1
|
Ip WH, Bertzbach LD, Schreiner S, Dobner T. Adenovirus E1B-55K interferes with cellular IκB kinase complex subunit proteins. Front Immunol 2025; 16:1532742. [PMID: 40103806 PMCID: PMC11913716 DOI: 10.3389/fimmu.2025.1532742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Human adenovirus (HAdV) infections can cause high mortality rates in immunocompromised patients due to the activation of unhampered cytokine storms that are mainly induced by activation of pro-inflammatory cytokines. NF-κB is a transcription factor that is involved in numerous biological processes such as regulation of cell death and proliferation, as well as the activation of innate immune responses including the expression of pro-inflammatory cytokines, chemokines, and other immune response genes. The IKK complex plays a crucial role in the NF-κB pathway by phosphorylating and activating IκB proteins, which leads to the degradation of IκB and the subsequent release and nuclear translocation of NF-κB dimers to initiate gene transcription. The host NF-κB pathway, particularly the formation of the IKK complex, is a common target for viruses to regulate host immune responses or to utilize or inhibit its function for efficient viral replication. So far, investigations of the immune response to adenovirus infection mainly focused on transduction of adenoviral vectors or high-titer infections. Therefore, the molecular mechanism of HAdV- and HAdV gene product-mediated modulation of the NF-κB response in lytic infection is not well understood. Here, we show that HAdV-C5 infection counteracts cellular IκB kinase complex formation. Intriguingly, the IKK complex protein IKKα is targeted to the nucleus and localizes juxtaposed to viral replication centers. Furthermore, IKKα interacts with the early viral E1B-55K protein and facilitates viral replication. Together, our data provide evidence for a novel HAdV-C5 mechanism to escape host immune responses by utilizing NF-κB pathway-independent nuclear functions of IKKα to support efficient viral progeny production.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg, Germany
| | - Luca D Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg, Germany
| |
Collapse
|
2
|
Costa-Garcia M, Moya-Borrego L, Alemany Bonastre R, Moreno Olié R. Optimized protocol for culturing menstrual blood-derived MSCs for combination with oncolytic adenoviruses in cancer treatment. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200907. [PMID: 39758253 PMCID: PMC11697545 DOI: 10.1016/j.omton.2024.200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 01/07/2025]
Abstract
Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions. MenSCs were isolated from donors of different ages and cultured under normoxic and hypoxic conditions, with varying adherence capacities. Hypoxic conditions significantly improved MenSCs proliferation and tumor migration capabilities, as demonstrated by proliferation assays and RNA-sequencing analysis, which revealed upregulation of genes related to cell division and tumor tropism. In vivo studies using a lung adenocarcinoma mouse model confirmed that hypoxia-conditioned MenSCs had superior tumor-homing abilities. The study also demonstrated the feasibility of establishing a master and working cell bank from a single menstrual blood donation. These findings suggest that hypoxia-conditioned MenSCs could be highly effective as OV carriers, potentially leading to better clinical outcomes in cancer treatment by enhancing tumor targeting and therapeutic efficacy.
Collapse
Affiliation(s)
- Marcel Costa-Garcia
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Moya-Borrego
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Alemany Bonastre
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno Olié
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Yang D, Ning J, Zhang Y, Xu X, Zhang D, Fan H, Wang J, Lu G. In vitro assessment of the anti-adenoviral activity of artemisinin and its derivatives. Virus Res 2024; 349:199448. [PMID: 39127240 PMCID: PMC11403056 DOI: 10.1016/j.virusres.2024.199448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Adenoviral infections, particularly in children, remain a significant public health issue with no approved targeted treatments. Artemisinin and its derivatives, well-known for their use in malaria treatment, have shown antiviral activities in recent studies. However, their efficacy against human adenovirus (HAdV) remains unexplored. This study aimed to assess the activity of artemisinin and its derivatives against HAdV infection in vitro using cell lines and primary cells. Our data revealed that artemisinin exhibited dose-dependent anti-HAdV activity with no apparent cytotoxicity over a wide concentration range. Mechanistically, artemisinin did not affect viral attachment or entry into target cells, nor the viral genome entry into cell nucleus. Instead, it inhibited HAdV through suppression of viral DNA replication. Comparative analysis with its derivatives, artesunate and artemisone, showed distinct cytotoxicity and anti-adenoviral profiles, with artemisone showing superior efficacy and lower toxicity. Further validation using a primary airway epithelial cell model confirmed the anti-adenoviral activity of both artemisinin and artemisone against different virus strains. Together, our findings suggest that artemisinin and its derivatives may be promising candidates for anti-HAdV treatment.
Collapse
Affiliation(s)
- Diyuan Yang
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, China; Department of Pediatric Respiratory, Guangzhou women and children's medical center liuzhou hospital, Guangxi, Liuzhou, 545006, China
| | - Jing Ning
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China
| | - Yuyu Zhang
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Xuehua Xu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Dongwei Zhang
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Huifeng Fan
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Jing Wang
- Department of Children's Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gen Lu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
4
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
5
|
Hou X, Wang L, Zhang R, Liu G, Wang T, Wen B, Chang W, Han S, Han J, Fang J, Qi X, Wang J. Differential innate immune responses to fowl adenovirus serotype 4 infection in Leghorn male hepatocellular and chicken embryo fibroblast cells. Poult Sci 2024; 103:103741. [PMID: 38670055 PMCID: PMC11066554 DOI: 10.1016/j.psj.2024.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.
