1
|
Coffeng LE, Stolk WA, de Vlas SJ. Predicting the risk and speed of drug resistance emerging in soil-transmitted helminths during preventive chemotherapy. Nat Commun 2024; 15:1099. [PMID: 38321011 PMCID: PMC10847116 DOI: 10.1038/s41467-024-45027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Control of soil-transmitted helminths relies heavily on regular large-scale deworming of high-risk groups (e.g., children) with benzimidazole derivatives. Although drug resistance has not yet been documented in human soil-transmitted helminths, regular deworming of cattle and sheep has led to widespread benzimidazole resistance in veterinary helminths. Here we predict the population dynamics of human soil-transmitted helminth infections and drug resistance during 20 years of regular preventive chemotherapy, using an individual-based model. With the current preventive chemotherapy strategy of mainly targeting children in schools, drug resistance may evolve in soil-transmitted helminths within a decade. More intense preventive chemotherapy strategies increase the prospects of soil-transmitted helminths elimination, but also increase the speed at which drug efficacy declines, especially when implementing community-based preventive chemotherapy (population-wide deworming). If during the last decade, preventive chemotherapy against soil-transmitted helminths has led to resistance, we may not have detected it as drug efficacy has not been structurally monitored, or incorrectly so. These findings highlight the need to develop and implement strategies to monitor and mitigate the evolution of benzimidazole resistance.
Collapse
Affiliation(s)
- Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Almasi F, Nguyen H, Heydarian D, Sohi R, Nikbin S, Jenvey CJ, Halliwell E, Ponnampalam EN, Desai A, Jois M, Stear MJ. Quantification of behavioural variation among sheep grazing on pasture using accelerometer sensors. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
4
|
Rose Vineer H, Verschave SH, Claerebout E, Vercruysse J, Shaw DJ, Charlier J, Morgan ER. GLOWORM-PARA: a flexible framework to simulate the population dynamics of the parasitic phase of gastrointestinal nematodes infecting grazing livestock. Int J Parasitol 2020; 50:133-144. [PMID: 31981671 DOI: 10.1016/j.ijpara.2019.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Gastrointestinal nematodes are a significant threat to the economic and environmental sustainability of keeping livestock, as adequate control becomes increasingly difficult due to the development of anthelmintic resistance in some systems and climate-driven changes to infection dynamics. To mitigate any negative impacts of climate on gastrointestinal nematode epidemiology and slow anthelmintic resistance development, there is a need to develop effective, targeted control strategies that minimise the unnecessary use of anthelmintic drugs and incorporate alternative strategies such as vaccination and evasive grazing. However, the impacts climate and gastrointestinal nematode epidemiology may have on the optimal control strategy are generally not considered, due to lack of available evidence to drive recommendations. Parasite transmission models can support control strategy evaluation to target field trials, thus reducing the resources and lead-time required to develop evidence-based control recommendations incorporating climate stochasticity. Gastrointestinal nematode population dynamics arising from natural infections have been difficult to replicate and model applications have often focussed on the free-living stages. A flexible framework is presented for the parasitic phase of gastrointestinal nematodes, GLOWORM-PARA, which complements an existing model of the free-living stages, GLOWORM-FL. Longitudinal parasitological data for two species that are of major economic importance in cattle, Ostertagia ostertagi and Cooperia oncophora, were obtained from seven cattle farms in Belgium for model validation. The framework replicated the observed seasonal dynamics of infection in cattle on these farms and overall, there was no evidence of systematic under- or over-prediction of faecal egg counts. However, the model under-predicted the faecal egg counts observed on one farm with very young calves, highlighting potential areas of uncertainty that may need further investigation if the model is to be applied to young livestock. The model could be used to drive further research into alternative parasite control strategies such as vaccine development and novel treatment approaches, and to understand gastrointestinal nematode epidemiology under changing climate and host management.
Collapse
Affiliation(s)
- H Rose Vineer
- Veterinary Parasitology and Ecology Group, Bristol Veterinary School, University of Bristol, BS8 1TQ, UK; Cabot Institute, Royal Fort House, University of Bristol, BS8 1UJ, UK; Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK.
| | - S H Verschave
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - E Claerebout
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - J Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - D J Shaw
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - J Charlier
- Kreavet, Hendrik Mertensstraat 17, 9150 Kruibeke, Belgium
| | - E R Morgan
- Veterinary Parasitology and Ecology Group, Bristol Veterinary School, University of Bristol, BS8 1TQ, UK; Cabot Institute, Royal Fort House, University of Bristol, BS8 1UJ, UK; Institute for Global Food Security, Queen's University Belfast, BT9 7BL, UK
| |
Collapse
|
5
|
Carreiro CC, McIntosh D, dos Santos DJ, de Paula Lopes S, de Jesus VLT. Morphological and molecular characterization of a species of Tetratrichomonas present in feces of Brazilian sheep (Ovis aries) and goats (Capra hircus). Parasitol Res 2020; 119:233-242. [DOI: 10.1007/s00436-019-06466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/22/2019] [Indexed: 11/30/2022]
|
6
|
Betson M, Alonte AJI, Ancog RC, Aquino AMO, Belizario VY, Bordado AMD, Clark J, Corales MCG, Dacuma MG, Divina BP, Dixon MA, Gourley SA, Jimenez JRD, Jones BP, Manalo SMP, Prada JM, van Vliet AHM, Whatley KCL, Paller VGV. Zoonotic transmission of intestinal helminths in southeast Asia: Implications for control and elimination. ADVANCES IN PARASITOLOGY 2020; 108:47-131. [PMID: 32291086 DOI: 10.1016/bs.apar.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal helminths are extremely widespread and highly prevalent infections of humans, particularly in rural and poor urban areas of low and middle-income countries. These parasites have chronic and often insidious effects on human health and child development including abdominal problems, anaemia, stunting and wasting. Certain animals play a fundamental role in the transmission of many intestinal helminths to humans. However, the contribution of zoonotic transmission to the overall burden of human intestinal helminth infection and the relative importance of different animal reservoirs remains incomplete. Moreover, control programmes and transmission models for intestinal helminths often do not consider the role of zoonotic reservoirs of infection. Such reservoirs will become increasingly important as control is scaled up and there is a move towards interruption and even elimination of parasite transmission. With a focus on southeast Asia, and the Philippines in particular, this review summarises the major zoonotic intestinal helminths, risk factors for infection and highlights knowledge gaps related to their epidemiology and transmission. Various methodologies are discussed, including parasite genomics, mathematical modelling and socio-economic analysis, that could be employed to improve understanding of intestinal helminth spread, reservoir attribution and the burden associated with infection, as well as assess effectiveness of interventions. For sustainable control and ultimately elimination of intestinal helminths, there is a need to move beyond scheduled mass deworming and to consider animal and environmental reservoirs. A One Health approach to control of intestinal helminths is proposed, integrating interventions targeting humans, animals and the environment, including improved access to water, hygiene and sanitation. This will require coordination and collaboration across different sectors to achieve best health outcomes for all.
