1
|
Mohammedsalih KM, Hassan SA, Juma FR, Saeed SI, Bashar A, von Samson-Himmelstjerna G, Krücken J. Comparative assessment of Mini-FLOTAC, McMaster and semi-quantitative flotation for helminth egg examination in camel faeces. Parasit Vectors 2025; 18:5. [PMID: 39800725 PMCID: PMC11726973 DOI: 10.1186/s13071-024-06637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Faecal egg counts (FECs) are essential for diagnosing helminth infections and guiding treatment decisions. For camels, no evaluations of coproscopic methods regarding precision, sensitivity and correlation between individual and pooled faecal samples are currently available. METHODS Here, 410 camel faecal samples were collected in 2022 from South Darfur State, Sudan, and analysed to compare the semi-quantitative flotation, McMaster and Mini-FLOTAC methods in terms of precision, sensitivity, inter-rater reliability and helminth egg count correlations, as well as the effects of pooling samples. Six samples were used to assess precision for McMaster and Mini-FLOTAC, while the remaining 404 samples were evaluated for sensitivity, inter-rater reliability and egg count correlations. Of these, 80 samples were used in pooling experiments. RESULTS Six analyses of each sample (n = 6) using the McMaster and Mini-FLOTAC methods revealed no significant difference in the coefficient of variation between the two. For strongyle eggs, 48.8%, 52.7% and 68.6% were positive for McMaster, semi-quantitative flotation and Mini-FLOTAC, respectively. The sensitivity of the three methods showed only minimal improvement when three egg counts were performed on the same sample. McMaster and Mini-FLOTAC had similar sensitivity for Strongyloides spp. (3.5% frequency), while it was lower for semi-quantitative flotation at 2.5%. Mini-FLOTAC was more sensitive for Moniezia spp., detecting 7.7% of positives compared with 4.5% for semi-quantitative flotation and 2.2% for McMaster. For Trichuris spp., frequencies were 0.3% with Mini-FLOTAC, 0.7% with McMaster and 1.7% with semi-quantitative flotation. Mini-FLOTAC also detected higher strongyle eggs per gram (EPG) of faeces (mean 537.4) compared with McMaster (330.1). More samples exceeded treatment thresholds with Mini-FLOTAC, with 28.5% of animals having EPG ≥ 200 compared with 19.3% for McMaster, while 19.1% showed EPG ≥ 500 with Mini-FLOTAC compared with 12.1% with McMaster. There was no significant correlation between individual and pooled strongyle FECs, as indicated by Pearson correlation coefficients of r ≥ 0.368 (P ≥ 0.113) and Spearman correlation. CONCLUSIONS Mini-FLOTAC outperformed semi-quantitative flotation and McMaster in diagnosing helminth infections in camels, offering greater sensitivity and detecting higher EPGs, particularly for strongyles, Strongyloides spp. and Moniezia spp. Thus, treatment decisions based on Mini-FLOTAC EPGs will lead to more treatments.
Collapse
Affiliation(s)
- Khalid M Mohammedsalih
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
- Central Research Laboratory of Darfur Universities, Mousseh District, 63311, Nyala, Sudan
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Salma A Hassan
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Fathel-Rahman Juma
- Central Research Laboratory of Darfur Universities, Mousseh District, 63311, Nyala, Sudan
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Shamsaldeen I Saeed
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Ahmed Bashar
- Faculty of Veterinary Science, University of Nyala, Mousseh District, 63311, Nyala, Sudan
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
2
|
Gómez-Trinidad M, Sánchez-Santillán P, Ayala-Monter MA, Saavedra-Jimenez LA, Sollano-Mendieta CE, López-Torres BJ. In vitro gas production, in situ digestibility, intake, weight gain and ruminal characteristics of calves fed a diet containing 60% waste papaya silage. Trop Anim Health Prod 2024; 56:370. [PMID: 39477871 DOI: 10.1007/s11250-024-04219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024]
Abstract
Our aim was to evaluate a whole-grain diet containing 0 (T1) and 60% (T2) waste papaya silage in vitro, in situ and in vivo. In vitro, biogas, methane and dry matter degradation (DMDiv), neutral detergent fiber (NDFDiv) and crude protein (CPDiv) were determined at 72 h; in situ, DM (DMDis), NDF (NDFis) and CP (CPDis) digestibility was determined at 72 h; in vivo, consumption and apparent digestibility of DM (DMI and DMD) and NDF (NDFI and NDFD), daily weight gain (DWG), rumen characteristics (pH, bacterial and protozoan counts) were determined. In addition, we performed coproparasitoscopic analysis and interviews with producers. Biogas production, methane, DMDiv, CDPiv, DMDis, DMD, NDFD, pH, bacterial and protozoan counts, and parasite load of nematodes and coccidia were not different between treatments (p > 0.05). T2 showed more NDFDiv, CPDis, DMI, NDFI, DWG than T1, while T1 was higher than T2 in NDFDis (p < 0.05). The results obtained from in vitro, in situ and in vivo techniques indicate that the diet with 60% waste papaya silage (T2) showed a similar response to the control diet (T1). Therefore, waste papaya silage is a non-conventional feeding alternative for weaned calves in the Costa Chica region of the state of Guerrero, Mexico.
Collapse
Affiliation(s)
- Marcelino Gómez-Trinidad
- Master's Program in Bovine Production in the Tropic, Autonomous University of Guerrero, 41940, Cuajinicuilapa, Guerrero, Mexico
| | - Paulino Sánchez-Santillán
- School of Veterinary Medicine and Animal Production No. 2, Autonomous University of Guerrero, 41940, Cuajinicuilapa, Guerrero, Mexico.