Collapse
Affiliation(s)
- Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gen Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangzhou, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Yang Z, Wei J, He Y, Ren L, Chen S, Deng Y, Zang N, Liu E. Identification of functional pathways and potential genes associated with interferon signaling during human adenovirus type 7 infection by weighted gene coexpression network analysis. Arch Virol 2023; 168:130. [PMID: 37017816 PMCID: PMC10076410 DOI: 10.1007/s00705-023-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 04/06/2023]
Abstract
Human adenovirus type 7 (HAdV-7) can cause severe pneumonia and complications in children. However, the mechanism of pathogenesis and the genes involved remain largely unknown. We collected HAdV-7-infected and mock-infected A549 cells at 24, 48, and 72 hours postinfection (hpi) for RNA sequencing (RNA-Seq) and identified potential genes and functional pathways associated with HAdV-7 infection using weighted gene coexpression network analysis (WGCNA). Based on bioinformatics analysis, 12 coexpression modules were constructed by WGCNA, with the blue, tan, and brown modules significantly positively correlated with adenovirus infection at 24, 48, and 72 hpi, respectively. Functional enrichment analysis indicated that the blue module was mainly enriched in DNA replication and viral processes, the tan module was largely enriched in metabolic pathways and regulation of superoxide radical removal, and the brown module was predominantly enriched in regulation of cell death. qPCR was used to determine transcript abundance of some identified hub genes, and the results were consistent with those from RNA-Seq. Comprehensively analyzing hub genes and differentially expressed genes in the GSE68004 dataset, we identified SOCS3, OASL, ISG15, and IFIT1 as potential candidate genes for use as biomarkers or drug targets in HAdV-7 infection. We propose a multi-target inhibition of the interferon signaling mechanism to explain the association of HAdV-7 infection with the severity of clinical consequences. This study has allowed us to construct a framework of coexpression gene modules in A549 cells infected with HAdV-7, thus providing a basis for identifying potential genes and pathways involved in adenovirus infection and for investigating the pathogenesis of adenovirus-associated diseases.
Collapse
Affiliation(s)
- Zhongying Yang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jianhua Wei
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu He
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Luo Ren
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shiyi Chen
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Na Zang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
7
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Wang XP, Wen B, Zhang XJ, Ma L, Liang XL, Zhang ML. Transcriptome Analysis of Genes Responding to Infection of Leghorn Male Hepatocellular Cells With Fowl Adenovirus Serotype 4. Front Vet Sci 2022; 9:871038. [PMID: 35774982 PMCID: PMC9237548 DOI: 10.3389/fvets.2022.871038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a highly pathogenic virus with a broad host range that causes huge economic losses for the poultry industry worldwide. RNA sequencing has provided valuable and important mechanistic clues regarding FAdV-4–host interactions. However, the pathogenic mechanism and host's responses after FAdV-4 infection remains limited. In this study, we used transcriptome analysis to identify dynamic changes in differentially expressed genes (DEGs) at five characteristic stages (12, 24, 36, 48, and 60 h) post infection (hpi) with FAdV-4. A total of 8,242 DEGs were identified based on comparison of five infection stages: 0 and 12, 12 and 24, 24 and 36, 36 and 48, and 48 and 60 hpi. In addition, at these five important time points, we found 37 common upregulated or downregulated DEGs, suggesting a common role for these genes in host response to viral infection. The predicted function of these DEGs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these DEGs were associated with viral invasion, host metabolic pathways and host immunosuppression. Interestingly, genes involved in viral invasion, probably EGR1, SOCS3, and THBS1, were related to FAdV-4 infection. Validation of nine randomly selected DEGs using quantitative reverse-transcription PCR produced results that were highly consistent with those of RNA sequencing. This transcriptomic profiling provides valuable information for investigating the molecular mechanisms underlying host–FAdV-4 interactions. These data support the current molecular knowledge regarding FAdV-4 infection and chicken defense mechanisms.
Collapse
Affiliation(s)
- Xueping P. Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
- *Correspondence: Xueping P. Wang
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiao J. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Lei Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Xiu L. Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Ming L. Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
9
|
Abstract
We have used the Nanopore long-read sequencing platform to demonstrate how amazingly complex the human adenovirus type 2 (Ad2) transcriptome is with a flexible splicing machinery producing a range of novel mRNAs both from the early and late transcription units. In total we report more than 900 alternatively spliced mRNAs produced from the Ad2 transcriptome whereof more than 850 are novel mRNAs. A surprising finding was that more than 50% of all E1A transcripts extended upstream of the previously defined transcriptional start site. The novel start sites mapped close to the inverted terminal repeat (ITR) and within the E1A enhancer region. We speculate that novel promoters or enhancer driven transcription, so-called eRNA transcription, is responsible for producing these novel mRNAs. Their existence was verified by a peptide in the Ad2 proteome that was unique for the E1A ITR mRNA. Although we show a high complexity of alternative splicing from most early and late regions, the E3 region was by far the most complex when expressed at late times of infection. More than 400 alternatively spliced mRNAs were observed in this region alone. These mRNAs included extended L4 mRNAs containing E3 and L5 sequences and readthrough mRNAs combining E3 and L5 sequences. Our findings demonstrate that the virus has a remarkable capacity to produce novel exon combinations, which will offer the virus an evolutionary advantage to change the gene expression repertoire and protein production in an evolving environment.IMPORTANCE Work in the adenovirus system led to the groundbreaking discovery of RNA splicing and alternative RNA splicing in 1977. These mechanisms are essential in mammalian evolution by increasing the coding capacity of a genome. Here, we have used a long-read sequencing technology to characterize the complexity of human adenovirus pre-mRNA splicing in detail. It is mindboggling that the viral genome, which only houses around 36,000 bp, not being much larger than a single cellular gene, generates more than 900 alternatively spliced mRNAs. Recently, adenoviruses have been used as the backbone in several promising SARS-CoV-2 vaccines. Further improvement of adenovirus-based vaccines demands that the virus can be tamed into an innocent carrier of foreign genes. This requires a full understanding of the components that govern adenovirus replication and gene expression.
