1
|
Frigerio ED, Guizelini CDC, Jussiani GG, Março KS, de Melo GD, Watanabe TTN, Machado GF. Lymphocytic hypophysitis in dogs infected with Leishmania spp. Front Vet Sci 2023; 10:1208919. [PMID: 37781278 PMCID: PMC10537919 DOI: 10.3389/fvets.2023.1208919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background Morphological involvement of endocrine glands, such as the pituitary gland, remain uninvestigated in dogs with canine visceral leishmaniasis. Therefore, this study investigated the presence of amastigotes of Leishmania spp. and characterized inflammatory changes, highlighting the involvement of TCD3+ lymphocytes in different regions of the pituitary gland of dogs. Methods Samples were collected from 21 naturally infected dogs and 5 control, uninfected dogs. The different pituitary regions were analyzed in histological sections stained with hematoxylin and eosin (HE) under light microscopy. Inflammation was classified by intensity in a score from 0 to 3, absent (0), mild (1), moderate (2), and marked (3). The immunohistochemical (IHC) evaluation was performed in five high-power fields (hot spot) in a 40x objective of each region with manual counting (Image J1.52ª) of the TCD3+ lymphocytes and for amastigotes analyzed in 40x and 100x objectives. The Shapiro-Wilk test was used to assess the normality of the data. Differences between groups were determined by the Mann Whitney test. The correlation between variables was assessed by Sperman's correlation test. p < 0.05 were considered statistically significant. Results Amastigotes from the pituitary glands of two infected dogs were identified using IHC. The histopathological evaluation stained with hematoxylin and eosin showed greater intensity of inflammation in the pars distalis and pars intermedia regions of infected dogs. IHC for TCD3+ lymphocytes showed a higher median number of immunolabeled cells in pars nervosa in the infected group than in the control group (p < 0.05); and expecting a variation in the distribution and number of these cells in naturally infected dogs, the median of the control group was considered a cut-off point, an increase in T lymphocytes (p < 0.05) was also observed in the pars intermedia and pars distalis of an infected subgroup (n = 10). A moderate significant correlation between the intensity of inflammation and the number of immunolabeled TCD3+ lymphocytes was established in the analyzed pituitary regions, characterizing the occurrence of hypophysitis. Conclusion These findings presuppose that inflammation and/or the parasite in the pituitary region can result in gland dysfunction, worsening the clinical condition of the patient and compromising the efficiency of treatment and prognosis.
Collapse
Affiliation(s)
- Edenilson Doná Frigerio
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Cecilia de Castro Guizelini
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Giulia Gonçalves Jussiani
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Karen Santos Março
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Tatiane Terumi Negrão Watanabe
- Department Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Gisele Fabrino Machado
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| |
Collapse
|
2
|
Silva JEDS, Jussiani GG, Grano FG, Pelissari MCC, de Melo GD, Negrão Watanabe TT, de Lima VF, Machado GF. Increased CCL-5 (RANTES) Gene Expression in the Choroid Plexus of Dogs with Canine Leishmaniosis. Animals (Basel) 2023; 13:2060. [PMID: 37443858 DOI: 10.3390/ani13132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Visceral canine leishmaniasis (CanL) can cause several clinical manifestations, including neurological lesions. Few reports have characterized the lesions observed in the central nervous system (CNS) during CanL; however, its pathogenesis remains unclear. The choroid plexus (CP) is a specialized structure responsible for the production and secretion of cerebrospinal fluid (CSF) and considered an interface between the peripheral immune system and CNS. It can allow the passage of inflammatory cells or pathogens and has the potential to act as a source of inflammatory mediators in several diseases. Thus, this study aimed to evaluate the role of CP as a possible route of inflammatory cells in the development of brain lesions in dogs with CanL, as well as its association with blood-CSF barrier (BCSFB) dysfunction. Samples were collected from 19 dogs that were naturally infected with CanL. We evaluated the histopathological lesions in the brain and investigated the gene expression of the cytokines. Capture enzyme-linked immunosorbent assay (ELISA) was used to evaluate the presence of the same cytokines in the CSF. Biochemical analysis was performed to compare the presence of albumin in the serum and CSF. Indirect ELISA was performed to measure the presence of anti-Leishmania antibodies in the CSF, which would suggest the disruption of the BCSFB. Histopathological evaluation of the dogs' brains revealed mild-to-severe inflammatory infiltrates, mainly in the CP and meninges. We also detected the presence of anti-Leishmania antibodies and albumin in the CSF, as well as Leishmania DNA in the CP. The gene expression of CCL-5 was increased in the CP of infected dogs compared with that of controls, and there was a tendency for the increase in the gene expression of CXCL-10. Thus, our findings confirm the disfunction of the BCSFB during CanL and suggest that the chemokines CCL-5 and CXCL-10 can be responsible for the recruitment of inflammatory cells found in CP.