| | - Marco Antonio Ayala-Monter
- School of Veterinary Medicine and Animal Production No. 2, Autonomous University of Guerrero, 41940, Cuajinicuilapa, Guerrero, Mexico
| | - Luis Antonio Saavedra-Jimenez
- School of Veterinary Medicine and Animal Production No. 2, Autonomous University of Guerrero, 41940, Cuajinicuilapa, Guerrero, Mexico
| | | | | |
Collapse
|
3
|
McEvoy A, O'Boyle P, Ellis S, Dalton JP, Parkinson M, Keane OM, Machín C. Comparison of traditional copromicroscopy with image analysis devices for detection of gastrointestinal nematode infection in sheep. Vet Parasitol 2024; 329:110216. [PMID: 38815364 DOI: 10.1016/j.vetpar.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Sustainable parasite control practices are necessary to combat the negative effects of gastrointestinal nematodes on animal health and production while reducing the selection pressure for anthelmintic resistance. Parasite diagnostic tests can inform treatment decisions, the timing and effectiveness of treatment and enable livestock breeding programmes. In recent years new diagnostic methods have been developed, some incorporating machine learning (ML), to facilitate the detection and enumeration of parasite eggs. It is important to understand the technical characteristics and performance of such new methods compared to long standing and commonly utilised methods before they are widely implemented. The aim of the present study was to trial three new diagnostic tools relying on image analysis (FECPAKG2, Micron and OvaCyte) and to compare them to traditional manual devices (McMaster and Mini-FLOTAC). Faecal samples were obtained from 41 lambs naturally infected with gastrointestinal nematodes. Samples were mixed and separated into 2 aliquots for examination by each of the 5 methods: McMaster, Mini-FLOTAC, FECPAKG2, Micron and OvaCyte. The techniques were performed according to their respective standard protocols and results were collected by trained staff (McMaster and Mini-FLOTAC) or by the device (FECPAKG2, Micron and OvaCyte). Regarding strongyle worm egg count, McMaster values varied from 0 to 9,000 eggs per gram (EPG). When comparing replicate aliquots, both the Mini-FLOTAC and Micron methods displayed similar repeatability to McMaster. However, we found FECPAKG2 and OvaCyte significantly less precise than McMaster. When comparing parasite egg enumeration, significant positive linear correlations were established between McMaster and all other methods. No difference was observed in EPG between McMaster and Mini-FLOTAC or FECPAKG2; however, Micron and OvaCyte returned significantly higher and lower EPG, respectively, compared to McMaster. The number of eggs ascribed to other parasite species was not sufficient for performing a robust statistical comparison between all methods. However, it was noted that FECPAKG2 generally did not detect Strongyloides papillosus eggs, despite these being detected by other methods. In addition, Moniezia spp and Trichuris spp eggs were detected by OvaCyte and Mini-FLOTAC, respectively, but not by other methods. The observed variation between traditional and new methods for parasite diagnostics highlights the need for continued training and enhancing of ML models used and the importance of developing clear guidelines for validation of newly developed methods.
Collapse
Affiliation(s)
- Amanda McEvoy
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland; Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - Padraig O'Boyle
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland
| | - Saoirse Ellis
- Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co., Galway, Ireland; Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, University of Galway, Galway, Ireland
| | | | - Orla M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland.
| | - Cynthia Machín
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland; Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Castle TG, Britton L, Ripley B, Ubelhor E, Slusarewicz P. Evaluation of Parasight All-in-One system for the automated enumeration of helminth ova in canine and feline feces. Parasit Vectors 2024; 17:275. [PMID: 38937854 PMCID: PMC11210176 DOI: 10.1186/s13071-024-06351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Digital imaging combined with deep-learning-based computational image analysis is a growing area in medical diagnostics, including parasitology, where a number of automated analytical devices have been developed and are available for use in clinical practice. METHODS The performance of Parasight All-in-One (AIO), a second-generation device, was evaluated by comparing it to a well-accepted research method (mini-FLOTAC) and to another commercially available test (Imagyst). Fifty-nine canine and feline infected fecal specimens were quantitatively analyzed by all three methods. Since some samples were positive for more than one parasite, the dataset consisted of 48 specimens positive for Ancylostoma spp., 13 for Toxocara spp. and 23 for Trichuris spp. RESULTS The magnitude of Parasight AIO counts correlated well with those of mini-FLOTAC but not with those of Imagyst. Parasight AIO counted approximately 3.5-fold more ova of Ancylostoma spp. and Trichuris spp. and 4.6-fold more ova of Toxocara spp. than the mini-FLOTAC, and counted 27.9-, 17.1- and 10.2-fold more of these same ova than Imagyst, respectively. These differences translated into differences between the test sensitivities at low egg count levels (< 50 eggs/g), with Parasight AIO > mini-FLOTAC > Imagyst. At higher egg counts Parasight AIO and mini-FLOTAC performed with comparable precision (which was significantly higher that than Imagyst), whereas at lower counts (> 30 eggs/g) Parasight was more precise than both mini-FLOTAC and Imagyst, while the latter two methods did not significantly differ from each other. CONCLUSIONS In general, Parasight AIO analyses were both more precise and sensitive than mini-FLOTAC and Imagyst and quantitatively correlated well with mini-FLOTAC. While Parasight AIO produced lower raw counts in eggs-per-gram than mini-FLOTAC, these could be corrected using the data generated from these correlations.
Collapse
Affiliation(s)
| | - Leah Britton
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Britt Ripley
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA
| | - Elizabeth Ubelhor
- Lexington Humane Society, 1600 Old Frankfort Pike, Lexington, KY, 40504, USA
| | - Paul Slusarewicz
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY, 40505, USA.
| |
Collapse
|
5
|
Lozano J, Almeida C, Vicente E, Sebastião D, Palomero AM, Cazapal-Monteiro C, Arias MS, Oliveira M, Carvalho LMD, Paz-Silva A. Assessing the efficacy of the ovicidal fungus Mucor circinelloides in reducing coccidia parasitism in peacocks. Sci Rep 2024; 14:11352. [PMID: 38762506 PMCID: PMC11102495 DOI: 10.1038/s41598-024-61816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
The biological control of gastrointestinal (GI) parasites using predatory fungi has been recently proposed as an accurate and sustainable approach in birds. The current study aimed to assess for the first time the efficacy of using the native ovicidal fungus Mucor circinelloides (FMV-FR1) in reducing coccidia parasitism in peacocks. For this purpose, an in vivo trial was designed in the resident peacock collection (n = 58 birds) of the São Jorge Castle, at Lisbon, Portugal. These animals presented an initial severe infection by coccidia of the genus Eimeria (20106 ± 8034 oocysts per gram of feces, OPG), and thus received commercial feed enriched with a M. circinelloides suspension (1.01 × 108 spores/kg feed), thrice-weekly. Fresh feces were collected every 15 days to calculate the coccidia shedding, using the Mini-FLOTAC technique. The same bird flock served simultaneously as control (t0 days) and test groups (t15-t90 days). The average Eimeria sp. shedding in peacocks decreased up to 92% following fungal administrations, with significant reduction efficacies of 78% (p = 0.004) and 92% (p = 0.012) after 45 and 60 days, respectively. Results from this study suggest that the administration of M. circinelloides spores to birds is an accurate solution to reduce their coccidia parasitism.