Collapse
Affiliation(s)
- Martha Betson
- University of Surrey, Guildford, Surrey, United Kingdom.
| | | | - Rico C Ancog
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Jessica Clark
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | - Billy P Divina
- University of the Philippines Los Baños, Laguna, Philippines
| | | | | | | | - Ben P Jones
- University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Helminth infections have large negative impacts on production efficiency in ruminant farming systems worldwide, and their effective management is essential if livestock production is to increase to meet future human needs for dietary protein. The control of helminths relies heavily on routine use of chemotherapeutics, but this approach is unsustainable as resistance to anthelmintic drugs is widespread and increasing. At the same time, infection patterns are being altered by changes in climate, land-use and farming practices. Future farms will need to adopt more efficient, robust and sustainable control methods, integrating ongoing scientific advances. Here, we present a vision of helminth control in farmed ruminants by 2030, bringing to bear progress in: (1) diagnostic tools, (2) innovative control approaches based on vaccines and selective breeding, (3) anthelmintics, by sustainable use of existing products and potentially new compounds, and (4) rational integration of future control practices. In this review, we identify the technical advances that we believe will place new tools in the hands of animal health decision makers in 2030, to enhance their options for control and allow them to achieve a more integrated and sustainable approach to helminth control in support of animal welfare and production.
Collapse
|
8
|
Davis EL, Danon L, Prada JM, Gunawardena SA, Truscott JE, Vlaminck J, Anderson RM, Levecke B, Morgan ER, Hollingsworth TD. Seasonally timed treatment programs for Ascaris lumbricoides to increase impact-An investigation using mathematical models. PLoS Negl Trop Dis 2018; 12:e0006195. [PMID: 29346383 PMCID: PMC5773001 DOI: 10.1371/journal.pntd.0006195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022] Open
Abstract
There is clear empirical evidence that environmental conditions can influence Ascaris spp. free-living stage development and host reinfection, but the impact of these differences on human infections, and interventions to control them, is variable. A new model framework reflecting four key stages of the A. lumbricoides life cycle, incorporating the effects of rainfall and temperature, is used to describe the level of infection in the human population alongside the environmental egg dynamics. Using data from South Korea and Nigeria, we conclude that settings with extreme fluctuations in rainfall or temperature could exhibit strong seasonal transmission patterns that may be partially masked by the longevity of A. lumbricoides infections in hosts; we go on to demonstrate how seasonally timed mass drug administration (MDA) could impact the outcomes of control strategies. For the South Korean setting the results predict a comparative decrease of 74.5% in mean worm days (the number of days the average individual spend infected with worms across a 12 month period) between the best and worst MDA timings after four years of annual treatment. The model found no significant seasonal effect on MDA in the Nigerian setting due to a narrower annual temperature range and no rainfall dependence. Our results suggest that seasonal variation in egg survival and maturation could be exploited to maximise the impact of MDA in certain settings.
Collapse
Affiliation(s)
- Emma L. Davis
- Department of Mathematics, University of Warwick, Coventry, UK
- * E-mail:
| | - Leon Danon
- Data Science Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Joaquín M. Prada
- Department of Mathematics, University of Warwick, Coventry, UK
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | | | - James E. Truscott
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Johnny Vlaminck
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Roy M. Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Bruno Levecke
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Eric R Morgan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, UK
- School of Veterinary Science, University of Bristol, Langford, UK
| | - T. Deirdre Hollingsworth
- Department of Mathematics, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Laurenson YCSM, Kahn LP. A mathematical model to predict the risk arising from the pasture infectivity of four nematode species in Australia. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gastrointestinal parasites cost the Australian sheep industry AU$436 million annually. Early warning of impending worm risk may reduce this cost by providing producers with sufficient time to implement control strategies. A biophysical model was developed to simulate the on-pasture lifecycle stages of the four predominant nematode species in Australia (Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus colubriformis and Trichostrongylus vitrinus). The influence of climatic variables (temperature and water availability) on the survival, development and migration of each lifecycle stage was incorporated and parameterised to available point estimates (H. contortus: R2 = 0.88, n = 1409; T. circumcincta: R2 = 0.56, n = 243; T. colubriformis: R2 = 0.61, n = 355; T. vitrinus: R2 = 0.66, n = 147). Constant fecundities (eggs/worm.day) provided the daily quantity of eggs deposited per sheep (H. contortus = 3275; T. circumcincta = 140; T. colubriformis = 300; T. vitrinus = 300). Farm management practices were considered via the specification of stocking rates (sheep/ha), and the administration of anthelmintic treatments (reducing egg deposition by a defined efficacy and duration for each nematode species). Pasture infectivity per nematode species was calculated as the quotient of larvae on herbage and herbage availability (t/ha). Risk was calculated as the product of pasture infectivity and the potential productive impact of each nematode species (H. contortus = 3.9%; T. circumcincta = 9.22%; T. colubriformis = 9.31%; T. vitrinus = 9.31%), and then summed across nematode species. This predictive model has been incorporated into the Sheep CRC’s ‘ASKBILL’ application (www.askbill.com.au, verified 13 April 2018), which uses 90-day weather forecast data (5-km grid resolution) provided by the Australian Bureau of Meteorology.