Collapse
|
10
|
Salmona M, Feghoul L, Mercier-Delarue S, Diaz E, Splitberger M, Armero A, Dalle JH, Dutrieux J, LeGoff J. Effect of brincidofovir on adenovirus and A549 cells transcriptome profiles. Antiviral Res 2020; 182:104872. [PMID: 32768412 DOI: 10.1016/j.antiviral.2020.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Human adenovirus (HAdV) infections are associated with a high morbidity and mortality in transplant patients requiring the use of antiviral treatments. Brincidofovir (BCV), a cytidine analog, inhibits HAdV replication through viral DNA elongation termination and likely through other mechanisms. To elucidate if BCV regulates cellular antiviral pathways, we analyzed its impact on HAdV-infected and non-HAdV-infected lung epithelial cells. METHODS We assessed the cellular and viral transcriptome of A549 cells infected and non-infected with HAdV C5 and treated or non-treated with BCV by RNAseq after 72 h. RESULTS BCV treatment of HAdV infected cells resulted in a profound decrease of viral transcription associated with a relative overexpression of the early genes E1A and E4 and of the late gene L1. BCV had also a profound impact on A549 cells' transcriptome. Ontologic analysis revealed an effect of BCV on several pathways known to interact with adenovirus replication as mTor signalling and Wnt pathways. A549 cells treated with BCV demonstrated a significant inhibition of the biological function of "viral replication" including 25 dysregulated genes involved in inflammation pathways. CONCLUSION We demonstrated that BCV alters viral gene expression and promotes the expression of antiviral cellular pathways in A549 cells. These results provide new insights how to interfere with cellular pathways to control HAdV infections.
Collapse
Affiliation(s)
- Maud Salmona
- Université de Paris, INSERM U976, Insight Team, F-75010, Paris, France; Assistance-Publique des Hôpitaux de Paris, Microbiology Department, Virology Unit, Saint Louis Hospital, F-75010, Paris, France.
| | - Linda Feghoul
- Assistance-Publique des Hôpitaux de Paris, Microbiology Department, Virology Unit, Saint Louis Hospital, F-75010, Paris, France.
| | - Séverine Mercier-Delarue
- Assistance-Publique des Hôpitaux de Paris, Microbiology Department, Virology Unit, Saint Louis Hospital, F-75010, Paris, France.
| | - Elise Diaz
- Université de Paris, INSERM U976, Insight Team, F-75010, Paris, France.
| | - Marion Splitberger
- Assistance-Publique des Hôpitaux de Paris, Microbiology Department, Virology Unit, Saint Louis Hospital, F-75010, Paris, France.
| | - Alix Armero
- Université de Paris, INSERM U976, Insight Team, F-75010, Paris, France.
| | - Jean-Hugues Dalle
- Université de Paris, INSERM U976, Insight Team, F-75010, Paris, France; Assistance-Publique des Hôpitaux de Paris, Department of Pediatric Hemato-Immunology, Hospital Robert Debré, F-75019, Paris, France.
| | - Jacques Dutrieux
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.
| | - Jérôme LeGoff
- Université de Paris, INSERM U976, Insight Team, F-75010, Paris, France; Assistance-Publique des Hôpitaux de Paris, Microbiology Department, Virology Unit, Saint Louis Hospital, F-75010, Paris, France.
| |
Collapse
|
11
|
Differential Effects of Human Adenovirus E1A Protein Isoforms on Aerobic Glycolysis in A549 Human Lung Epithelial Cells. Viruses 2020; 12:v12060610. [PMID: 32503156 PMCID: PMC7354625 DOI: 10.3390/v12060610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.
Collapse
|
12
|
Wu N, Yang B, Wen B, Wang T, Guo J, Qi X, Wang J. Interactions Among Expressed MicroRNAs and mRNAs in the Early Stages of Fowl Adenovirus Aerotype 4-Infected Leghorn Male Hepatocellular Cells. Front Microbiol 2020; 11:831. [PMID: 32508763 PMCID: PMC7248314 DOI: 10.3389/fmicb.2020.00831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Hydropericardium-hepatitis syndrome (HHS) is caused by some strains of fowl adenovirus serotype 4 (FAdV-4). However, the mechanism of FAdV-4 entry is not well understood. Therefore, to investigate the changes in host cellular response at the early stage of FAdV-4 infection, a conjoint analysis of miRNA-seq and mRNA-seq was utilized with leghorn male hepatocellular (LMH) cells at 30, 60, and 120 min after FAdV-4 infection. In total, we identified 785 differentially expressed (DE) miRNAs and 725 DE mRNAs in FAdV-4-infected LMH cells. Most miRNAs and mRNAs, including gga-miR-148a-3p, gga-miR-148a-5p, gga-miR-15c-3p, CRK, SOCS3, and EGR1, have not previously been reported to be associated with FAdV-4 infection. The conjoint analysis of the obtained data identified 856 miRNA–mRNA pairs at three time points. The interaction network analysis showed that gga-miR-128-2-5p, gga-miR-7475-5p, novel_miR205, and TCF7L1 were located in the core of the network. Furthermore, the relationship between gga-miR-128-2-5p and its target OBSL1 was confirmed using a dual-luciferase reporter system and a real-time quantitative polymerase chain reaction assay. In vitro experiments revealed that both gga-miR-128-2-5p overexpression and OBSL1 loss of function inhibited FAdV-4 entry. These results suggested that gga-miR-128-2-5p plays an important role in FAdV-4 entry by targeting OBSL1. To the best of our knowledge, the present study is the first to analyze host miRNA and mRNA expression at the early stage of FAdV-4 infection; furthermore, the results of this study help to elucidate the molecular mechanisms of FAdV-4 entry.
Collapse
Affiliation(s)
- Ning Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Bo Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaona Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
13
|
Yousaf I, Kaeppler J, Frost S, Seymour LW, Jacobus EJ. Attenuation of the Hypoxia Inducible Factor Pathway after Oncolytic Adenovirus Infection Coincides with Decreased Vessel Perfusion. Cancers (Basel) 2020; 12:E851. [PMID: 32244697 PMCID: PMC7225929 DOI: 10.3390/cancers12040851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
The interplay between oncolytic virus infection and tumour hypoxia is particularly unexplored in vivo, although hypoxia is present in virtually all solid carcinomas. In this study, oncolytic adenovirus infection foci were found within pimonidazole-reactive, oxygen-poor areas in a colorectal xenograft tumour, where the expression of VEGF, a target gene of the hypoxia-inducible factor (HIF), was attenuated. We hypothesised that adenovirus infection interferes with the HIF-signalling axis in the hypoxic tumour niche, possibly modifying the local vascular supply. In vitro, enadenotucirev (EnAd), adenovirus 11p and adenovirus 5 decreased the protein expression of HIF-1α only during the late phase of the viral life cycle by transcriptional down-regulation and not post-translational regulation. The decreasing HIF levels resulted in the down-regulation of angiogenic factors such as VEGF, coinciding with reduced endothelial tube formation but also increased T-cell activation in conditioned media transfer experiments. Using intravital microscopy, a decreased perfused vessel volume was observed in infected tumour nodules upon systemic delivery of EnAd, encoding the oxygen-independent fluorescent reporter UnaG to a tumour xenograft grown under an abdominal window chamber. We conclude that the attenuation of the HIF pathway upon adenoviral infection may contribute to anti-vascular and immunostimulatory effects in the periphery of established infection foci in vivo.