Collapse
Grants
- CIISA/FMV Project UIDB/00276/2020 Fundação para a Ciência e a Tecnologia
- CIISA/FMV Project UIDB/00276/2020 Fundação para a Ciência e a Tecnologia
- CIISA/FMV Project UIDB/00276/2020 Fundação para a Ciência e a Tecnologia
- Project PID2020-120208RB-I00 MCINN, Spain; FEDER
- Project PID2020-120208RB-I00 MCINN, Spain; FEDER
- Project PID2020-120208RB-I00 MCINN, Spain; FEDER
- Project PID2020-120208RB-I00 MCINN, Spain; FEDER
- Project ED431B 2021/07 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- Project ED431B 2021/07 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- Project ED431B 2021/07 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- Project ED431B 2021/07 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
Collapse
Affiliation(s)
- João Lozano
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Cristina Almeida
- Exoclinic - Clínica Veterinária de Aves e Exóticos, Quinta de Santo António, 1495-049, Miraflores, Portugal
| | - Eduardo Vicente
- EGEAC - Empresa de Gestão de Equipamentos e Animação Cultural, Castelo de São Jorge, Rua de Santa Cruz, 1100-129, Lisbon, Portugal
| | - Daniela Sebastião
- EGEAC - Empresa de Gestão de Equipamentos e Animação Cultural, Castelo de São Jorge, Rua de Santa Cruz, 1100-129, Lisbon, Portugal
| | - Antonio Miguel Palomero
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Cristiana Cazapal-Monteiro
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - María Sol Arias
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Manuela Oliveira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Luís Madeira de Carvalho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| | - Adolfo Paz-Silva
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
6
|
Chen X, Qiu X, Ni J, Liao S, Qi N, Li J, Lv M, Lin X, Cai H, Hu J, Song Y, Yin L, Zhu Y, Zhang J, Zhang H, Sun M. Immunoprotective effects of DNA vaccine against Eimeria tenella based on EtAMA3 and EtRON2 L2. Vet Parasitol 2024; 327:110141. [PMID: 38367528 DOI: 10.1016/j.vetpar.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Eimeria tenella is the most pathogenic and harmful intestinal parasitic protozoan. Recombinant DNA vaccines open options for promising strategies for preventing avian coccidiosis, replacing chemical drugs and live oocyst vaccines. Two important antigenic proteins, EtAMA3 (also known as SporoAMA1) and EtRON2L2, act together to promote the invasion of E. tenella sporozoites. In this study, a recombinant DNA vaccine, designated pcDNA3.1(+)-AR, was constructed based on EtAMA3DII, EtRON2L2D3, and EtRON2L2D4. Chickens were intramuscularly immunized with different doses (25, 50, or 100 μg) of pcDNA3.1(+)-AR to evaluate its immunoprotective effects in vivo. The chickens in the 50 μg and 100 μg groups had higher cytokine concentrations (interleukin 2, interferon-gamma, and interleukin 10), and lesion scores (81.9% and 67.57%, respectively) and relative oocyst production (47% and 19%, respectively) reduced compared with the unchallenged group, indicating partial protection against E. tenella. These results suggest that pcDNA3.1(+)-AR is a promising vaccine candidate against avian coccidiosis.
Collapse
Affiliation(s)
- Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xixi Qiu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junli Ni
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoji Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
7
|
Britton L, Ripley B, Slusarewicz P. Relative egg extraction efficiencies of manual and automated fecal egg count methods in equines. Helminthologia 2024; 61:20-29. [PMID: 38659463 PMCID: PMC11038241 DOI: 10.2478/helm-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024] Open
Abstract
The World Association for the Advancement of Veterinary Parasitology recently released new recommendations for the design of fecal egg count (FEC) reduction tests for livestock. These provide suggestions as to the number of animals to be sampled and the minimum number of eggs that must be counted to produce statistically meaningful results. One of the considerations for study design is the multiplication factor of the FEC method to be used; methods with lower multiplication factors require fewer animals to be sampled because they are presumed to count more eggs per test. However, multiplication factor is not the sole determinant of the number of eggs counted by any given method, since different techniques use very different sample extraction methodologies that could affect the number of eggs detected beyond just the amount of feces examined. In this light, we compared three commonly used manual FEC methods (mini-FLOTAC, McMaster and Wisconsin) and two automated methods (Imagyst and Parasight All-in-One) with respect to how many equine strongylid and ascarid eggs they counted in the same samples. McMaster and mini-FLOTAC (multiplication factors of 25x and 5x, respectively) produced the most accurate results of the methods tested but mini-FLOTAC counted approximately 5-times more eggs than McMaster. However, Wisconsin and Parasight (multiplication factor = 1x) counted 3-times more ova than mini-FLOTAC, which was less than the 5-fold difference in their multiplication factors. As a result, these tests perform with multiplication factors more akin to 1.6x relative to mini-FLOTAC. Imagyst, due to its unique sample preparation methodology, does not have a traditional multiplication factor but performed similarly to McMaster with respect to egg recovery.
Collapse
Affiliation(s)
- L. Britton
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY40505, USA
| | - B. Ripley
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY40505, USA
| | - P. Slusarewicz
- Parasight System Inc., Suite 2130, 1532 N. Limestone St., Lexington, KY40505, USA
| |
Collapse
|
8
|
Höglund J, Daş G, Tarbiat B, Geldhof P, Jansson DS, Gauly M. Ascaridia galli - An old problem that requires new solutions. Int J Parasitol Drugs Drug Resist 2023; 23:1-9. [PMID: 37516026 PMCID: PMC10409999 DOI: 10.1016/j.ijpddr.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
Reports of Ascaridia galli in laying hens in Europe have increased since the ban on conventional battery cages in 2012. As this parasite is transmitted directly via the faecal-oral route by parasite eggs containing a larva, it is reasonable to assume that the escalating problem is related to the increased exposure now occurring in modern welfare-friendly cage-free housing systems. On many farms, A. galli reappears in subsequent flocks, even though the birds have no access to the outdoors, biosecurity is high and empty houses are cleaned and disinfected during downtime. Since the egg production cycle lasts only ≈80 weeks and recombinant antigen production for helminth vaccines has not yet been solved, the development of a vaccine seems to be an unrealistic option. Therefore, disrupting the life cycle of the parasite by other means, including the strategic use of dewormers, appears to be the key to controlling infection. Of concern is that only one class of anthelmintics is licenced for poultry in Europe and that are usually administered indiscriminately through the birds' drinking water and often too late when the parasite is already established. If current calendar-based parasite control strategies are not changed, there is a risk that resistance to anthelmintics may develop, as has already been demonstrated with nematodes in livestock. We insist that treatments can be more effective and the risk of developing drug resistance can be mitigated if we invest in a better understanding of A. galli responses to more prudent and judicious use of anthelmintics. This review identifies knowledge gaps and highlights aspects of sustainable parasite control that require further research to support commercial egg producers.