Collapse
|
10
|
Meta-analysis of the parasitic phase traits of Haemonchus contortus infection in sheep. Parasit Vectors 2017; 10:201. [PMID: 28438225 PMCID: PMC5402645 DOI: 10.1186/s13071-017-2131-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/05/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The parasitic nematode Haemonchus contortus shows highly variable life history traits. This highlights the need to have an average estimate and a quantification of the variation around it to calibrate epidemiological models. METHODS This paper aimed to quantify the main life history traits of H. contortus and to identify explanatory factors affecting these traits using a powerful method based on a systematic review and meta-analysis of current literature. The life history traits considered are: (i) the establishment rate of ingested larvae; (ii) the adult mortality rate; (iii) the fertility (i.e. the number of eggs laid/female/day); and (iv) fecundity of female worms (i.e. the number of eggs per gram of faeces). RESULTS A total of 37 papers that report single experimental infection with H. contortus in sheep and published from 1960 to 2015, were reviewed and collated in this meta-analysis. This encompassed 115 experiments on 982 animals. Each trait was analysed using a linear model weighted by its inverse variance. The average (± SE) larval establishment rate was 0.24 ± 0.02, which decreased as a function of the infection dose and host age. An average adult mortality rate of 0.021 ± 0.002) was estimated from the literature. This trait varied as a function of animal age, breed and protective response due to prior exposure to the parasite. Average female fertility was 1295.9 ± 280.4 eggs/female/day and decreased in resistant breeds and previously infected hosts. Average faecal egg count at necropsy was 908.5 ± 487.1 eggs per gram of faeces and varied as a function of infection duration and host resistance. The average sex ratio of H. contortus was 0.51 ± 0.006. CONCLUSION This work is the first systematic review to summarise the available information on the parasitic phase of H. contortus in sheep. The results of the meta-analysis provide robust estimates of life history traits for parametrization of epidemiological models, their expected variation according to experimental factors, and provides correlations between these.
Collapse
|
11
|
Verschave SH, Charlier J, Rose H, Claerebout E, Morgan ER. Cattle and Nematodes Under Global Change: Transmission Models as an Ally. Trends Parasitol 2016; 32:724-738. [DOI: 10.1016/j.pt.2016.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022]
|
12
|
Which is the best phenotypic trait for use in a targeted selective treatment strategy for growing lambs in temperate climates? Vet Parasitol 2016; 226:174-88. [PMID: 27514904 DOI: 10.1016/j.vetpar.2016.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022]
Abstract
Targeted selective treatment (TST) requires the ability to identify the animals for which anthelmintic treatment will result in the greatest benefit to the entire flock. Various phenotypic traits have previously been suggested as determinant criteria for TST; however, the weight gain benefit and impact on anthelmintic efficacy for each determinant criterion is expected to be dependent upon the level of nematode challenge and the timing of anthelmintic treatment. A mathematical model was used to simulate a population of 10,000 parasitologically naïve Scottish Blackface lambs (with heritable variation in host-parasite interactions) grazing on medium-quality pasture (grazing density=30 lambs/ha, crude protein=140g/kg DM, metabolisable energy=10MJ/kg DM) with an initial larval contamination of 1000, 3000 or 5000 Teladorsagia circumcincta L3/kg DM. Anthelmintic drenches were administered to 0, 50 or 100% of the population on a single occasion. The day of anthelmintic treatment was independently modelled for every day within the 121day simulation. Where TST scenarios were simulated (50% treated), lambs were either chosen by random selection or according to highest faecal egg count (FEC, eggs/g DM faeces), lowest live weight (LW, kg) or lowest growth rate (kg/day). Average lamb empty body weight (kg) and the resistance (R) allele frequency amongst the parasite population on pasture were recorded at slaughter (day 121) for each scenario. Average weight gain benefit and increase in R allele frequency for each determinant criterion, level of initial larval contamination and day of anthelmintic treatment were calculated by comparison to a non-treated population. Determinant criteria were evaluated according to average weight gain benefit divided by increase in R allele frequency to determine the benefit per R. Whilst positive phenotypic correlations were predicted between worm burden and FEC; using LW as the determinant criterion provided the greatest benefit per R for all levels of initial larval contamination and day of anthelmintic treatment. Hence, LW was identified as the best determinant criterion for use in a TST regime. This study supports the use of TST strategies as benefit per R predictions for all determinant criteria were greater than those predicted for the 100% treatment group, representing an increased long-term productive benefit resulting from the maintenance of anthelmintic efficacy. Whilst not included in this study, the model could be extended to consider other parasite species and host breed parameters, variation in climatic influences on larval availability and grass growth, repeated anthelmintic treatments and variable proportional flock treatments.