Collapse
Affiliation(s)
- Iris Yousaf
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| | - Jakob Kaeppler
- Mechanisms of Metastasis Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Sally Frost
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| | - Len W. Seymour
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| | - Egon J. Jacobus
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (I.Y.); (S.F.)
| |
Collapse
|
14
|
Zhao H, Punga T, Pettersson U. Adenovirus in the omics era - a multipronged strategy. FEBS Lett 2020; 594:1879-1890. [PMID: 31811727 DOI: 10.1002/1873-3468.13710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
Human adenoviruses (HAdVs) are common pathogens associated with a wide variety of respiratory, ocular, and gastrointestinal diseases. To achieve its effective lytic mode of replication, HAdVs have to reprogram host-cell gene expression and fine-tune viral gene expression in a temporal manner. In two decades, omics revolution has advanced our knowledge about the HAdV and host-cell interplay at the RNA and protein levels. This review summarizes the current knowledge from large-scale datasets on how HAdV infections adjust coding and noncoding RNA expression, as well as how they reprogram host-cell proteome during the lytic course of infection.
Collapse
Affiliation(s)
- Hongxing Zhao
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ulf Pettersson
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
15
|
Abstract
In this paper I describe aspects of work on the human adenoviruses in which my laboratory has participated. It consists of two sections-one historic dealing with work performed in the previous century, and one dealing with the application of 'omics' technologies to understand how adenovirus-infected cells become reprogrammed to benefit virus multiplication.
Collapse
Affiliation(s)
- Ulf Pettersson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Badr KR, Parente‐Rocha JA, Baeza LC, Ficcadori FS, Souza M, Soares CM, Guissoni ACP, Almeida TN, Cardoso DD. Quantitative proteomic analysis of A549 cells infected with human adenovirus type 2. J Med Virol 2019; 91:1239-1249. [DOI: 10.1002/jmv.25439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Kareem R. Badr
- Department of Microbiology, Human Virology LaboratoryInstitute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia Goiás Brazil
| | - Juliana A. Parente‐Rocha
- Department of Microbiology, Molecular Biology LaboratoryInstitute of Biological Sciences, Federal University of GoiásGoiânia Goiás Brazil
| | - Lilian C. Baeza
- Department of Microbiology, Molecular Biology LaboratoryInstitute of Biological Sciences, Federal University of GoiásGoiânia Goiás Brazil
| | - Fabiola S. Ficcadori
- Department of Microbiology, Human Virology LaboratoryInstitute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia Goiás Brazil
| | - Menira Souza
- Department of Microbiology, Human Virology LaboratoryInstitute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia Goiás Brazil
| | - Célia M. Soares
- Department of Microbiology, Molecular Biology LaboratoryInstitute of Biological Sciences, Federal University of GoiásGoiânia Goiás Brazil
| | - Ana Carla P. Guissoni
- Department of Microbiology, Human Virology LaboratoryInstitute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia Goiás Brazil
| | - Tâmera N. Almeida
- Department of Microbiology, Human Virology LaboratoryInstitute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia Goiás Brazil
| | - Divina D. Cardoso
- Department of Microbiology, Human Virology LaboratoryInstitute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia Goiás Brazil
| |
Collapse
|
17
|
Wang XP, Qi XF, Yang B, Chen SY, Wang JY. RNA-Seq analysis of duck embryo fibroblast cell gene expression during the early stage of egg drop syndrome virus infection. Poult Sci 2019; 98:404-412. [PMID: 30690613 DOI: 10.3382/ps/pey318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Egg drop syndrome virus (EDSV), a member of the family Adenoviridae and an economically important pathogen with a broad host range, leads to markedly decreased egg production. However, the molecular mechanism underlying the host-EDSV interaction remains unclear. Here, we performed high-throughput RNA sequencing (RNA-Seq) to study the dynamic changes in host gene expression at 6, 12, and 24 hours post-infection in duck embryo fibroblasts (DEFs) infected with EDSV. Atotal of 441 differentially expressed genes (DEGs) were identified after EDSV infection. Gene Ontology category and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that these DEGs were associated with multiple biological functions, including signal transduction, host immunity, virus infection, cell apoptosis, cell proliferation, and pathogenicity-related and metabolic process signaling pathways. We screened and identified 12 DEGs for further examination by using qRT-PCR. The qRT-PCR and RNA-Seq results were highly consistent. This study analyzed viral infection and host immunity induced by EDSV infection from a novel perspective, and the results provide valuable information regarding the mechanisms underlying host-EDSV interactions, which will prove useful for the future development of antiviral drugs or vaccines for poultry, thus benefiting the entire poultry industry.