Collapse
Affiliation(s)
- Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Gürbüz Daş
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Behdad Tarbiat
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Peter Geldhof
- Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Désirée S Jansson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Matthias Gauly
- Free University of Bolzano, Department of Animal Science, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
9
|
Bucki M, Dhufaigh KN, O'Brien C, Weatherley A, Walshe N, McElligott T. Comparison of ovine faecal Strongyle egg counts from an accredited laboratory and a rapid, on-site parasite diagnostic system utilising a smartphone app and machine learning. Vet Parasitol 2023; 320:109976. [PMID: 37385104 DOI: 10.1016/j.vetpar.2023.109976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Traditional treatment for gastrointestinal helminths in grazing livestock often involves untargeted, metaphylactic blanket treatment of animals with anthelmintics. As a result, resistance to anthelmintic drugs has become a significant issue for farmers and veterinarians worldwide, impacting farm profitability and animal welfare. Faecal egg counts (FECs) are an important diagnostic test to combat further anthelmintic resistance as they enable practitioners to better distinguish between animals that require treatment and those that do not. FECs are labour-intensive, time-consuming and require trained personnel to process the samples and visually identify the parasite eggs. Consequently, the time between sample collection, transport, analysis, results, and treatment can take days. This study aimed to evaluate a rapid, on-site parasite diagnostic system utilising a smartphone app and machine learning in terms of its capability to provide reliable egg counts while decreasing the turnaround time for results associated with outsourcing the analysis. A total of 105 ovine faecal samples were collected. Each sample was homogenised and split equally between two containers. One container per sample was processed using the on-site, app-based system, the second container was sent to an accredited laboratory. Strongyle egg counts were conducted via video footage of samples by the system's machine learning (ML) and a trained technician (MT) and via microscopic examination by an independent laboratory technician (LAB). Results were statistically analysed using a generalised linear model using SAS® (Version 9.4) software. The ratio of means was used to determine non-inferiority of the ML results compared to the LAB results. Both system egg counts (ML and MT) were higher (p < 0.0001) compared to those obtained from the laboratory (LAB). There was no statistically significant difference between the ML and MT counts. The app-based system utilising machine learning has been found to be non-inferior to the accredited laboratory at quantifying Strongyle eggs in ovine faecal samples. With its quick result turnaround, low outlay cost and reusable components, this portable diagnostic system can help veterinarians to increase their testing capacity, perform on-farm testing and deliver faster and more targeted parasite treatment to combat anthelmintic resistance.
Collapse
|
10
|
Ferreira SCM, Jarquín-Díaz VH, Heitlinger E. Amplicon sequencing allows differential quantification of closely related parasite species: an example from rodent Coccidia (Eimeria). Parasit Vectors 2023; 16:204. [PMID: 37330545 PMCID: PMC10276917 DOI: 10.1186/s13071-023-05800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Quantifying infection intensity is a common goal in parasitological studies. We have previously shown that the amount of parasite DNA in faecal samples can be a biologically meaningful measure of infection intensity, even if it does not agree well with complementary counts of transmission stages (oocysts in the case of Coccidia). Parasite DNA can be quantified at relatively high throughput using quantitative polymerase chain reaction (qPCR), but amplification needs a high specificity and does not simultaneously distinguish between parasite species. Counting of amplified sequence variants (ASVs) from high-throughput marker gene sequencing using a relatively universal primer pair has the potential to distinguish between closely related co-infecting taxa and to uncover the community diversity, thus being both more specific and more open-ended. METHODS We here compare qPCR to the sequencing-based amplification using standard PCR and a microfluidics-based PCR to quantify the unicellular parasite Eimeria in experimentally infected mice. We use multiple amplicons to differentially quantify Eimeria spp. in a natural house mouse population. RESULTS We show that sequencing-based quantification has high accuracy. Using a combination of phylogenetic analysis and the co-occurrence network, we distinguish three Eimeria species in naturally infected mice based on multiple marker regions and genes. We investigate geographical and host-related effects on Eimeria spp. community composition and find, as expected, prevalence to be largely explained by sampling locality (farm). Controlling for this effect, the novel approach allowed us to find body condition of mice to be negatively associated with Eimeria spp. abundance. CONCLUSIONS We conclude that amplicon sequencing provides the underused potential for species distinction and simultaneous quantification of parasites in faecal material. The method allowed us to detect a negative effect of Eimeria infection on the body condition of mice in the natural environment.
Collapse
Affiliation(s)
- Susana C. M. Ferreira
- Division of Computational Systems Biology, Center for Microbiology and Ecological Systems Science, University of Vienna, Djerassipl. 1, 1030 Vienna, Austria
- Institute for Biology. Department of Molecular Parasitology, Humboldt-Universität zu Berlin (HU), Philippstr. 13, Haus 14, 10115 Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Institute for Biology. Department of Molecular Parasitology, Humboldt-Universität zu Berlin (HU), Philippstr. 13, Haus 14, 10115 Berlin, Germany
- Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW) im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Emanuel Heitlinger
- Institute for Biology. Department of Molecular Parasitology, Humboldt-Universität zu Berlin (HU), Philippstr. 13, Haus 14, 10115 Berlin, Germany
- Leibniz-Institut Für Zoo- Und Wildtierforschung (IZW) im Forschungsverbund Berlin E.V., Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
11
|
Oladosu OJ, Hennies M, Stehr M, Metges CC, Gauly M, Daş G. Pattern and repeatability of ascarid-specific antigen excretion through chicken faeces, and the diagnostic accuracy of coproantigen measurements as compared with McMaster egg counts and plasma and egg yolk antibody measurements in laying hens. Parasit Vectors 2023; 16:175. [PMID: 37264440 DOI: 10.1186/s13071-023-05782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND A coproantigen enzyme-linked immunosorbent assay (ELISA) has recently been proposed for detecting ascarid infections in chickens. The excretion pattern of ascarid antigens through chicken faeces and the consistency of measurements over the course of infections are currently unknown. This study evaluates the pattern and repeatability of worm antigen per gram of faeces (APG) and compares the diagnostic performance of the coproantigen ELISA with a plasma and egg yolk antibody ELISA and McMaster faecal egg counts (M-FEC) at different weeks post-infection (wpi). METHODS Faecal, blood and egg yolk samples were collected from laying hens that were orally infected with a mix of Ascaridia galli and Heterakis gallinarum eggs (N = 108) or kept as uninfected controls (N = 71). Measurements including (a) APG using a coproantigen ELISA, (b) eggs per gram of faeces (EPG) using the McMaster technique and (c) ascarid-specific IgY in plasma and in egg yolks using an ascarid-specific antibody ELISA) were performed between wpi 2 and 18. RESULTS Time-dependent significant differences in APG between infected and non-infected laying hens were quantified. At wpi 2 (t(164) = 0.66, P = 1.00) and 4 (t(164) = -3.09, P = 0.094) no significant differences were observed between the groups, whereas infected hens had significantly higher levels of APG than controls by wpi 6 (t(164) = -6.74, P < 0.001). As indicated by a high overall repeatability estimate of 0.91 (CI = 0.89-0.93), APG could be measured consistently from the same individual. Compared to McMaster and antibody ELISA, coproantigen ELISA showed the highest overall diagnostic performance (area under curve, AUC = 0.93), although the differences were time-dependent. From wpi 6 to 18 coproantigen ELISA had an AUC > 0.95, while plasma IgY ELISA showed the highest diagnostic performance in wpi 2 (AUC = 0.95). M-FEC had the highest correlation with total worm burden, while APG had highest correlations with weights and lengths of A. galli. CONCLUSION Ascarid antigen excretion through chicken faeces can be measured with high accuracy and repeatability using a coproantigen ELISA. The antigen excretion increases over time, and is associated with worm maturation, particularly with the size of A. galli. Our results suggest the necessity of complementary use of different diagnostic tools for a more accurate diagnosis of infections.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mark Hennies