Collapse
|
13
|
The Pathophysiology, Ecology and Epidemiology of Haemonchus contortus Infection in Small Ruminants. ADVANCES IN PARASITOLOGY 2016; 93:95-143. [PMID: 27238004 DOI: 10.1016/bs.apar.2016.02.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The parasitic nematode Haemonchus contortus occurs commonly in small ruminants, and it is an especially significant threat to the health and production of sheep and goats in tropical and warm temperate zones. The main signs of disease (haemonchosis) relate to its blood-feeding activity, leading to anaemia, weakness and frequently to deaths, unless treatment is provided. Due to the high biotic potential, large burdens of H. contortus may develop rapidly when environmental conditions favour the free-living stages, and deaths may occur with little prior warning. More chronic forms of haemonchosis, resulting in reduced animal production and eventually deaths, occur with smaller persistent infections, especially in situations of prolonged, poor nutrition. The global distribution of the main haemonchosis-endemic zones is consistent with the critical requirements of the egg and larval stages of H. contortus for moisture and moderate to relatively warm temperatures, but the seasonal propensity for hypobiosis (inhibition of the fourth-stage larvae within the host) largely explains the common, though sporadic, outbreaks of haemonchosis in arid and colder environments. The wide climatic distribution may also reflect the adaptation of local isolates to less favourable ecological conditions, while an apparent increase in the prevalence of outbreaks in environments not previously considered endemic for haemonchosis - especially cold, temperate zones - may be attributable to climatic changes. Although the risk of haemonchosis varies considerably on a local level, even where H. contortus is endemic, the extensive range of ecological investigations provides a sound basis for predictions of the relative geographical and seasonal risk in relation to climatic conditions.
Collapse
|
14
|
Rose H, Caminade C, Bolajoko MB, Phelan P, van Dijk J, Baylis M, Williams D, Morgan ER. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe. GLOBAL CHANGE BIOLOGY 2016; 22:1271-1285. [PMID: 26482823 DOI: 10.1111/gcb.13132] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary control strategies, and potentially drive local adaptation to climate change in parasite populations.
Collapse
Affiliation(s)
- Hannah Rose
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
- Cabot Institute, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK
| | - Cyril Caminade
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Population Health, The Farr Institute @HeRC, University of Liverpool, Liverpool, L69 3GL, UK
| | - Muhammad Bashir Bolajoko
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
- National Veterinary Research Institute, P.M.B. 01, Vom, Plateau State, Nigeria
| | - Paul Phelan
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsanny, Co. Meath, Ireland
| | - Jan van Dijk
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire, CH64 7TE, UK
| | - Matthew Baylis
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Neston, UK
| | - Diana Williams
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, UK
| | - Eric R Morgan
- School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
- Cabot Institute, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK
| |
Collapse
|
15
|
Prada Jiménez de Cisneros J, Stear MJ, Mair C, Singleton D, Stefan T, Stear A, Marion G, Matthews L. An explicit immunogenetic model of gastrointestinal nematode infection in sheep. J R Soc Interface 2015; 11:rsif.2014.0416. [PMID: 25121649 PMCID: PMC4233724 DOI: 10.1098/rsif.2014.0416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gastrointestinal nematodes are a global cause of disease and death in humans, wildlife and livestock. Livestock infection has historically been controlled with anthelmintic drugs, but the development of resistance means that alternative controls are needed. The most promising alternatives are vaccination, nutritional supplementation and selective breeding, all of which act by enhancing the immune response. Currently, control planning is hampered by reliance on the faecal egg count (FEC), which suffers from low accuracy and a nonlinear and indirect relationship with infection intensity and host immune responses. We address this gap by using extensive parasitological, immunological and genetic data on the sheep–Teladorsagia circumcincta interaction to create an immunologically explicit model of infection dynamics in a sheep flock that links host genetic variation with variation in the two key immune responses to predict the observed parasitological measures. Using our model, we show that the immune responses are highly heritable and by comparing selective breeding based on low FECs versus high plasma IgA responses, we show that the immune markers are a much improved measure of host resistance. In summary, we have created a model of host–parasite infections that explicitly captures the development of the adaptive immune response and show that by integrating genetic, immunological and parasitological understanding we can identify new immune-based markers for diagnosis and control.
Collapse
Affiliation(s)
- Joaquín Prada Jiménez de Cisneros
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G61 1QH, UK
| | - Michael J Stear
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G61 1QH, UK
| | - Colette Mair
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G61 1QH, UK
| | - Darran Singleton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Thorsten Stefan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G61 1QH, UK
| | - Abigail Stear
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Glenn Marion
- Biomathematics and Statistics Scotland, The King's Building, Edinburgh EH9 3JZ, UK
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
16
|
Abstract
Gastrointestinal nematodes represent important sources of economic losses in farmed ruminants, and the increasing frequency of anthelmintic resistance requires an increased ability to explore alternative strategies. Theoretical approaches at the crossroads of immunology and epidemiology are valuable tools in that context. In the case of Teladorsagia circumcincta in sheep, the immunological mechanisms important for resistance are increasingly well-characterized. However, despite the existence of a wide range of theoretical models, there is no framework integrating the characteristic features of this immune response into a tractable phenomenological model. Here, we propose to bridge that gap by developing a flexible modelling framework that allows for variability in nematode larval intake which can be used to track the variations in worm burdens. We parameterize this model using data from trickle infection of sheep and show that using simple immunological assumptions, our model can capture the dynamics of both adult worm burdens and nematode fecal egg counts. In addition, our analysis reveals interesting dose-dependent effects on the immune response. Finally, we discuss potential developments of this model and highlight how an improved cross-talk between empiricists and theoreticians would facilitate important advances in the study of infectious diseases.