Collapse
Affiliation(s)
- José Eduardo Dos Santos Silva
- School of Veterinary Medicine, Faculdade de Medicina Veterinária de Araçatuba (FMVA), São Paulo State University (UNESP), R. Clóvis Pestana, 793, Dona Amélia, Araçatuba 16050-680, SP, Brazil
| | - Giulia Gonçalves Jussiani
- School of Veterinary Medicine, Faculdade de Medicina Veterinária de Araçatuba (FMVA), São Paulo State University (UNESP), R. Clóvis Pestana, 793, Dona Amélia, Araçatuba 16050-680, SP, Brazil
| | - Fernanda Grecco Grano
- School of Veterinary Medicine, Faculdade de Medicina Veterinária de Araçatuba (FMVA), São Paulo State University (UNESP), R. Clóvis Pestana, 793, Dona Amélia, Araçatuba 16050-680, SP, Brazil
| | - Maria Cecília Clarindo Pelissari
- School of Veterinary Medicine, Faculdade de Medicina Veterinária de Araçatuba (FMVA), São Paulo State University (UNESP), R. Clóvis Pestana, 793, Dona Amélia, Araçatuba 16050-680, SP, Brazil
| | - Guilherme Dias de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, Intitut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Tatiane Terumi Negrão Watanabe
- Department Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Antech Diagnostics, 12401 West Olympic Blvd, Los Angeles, CA 90064, USA
| | - Valéria Felix de Lima
- School of Veterinary Medicine, Faculdade de Medicina Veterinária de Araçatuba (FMVA), São Paulo State University (UNESP), R. Clóvis Pestana, 793, Dona Amélia, Araçatuba 16050-680, SP, Brazil
| | - Gisele Fabrino Machado
- School of Veterinary Medicine, Faculdade de Medicina Veterinária de Araçatuba (FMVA), São Paulo State University (UNESP), R. Clóvis Pestana, 793, Dona Amélia, Araçatuba 16050-680, SP, Brazil
| |
Collapse
|
3
|
Pugliese M, Sfacteria A, Oliva G, Falcone A, Gizzarelli M, Passantino A. Clinical Significance of ROMs, OXY, SHp and HMGB-1 in Canine Leishmaniosis. Animals (Basel) 2021; 11:754. [PMID: 33803468 PMCID: PMC7998487 DOI: 10.3390/ani11030754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the role of oxidative stress parameters (ROMs, OXY, SHp), the Oxidative Stress index (OSi), and High Mobility Group Box-1 protein (HMGB-1) in canine leishmaniosis (CanL). For this study, thirty dogs, naturally infected with Leishmania spp. (Leishmania Group, LEISH) and ten healthy adult dogs (control group, CTR) were included. The diagnosis of CanL was performed by a cytological examination of lymph nodes, real time polymerase chain reaction on biological tissues (lymph nodes and whole blood), and an immunofluorescence antibody test (IFAT) for the detection of anti-Leishmania antibodies associated with clinical signs such as dermatitis, lymphadenopathy, onychogryphosis, weight loss, cachexia, lameness, conjunctivitis, epistaxis, and hepatosplenomegaly. The HMGB-1 and oxidative stress parameters of the LEISH Group were compared with the values recorded in the CTR group (Mann Whitney Test, p < 0.05). Spearman rank correlation was applied to evaluate the correlation between the HMGB-1, oxidative stress biomarkers, hematological and biochemical parameters in the LEISH Group. Results showed statistically significant higher values of SHp in the LEISH Group. Specific correlation between the ROMs and the number of red blood cells, and between HGMB-1 and SHp were recorded. These preliminary data may suggest the potential role of oxidative stress in the pathogenesis of CanL. Further studies are undoubtedly required to evaluate the direct correlation between inflammation parameters with the different stages of CanL. Similarly, further research should investigate the role of ROMs in the onset of anemia.