- TECOmedical Group, Marie-Curie-Str. 1, 53359, Rheinbach, Germany
| | - Manuel Stehr
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Matthias Gauly
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5, 39100, Bolzano, Italy
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
12
|
Prevalence and magnitude of gastrointestinal helminth infections in cage-free laying chickens in Australia. Vet Parasitol Reg Stud Reports 2023; 37:100819. [PMID: 36623907 DOI: 10.1016/j.vprsr.2022.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Helminth infections have been re-emerging with the growing popularity of free-range and floor-based chicken production systems. The aim of this study was to determine the prevalence and worm burdens of intestinal helminth infection in cage-free laying chickens in Australia. In an online survey about worm prevalence, a high proportion of respondents reported the detection of Ascaridia galli (77%), followed by tapeworms (69%) and caecal worms (Heterakis gallinarum) (62%), whereas fewer respondents (23%) reported the presence of hair worms (Capillaria spp.) in their flocks. Total worm recovery from 407 laying hens on four farms found that 92.1% of hens harboured one or more helminth parasite with a prevalence of 73 to 100% across farms. Mixed infections were common with 79% of hens harbouring two or more helminth species. The prevalence of nematode species H. gallinarum, A. galli and Capillaria spp. was 87, 82 and 35% respectively. Five cestode species were found with a low individual chicken prevalence (Raillietina tetragona 4.7%, Raillietina echinobothrida 3.2%, Raillietina cesticillus 5.2%, Choanotaenia infundibulum 4.4%, and Hymenolepis cantaniana 4.4%). The hens harboured an average of 71 worms with H. gallinarum having the highest mean burden (45.5 worms/hen) followed by A. galli (22.0 worms/hen), Capillaria spp. (2.7 worms/hen) and cestodes (0.8 worms/hen). The sex ratio (female:male worms) was 1.38:1 for A. galli, and 1.77:1 for H. gallinarum. There was a strong positive correlation between A. galli female worm count and excreta egg count (EECs) (rs = 0.94, P < 0.0001) and also between total nematode worm count and EEC (rs = 0.82, P < 0.0001) in individual hens. When investigating intestinal excreta (n = 10) and caecal excreta (n = 10) of 16 chicken flocks the prevalence of infection with ascarid worms in intestinal and caecal excreta was 71 and 78% respectively and 27% prevalence of Capillaria spp. in intestinal excreta with mean EECs of 407, 404, and 18 eggs/g of excreta (EPG), respectively. These results suggest that most chickens kept in free-range or floor production systems are infected with one or more helminth parasite species. Heavy worm infections would likely affect the production performance and welfare of birds with adverse economic impact. Strategic or tactical anthelmintic treatment with effective anthelmintic could reduce this impact.
Collapse
|
13
|
Characterization of interferon gamma gene in relation to immunological responses in Haemonchus contortus resistant and susceptible Garole sheep. Vet Res Commun 2022; 47:599-614. [PMID: 36229724 DOI: 10.1007/s11259-022-10015-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 10/17/2022]
Abstract
Garole sheep exhibits within-breed difference in resistance to natural gastrointestinal nematode infection predominated by Haemonchus contortus. In the present study, interferon gamma gene (IFN-γ) was characterized in relation to parasitological, haematological, and immune response against H. contortus in resistant and susceptible Garole sheep. Resistant and susceptible Garole sheep were selected from the field based on consistent low faecal egg counts (FEC) for one year and single nucleotide polymorphisms (SNPs) in the IFN-γ gene. The partial amplification of IFN-γ gene (1282 bp) revealed 4 SNPs exclusively in resistant sheep and 3 SNPs were shared between resistant and susceptible Garole sheep. The selected resistant and susceptible Garole sheep were challenged with H. contortus infection. The parasitological, haematological, immunological responses, and expression of IFN-γ gene were compared between the resistant and susceptible Garole sheep. The FEC of resistant sheep was significantly (P < 0.05) lower than the susceptible sheep infected with H. contortus. There was spontaneous elimination of H. contortus from 28 to 33 days post infection (DPI) in resistant sheep. Haemoglobin and packed cell volume were significantly (P < 0.05) higher in resistant sheep than the susceptible sheep. The serum concentration of immunoglobulin (Ig)G1 and IgA and cytokine IFN-γ activity and also the expression of IFN-γ gene were significantly (P < 0.05) higher in the infected resistant sheep from 14 to 28 DPI compared to the susceptible sheep. In resistant sheep, IgA and IgG1 and cytokine IFN-γ positively correlated with expression of IFN-γ gene, and the SNPs recorded in the resistant sheep only might play an important role in conferring resistance against H. contortus. Further studies are required to elucidate the role of IFN-γ gene in H. contortus resistance in Garole sheep.
Collapse
|
14
|
Abdu S, Chimento M, Alarcón‐Nieto G, Zúñiga D, Aplin LM, Farine DR, Brandl HB. The performance of field sampling for parasite detection in a wild passerine. Ecol Evol 2022; 12:e9242. [PMID: 36016817 PMCID: PMC9398886 DOI: 10.1002/ece3.9242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022] Open
Abstract
Parasites can impact the behavior of animals and alter the interplay with ecological factors in their environment. Studying the effects that parasites have on animals thus requires accurate estimates of infections in individuals. However, quantifying parasites can be challenging due to several factors. Laboratory techniques, physiological fluctuations, methodological constraints, and environmental influences can introduce measurement errors, in particular when screening individuals in the wild. These issues are pervasive in ecological studies where it is common to sample study subjects only once. Such factors should be carefully considered when choosing a sampling strategy, yet presently there is little guidance covering the major sources of error. In this study, we estimate the reliability and sensitivity of different sampling practices at detecting two internal parasites-Serratospiculoides amaculata and Isospora sp.-in a model organism, the great tit Parus major. We combine field and captive sampling to assess whether individual parasite infection status and load can be estimated from single field samples, using different laboratory techniques-McMaster and mini-FLOTAC. We test whether they vary in their performance, and quantify how sample processing affects parasite detection rates. We found that single field samples had elevated rates of false negatives. By contrast, samples collected from captivity over 24 h were highly reliable (few false negatives) and accurate (repeatable in the intensity of infection). In terms of methods, we found that the McMaster technique provided more repeatable estimates than the mini-FLOTAC for S. amaculata eggs, and both techniques were largely equally suitable for Isospora oocysts. Our study shows that field samples are likely to be unreliable in accurately detecting the presence of parasites and, in particular, for estimating parasite loads in songbirds. We highlight important considerations for those designing host-parasite studies in captive or wild systems giving guidance that can help select suitable methods, minimize biases, and acknowledge possible limitations.