Collapse
Affiliation(s)
- X P Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - X F Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - B Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - S Y Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - J Y Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Transcriptomic and proteomic analyses reveal new insights into the regulation of immune pathways during adenovirus type 2 infection. BMC Microbiol 2019; 19:15. [PMID: 30642258 PMCID: PMC6332865 DOI: 10.1186/s12866-018-1375-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background Human adenovirus (Ad) infection leads to the changes of host cell gene expression and biosynthetic processes. Transcriptomics in adenovirus type 2 (Ad2)-infected lung fibroblasts (IMR-90) cells has previously been studied using RNA sequencing. However, this study included only two time points (12 and 24 hpi) using constrained 76 bp long sequencing reads. Therefore, a more detailed study of transcription at different phases of infection using an up-graded sequencing technique is recalled. Furthermore, the correlation between transcription and protein expression needs to be addressed. Results In total, 3556 unique cellular genes were identified as differentially expressed at the transcriptional level with more than 2-fold changes in Ad2-infected cells as compared to non-infected cells by using paired-end sequencing. Based on the kinetics of the gene expression changes at different times after infection, these RNAs fell into 20 clusters. Among them, cellular genes involved in immune response were highly up-regulated in the early phase before becoming down-regulated in the late phase. Comparison of differentially expressed genes at transcriptional and posttranscriptional levels revealed low correlation. Particularly genes involved in cellular immune pathways showed a negative correlation. Here, we highlight the genes which expose inconsistent expression profiles with an emphasis on key factors in cellular immune pathways including NFκB, JAK/STAT, caspases and MAVS. Different from their transcriptional profiles with up- and down-regulation in the early and late phase, respectively, these proteins were up-regulated in the early phase and were sustained in the late phase. A surprising finding was that the target genes of the sustained activators failed to show response. Conclusion There were features common to genes which play important roles in cellular immune pathways. Their expression was stimulated at both RNA and protein levels during the early phase. In the late phase however, their transcription was suppressed while protein levels remained stable. These results indicate that Ad2 and the host cell use different strategies to regulate cellular immune pathways. A control mechanism at the post-translational level must thus exist which is under the control of Ad2. Electronic supplementary material The online version of this article (10.1186/s12866-018-1375-5) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Valdés A, Zhao H, Pettersson U, Lind SB. Time-resolved proteomics of adenovirus infected cells. PLoS One 2018; 13:e0204522. [PMID: 30252905 PMCID: PMC6155545 DOI: 10.1371/journal.pone.0204522] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Viral infections cause large problems in the world and deeper understanding of the disease mechanisms is needed. Here we present an analytical strategy to investigate the host cell protein changes during human adenovirus type 2 (HAdV-C2 or Ad2) infection of lung fibroblasts by stable isotope labelling of amino acids in cell culture (SILAC) and nanoLC-MS/MS. This work focuses on early phase of infection (6 and 12 h post-infection (hpi)) but the data is combined with previously published late phase (24 and 36 hpi) proteomics data to produce a time series covering the complete infection. As many as 2169 proteins were quantitatively monitored from 6 to 36 hpi, while some proteins were time-specific. After applying different filter criteria, 2027 and 2150 proteins were quantified at 6 and 12 hpi and among them, 431 and 544 were significantly altered at the two time points. Pathway analysis showed that the De novo purine and pyrimidine biosynthesis, Glycolysis and Cytoskeletal regulation by Rho GTPase pathways were activated early during infection while inactivation of the Integrin signalling pathway started between 6 and 12 hpi. Moreover, upstream regulator analysis predicted MYC to be activated with time of infection and protein and RNA data for genes controlled by this transcription factor showed good correlation, which validated the use of protein data for this prediction. Among the identified phosphorylation sites, a group related to glycolysis and cytoskeletal reorganization were up-regulated during infection. The results show specific aspects on how the host cell proteins, the final products in the genetic information flow, are influenced by Ad2 infection, which would be overlooked if only knowledge derived from mRNA data is considered.
Collapse
Affiliation(s)
- Alberto Valdés
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Hongxing Zhao
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Ulf Pettersson
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Wang X, Zhang Q, Zhou Z, Liu M, Chen Y, Li J, Xu L, Guo J, Li Q, Yang J, Wang S. Retinoic acid receptor β, a potential therapeutic target in the inhibition of adenovirus replication. Antiviral Res 2018; 152:84-93. [PMID: 29421320 DOI: 10.1016/j.antiviral.2018.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Human adenoviruses (HAdVs) usually cause mild respiratory infections, but they can also lead to fatal outcomes for immunosuppressive patients. Unfortunately, there has been no specific anti-HAdV drug approved for medical use. A better understanding of the nature of virus-host interactions during infection is beneficial to the discovery of potential antiviral targets and new antiviral drugs. In this study, a time-course transcriptome analysis of HAdV-infected human lung epithelial cells (A549 cells) was performed to investigate virus-host interactions, and several key host molecules involved in the HAdV infection process were identified. The RARβ (retinoic acid receptor β) molecule, one of the upstream regulatory factors of differentially expressed genes (DEGs), played important roles in HAdV replication. The results of reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed that RARβ mRNA and protein were downregulated by HAdV infection in the A549 cells. The knockdown of RARβ by RARβ siRNA increased the HAdV production and the overexpression of RARβ decreased the HAdV production. Furthermore, FDA-approved Tazarotene, which is an RAR selective agonist with relatively more selectivity for RARβ, was found to inhibit HAdV replication in vitro. Taken together, our study presents a key host molecule in adenovirus infection, which could be developed as a potential host target to an anti-adenovirus drug. In addition, this study provides evidence for the re-exploitation of an FDA-approved small molecule for therapeutic applications in adenovirus replication.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qiling Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhe Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Manjiao Liu
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Yubao Chen
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Jianbo Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Linlin Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jing Guo
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
21
|
Zhang J, Zou Z, Huang K, Lin X, Chen H, Jin M. Insights into leghorn male hepatocellular cells response to fowl adenovirus serotype 4 infection by transcriptome analysis. Vet Microbiol 2018; 214:65-74. [DOI: 10.1016/j.vetmic.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
|
22
|
Temporal characterization of the non-structural Adenovirus type 2 proteome and phosphoproteome using high-resolving mass spectrometry. Virology 2017; 511:240-248. [PMID: 28915437 DOI: 10.1016/j.virol.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/20/2023]
Abstract
The proteome and phosphoproteome of non-structural proteins of Adenovirus type 2 (Ad2) were time resolved using a developed mass spectrometry approach. These proteins are expressed by the viral genome and important for the infection process, but not part of the virus particle. We unambiguously confirm the existence of 95% of the viral proteins predicted to be encoded by the viral genome. Most non-structural proteins peaked in expression at late time post infection. We identified 27 non-redundant sites of phosphorylation on seven different non-structural proteins. The most heavily phosphorylated protein was the DNA binding protein (DBP) with 15 different sites. The phosphorylation occupancy rate could be calculated and monitored with time post infection for 15 phosphorylated sites on various proteins. In the DBP, phosphorylations with time-dependent relation were observed. The findings show the complexity of the Ad2 non-structural proteins and opens up a discussion for potential new drug targets.