Collapse
Affiliation(s)
- Michela Pugliese
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| | - Alessandra Sfacteria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| | - Gaetano Oliva
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Annastella Falcone
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| | - Manuela Gizzarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.P.); (A.S.); (A.F.); (A.P.)
| |
Collapse
|
4
|
Leishmania hide-and-seek: Parasite amastigotes in the choroid plexus of a dog with neurological signs in an endemic municipality in Brazil. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2019; 17:100291. [PMID: 31303241 DOI: 10.1016/j.vprsr.2019.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 11/21/2022]
Abstract
A female adult mixed-breed stray dog presented with hind limb paraparesis and clinical signs of visceral leishmaniasis. The cerebrospinal fluid presented signs of blood-brain barrier disruption. Both spleen and brain were positive for Leishmania spp. DNA. Besides inflammation, in situ hybridization and immunohistochemistry (IHC) revealed the presence of intracellular amastigotes in the choroid plexus (CP). Despite other studies that revealed parasite DNA, the current study describes the presence of Leishmania within the brain of a naturally infected dog, specifically in CP, with no previous reports in the Americas, and suggests the CP as a possible pathway to parasite entry into the brain.
Collapse
|
5
|
Maia C, Campino L. Biomarkers Associated With Leishmania infantum Exposure, Infection, and Disease in Dogs. Front Cell Infect Microbiol 2018; 8:302. [PMID: 30237985 PMCID: PMC6136405 DOI: 10.3389/fcimb.2018.00302] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Canine leishmaniosis (CanL) is a vector-borne disease caused by the protozoan Leishmania (Leishmania) infantum species [syn. L. (L.) infantum chagasi species in the Americas] which is transmitted by the bite of a female phlebotomine sand fly. This parasitosis is endemic and affect millions of dogs in Asia, the Americas and the Mediterranean basin. Domestic dogs are the main hosts and the main reservoir hosts for human zoonotic leishmaniosis. The outcome of infection is a consequence of intricate interactions between the protozoan and the immunological and genetic background of the host. Clinical manifestations can range from subclinical infection to very severe disease. Early detection of infected dogs, their close surveillance and treatment are essential to control the dissemination of the parasite among other dogs, being also a pivotal element for the control of human zoonotic leishmaniosis. Hence, the identification of biomarkers for the confirmation of Leishmania infection, disease and determination of an appropriate treatment would represent an important tool to assist clinicians in diagnosis, monitoring and in giving a realistic prognosis to subclinical infected and sick dogs. Here, we review the recent advances in the identification of Leishmania infantum biomarkers, focusing on those related to parasite exposure, susceptibility to infection and disease development. Markers related to the pathogenesis of the disease and to monitoring the evolution of leishmaniosis and treatment outcome are also summarized. Data emphasizes the complexity of parasite-host interactions and that a single biomarker cannot be used alone for CanL diagnosis or prognosis. Nevertheless, results are encouraging and future research to explore the potential clinical application of biomarkers is warranted.