Collapse
Affiliation(s)
- Salamatu Abdu
- Department of BiologyUniversity of KonstanzConstanceGermany
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Centre for the Advanced Study of Collective BehaviourUniversität KonstanzConstanceGermany
| | - Michael Chimento
- Department of BiologyUniversity of KonstanzConstanceGermany
- Centre for the Advanced Study of Collective BehaviourUniversität KonstanzConstanceGermany
- Cognitive and Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
| | - Gustavo Alarcón‐Nieto
- Cognitive and Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
| | - Daniel Zúñiga
- Department of BiologyUniversity of KonstanzConstanceGermany
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorRadolfzellGermany
| | - Lucy M. Aplin
- Centre for the Advanced Study of Collective BehaviourUniversität KonstanzConstanceGermany
- Cognitive and Cultural Ecology Research GroupMax Planck Institute of Animal BehaviorRadolfzellGermany
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Damien R. Farine
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Hanja B. Brandl
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Centre for the Advanced Study of Collective BehaviourUniversität KonstanzConstanceGermany
| |
Collapse
|
15
|
Evaluation of in vitro methods of anthelmintic efficacy testing against Ascaridia galli. J Helminthol 2022; 96:e29. [PMID: 35437126 DOI: 10.1017/s0022149x22000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate methods for in vitro assessment of anthelmintic efficacy against the chicken nematode Ascaridia galli this study firstly evaluated sample preparation methods including recovery of eggs from excreta using different flotation fluids and induced larval hatching by the deshelling-centrifugation method and the glass-bead method with or without bile. It then evaluated two in vitro assays, the in-ovo larval development assay (LDA) and larval migration inhibition assay (LMIA), for anthelmintic efficacy testing against A. galli using fresh eggs and artificially hatched larvae, respectively. Four anthelmintics, thiabendazole (TBZ), fenbendazole (FBZ), levamisole (LEV) and piperazine (PIP) were employed using an A. galli isolate of known susceptibility. The results suggested that the LDA and LMIA could successfully be used to generate concentration response curves for the tested drugs. The LDA provided EC50 values for inhibition of egg embryonation of 0.084 and 0.071 μg/ml for TBZ and FBZ, respectively. In the LMIA, the values of effective concentration (EC50) of TBZ, FBZ, LEV and PIP were 105.9, 6.32, 349.9 and 6.78 × 107 nM, respectively. For such in vitro studies, a saturated sugar solution showed high egg recovery efficiency (67.8%) and yielded eggs of the highest morphological quality (98.1%) and subsequent developmental ability (93.3%). The larval hatching assays evaluated did not differ in hatching efficiency but the deshelling-centrifugation method yielded larvae that had slightly better survival rates. For final standardization of these tests and establishment of EC50 reference values, tests using isolates of A. galli of defined resistance status need to be performed.
Collapse
|
16
|
Mesa-Pineda C, Navarro-Ruíz JL, López-Osorio S, Chaparro-Gutiérrez JJ, Gómez-Osorio LM. Chicken Coccidiosis: From the Parasite Lifecycle to Control of the Disease. Front Vet Sci 2021; 8:787653. [PMID: 34993246 PMCID: PMC8724208 DOI: 10.3389/fvets.2021.787653] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
The poultry industry is one of the main providers of protein for the world's population, but it faces great challenges including coccidiosis, one of the diseases with the most impact on productive performance. Coccidiosis is caused by protozoan parasites of the genus Eimeria, which are a group of monoxenous obligate intracellular parasites. Seven species of this genus can affect chickens (Gallus gallus), each with different pathogenic characteristics and targeting a specific intestinal location. Eimeria alters the function of the intestinal tract, generating deficiencies in the absorption of nutrients and lowering productive performance, leading to economic losses. The objective of this manuscript is to review basic concepts of coccidiosis, the different Eimeria species that infect chickens, their life cycle, and the most sustainable and holistic methods available to control the disease.
Collapse
Affiliation(s)
| | - Jeffer L. Navarro-Ruíz
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | - Sara López-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
17
|
Comparison of the Modified McMaster and Mini-FLOTAC methods for the enumeration of nematode eggs in egg spiked and naturally infected chicken excreta. Vet Parasitol 2021; 299:109582. [PMID: 34628179 DOI: 10.1016/j.vetpar.2021.109582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022]
Abstract
Excreta egg counting techniques are used for indirectly estimating the magnitude of gastrointestinal nematode infection in live animals. The aim of this study was to optimise laboratory and field sampling methods for routine monitoring of nematode infections in chickens by evaluating the sensitivity, accuracy, and precision of the Modified McMaster (MM) and Mini-FLOTAC (MF) methods using laying chicken excreta samples spiked with estimated true numbers of eggs (Experiment 1 = 5-1500 EPG (eggs/g); Experiment 2 = 5-500 EPG) without and with operator effects, respectively or using individual fresh excreta (n = 230) and fresh floor excreta (n = 42) from naturally infected free-range layer farms. The Coefficient of Variation (CV) was assessed within and between operators and the time spent on sample preparation and counting was also evaluated. MF was more sensitive than MM at ≤ 50 EPG level but not above this while MM had a significantly higher egg recovery rate than MF for ≥ 50 EPG levels (MM = 89.7 %, MF = 68.2 %; P < 0.0001). Operator factors did not have a significant effect (P = 0.358-0.998) on egg counts across methods and EPG levels. The CV between replicates of the MM and MF methods for ≥ 50 EPG was 43.4 and 36.5 %, respectively. The inter-observer CV of the MM and MF methods for ≥ 50 EPG levels was 63.8 and 44.3 % respectively. When the naturally infected free-range layers which were individual caged for excreta sampling, the proportion of samples positive for MM and MF were 91.7 and 96.5 %, respectively (P = 0.023). MM resulted in significantly (P = 0.029) higher excreta egg counts (604) than MF (460) with the difference between methods greatest at higher EPG levels. Fresh floor excreta (pooled or individual) and individual caged chicken excreta did not have significant effect on egg counts (P = 0.274). The total time taken for sample preparation and egg counting was significantly lower using the MM method (4.3-5.7 min) than the MF method (16.9-23.8 min) (P < 0.0001). In conclusion, MM was more accurate than MF, particularly at higher EPG levels, but slightly less precise and sensitive, particularly at low EPG levels, while taking less than 25 % of the laboratory time per sample. Our observations indicate that the MM method is more appropriate for rapid diagnosis of chicken nematodes in the field. Pooled fresh floor excreta samples would be sufficient to indicate infection level in free range farms.
