolates to antimicrobials was analyzed using the Kirby-Bauer method. The Pearson correlation coefficient was used to analyze the correlation between the presence of virulence genes and the phenotype of drug resistance. ST 2661 was the most prevalent type of K. pneumoniae (13/68, 19.1%) among the 23 ST types identified from the 68 isolates. The virulence gene allS was not detected, but the positive detection rates of the virulence genes fimH, ureA, uge and wabG were 100.0%. Notably, the detection rates of genes rmpA and wcaG, related to the capsular polysaccharide, were 4.4% and 11.8%, respectively, which were lower than those of genes related to siderophores (kfuBC, ybtA and iucB at 50.0%, 23.5%, and 52.9%, respectively). The K. pneumoniae isolates were sensitive to ciprofloxacin, nitrofurantoin, and meropenem. However, the resistance rate to penicillin was the highest (58/68, 85.3%), along with resistance to amoxicillin (16/68, 23.5%). The results revealed the distribution of 23 ST types of K. pneumoniae from the milk from bovine-mastitis-infected dairy cows in northern Jiangsu, and the expression or absence of the virulence gene kfuBC was related to the sensitivity to antibiotics. The current study provides important information relating to the distribution and characteristics of K. pneumoniae isolated from dairy cows with clinical bovine mastitis, and is indicative of strategies for improving the treatment of K. pneumoniae-induced bovine mastitis.
Collapse
|
29
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial‐resistant Escherichia coli in dogs and cats, horses, swine, poultry, cattle, sheep and goats. EFSA J 2022; 20:e07311. [PMID: 35582363 PMCID: PMC9087955 DOI: 10.2903/j.efsa.2022.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Escherichia coli (E. coli) was identified among the most relevant antimicrobial‐resistant (AMR) bacteria in the EU for dogs and cats, horses, swine, poultry, cattle, sheep and goats in previous scientific opinions. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR E. coli can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33–66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2, 3 and 4 (Categories A, B, C and D; 0–5%, 5–10%, 10–33% and 10–33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Section 5 (Category E, 33–66% probability of meeting the criteria). The animal species to be listed for AMR E. coli according to Article 8 criteria include mammals, birds, reptiles and fish.
Collapse
|
30
|
Zhu Z, Zhu X, Guo W. Quantitatively determining the somatic cell count of raw milk using dielectric spectra and support vector regression. J Dairy Sci 2021; 105:772-781. [PMID: 34600709 DOI: 10.3168/jds.2021-20828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/20/2021] [Indexed: 11/19/2022]
Abstract
To investigate the potential of dielectric spectroscopy in quantitatively determining the somatic cell count (SCC) of raw milk, the dielectric spectra of 301 raw milk samples at different SCC were collected using coaxial probe technology in the frequency range of 20 to 4,500 MHz. Standard normal variate, Mahalanobis distance, and joint x-y distances sample division were used to pretreat spectra, detect outliers, and divide samples, respectively. Principal component analysis and variable importance in projection (VIP) methods were used to reduce data dimension and select characteristic variables (CVR), respectively. The full spectra, 16 principal components obtained by principal component analysis, and 86 CVR selected by VIP were used as inputs, respectively, to establish different support vector regression models. The results showed that the nonlinear support vector regression models based on the full spectra and selected CVR using VIP had the best prediction performance, with the standard error of prediction and residual predictive deviation of 0.19 log SCC/mL and 2.37, respectively. The study provided a novel method for online or in situ detection of the SCC of raw milk in production, processing, and consumption.