Collapse
Affiliation(s)
- Carla Maia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
6
|
Toll-like receptors and cytokines in the brain and in spleen of dogs with visceral leishmaniosis. Vet Parasitol 2018; 253:30-38. [DOI: 10.1016/j.vetpar.2018.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/17/2023]
|
7
|
Pereira-Fonseca DCM, Oliveira-Rovai FM, Rodas LAC, Beloti CAC, Torrecilha RBP, Ito PKRK, Avanço SV, Cipriano RS, Utsunomiya YT, Hiramoto RM, Calvo-Bado L, Courtenay O, Machado GF, Lima VMF, Nunes CM. Dog skin parasite load, TLR-2, IL-10 and TNF-α expression and infectiousness. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 09/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- D. C. M. Pereira-Fonseca
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - F. M. Oliveira-Rovai
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - L. A. C. Rodas
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - C. A. C. Beloti
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - R. B. P. Torrecilha
- Department of Preventive Veterinary Medicine and Animal Reproduction; School of Agricultural and Veterinarian Science; São Paulo State University (Unesp); Jaboticabal São Paulo Brazil
| | - P. K. R. K. Ito
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - S. V. Avanço
- Center for Zoonosis Control; Rua Doutor Luiz de Almeida; Araçatuba São Paulo Brazil
| | - R. S. Cipriano
- Center for Zoonosis Control; Rua Doutor Luiz de Almeida; Araçatuba São Paulo Brazil
| | - Y. T. Utsunomiya
- Department of Preventive Veterinary Medicine and Animal Reproduction; School of Agricultural and Veterinarian Science; São Paulo State University (Unesp); Jaboticabal São Paulo Brazil
| | | | - L. Calvo-Bado
- School of Life Sciences; The University of Warwick; Coventry UK
| | - O. Courtenay
- School of Life Sciences; The University of Warwick; Coventry UK
| | - G. F. Machado
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - V. M. F. Lima
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| | - C. M. Nunes
- Department of Production and Animal Health; School of Veterinary Medicine; São Paulo State University (Unesp); Araçatuba São Paulo Brazil
| |
Collapse
|
8
|
Macau WL, Cortez de Sá J, da Silva APDC, Rocha AL, Mondêgo-Oliveira R, de Andrade FHE, Cunha CM, Calabrese KDS, Abreu-Silva AL. Main lesions in the central nervous system of dogs due to Leishmania infantum infection. BMC Vet Res 2017; 13:255. [PMID: 28821261 PMCID: PMC5563018 DOI: 10.1186/s12917-017-1174-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Canine visceral leishmaniasis (CVL) is endemic in São Luís Maranhão/Brazil and it leads a varied clinical picture, including neurological signs. Results Histopathological evaluation showed that 14 dogs exhibited pathological alterations in at least one of the analyzed areas. Of these, mononuclear inflammatory reaction was the most frequent, although other lesions, such as hemorrhage, chromatolysis and gliosis were also observed. The presence of L. infantum amastigotes was confirmed in eight dogs, identified in four regions: telencephalon, hippocampus, thalamus and caudal colliculus, but only one presented neurological signs. Polymerase chain reaction results detected the DNA of the parasite in 11 samples from seven dogs. The positive areas were the telencephalon, thalamus, hippocampus, cerebellum, caudal and rostral colliculus. Conclusion These results reveal that during canine visceral leishmaniasis, the central nervous system may display some alterations, without necessarily exhibiting clinical neurological manifestations. In addition, the L. infantum parasite has the ability to cross the blood brain barrier and penetrate the central nervous system.
Collapse
Affiliation(s)
- Weline Lopes Macau
- Center for Biological and Health Sciences, Universidade Federal do Maranhão, São Luis, MA, CEP 65080-805, Brazil
| | - Joicy Cortez de Sá
- Medicine Coordination, Universidade CEUMA, São Luís, MA, CEP 65055-000, Brazil
| | | | - Alessandra Lima Rocha
- Department of Pathology, Universidade Estadual do Maranhão, São Luís, MA, CEP 65055-000, Brazil
| | - Renata Mondêgo-Oliveira
- Department of Pathology, Universidade Estadual do Maranhão, São Luís, MA, CEP 65055-000, Brazil
| | | | | | | | - Ana Lucia Abreu-Silva
- Department of Pathology, Universidade Estadual do Maranhão, São Luís, MA, CEP 65055-000, Brazil.