Collapse
|
18
|
Zloch A, Kuchling S, Hess M, Hess C. In addition to birds' age and outdoor access, the detection method is of high importance to determine the prevalence of gastrointestinal helminths in laying hens kept in alternative husbandry systems. Vet Parasitol 2021; 299:109559. [PMID: 34507201 DOI: 10.1016/j.vetpar.2021.109559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/16/2023]
Abstract
The prevalence of gastrointestinal helminths was investigated in sixty-six commercial non-caged layer flocks. Twenty-nine flocks were housed indoors in aviaries or floor systems, nineteen flocks were kept in conventional free-range systems with outdoor access, and eighteen flocks in organic free-range systems. Flocks were investigated at end of rearing (mean age 17 weeks), peak of egg production (mean age 38 weeks) and before slaughter (mean age 74 weeks). Four different methods were applied to determine worm infestation. During necropsies, worm infestations were recorded and mucosal scrapings were evaluated for the presence of worm eggs. Faecal samples from each flock were investigated by simple flotation method and McMaster counting technique. No gastrointestinal helminths were found in pullets. During production, 87.9 % of the layer flocks were infected with at least one nematode species at the peak of production. The prevalence further increased significantly up to 98.5 % at the end of production (p=0.05). This increase could be ascribed mainly to infections with Ascaridia (A.) galli and/or Heterakis (H.) gallinarum which were most prevalent in all husbandry systems. Furthermore, their prevalence increased significantly with the age of birds (p=0.023; p < 0.001). With regard to the husbandry system, the prevalence of Capillaria spp. was significantly higher in flocks from outdoor systems compared to flocks that were kept indoors. Cestodes were only detected at the end of production with a prevalence of 15.2 % and significantly more flocks with access to outdoor run were found positive. Interestingly, H. gallinarum was found with a high prevalence indoor and in outdoor systems. Anthelminthic treatment did not impact the prevalence of nematode infections. Comparing four different methods for the detection of helminths it was revealed that their efficiencies varied depending on the worm species. Overall, the simple flotation method was superior to detect A. galli and Capillaria spp. This method proved also very efficient for the detection of H. gallinarum but the additional evaluation of the worm infestation during necropsy increased the level of prevalence. Cestodes were mainly found during necropsies when the worm infestation was evaluated. The detection of parasite eggs in mucosal scrapings from the intestines was the least effective method for all helminths. These findings lead to the recommendation to combine faecal investigations with an evaluation of the worm infestation during necropsy of at least five birds.
Collapse
Affiliation(s)
- Angelika Zloch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria; Tierarzt GmbH Dr. Mitsch, Haufgasse 24, 1110, Vienna, Austria.
| | - Sabrina Kuchling
- Austrian Agency for Health and Food Safety (AGES), Division for Data, Statistics and Risk Assessment, Zinzendorfgasse 27/1, 8010, Graz, Austria.
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
19
|
Implementation of Mini-FLOTAC in Routine Diagnosis of Coccidia and Helminth Infections in Domestic and Exotic Birds. Vet Sci 2021; 8:vetsci8080160. [PMID: 34437482 PMCID: PMC8402632 DOI: 10.3390/vetsci8080160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Mini-FLOTAC (MF) has recently been proposed for the fecal quantification of gastrointestinal (GI) parasites in birds due to its higher sensitivity and precision in comparison with the McMaster method. The current research aimed to test the use of MF in routine diagnosis of coccidia and helminth infections in several domestic and exotic bird collections in Portugal. Between July 2020 and April 2021, a total of 142 fecal samples from organic layers, peacocks and ratites were collected in four Portuguese bird collections and processed using MF and fecal cultures to identify and calculate GI parasite shedding and prevalence. The McMaster method was also used to compare the shedding levels obtained for both quantitative techniques. MF’s relative sensitivity and specificity were also assessed, using McMaster as the reference technique. The implementation of MF resulted in an average Eimeria spp. shedding higher in peacocks from bird collection 2 (502 OPG), followed by peacocks from collection 1 (107 OPG) and organic layers (24 OPG) and peacocks from collection 3 (9 OPG). Peacocks were also positive for Capillaria spp., Trichostrongylus tenuis and Strongyloides pavonis, whereas ostriches and emus were infected by L. douglassii. The MF protocol for exotic animals and the McMaster method did not differ significantly for each parasitic agent and bird species, and MF achieved relative sensitivities and specificities higher than 70% for Galliform Eimeria spp., peacock helminths and ratites’ L. douglassii infections. Higher L. douglassii EPG values were identified using the MF protocol for exotic species (2 g of feces/38 mL of sucrose solution), followed by McMaster 2/28, MF 5/45 and MF 2/18. The use of MF allowed for obtaining different intestinal parasitic populations in several bird species and locations, and MF 2/38 is globally proposed as the most suitable protocol for bird fecal samples as an alternative to the McMaster method in the diagnosis of avian intestinal parasitic infections.
Collapse
|
20
|
Ghafar A, Abbas G, King J, Jacobson C, Hughes KJ, El-Hage C, Beasley A, Bauquier J, Wilkes EJ, Hurley J, Cudmore L, Carrigan P, Tennent-Brown B, Nielsen MK, Gauci CG, Beveridge I, Jabbar A. Comparative studies on faecal egg counting techniques used for the detection of gastrointestinal parasites of equines: A systematic review. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100046. [PMID: 35284858 PMCID: PMC8906068 DOI: 10.1016/j.crpvbd.2021.100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/04/2022]
Abstract
Faecal egg counting techniques (FECT) form the cornerstone for the detection of gastrointestinal parasites in equines. For this purpose, several flotation, centrifugation, image- and artificial intelligence-based techniques are used, with varying levels of performance. This review aimed to critically appraise the literature on the assessment and comparison of various coprological techniques and/or modifications of these techniques used for equines and to identify the knowledge gaps and future research directions. We searched three databases for published scientific studies on the assessment and comparison of FECT in equines and included 27 studies in the final synthesis. Overall, the performance parameters of McMaster (81.5%), Mini-FLOTAC® (33.3%) and simple flotation (25.5%) techniques were assessed in most of the studies, with 77.8% of them comparing the performance of at least two or three methods. The detection of strongyle, Parascaris spp. and cestode eggs was assessed for various FECT in 70.4%, 18.5% and 18.5% studies, respectively. A sugar-based flotation solution with a specific gravity of ≥1.2 was found to be the optimal flotation solution for parasitic eggs in the majority of FECT. No uniform or standardised protocol was followed for the comparison of various FECT, and the tested sample size (i.e. equine population and faecal samples) also varied substantially across all studies. To the best of our knowledge, this is the first systematic review to evaluate studies on the comparison of FECT in equines and it highlights important knowledge gaps in the evaluation and comparison of such techniques.