Collapse
Affiliation(s)
- Zhuozhuo Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinhua Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Research Center of Agricultural Equipment Engineering Technology, Yangling, Shaanxi, 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
31
|
Khasanah H, Setyawan HB, Yulianto R, Widianingrum DC. Subclinical mastitis: Prevalence and risk factors in dairy cows in East Java, Indonesia. Vet World 2021; 14:2102-2108. [PMID: 34566327 PMCID: PMC8448626 DOI: 10.14202/vetworld.2021.2102-2108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Subclinical mastitis (SCM) is a disease that frequently attacks lactating dairy cows and possibly decreases production, causing economic losses to farmers. This study aimed to define the prevalence of SCM and risk factor-associated related management practice by dairy farmers in East Java, Indonesia. Materials and Methods The milk sample per quarter of individual lactating Friesian-Holstein cows (592 samples) was collected from 148 cows from 62 selected farms in the region with high dairy cattle populations in Malang, Sidoarjo, Mojokerto, Probolinggo, Pasuruan, Lumajang, Jember, and Banyuwangi. SCM determination was performed using the California mastitis test. A survey including field observation and interviews with farmers was conducted to find out the management practices of the selected farms. The analysis of risk factors was conducted by multinomial regression using the IBM SPSS version 26.0 (IBM SPSS Statistics, Chicago, USA). Results In addition, 68.18% and 66.72% at the cow and quarter levels, respectively, of the lactating dairy cows examined had SCM. In multinomial regression, four variables were significantly given impact in association with the SCM prevalence in identifying related lactation stage (odds ratio [OR]: 1-2 months=5.67, 2-6 months=9.435), teat wiping after milking (OR=42.197), house cleanliness (OR: dirty=0.120, moderate=0.527), and location (regencies) of raising the cows (OR: Sidoarjo=0.076, Mojokerto=0.165, Jember=1.210, Probolinggo=3.449, Lumajang=1.638, Malang=1.210, and Pasuruan=0.681). Conclusion The SCM prevalence in East Java is relatively high and a threat to the dairy industry's performance. This study found a significant association with SCM that needs to be considered in the practice of management to prevent and control SCM. However, the finding also suggested that hygienic management practices performed by farmers need to be improved to reduce SCM incidents.
Collapse
Affiliation(s)
- Himmatul Khasanah
- Department of Animal Husbandry, Faculty of Agriculture, University of Jember, Jl. Kalimantan No 37, Jember 68121, Indonesia
| | - Hidayat Bambang Setyawan
- Department of Animal Husbandry, Faculty of Agriculture, University of Jember, Jl. Kalimantan No 37, Jember 68121, Indonesia
| | - Roni Yulianto
- Department of Animal Husbandry, Faculty of Agriculture, University of Jember, Jl. Kalimantan No 37, Jember 68121, Indonesia
| | - Desy Cahya Widianingrum
- Department of Animal Husbandry, Faculty of Agriculture, University of Jember, Jl. Kalimantan No 37, Jember 68121, Indonesia
| |
Collapse
|
32
|
Guo M, Gao Y, Xue Y, Liu Y, Zeng X, Cheng Y, Ma J, Wang H, Sun J, Wang Z, Yan Y. Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Front Cell Infect Microbiol 2021; 11:690377. [PMID: 34222051 PMCID: PMC8248792 DOI: 10.3389/fcimb.2021.690377] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
Mastitis caused by Escherichia coli (E. coli) remains a threat to dairy animals and impacts animal welfare and causes great economic loss. Furthermore, antibiotic resistance and the lagged development of novel antibacterial drugs greatly challenge the livestock industry. Phage therapy has regained attention. In this study, three lytic phages, termed vB_EcoM_SYGD1 (SYGD1), vB_EcoP_SYGE1 (SYGE1), and vB_EcoM_SYGMH1 (SYGMH1), were isolated from sewage of dairy farm. The three phages showed a broad host range and high bacteriolytic efficiency against E. coli from different sources. Genome sequence and transmission electron microscope analysis revealed that SYGD1 and SYGMH1 belong to the Myoviridae, and SYGE1 belong to the Autographiviridae of the order Caudovirales. All three phages remained stable under a wide range of temperatures or pH and were almost unaffected in chloroform. Specially, a mastitis infected cow model, which challenged by a drug resistant E. coli, was used to evaluate the efficacy of phages. The results showed that the cocktails consists of three phages significantly reduced the number of bacteria, somatic cells, and inflammatory factors, alleviated the symptoms of mastitis in cattle, and achieved the same effect as antibiotic treatment. Overall, our study demonstrated that phage cocktail may be a promising alternative therapy against mastitis caused by drug resistant E. coli.