| |
Collapse
|
9
|
Giannuzzi AP, Ricciardi M, De Simone A, Gernone F. Neurological manifestations in dogs naturally infected by Leishmania infantum: descriptions of 10 cases and a review of the literature. J Small Anim Pract 2017; 58:125-138. [PMID: 28267216 DOI: 10.1111/jsap.12650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
In order to evaluate possible nervous system involvement in canine leishmaniasis, retrospective evaluation of all medical records of leishmaniotic dogs exhibiting neurological signs referred to our hospital over a 5-year period was performed. The records of 10 dogs were reviewed. Depending on the neuroanatomical localisation, the dogs underwent advanced diagnostic imaging, cerebrospinal fluid analysis, electrodiagnostic testing and histopathologic evaluations. The final neurological diagnosis was: meningoencephalitis (n=2), brain haemorrhagic stroke (n=1), haemorrhagic choroiditis (n=1), meningomyelitis (n=2), ischaemic myelopathy (n=1), polymyositis (n=2) and peripheral neuropathy (n=1). This study confirms that both central and peripheral nervous systems can be affected by leishmaniasis and provides an overview on the possible etiopathogenetic mechanisms. In addition, clinical and diagnostic findings, therapy and follow-up of affected dogs are described.
Collapse
Affiliation(s)
| | - M Ricciardi
- Pingry Veterinary Hospital, Bari, 70126, Italy
| | - A De Simone
- Pingry Veterinary Hospital, Bari, 70126, Italy
| | - F Gernone
- Pingry Veterinary Hospital, Bari, 70126, Italy
| |
Collapse
|
10
|
T lymphocyte immunophenotypes in the cerebrospinal fluid of dogs with visceral leishmaniasis. Vet Parasitol 2016; 232:12-20. [PMID: 27890077 DOI: 10.1016/j.vetpar.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 01/22/2023]
Abstract
Visceral leishmaniasis (VL) is a disease causing several clinical manifestations in dogs, including neurological disorders. Nevertheless, there are few studies related to the evaluation of the brain alterations during VL. Evidences of the involvement of cerebral barriers in infected dogs was reported, including the presence of brain inflammatory infiltrate, with a predominance of CD3+ T cells. Therefore, the aim of this study was to determine the immunophenotypes of T lymphocytes in the cerebrospinal fluid (CSF), as well as in peripheral blood, and to correlate with brain alterations in dogs with VL. We detected elevated percentages of double negative (DN) and double positive (DP) T cells in the CSF, with a predominance of TCRαb. In the histopathological analysis, we observed a predominance of lymphoplasmacytic infiltrate, mainly in leptomeninges, ranging from mild to intense, and we observed a positive correlation between the intensity of inflammation in the subependymal area and the DN T cells of the CSF. Thus, the DN T cells seem be acting as villains of the immune system through pro-inflammatory mechanisms. Further, the proportion of the different population of CSF T cells did not differ from those observed in the blood, which provides us with more evidence of blood-CSF barrier breakdown. Together, the results provide more explanation to the inflammation observed in the brain of dogs with VL, which the DN T cells contribute to the origin and progression of the neurological disease. This study provides insight into the immunophenotypes of T lymphocytes in the CSF during canine visceral leishmaniasis.
Collapse
|
11
|
Melo GD, Grano FG, Silva JES, Kremer BE, Lima VMF, Machado GF. Blood-brain barrier disruption during spontaneous canine visceral leishmaniasis. Parasite Immunol 2016; 37:635-45. [PMID: 26434684 DOI: 10.1111/pim.12285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis is a complex disease caused by Leishmania infantum, and in dogs, besides the classical symptoms, there are descriptions of inflammatory alterations in the brain. Brain inflammation is a strictly controlled process, and as the brain counts on the efficiency of the blood-brain barrier (BBB), we aimed to assess BBB integrity in dogs with spontaneous visceral leishmaniasis. Therefore, we evaluated markers in the cerebrospinal fluid (CSF) and in brain tissue related to BBB disruption and brain inflammation. Elevated albumin quota revealed BBB breakdown, corroborated by increased concentrations of anti-Leishmania antibodies in the CSF. In the brain, albumin and IgG staining formed halos around blood vessels, a classical indicator of BBB leakage. Soluble IgG was also detected in the choroid plexus and ependyma, and in these structures, IgG stained random resident cells. IgG(+) cells and Fcγ-RI(+) cells were identified in the choroid plexus, ependyma and perivascular in the brain parenchyma. The data support the occurrence of BBB disruption in dogs with spontaneous visceral leishmaniasis, and IgG as a key molecule that is capable of initiating and/or maintaining the inflammatory stimuli in the nervous milieu and the CSF as an important disseminator of inflammatory stimuli within the CNS.