Collapse
Affiliation(s)
- Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Justine King
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Kristopher J. Hughes
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Anne Beasley
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Edwina J.A. Wilkes
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - Brett Tennent-Brown
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Martin K. Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Charles G. Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
21
|
Improving the sensitivity of gastrointestinal helminth detection using the Mini-FLOTAC technique in wild birds. Parasitol Res 2021; 120:3319-3324. [PMID: 34347167 DOI: 10.1007/s00436-021-07267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
High-performance-validated tests are essential for successful epidemiological monitoring, surveillance of parasitic infections, and comparative studies in wildlife populations. The Mini-FLOTAC is a novel flotation-based technique for the sensitive detection and quantification of gastrointestinal parasites that is recently being explored for use in wildlife. A limitation of any flotation-based copromicroscopic method is the selection of the flotation solution (FS), which might influence the performance of the test. However, no study has compared the influence of using different FS in the Mini-FLOTAC technique for parasite detection in wild birds. Here, we evaluated the diagnostic performance of the Mini-FLOTAC in three waterbird host species using two widely used FS: saturated salt (NaCl; specific gravity 1.20) and saturated zinc sulfate (ZnSO4; specific gravity 1.35). One hundred fresh fecal samples were analyzed for parasite fecal egg counts (FEC). Regardless of the host species, fecal samples evaluated with the Mini-FLOTAC method using ZnSO4 resulted in a significantly higher detection rate and higher FEC of strongylid, capillarid, cestode, and trematode parasites, than samples analyzed with the NaCl solution. Our concise study demonstrated the importance of using an appropriate FS for the identification of parasite eggs in wildlife species, especially in hosts with an expected aggregated distribution and low parasite load such as waterbird hosts. The higher analytical sensitivity of the Mini-FLOTAC technique achieved with ZnSO4, and its applicability to fieldwork, highlights this method as a promising tool for the quantitative surveillance of parasite infections in wild bird populations.
Collapse
|
22
|
Nielsen MK. What makes a good fecal egg count technique? Vet Parasitol 2021; 296:109509. [PMID: 34218175 DOI: 10.1016/j.vetpar.2021.109509] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
The first parasite fecal egg counting techniques were described over 100 years ago, and fecal egg counting remains essential in parasitology research as well as in clinical practice today. Several novel techniques have been introduced and validated in recent years, but this work has also highlighted several current issues in this research field. There is a lack of consensus on which diagnostic parameters to evaluate and how to properly design studies doing so. Furthermore, there is a confusing and sometimes incorrect use of terminology describing performance of fecal egg counting techniques, and it would be helpful to address these. This manuscript reviews qualitative and quantitative diagnostic performance parameters, discusses their relevance for fecal egg counting techniques, and highlights some of the challenges with determining them. Qualitative parameters such as diagnostic sensitivity and specificity may be considered classic diagnostic performance metrics, but they generally only have implications at low egg count levels. The detection limit of a given technique is often referred to as the "analytical sensitivity", but this is misleading as the detection limit is a theoretically derived number, whereas analytical sensitivity is determined experimentally. Thus, the detection limit is not a diagnostic performance parameter and does not inform on the diagnostic sensitivity of a technique. Quantitative performance parameters such as accuracy and precision are highly relevant for describing the performance of fecal egg counting techniques, and precision is arguably the more important of the two. An absolute determination of accuracy can only be achieved by use of samples spiked with known quantities of parasite ova, but spiking does not necessarily mimic the true distribution of eggs within a sample, and accuracy estimates are difficult to reproduce between laboratories. Instead, analysis of samples from naturally infected animals can be used to achieve a relative ranking of techniques according to egg count magnitude. Precision can be estimated in a number of different approaches, but it is important to ensure a relevant representation of egg count levels in the study sample set, as low egg counts tend to associate with lower precision estimates. Coefficients of variation generally provide meaningful measures of precision that are independent of the multiplication factor of the techniques evaluated. Taken together, there is a need for clear guidelines for studies validating fecal egg counting techniques in veterinary parasitology with emphasis on what should be evaluated, how studies could be designed, and how to appropriately analyze the data. Furthermore, there is a clear need for better consensus regarding use of terminology describing the diagnostic performance of fecal egg count techniques.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
23
|
Shifaw A, Feyera T, Walkden-Brown SW, Sharpe B, Elliott T, Ruhnke I. Global and regional prevalence of helminth infection in chickens over time: a systematic review and meta-analysis. Poult Sci 2021; 100:101082. [PMID: 33813325 PMCID: PMC8047976 DOI: 10.1016/j.psj.2021.101082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal helminth parasites are a concern for the poultry industry worldwide as they can affect the health, welfare, and production performance. A systematic review of the prevalence over time in different countries may improve our understanding of gastrointestinal helminthiasis in chickens and subsequently lead to improved poultry health. The aim of this systematic review and meta-analysis was to provide an overview of the published information regarding the epidemiology and the diagnostic approaches of chicken helminth infection. Six databases were searched for studies, and a total of 2,985 articles published between 1942 and 2019 were identified and subsequently screened for eligibility using title or abstract and full text assessment, resulting in 191 publications to be used in the study. Postmortem diagnostics (73.8%) and the flotation technique (28.8%) were commonly used to detect helminth infections with a pooled prevalence of 79.4% ranging from 4 to 100%. More than 30 helminth species in chicken populations were identified including Ascaridia galli (35.9%), Heterakis gallinarum (28.5%), Capillaria spp. (5.90%), and Raillietina spp. (19.0%) being the most prevalent. The reported prevalence of helminth infection decreased over time in developing countries while it increased in the developed world. Chicken kept in backyard and free-range systems had a markedly higher pooled prevalence of helminth infection (82.6 and 84.8%, respectively) than those housed in cage production systems (63.6%). This may indicate the need for more rigorous control and prevention measures in free-range and backyard production systems using regular deworming coupled with access to early and accurate diagnosis allowing for early intervention.
Collapse
Affiliation(s)
- Anwar Shifaw
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Teka Feyera
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Department of Veterinary Clinical Studies, College of Veterinary Medicine, Jigjiga University, Jigjiga, Ethiopia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | | | - Timothy Elliott
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Isabelle Ruhnke
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|