Collapse
|
17
|
Charlier J, Morgan ER, Rinaldi L, van Dijk J, Demeler J, Höglund J, Hertzberg H, Van Ranst B, Hendrickx G, Vercruysse J, Kenyon F. Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments. Vet Rec 2015; 175:250-5. [PMID: 25217603 DOI: 10.1136/vr.102512] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the development of anthelmintic resistance, there have been calls for more sustainable nematode control practices. Two important concepts were introduced to study and promote the sustainable use of anthelmintics: targeted treatments (TT), where the whole flock/herd is treated based on knowledge of the risk, or parameters that quantify the severity of infection; and targeted selective treatments (TST), where only individual animals within the grazing group are treated. The aim of the TT and TST approaches is to effectively control nematode-induced production impacts while preserving anthelmintic efficacy by maintaining a pool of untreated parasites in refugia. Here, we provide an overview of recent studies that assess the use of TT/TST against gastrointestinal nematodes in ruminants and investigate the economic consequences, feasibility and knowledge gaps associated with TST. We conclude that TT/TST approaches are ready to be used and provide practical benefits today. However, a major shift in mentality will be required to make these approaches common practice in parasite control.
Collapse
Affiliation(s)
- J Charlier
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E R Morgan
- School of Veterinary Science, University of Bristol, Langford House, Langford, North Somerset BS40 5DU, UK
| | - L Rinaldi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - J van Dijk
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Neston, Cheshire CH64 7TE, UK
| | - J Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag Strasse 7-13, 14163 Berlin, Germany
| | - J Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, PO Box 7063, Uppsala, Sweden
| | - H Hertzberg
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
| | - B Van Ranst
- Dairy DataWarehouse, Uniform-Agri BV, Oostersingel 23, Assen, The Netherlands
| | - G Hendrickx
- Avia-GIS, Agro-Veterinary Information and Analysis, Risschotlei 33, 2980 Zoersel, Belgium
| | - J Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Kenyon
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
18
|
Rose H, Wang T, van Dijk J, Morgan ER. GLOWORM-FL: A simulation model of the effects of climate and climate change on the free-living stages of gastro-intestinal nematode parasites of ruminants. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2014.11.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Verschave SH, Vercruysse J, Claerebout E, Rose H, Morgan ER, Charlier J. The parasitic phase of Ostertagia ostertagi: quantification of the main life history traits through systematic review and meta-analysis. Int J Parasitol 2014; 44:1091-104. [PMID: 25229178 DOI: 10.1016/j.ijpara.2014.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Predictive models of parasite life cycles increase our understanding of how parasite epidemiology is influenced by global changes and can be used to support decisions for more targeted worm control. Estimates of parasite population dynamics are needed to parameterize such models. The aim of this study was to quantify the main life history traits of Ostertagia ostertagi, economically the most important nematode of cattle in temperate regions. The main parameters determining parasite density during the parasitic phase of O. ostertagi are (i) the larval establishment rate, (ii) hypobiosis rate, (iii) adult mortality and (iv) female fecundity (number of eggs laid per day per female). A systematic review was performed covering studies from 1962 to 2007, in which helminth-naïve calves were artificially infected with O. ostertagi. The database was further extended with results of unpublished trials conducted at the Laboratory for Parasitology of Ghent University, Belgium. Overall inverse variance weighted estimates were computed for each of the traits through random effects models. An average establishment rate (±S.E.) of 0.269±0.022 was calculated based on data of 27 studies (46 experiments). The establishment rate declined when infection dose increased and was lower in younger animals. An average proportion of larvae entering hypobiosis (±S.E.) of 0.041 (±0.009) was calculated based on 27 studies (54 experiments). The proportion of ingested larvae that went into hypobiosis was higher in animals that received concomitant infections with nematode species other than O. ostertagi (mixed infections). An average daily adult mortality (±S.E.) of 0.028 (±0.002) was computed based on data from 28 studies (70 experiments). Adult mortality was positively correlated with infection dose. A daily fecundity (±S.E.) of 284 (±45) eggs per female was found based on nine studies (10 experiments). The average female sex ratio of O. ostertagi based on individual animal data (n=75) from six different studies was estimated to be 0.55. We believe that this systematic review is the first to summarise the available data on the main life history traits of the parasitic phase of O. ostertagi. In conclusion, this meta-analysis provides novel estimates for the parameterization of life cycle-based transmission models, explicitly reports measures of variance around these estimates, gives evidence for density dependence of larval establishment and adult mortality, shows that host age affects larval establishment and, to our knowledge, provides the first evidence for O. ostertagi of a female-biased sex ratio.
Collapse
Affiliation(s)
- S H Verschave
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - J Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E Claerebout
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - H Rose
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom; Cabot Institute, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | - E R Morgan
- Cabot Institute, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom; School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - J Charlier
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2014; 3:209-19. [PMID: 25197625 PMCID: PMC4152262 DOI: 10.1016/j.ijppaw.2014.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/21/2013] [Accepted: 01/28/2014] [Indexed: 11/21/2022]
Abstract
Global change, including climate, policy, land use and other associated environmental changes, is likely to have a major impact on parasitic disease in wildlife, altering the spatio-temporal patterns of transmission, with wide-ranging implications for wildlife, domestic animals, humans and ecosystem health. Predicting the potential impact of climate change on parasites infecting wildlife will become increasingly important in the management of species of conservation concern and control of disease at the wildlife-livestock and wildlife-human interface, but is confounded by incomplete knowledge of host-parasite interactions, logistical difficulties, small sample sizes and limited opportunities to manipulate the system. By exploiting parallels between livestock and wildlife, existing theoretical frameworks and research on livestock and their gastrointestinal nematodes can be adapted to wildlife systems. Similarities in the gastrointestinal nematodes and the life-histories of wild and domestic ruminants, coupled with a detailed knowledge of the ecology and life-cycle of the parasites, render the ruminant-GIN host-parasite system particularly amenable to a cross-disciplinary approach.