Collapse
Affiliation(s)
- G D Melo
- Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - F G Grano
- Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - J E S Silva
- Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - B E Kremer
- Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - V M F Lima
- Faculdade de Medicina Veterinária, Laboratório de Imunologia, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - G F Machado
- Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| |
Collapse
|
12
|
Abstract
Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.
Collapse
|
13
|
Maia CSF, Monteiro MC, Gavioli EC, Oliveira FR, Oliveira GB, Romão PRT. Neurological disease in human and canine leishmaniasis--clinical features and immunopathogenesis. Parasite Immunol 2015; 37:385-93. [PMID: 25983042 DOI: 10.1111/pim.12203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
Abstract
Leishmaniasis is a vectorborne disease caused by Leishmania protozoa, which is a major health problem and a neglected disease common in many regions of the world. Leishmania is an intracellular parasite transmitted by sand flies that causes clinical manifestations ranging from a severe and potentially fatal disease named visceral leishmaniasis to less severe but in many cases disfiguring diseases that mainly affect the skin or mucosal tissues, known as cutaneous leishmaniasis. Despite the detection of Leishmania parasites in the brain and cerebrospinal fluid of human patients and dogs, epidemiological data, as well as information about the mechanisms of central and peripheral nervous system alterations, are poorly described. This review is focused on the current knowledge about the neurological manifestations and immunopathogenic mechanisms in human patients and animals infected with Leishmania.
Collapse
Affiliation(s)
- C S F Maia
- Pharmaceutical Science Post-graduation Program, Federal University of Pará, Pará, Brazil.,Neuroscience and Cellular Biology Post-graduation Program, Health Science Institute, Federal University of Pará, Pará, Brazil
| | - M C Monteiro
- Pharmaceutical Science Post-graduation Program, Federal University of Pará, Pará, Brazil.,Neuroscience and Cellular Biology Post-graduation Program, Health Science Institute, Federal University of Pará, Pará, Brazil
| | - E C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - F R Oliveira
- Neuroscience and Cellular Biology Post-graduation Program, Health Science Institute, Federal University of Pará, Pará, Brazil
| | - G B Oliveira
- Neuroscience and Cellular Biology Post-graduation Program, Health Science Institute, Federal University of Pará, Pará, Brazil
| | - P R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
14
|
Melo GD, Silva JES, Grano FG, Souza MS, Machado GF. Leishmania infection and neuroinflammation: Specific chemokine profile and absence of parasites in the brain of naturally-infected dogs. J Neuroimmunol 2015; 289:21-9. [DOI: 10.1016/j.jneuroim.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 12/29/2022]
|
15
|
Tonin AA, Calado AMC, Bottari NB, Dalenogare D, Thomé GR, Duarte T, Duarte MMMF, Morsch VM, Schetinger MRC, Alves LC, Tinucci-Costa M, Da Silva AS. Novel markers of inflammatory response and hepatic dysfunction in canine leishmaniasis. Comp Immunol Microbiol Infect Dis 2015; 44:61-4. [PMID: 26454326 DOI: 10.1016/j.cimid.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
Dogs are the main host of Leishmania infantum, and the clinical presentation may range from asymptomatic to systemic manifestations. The immune mechanisms in infected, but clinically healthy dogs, prevails Th1 response mediated by cytokines. In this sense, adenosine deaminase (ADA) and butyrylcholinesterase (BChE) are considered as key enzymes in several physiological processes, including the modulation of inflammatory process. Considering the variable immune response against Leishmania and the known participation of ADA and BChE, the aim of this study was to assess the relation between these two enzymes with the inflammatory response as well as hepatic function in dogs naturally infected with L. infantum. For this purpose, the activity of ADA and BChE was assessed in sera of 24 dogs naturally infected with L. infantum, plus 17 healthy dogs. The naturally infected dogs had clinical signs compatible with leishmaniasis and sera activities of ADA (P<0.01) and BChE (P<0.05) decreased, when compared to the healthy group. The reduction of ADA activity probably represented an effect on inflammatory response, especially due to the decreased hydrolysis of extracellular adenosine, might in order to protect against tissue damage and, also, setting a down-regulation on pro-inflammatory cytokines. BChE enzyme had no effect on modulating the immune response in leishmaniasis, but it decreased, a fact may related to deficiency of synthesis in the liver. Therefore, ADA and BChE activities reduced probably in order to protect against extra tissue damage and due failure in synthesis, respectively.