Collapse
Affiliation(s)
- Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ya Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yibing Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuanping Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Xiaoyan Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
33
|
Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021; 9:microorganisms9061175. [PMID: 34072543 PMCID: PMC8229104 DOI: 10.3390/microorganisms9061175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis is a significant disease affecting dairy cattle farms in Egypt. The current study aimed to investigate the prevalence and major bacterial pathogens causing subclinical mastitis (SCM) in three bovine dairy herds, with a history of SCM, at three Governorates in North Upper Egypt. The antimicrobial resistance profiles and specific virulence-associated genes causing bovine SCM were investigated. One thousand sixty-quarter milk samples (QMS) were collected aseptically from 270 apparently healthy cows in three farms and examined. The total prevalence of SCM was 46% and 44.8% based on California Mastitis Test (CMT) and Somatic Cell Count (SCC), respectively. Bacteriological examination of CMT positive quarters revealed that the prevalence of bacterial isolation in subclinically mastitic quarters was 90.4% (26 and 64.3% had single and mixed isolates, respectively). The most frequent bacterial isolates were E. coli (49.8%), Staphylococcus aureus (44.9%), streptococci (44.1%) and non-aureus staphylococci (NAS) (37.1%). Antimicrobial susceptibility testing of isolates revealed a high degree of resistance to the most commonly used antimicrobial compound in human and veterinary medicine. Implementation of PCR revealed the presence of mecA and blaZ genes in 60% and 46.7% of S. aureus isolates and in 26.7% and 53.3% of NAS, respectively. Meanwhile 73.3% of streptococci isolates harbored aph(3’)-IIIa gene conferring resistance to aminoglycosides and cfb gene. All E. coli isolates harbored tetA gene conferring resistance to tetracycline and sul1 gene conferring resistance to sulfonamides. The fimH and tsh genes were found in 80% and 60%, respectively. A significant association between the phenotypes and genotypes of AMR in different bacteria was recorded. The presence of a high prevalence of SCM in dairy animals impacts milk production and milk quality. The coexistence of pathogenic bacteria in milk is alarming, threatens human health and has a public health significance. Herd health improvement interventions are required to protect human health and society.
Collapse
|
34
|
Zhao W, Shi Y, Liu G, Yang J, Yi B, Liu Y, Kastelic JP, Han B, Gao J. Bacteriophage has beneficial effects in a murine model of Klebsiella pneumoniae mastitis. J Dairy Sci 2021; 104:3474-3484. [PMID: 33358805 DOI: 10.3168/jds.2020-19094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022]
Abstract
Bovine mastitis caused by Klebsiella pneumoniae is usually treated with antibiotics, thereby potentially increasing antimicrobial resistance. The objective of this study was to evaluate efficacy of a bacteriophage, isolated from dairy farm wastewater, as a treatment for a murine model of K. pneumoniae mastitis. A lytic bacteriophage CM8-1 was isolated, morphological and biological characteristics were assessed with transmission electron microscopy and double-layer plate, and its genome was sequenced and analyzed. Furthermore, effectiveness of this bacteriophage for treatment of a murine model of K. pneumoniae mastitis was evaluated based on the following mammary gland characteristics: morphological changes; number of K. pneumoniae; and mRNA and protein expression of pro-inflammatory factors TNF-α, IL-1β, IL-6, and IL-8. Bacteriophage CM8-1 had an incubation period of 30 min and a burst time of 20 min. Its viability and adsorption were stable at 30 to 50°C, but decreased significantly at >60°C, with no significant change in viability or infectivity at pH 6 to 10. In a murine model of K. pneumoniae mastitis, injecting bacteriophage CM8-1 into the mammary gland 2 h after inoculation with K. pneumoniae resulted in reductions in bacterial counts in the murine mammary gland, improvements in mammary gland tissue morphology, and reductions in mRNA and protein expression of pro-inflammatory factors. Bacteriophage CM8-1 had stable biological characteristics and suppressed K. pneumoniae mastitis when injected into the mammary gland 2 h latera in mice bacterial inoculation.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yuxiang Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Bing Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an 271018, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
35
|
Shi Y, Zhao W, Liu G, Ali T, Chen P, Liu Y, Kastelic JP, Han B, Gao J. Bacteriophages isolated from dairy farm mitigated Klebsiella pneumoniae-induced inflammation in bovine mammary epithelial cells cultured in vitro. BMC Vet Res 2021; 17:37. [PMID: 33468111 PMCID: PMC7814619 DOI: 10.1186/s12917-020-02738-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
Background Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. Results Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1β concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1β, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. Conclusions Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.