Collapse
|
23
|
Piedade D, Azevedo-Pereira JM. MicroRNAs as Important Players in Host-Adenovirus Interactions. Front Microbiol 2017; 8:1324. [PMID: 28769895 PMCID: PMC5511817 DOI: 10.3389/fmicb.2017.01324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are powerful regulators of gene expression and fine-tuning genes in all tissues. Cellular miRNAs can control 100s of biologic processes (e.g., morphogenesis of embryonic structures, differentiation of tissue-specific cells, and metabolic control in specific cell types) and have been involved in the regulation of nearly all cellular pathways. Inherently to their involvement in different physiologic processes, miRNAs deregulation has been associated with several diseases. Moreover, several viruses have been described as either, avoid and block cellular miRNAs or synthesize their own miRNA to facilitate infection and pathogenesis. Adenoviruses genome encodes two non-coding RNAs, known as viral-associated (VA) RNAI and VA RNAII, which seem to play an important role either by blocking important proteins from miRNA pathway, such as Exportin-5 and Dicer, or by targeting relevant cellular factors. Drastic changes in cellular miRNA expression profile are also noticeable and several cellular functions are affected by these changes. This review focuses on the mechanisms underlying the biogenesis and molecular interactions of miRNAs providing basic concepts of their functions as well as in the interplay between miRNAs and human adenoviruses.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| | - José M Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
24
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol 2016; 7:635. [PMID: 28082976 PMCID: PMC5183615 DOI: 10.3389/fimmu.2016.00635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
26
|
Zhao H, Konzer A, Mi J, Chen M, Pettersson U, Lind SB. Posttranscriptional Regulation in Adenovirus Infected Cells. J Proteome Res 2016; 16:872-888. [PMID: 27959563 DOI: 10.1021/acs.jproteome.6b00834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A deeper understanding of how viruses reprogram their hosts for production of progeny is needed to combat infections. Most knowledge on the regulation of cellular gene expression during adenovirus infection is derived from mRNA studies. Here, we investigated the changes in protein expression during the late phase of adenovirus type 2 (Ad2) infection of the IMR-90 cell line by stable isotope labeling in cell culture with subsequent liquid chromatography-high resolution tandem mass spectrometric analysis. Two biological replicates of samples collected at 24 and 36 h post-infection (hpi) were investigated using swapped labeling. In total, 2648 and 2394 proteins were quantified at 24 and 36 hpi, respectively. Among them, 659 and 645 were deregulated >1.6-fold at the two time points. The protein expression was compared with RNA expression using cDNA sequencing data. The correlation was surprisingly low (r = 0.3), and several examples of posttranscriptional regulation were observed; e.g., proteins related to carbohydrate metabolism were up-regulated at the protein level but unchanged at the RNA level, whereas histone proteins were down-regulated at the protein level but up-regulated at the RNA level. The deregulation of cellular gene expression by adenovirus is mediated at multiple levels and more complex than hitherto believed.
Collapse
Affiliation(s)
- Hongxing Zhao
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory , 751 85 Uppsala, Sweden
| | - Anne Konzer
- Department of Chemistry-BMC, Science for Life Laboratory, Analytical Chemistry, Box 599, Uppsala University , 751 24 Uppsala, Sweden
| | - Jia Mi
- Department of Chemistry-BMC, Science for Life Laboratory, Analytical Chemistry, Box 599, Uppsala University , 751 24 Uppsala, Sweden
| | - Moashan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, LaTrobe University , Melbourne, Victoria 3086, Australia
| | - Ulf Pettersson
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory , 751 85 Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Science for Life Laboratory, Analytical Chemistry, Box 599, Uppsala University , 751 24 Uppsala, Sweden
| |
Collapse
|
27
|
Data on the expression of cellular lncRNAs in human adenovirus infected cells. Data Brief 2016; 8:1263-79. [PMID: 27547808 PMCID: PMC4983107 DOI: 10.1016/j.dib.2016.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/29/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022] Open
Abstract
Expression of cellular long non-coding RNAs (lncRNAs) in human primary lung fibroblasts (IMR-90) during the course of adenovirus type 2 (Ad2) infection was studied by strand-specific whole transcriptome sequencing. In total, 645 cellular lncRNAs were expressed at a significant level and 398 of them were changed more than 2-fold. The changes in expression followed a distinct temporal pattern. Significantly, 80% of the changes occurred at the late phase and 80% of the de-regulated lncRNAs were up-regulated. The three largest groups of deregulated lncRNAs were 125 antisense RNAs, 111 pseudogenes and 85 long intergenic non-coding RNAs (lincRNAs). Lastly, more than 36% of lncRNAs have been shown to interact with RNA binding proteins.
Collapse
|
28
|
van Zuylen WJ, Rawlinson WD, Ford CE. The Wnt pathway: a key network in cell signalling dysregulated by viruses. Rev Med Virol 2016; 26:340-55. [PMID: 27273590 DOI: 10.1002/rmv.1892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wendy J van Zuylen
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Caroline E Ford
- Metastasis Research Group, School of Women's and Children's Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
29
|
Ornelles DA, Gooding LR, Dickherber ML, Policard M, Garnett-Benson C. Limited but durable changes to cellular gene expression in a model of latent adenovirus infection are reflected in childhood leukemic cell lines. Virology 2016; 494:67-77. [PMID: 27085068 PMCID: PMC4946252 DOI: 10.1016/j.virol.2016.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Mucosal lymphocytes support latent infections of species C adenoviruses. Because infected lymphocytes resist re-infection with adenovirus, we sought to identify changes in cellular gene expression that could inhibit the infectious process. The expression of over 30,000 genes was evaluated by microarray in persistently infected B-and T-lymphocytic cells. BBS9, BNIP3, BTG3, CXADR, SLFN11 and SPARCL1 were the only genes differentially expressed between mock and infected B cells. Most of these genes are associated with oncogenesis or cancer progression. Histone deacetylase and DNA methyltransferase inhibitors released the repression of some of these genes. Cellular and viral gene expression was compared among leukemic cell lines following adenovirus infection. Childhood leukemic B-cell lines resist adenovirus infection and also show reduced expression of CXADR and SPARCL. Thus adenovirus induces limited changes to infected B-cell lines that are similar to changes observed in childhood leukemic cell lines.