Collapse
|
21
|
Abstract
AbstractLevels and seasonal patterns of parasite challenge to livestock are likely to be affected by climate change, through direct effects on life cycle stages outside the definitive host and through alterations in management that affect exposure and susceptibility. Net effects and options for adapting to them will depend very strongly on details of the system under consideration. This short paper is not a comprehensive review of climate change effects on parasites, but rather seeks to identify key areas in which detail is important and arguably under-recognized in supporting farmer adaptation. I argue that useful predictions should take fuller account of system-specific properties that influence disease emergence, and not just the effects of climatic variables on parasite biology. At the same time, excessive complexity is ill-suited to useful farm-level decision support. Dealing effectively with the ‘devil of detail’ in this area will depend on finding the right balance, and will determine our success in applying science to climate change adaptation by farmers.
Collapse
|
22
|
van der Voort M, Charlier J, Lauwers L, Vercruysse J, Van Huylenbroeck G, Van Meensel J. Conceptual framework for analysing farm-specific economic effects of helminth infections in ruminants and control strategies. Prev Vet Med 2013; 109:228-35. [DOI: 10.1016/j.prevetmed.2012.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
23
|
|
24
|
Modelling the short- and long-term impacts of drenching frequency and targeted selective treatment on the performance of grazing lambs and the emergence of anthelmintic resistance. Parasitology 2013; 140:780-91. [DOI: 10.1017/s0031182012002181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYRefugia-based treatment strategies aim to prolong anthelmintic efficacy by maintaining a parasite population unexposed to anthelmintics. Targeted selective treatment (TST) achieves this by treating only animals that will benefit most from treatment, using a determinant criterion (DC). We developed a mathematical model to compare various traits proposed as DC, and investigate impacts of TST and drenching frequency on sheep performance and anthelmintic resistance. Short term, decreasing the proportion of animals drenched reduced benefits of anthelmintic treatment, assessed by empty body weight (EBW), but decreased the rate of anthelmintic resistance development; each consecutive drenching had a reduced impact on average EBW and an increased impact on the rate of anthelmintic resistance emergences. The optimal DC was fecal egg count, maintaining the highest average EBW when reducing the proportion of animals drenched. Long-term, reducing the proportion of animals drenched had little impact on total weight gain benefits, across animals and years, whilst reducing drenching frequency increased it. Decreasing the frequency and proportion of animals drenched were both predicted to increase the duration of anthelmintic efficacy but reduce the total number of drenches administered before resistance was observed. TST and frequency of drenching may lead to different benefits in the short versus long term.
Collapse
|
25
|
Leathwick DM. The influence of temperature on the development and survival of the pre-infective free-living stages of nematode parasites of sheep. N Z Vet J 2013; 61:32-40. [DOI: 10.1080/00480169.2012.712092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Morgan E, van Dijk J. Climate and the epidemiology of gastrointestinal nematode infections of sheep in Europe. Vet Parasitol 2012; 189:8-14. [DOI: 10.1016/j.vetpar.2012.03.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Bennett R, McClement I, McFarlane I. Modelling of Johne's disease control options in beef cattle: A decision support approach. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Morgan E, Hosking B, Burston S, Carder K, Hyslop A, Pritchard L, Whitmarsh A, Coles G. A survey of helminth control practices on sheep farms in Great Britain and Ireland. Vet J 2012; 192:390-7. [DOI: 10.1016/j.tvjl.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/25/2011] [Accepted: 08/07/2011] [Indexed: 11/30/2022]
|
29
|
Learmount J, Taylor M, Bartram D. A computer simulation study to evaluate resistance development with a derquantel–abamectin combination on UK sheep farms. Vet Parasitol 2012; 187:244-53. [DOI: 10.1016/j.vetpar.2011.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
|
30
|
Abstract
There have been changes in the emergence and inability to control of a number of sheep parasitic infections over the last decade. This review focuses on the more globally important sheep parasites, whose reported changes in epidemiology, occurrence or failure to control are becoming increasingly evident. One of the main perceived driving forces is climate change, which can have profound effects on parasite epidemiology, especially for those parasitic diseases where weather has a direct effect on the development of free-living stages. The emergence of anthelmintic-resistant strains of parasitic nematodes and the increasing reliance placed on anthelmintics for their control, can exert profound changes on the epidemiology of those nematodes causing parasitic gastroenteritis. As a consequence, the effectiveness of existing control strategies presents a major threat to sheep production in many areas around the world. The incidence of the liver fluke, Fasciola hepatica, is inextricably linked to high rainfall and is particularly prevalent in high rainfall years. Over the last few decades, there have also been increasing reports of other fluke associated diseases, such as dicroceliosis and paramphistomosis, in a number of western European countries, possibly introduced through animal movements, and able to establish with changing climates. External parasite infections, such as myiasis, can cause significant economic loss and presents as a major welfare problem. The range of elevated temperatures predicted by current climate change scenarios, result in an elongated blowfly season with earlier spring emergence and a higher cumulative incidence of fly strike. Additionally, legislative decisions leading to enforced changes in pesticide usage and choices have resulted in increased reports and spread of ectoparasitic infections, particularly mite, lice and tick infestations in sheep. Factors, such as dip disposal and associated environmental concerns, and, perhaps more importantly, product availability have led to a move away from more traditional methods of pesticide application, particularly dipping, to the use of injectable endectocides. This has coincided with increased reports of sheep scab and lice infestations in some countries. Reduction in the use of organophosphate dips appears to have to some extent contributed to reported increased populations of ticks and tick activity, a consequence of which is not only of significance to sheep, but also many other hosts, including increased human zoonotic risks.
Collapse
|
31
|
Fox NJ, Marion G, Davidson RS, White PCL, Hutchings MR. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals (Basel) 2012; 2:93-107. [PMID: 26486780 PMCID: PMC4494270 DOI: 10.3390/ani2010093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 11/17/2022] Open
Abstract
Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.
Collapse
Affiliation(s)
- Naomi J Fox
- SAC, West Mains Road, Edinburgh, EH9 3JG, UK.
- Environment Department, University of York, Heslington, York, YO10 5DD, UK.