Collapse
Affiliation(s)
| | - Andréa M C Calado
- Department of Veterinary Clinical and Surgery, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | | | | | | | - Thiago Duarte
- Department of Farmacology, UFSM, Santa Maria, RS, Brazil
| | | | - Vera M Morsch
- Department of Biochemistry, UFSM, Santa Maria, RS, Brazil
| | | | - Leucio C Alves
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Mirela Tinucci-Costa
- Department of Veterinary Clinical and Surgery, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| |
Collapse
|
16
|
Gasparotto J, Senger MR, Kunzler A, Degrossoli A, de Simone SG, Bortolin RC, Somensi N, Girardi CS, de Souza CDSF, Calabrese KDS, Dal-Pizzol F, Moreira JCF, Silva FP, Gelain DP. Increased tau phosphorylation and receptor for advanced glycation endproducts (RAGE) in the brain of mice infected with Leishmania amazonensis. Brain Behav Immun 2015; 43:37-45. [PMID: 25014011 DOI: 10.1016/j.bbi.2014.06.204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a parasitosis caused by several species of the genus Leishmania, an obligate intramacrophagic parasite. Although neurologic symptoms have been observed in human cases of leishmaniasis, the manifestation of neurodegenerative processes is poorly studied. The aim of the present work was to investigate if peripheral infection of BALB/c mice with Leishmania amazonensis affects tau phosphorylation and RAGE protein content in the brain, which represent biochemical markers of neurodegenerative processes observed in diseases with a pro-inflammatory component, including Alzheimer's disease and Down syndrome. Four months after a single right hind footpad subcutaneous injection of L. amazonensis, the brain cortex of BALB/c mice was isolated. Western blot analysis indicated an increase in tau phosphorylation (Ser(396)) and RAGE immunocontent in infected animals. Brain tissue TNF-α, IL-1β, and IL-6 levels were not different from control animals; however, increased protein carbonylation, decreased IFN-γ levels and impairment in antioxidant defenses were detected. Systemic antioxidant treatment (NAC 20mg/kg, i.p.) inhibited tau phosphorylation and recovered IFN-γ levels. These data, altogether, indicate an association between impaired redox state, tau phosphorylation and RAGE up-regulation in the brain cortex of animals infected with L. amazonensis. In this context, it is possible that neurologic symptoms associated to chronic leishmaniasis are associated to disruptions in the homeostasis of CNS proteins, such as tau and RAGE, as consequence of oxidative stress. This is the first demonstration of alterations in biochemical parameters of neurodegeneration in an experimental model of Leishmania infection.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Degrossoli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Salvatore Giovanni de Simone
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Rafael Calixto Bortolin
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Celeste da Silva Freitas de Souza
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Kátia da Silva Calabrese
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Melo GD, Silva JES, Grano FG, Homem CG, Machado GF. Compartmentalized gene expression of toll-like receptors 2, 4 and 9 in the brain and peripheral lymphoid organs during canine visceral leishmaniasis. Parasite Immunol 2014; 36:726-31. [DOI: 10.1111/pim.12148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
Affiliation(s)
- G. D. Melo
- Laboratory of Applied Pathology (LApap); College of Veterinary Medicine; UNESP - Univ Estadual Paulista; Araçatuba São Paulo Brazil
| | - J. E. S. Silva