Collapse
Affiliation(s)
- D A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - L R Gooding
- Emory University School of Medicine, Department of Microbiology and Immunology, Atlanta, GA 30322, United States
| | - M L Dickherber
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - M Policard
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - C Garnett-Benson
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
30
|
Zhao H, Chen M, Lind SB, Pettersson U. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection. Virology 2016; 492:242-50. [PMID: 27003248 PMCID: PMC7111612 DOI: 10.1016/j.virol.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 02/01/2023]
Abstract
The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phase and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. These RBPs are involved in RNA splicing, nuclear export and translation. Adenovirus exploits the cellular lncRNA network to optimize its replication.
Collapse
Affiliation(s)
- Hongxing Zhao
- The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden.
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Science for Life Laboratory, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden
| | - Ulf Pettersson
- The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden
| |
Collapse
|
31
|
Källsten M, Bergquist J, Zhao H, Konzer A, Lind SB. A comparative study of phosphopeptide-selective techniques for a sub-proteome of a complex biological sample. Anal Bioanal Chem 2016; 408:2347-56. [DOI: 10.1007/s00216-016-9333-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 11/24/2022]
|
32
|
Wu C, Cao X, Yu D, Huijbers EJM, Essand M, Akusjärvi G, Johansson S, Svensson C. HAdV-2-suppressed growth of SV40 T antigen-transformed mouse mammary epithelial cell-induced tumours in SCID mice. Virology 2015; 489:44-50. [PMID: 26707269 DOI: 10.1016/j.virol.2015.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
Human adenovirus (HAdV) vectors are promising tools for cancer therapy, but the shortage of efficient animal models for productive HAdV infections has restricted the evaluation of systemic effects to mainly immunodeficient mice. Previously, we reported a highly efficient replication of HAdV-2 in a non-tumorigenic mouse mammary epithelial cell line, NMuMG. Here we show that HAdV-2 gene expression and progeny formation in NMuMG cells transformed with the SV40 T antigen (NMuMG-T cells) were as efficient as in the parental NMuMG cells. Injection of HAdV-2 into tumours established by NMuMG-T in SCID mice caused reduced tumour growth and signs of intratumoural lesions. HAdV-2 replicated within the NMuMG-T-established tumours, but not in interspersed host-derived tissues within the tumours. The specific infection of NMuMG-T-derived tumours was verified by the lack of viral DNA in kidney, lung or spleen although low levels of viral DNA was occasionally found in liver.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Xiaofang Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | | | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| |
Collapse
|
33
|
Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells. J Virol 2015; 89:12401-17. [PMID: 26423951 DOI: 10.1128/jvi.01534-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. IMPORTANCE A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head-to-head comparison in human lung cells by NGS revealed that the two viruses generally conform to our general understanding of the Ad transcriptional program. However, fine mapping revealed subtle and strong differences in how these two viruses execute these programs, including differences in the balance of E1A and E1B mRNAs and in E3 immune evasion genes. This suggests that not all adenoviruses behave like Ad2 and Ad5 and that they may have unique strategies to infect cells and evade the immune system.
Collapse
|
34
|
Ying B, Toth K, Spencer JF, Aurora R, Wold WSM. Transcriptome sequencing and development of an expression microarray platform for liver infection in adenovirus type 5-infected Syrian golden hamsters. Virology 2015; 485:305-12. [PMID: 26319212 PMCID: PMC4619110 DOI: 10.1016/j.virol.2015.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
The Syrian golden hamster is an attractive animal for research on infectious diseases and other diseases. We report here the sequencing, assembly, and annotation of the Syrian hamster transcriptome. We include transcripts from ten pooled tissues from a naïve hamster and one stimulated with lipopolysaccharide. Our data set identified 42,707 non-redundant transcripts, representing 34,191 unique genes. Based on the transcriptome data, we generated a custom microarray and used this new platform to investigate the transcriptional response in the Syrian hamster liver following intravenous adenovirus type 5 (Ad5) infection. We found that Ad5 infection caused a massive change in regulation of liver transcripts, with robust up-regulation of genes involved in the antiviral response, indicating that the innate immune response functions in the host defense against Ad5 infection of the liver. The data and novel platforms developed in this study will facilitate further development of this important animal model. Syrian hamster transcriptome; 42,707 transcripts representing 34,191 unique genes Syrian hamster custom expression microarray platform Ad5 intravenous infection of the Syrian hamster liver Ad5 upregulation of hamster liver genes involved in innate antiviral response.
Collapse
Affiliation(s)
- Baoling Ying
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO 63104, United States
| | - Karoly Toth
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO 63104, United States
| | - Jacqueline F Spencer
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO 63104, United States
| | - Rajeev Aurora
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO 63104, United States
| | - William S M Wold
- Saint Louis University School of Medicine, Department of Molecular Microbiology and Immunology, 1100 S. Grand Boulevard, St. Louis, MO 63104, United States
| |
Collapse
|
35
|
Fluctuating expression of microRNAs in adenovirus infected cells. Virology 2015; 478:99-111. [PMID: 25744056 DOI: 10.1016/j.virol.2015.01.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The changes in cellular microRNA (miRNA) expression during the course of an adenovirus type 2 infection in human lung fibroblast were studied by deep RNA sequencing. Expressions of 175 miRNAs with over 100 transcripts per million nucleotides were changed more than 1.5-fold. The expression patterns of these miRNAs changed dramatically during the course of the infection, from upregulation of the miRNAs known as tumor suppressors (such as miR-22, miR-320, let-7, miR-181b, and miR-155) and down-regulation of oncogenic miRNAs (such as miR-21 and miR-31) early to downregulation of tumor suppressor miRNAs (such as let-7 family, mir-30 family, 23/27 cluster) and upregulation of oncogenic miRNAs (include miR-125, miR-27, miR-191) late after infection. The switch in miRNA expression pattern occurred when adenovirus DNA replication started. Furthermore, deregulation of cellular miRNA expression was a step-wise and special sets of miRNAs were deregulated in different phases of infection.