Collapse
Affiliation(s)
- Yuxiang Shi
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, 056038, Handan, Hebei, P.R. China
| | - Wenpeng Zhao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Tariq Ali
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.,Center of Microbiology & Biotechnology, Veterinary Research Institute, Peshawar, Pakistan
| | - Peng Chen
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taìan, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, T2N 4N1, Calgary, AB, Canada
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.
| |
Collapse
|
36
|
Rossi BF, Bonsaglia ECR, Pantoja JCF, Santos MV, Gonçalves JL, Fernandes Júnior A, Rall VLM. Short communication: Association between the accessory gene regulator (agr) group and the severity of bovine mastitis caused by Staphylococcus aureus. J Dairy Sci 2020; 104:3564-3568. [PMID: 33358797 DOI: 10.3168/jds.2020-19275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus can elicit mild to more severe degrees of mastitis in cattle, depending on the response of the host's immune system and the virulence factors of the specific isolate. Several virulence factors are controlled by a global regulatory system, designated accessory gene regulator (agr). Thus, the objective was to examine associations between different capsular and agr types and the severity of bovine mastitis caused by S. aureus. All isolates were obtained from bovine subclinical (n = 50), mild clinical (n = 73), and moderate clinical mastitis cases (n = 28). Isolates containing the agrI gene and lacking the agr locus (agr-) were more prevalent among subclinical than clinical mastitis cases, whereas isolates containing the agrII and agrIII genes were more prevalent among clinical mastitis cases. The capsular types 5 (cap5) and 8 (cap8) were found in 42 and 44%, respectively, of the isolates obtained from subclinical cases and in 38.6 and 58.4%, respectively, of those isolated from clinical mastitis cases. Capsular type was not associated with type of mastitis (subclinical, mild clinical, or moderate clinical). We found a strong association between agr type and type of mastitis, suggesting that knowledge of S. aureus genetic profiles could be an additional tool to control this disease.
Collapse
Affiliation(s)
- Bruna F Rossi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Erika C R Bonsaglia
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, São Paulo State University, Rua Prof. Dr. Walter Mauricio Correa, 18618-681, Botucatu-SP, Brazil
| | - Marcos V Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, 13635-900, Pirassununga, São Paulo, Brazil
| | - Juliano L Gonçalves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, 13635-900, Pirassununga, São Paulo, Brazil
| | - Ary Fernandes Júnior
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Rua Dr. Plínio Pinto e Silva, 18618-691, Botucatu-SP, Brazil.
| |
Collapse
|
37
|
Du M, Liu X, Xu J, Li S, Wang S, Zhu Y, Wang J. Antimicrobial Effect of Zophobas morio Hemolymph against Bovine Mastitis Pathogens. Microorganisms 2020; 8:microorganisms8101488. [PMID: 32998225 PMCID: PMC7601528 DOI: 10.3390/microorganisms8101488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Coliforms and Staphylococcus spp. infections are the leading causes of bovine mastitis. Despite extensive research and development in antibiotics, they have remained inadequately effective in treating bovine mastitis induced by multiple pathogen infection. In the present study, we showed the protective effect of Zophobas morio (Z. morio) hemolymph on bovine mammary epithelial cells against bacterial infection. Z. morio hemolymph directly kills both Gram-positive and Gram-negative bacteria through membrane permeation and prevents the adhesion of E. coli or the clinically isolated S. simulans strain to bovine mammary epithelial (MAC-T) cells. In addition, Z. morio hemolymph downregulates the expression of nucleotide-binding oligomerization domain (NOD)-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase-1, and NLRP6, as well as inhibits the secretion of interleukin-1β (IL-1β) and IL-18, which attenuates E. coli or S. simulans-induced pyroptosis. Overall, our results suggest the potential role of Z. morio hemolymph as a novel therapeutic candidate for bovine mastitis.
Collapse
|