- Biomathematics and Statistics Scotland, Kings Buildings, Edinburgh, EH9 3JZ, UK.
| | - Glenn Marion
- Biomathematics and Statistics Scotland, Kings Buildings, Edinburgh, EH9 3JZ, UK.
| | | | - Piran C L White
- Environment Department, University of York, Heslington, York, YO10 5DD, UK.
| | | |
Collapse
|
32
|
Dobson RJ, Barnes EH, Tyrrell KL, Hosking BC, Larsen JWA, Besier RB, Love S, Rolfe PF, Bailey JN. A multi-species model to assess the effect of refugia on worm control and anthelmintic resistance in sheep grazing systems. Aust Vet J 2011; 89:200-8. [PMID: 21595639 DOI: 10.1111/j.1751-0813.2011.00719.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Develop a computer simulation model that uses daily meteorological data and farm management practices to predict populations of Trichostrongylus colubriformis, Haemonchus contortus and Teladorsagia (Ostertagia) circumcincta and the evolution of anthelmintic resistance within a sheep flock. Use the model to explore if increased refugia, provided by leaving some adult sheep untreated, would delay development of anthelmintic resistance without compromising nematode control. PROCEDURES Compare model predictions with field observations from a breeding flock in Armidale, NSW. Simulate the impact of leaving 1-10% of adult sheep untreated in diverse sheep-grazing systems. RESULTS Predicted populations of Tr. colubriformis and T. circumcincta were less than those observed in the field, attributed to nutritional stress experienced by the sheep during drought and not accounted for by the model. Observed variation in faecal egg counts explained by the model (R(2) ) for these species was 40-50%. The H. contortus populations and R(2) were both low. Leaving some sheep untreated worked best in situations where animals were already grazing or were moved onto pastures with low populations of infective larvae. In those cases, anthelmintic resistance was delayed and nematode control was maintained when 1-4% of adult stock remained untreated. CONCLUSIONS In general, the model predicted that leaving more than 4% of adults untreated did not sufficiently delay the development of anthelmintic resistance to justify the increased production risk from such a strategy. The choice of a drug rotation strategy had an equal or larger effect on nematode control, and selection for resistance, than leaving 1-10% of adults untreated.
Collapse
Affiliation(s)
- R J Dobson
- School of Veterinary & Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chaparro M, Canziani G, Saumell C, Fiel C. Estimation of pasture infectivity according to weather conditions through a fuzzy parametrized model for the free-living stage of Ostertagia ostertagi. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Hoste H, Torres-Acosta JFJ. Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol 2011; 180:144-54. [PMID: 21705144 DOI: 10.1016/j.vetpar.2011.05.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections with gastrointestinal nematodes (GIN) remain a major threat for ruminant production, health and welfare associated with outdoor breeding. The control of these helminth parasites has relied on the strategic or tactical use of chemical anthelmintic (AH) drugs. However, the expanding development and diffusion of anthelmintic resistance in nematode populations imposes the need to explore and validate novel solutions (or to re-discover old knowledge) for a more sustainable control of GIN. The different solutions refer to three main principles of action. The first one is to limit the contact between the hosts and the infective larvae in the field through grazing management methods. The latter were described since the 1970s and, at present, they benefit from innovations based on computer models. Several biological control agents have also been studied in the last three decades as potential tools to reduce the infective larvae in the field. The second principle aims at improving the host response against GIN infections relying on the genetic selection between or within breeds of sheep or goats, crossbreeding of resistant and susceptible breeds and/or the manipulation of nutrition. These approaches may benefit from a better understanding of the potential underlying mechanisms, in particular in regard of the host immune response against the worms. The third principle is the control of GIN based on non-conventional AH materials (plant or mineral compounds). Worldwide studies show that non conventional AH materials can eliminate worms and/or negatively affect the parasite's biology. The recent developments and pros and cons concerning these various options are discussed. Last, some results are presented which illustrate how the integration of these different solutions can be efficient and applicable in different systems of production and/or epidemiological conditions. The integration of different control tools seems to be a pre-requisite for the sustainable management of GIN infections. This new era of GIN management requires a new paradigm: to achieve enough control to reduce the negative impact of GIN infections enabling an optimum level of production, health and welfare.
Collapse
Affiliation(s)
- H Hoste
- UMR 1225 INRA/DGER, Ecole Nationale Vétérinaire de Toulouse - 23 Chemin des Capelles, 31076 Toulouse Cedex, France.
| | | |
Collapse
|
35
|
Reynecke D, Van Wyk J, Gummow B, Dorny P, Boomker J. A stochastic model accommodating the FAMACHA© system for estimating worm burdens and associated risk factors in sheep naturally infected with Haemonchus contortus. Vet Parasitol 2011; 177:231-41. [DOI: 10.1016/j.vetpar.2011.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
|
36
|
Guthrie A, Learmount J, VanLeeuwen J, Peregrine A, Kelton D, Menzies P, Fernández S, Martin R, Mederos A, Taylor M. Evaluation of a British computer model to simulate gastrointestinal nematodes in sheep on Canadian farms. Vet Parasitol 2010; 174:92-105. [DOI: 10.1016/j.vetpar.2010.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/01/2022]
|
37
|
A mechanistic model of developing immunity to Teladorsagia circumcincta infection in lambs. Parasitology 2010; 138:322-32. [PMID: 20946694 DOI: 10.1017/s0031182010001289] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acquired immunity influences the severity of parasitic disease, but modelling the effects of acquired immunity in helminth infections has proved challenging. This may be due to a lack of suitable immunological data, or to the perceived complexity of modelling the immune response. We have developed a model of T. circumcincta infection in domestic sheep that incorporates the effects of acquired immunity on parasite establishment and fecundity. A large data set from commercially managed populations of Scottish Blackface sheep was used, which included relationships between IgA activity and worm length, and between worm length and fecundity. Use was also made of a recently published meta-analysis of parasite establishment rates. This realistic but simple model of nematode infection emulates observed patterns of faecal egg counts. The end-of-season faecal egg counts are remarkably robust to perturbations in the majority of the parameters, possibly because of priming of the immune system early in the season, reducing parasite establishment and growth and, therefore, faecal egg counts. Lowering the amount of early infection leads to higher end-of-season egg counts. The periparturient rise in egg counts in ewes appears to have an important role in supplying infection for the priming of the immune response. This feedback in the immune priming suggests that nematode infections may be difficult to eliminate.