- Laboratory of Applied Pathology (LApap); College of Veterinary Medicine; UNESP - Univ Estadual Paulista; Araçatuba São Paulo Brazil
| | - F. G. Grano
- Laboratory of Applied Pathology (LApap); College of Veterinary Medicine; UNESP - Univ Estadual Paulista; Araçatuba São Paulo Brazil
| | - C. G. Homem
- College of Veterinary Medicine; UNESP - Univ Estadual Paulista; Araçatuba São Paulo Brazil
| | - G. F. Machado
- Laboratory of Applied Pathology (LApap); College of Veterinary Medicine; UNESP - Univ Estadual Paulista; Araçatuba São Paulo Brazil
| |
Collapse
|
18
|
Grano FG, Melo GD, Belinchón-Lorenzo S, Gómez-Nieto LC, Machado GF. First detection of Leishmania infantum DNA within the brain of naturally infected dogs. Vet Parasitol 2014; 204:376-80. [DOI: 10.1016/j.vetpar.2014.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/20/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
|
19
|
Sakamoto KP, de Melo GD, Machado GF. T and B lymphocytes in the brains of dogs with concomitant seropositivity to three pathogenic protozoans: Leishmania chagasi, Toxoplasma gondii and Neospora caninum. BMC Res Notes 2013; 6:226. [PMID: 23758819 PMCID: PMC3701587 DOI: 10.1186/1756-0500-6-226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 05/30/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis is a disease with great variability regarding the clinical manifestations in humans and dogs. Chronically infected dogs may develop neurological disorders, however, there are few reports that characterize the lesions and make clear the pathogenesis of the canine cerebral leishmaniasis. Concomitant with Leishmania chagasi, dogs may be infected by opportunistic pathogens, such as Toxoplasma gondii and Neospora caninum, which may contribute to the occurrence of lesions in the central nervous system. Hence, we aimed to compare the T and B lymphocytes population in the brains of infected dogs with seropositivity to L. chagasi, T. gondii and N. caninum concurrently (n = 24), seropositivity only to L. chagasi (n = 31), and seropositivity to T. gondii and N. caninum (n = 16). Uninfected dogs were used as control (n = 10). RESULTS Inflammatory lesions, characterised by mononuclear cell accumulation, composed mainly of CD3+ T lymphocytes predominated in several encephalic regions of the dogs from all the three infected groups, with no difference among them (P = 0.0004), whereas CD79α+ B lymphocytes were detected in very small intensity and presented no difference among groups (P = 0.5313). Furthermore, no association among diseases was detected at the serological enquire. CONCLUSIONS We demonstrate that the peripheral infection by L. chagasi per se can promote the influx of lymphocytes within the nervous milieu as occurs during Toxoplasma and Neospora infections, and the concomitant seropositivity against these pathogens does not exacerbate the inflammatory brain lesions. Therefore, these findings give additional support that the brain should be included in the list of organs affected by visceral leishmaniasis and that even asymptomatic infected dogs may develop brain lesions.
Collapse
Affiliation(s)
- Keila Priscilla Sakamoto
- Laboratory of Applied Pathology (LAPAP), College of Veterinary Medicine, UNESP – Univ Estadual Paulista, Rua Clóvis Pestana, 739, CEP 16050-680, Araçatuba, São Paulo, Brazil
| | - Guilherme Dias de Melo
- Laboratory of Applied Pathology (LAPAP), College of Veterinary Medicine, UNESP – Univ Estadual Paulista, Rua Clóvis Pestana, 739, CEP 16050-680, Araçatuba, São Paulo, Brazil
| | - Gisele Fabrino Machado
- Laboratory of Applied Pathology (LAPAP), College of Veterinary Medicine, UNESP – Univ Estadual Paulista, Rua Clóvis Pestana, 739, CEP 16050-680, Araçatuba, São Paulo, Brazil
| |
Collapse
|