Collapse
|
38
|
Rose H, Wall R. Pathogenicity of biological control agents for livestock ectoparasites: a simulation analysis. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:379-386. [PMID: 19941603 DOI: 10.1111/j.1365-2915.2009.00836.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The management of arthropod ectoparasites of livestock currently relies largely on the use of neurotoxic chemicals. However, concerns over the development of resistance, as well as operator and environmental contamination, have stimulated research into alternative approaches to their control, including the use of biological pathogens. The search for suitable pathogens often focuses on identifying the most highly virulent agents for application. However, practical issues such as the ability of a pathogen to penetrate to the skin through hair or wool, tolerance of high skin surface temperatures and high residual activity may mean that the most virulent pathogens are not necessarily the most appropriate for commercial application. Here, a simulation model is constructed and used to highlight a range of key features which characterize suitable pathogens for such application. Sensitivity analysis shows that even a relatively low probability of infection following contact between infectious and susceptible individuals may give acceptable control, providing it is counterbalanced by higher survival of both infected and infectious parasite hosts in order to allow the rate of transmission to exceed the threshold required to suppress parasite population growth. The model highlights the need for studies attempting to identify sustainable biocontrol agents to explore the use of pathogens which have a range of the characteristics that contribute to overall pathogenicity, but which are also most compatible with practical application systems.
Collapse
Affiliation(s)
- H Rose
- Veterinary Parasitology and Ecology Group, School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK.
| | | |
Collapse
|
39
|
van Wyk JA, Reynecke DP. Blueprint for an automated specific decision support system for countering anthelmintic resistance in Haemonchus spp. at farm level. Vet Parasitol 2009; 177:212-23. [PMID: 20346591 DOI: 10.1016/j.vetpar.2009.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 09/28/2009] [Accepted: 10/29/2009] [Indexed: 11/28/2022]
Abstract
This article is the first of a series aimed at developing specific decision support software for on-farm optimisation of sustainable integrated management of haemonchosis. It contains a concept framework for such a system for use by farmers and/or their advisors but, as reported in the series, only the first steps have been taken on the road to achieve this goal. Anthelmintic resistance has reached such levels of prevalence and intensity that recently it evoked the comment that for small ruminants the final phase of resistance was being entered, without effective chemotherapeutic agents on some farms with which to control worms at a level commensurate with profitable animal production. In addition, in the case of cattle, a recent survey in New Zealand showed 92% of worm populations to be resistant to at least one anthelmintic group. Ironically, new technology, such as the FAMACHA(©) system which was devised for sustainable management of haemonchosis, is at present being adopted relatively slowly by the majority of farmers and it is suggested that an important reason for this is the complexity of integration of new methods with epidemiological factors. The alternatives to the simple drenching programmes of the past are not only more difficult to manage, but are also more labour-intensive. The problem is further complicated by a progressive global shortage of persons with the necessary experience to train farmers in the new methods. The opinion is advanced that only computerised, automated decision support software can optimise the integration of the range of factors (such as rainfall, temperature, host age and reproductive status, pasture type, history of host and pasture infection, and anthelmintic formulation) for more sustainable worm management than is obtainable with present methods. Other than the conventional method (in which prospective analysis of laboratory and other data is mainly used to suggest when strategic prophylactic drenching of all animals for preventing excessive helminthosis should be conducted during the relevant worm season), the computer model being proposed is to be based on targeted selective treatment, supported by progressive periodic retrospective analysis of clinical data of a given worm season. It is emphasised that, in order not to repeat the mistakes of the past, such an automated support system should ideally be developed urgently in a attempt to engineer greater sustainability of any unrelated new anthelmintics which may reach the market.
Collapse
Affiliation(s)
- J A van Wyk
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa.
| | | |
Collapse
|
40
|
Morgan ER, Wall R. Climate change and parasitic disease: farmer mitigation? Trends Parasitol 2009; 25:308-13. [PMID: 19540163 DOI: 10.1016/j.pt.2009.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/15/2009] [Accepted: 03/16/2009] [Indexed: 11/19/2022]
Abstract
Global climate change predictions suggest that far-ranging effects might occur in the population dynamics and distributions of livestock parasites, provoking fears of widespread increases in disease incidence and production loss. However, several biological mechanisms (including increased parasite mortality and more rapid acquisition of immunity), in tandem with changes in husbandry practices (including reproduction, housing, nutrition, breed selection, grazing patterns and other management interventions), might act to mitigate increased parasite development rates, preventing dramatic rises in overall levels of disease. Such changes might, therefore, counteract predicted climate-driven increases in parasite challenge. Optimum mitigation strategies will be highly system specific and depend on detailed understanding of interactions between climate, parasite abundance, host availability and the cues for and economics of farmer intervention.
Collapse
Affiliation(s)
- Eric R Morgan
- Veterinary Parasitology & Ecology Group, School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK.
| | | |
Collapse
|
41
|
Back to the future: Developing hypotheses on the effects of climate change on ovine parasitic gastroenteritis from historical data. Vet Parasitol 2008; 158:73-84. [DOI: 10.1016/j.vetpar.2008.08.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022]
|
42
|
|