Collapse
|
36
|
Wu C, Bai L, Li Z, Samuel CE, Akusjärvi G, Svensson C. Poor growth of human adenovirus-12 compared to adenovirus-2 correlates with a failure to impair PKR activation during the late phase of infection. Virology 2015; 475:120-8. [DOI: 10.1016/j.virol.2014.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023]
|
37
|
Zhao H, Chen M, Pettersson U. A new look at adenovirus splicing. Virology 2014; 456-457:329-41. [DOI: 10.1016/j.virol.2014.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
38
|
Zhao H, Chen M, Pettersson U. Identification of adenovirus-encoded small RNAs by deep RNA sequencing. Virology 2013; 442:148-55. [PMID: 23659909 DOI: 10.1016/j.virol.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 01/22/2023]
Abstract
Using deep RNA sequencing, we have studied the expression of adenovirus-encoded small RNAs at different times after infection. Nineteen small RNAs which comprised more than 1% of the total pool of small RNAs at least one time point were identified. These small RNAs were between 25 and 35 nucleotides long and mapped in the region of the VA RNAI and RNAII genes. However, the overlap was incomplete and some contained a few extra nucleotides at the 3' end. This finding together with the observation that some of the small RNAs were detected before VA RNA expression had started might indicate that they are derived from other precursors than VA RNAI and II. Interestingly, the small RNAs displayed different expression profiles during the course of the infection suggesting that they have different functions. An effort was made to identify their mRNA targets by using computer prediction and deep cDNA sequencing. The most significant targets for the earliest small RNAs were genes involved in signaling pathways.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Immunology, Genetics and Immunology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
39
|
Tazawa H, Yano S, Yoshida R, Yamasaki Y, Sasaki T, Hashimoto Y, Kuroda S, Ouchi M, Onishi T, Uno F, Kagawa S, Urata Y, Fujiwara T. Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis. Int J Cancer 2012; 131:2939-50. [PMID: 22492316 DOI: 10.1002/ijc.27589] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 03/13/2012] [Indexed: 01/26/2023]
Abstract
Autophagy is known to have a cytoprotective role under various cellular stresses; however, it also results in robust cell death as an important safeguard mechanism that protects the organism against invading pathogens and unwanted cancer cells. Autophagy is regulated by cell signalling including microRNA (miRNA), a post-transcriptional regulator of gene expression. Here, we show that genetically engineered telomerase-specific oncolytic adenovirus induced miR-7 expression, which is significantly associated with its cytopathic activity in human cancer cells. Virus-mediated miR-7 upregulation depended on enhanced expression of the E2F1 protein. Ectopic expression of miR-7 suppressed cell viability and induced autophagy by inhibiting epidermal growth factor receptor (EGFR) expression. Our results suggest that oncolytic adenovirus induces autophagic cell death through an E2F1-miR-7-EGFR pathway in human cancer cells, providing a novel insight into the molecular mechanism of an anticancer virotherapy.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Center for Gene and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao H, Dahlö M, Isaksson A, Syvänen AC, Pettersson U. The transcriptome of the adenovirus infected cell. Virology 2012; 424:115-28. [PMID: 22236370 DOI: 10.1016/j.virol.2011.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Alternations of cellular gene expression following an adenovirus type 2 infection of human primary cells were studied by using superior sensitive cDNA sequencing. In total, 3791 cellular genes were identified as differentially expressed more than 2-fold. Genes involved in DNA replication, RNA transcription and cell cycle regulation were very abundant among the up-regulated genes. On the other hand, genes involved in various signaling pathways including TGF-β, Rho, G-protein, Map kinase, STAT and NF-κB stood out among the down-regulated genes. Binding sites for E2F, ATF/CREB and AP2 were prevalent in the up-regulated genes, whereas binding sites for SRF and NF-κB were dominant among the down-regulated genes. It is evident that the adenovirus has gained a control of the host cell cycle, growth, immune response and apoptosis at 24 h after infection. However, efforts from host cell to block the cell cycle progression and activate an antiviral response were also observed.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Dorer DE, Holtrup F, Fellenberg K, Kaufmann JK, Engelhardt S, Hoheisel JD, Nettelbeck DM. Replication and virus-induced transcriptome of HAdV-5 in normal host cells versus cancer cells--differences of relevance for adenoviral oncolysis. PLoS One 2011; 6:e27934. [PMID: 22140489 PMCID: PMC3227638 DOI: 10.1371/journal.pone.0027934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/28/2011] [Indexed: 12/15/2022] Open
Abstract
Adenoviruses (Ads), especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC) in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by modulating tumor cell functions to better support viral replication.
Collapse
Affiliation(s)
- Dominik E. Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Holtrup
- Division of Functional Genome Analysis, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
| | - Kurt Fellenberg
- Division of Functional Genome Analysis, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Johanna K. Kaufmann
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Engelhardt
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
| | - Dirk M. Nettelbeck
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
42
|
Kato SEM, Huang W, Flint SJ. Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle. Virology 2011; 417:9-17. [PMID: 21605885 DOI: 10.1016/j.virol.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Although the adenovirus type 5 (Ad5) E1B 55 kDa protein can bind to RNA in vitro, no UV-light-induced crosslinking of this E1B protein to RNA could be detected in infected cells, under conditions in which RNA binding by a known viral RNA-binding protein (the L4 100 kDa protein) was observed readily. Substitution mutations, including substitutions reported to inhibit RNA binding in vitro, did not impair synthesis of viral early or late proteins or alter significantly the efficiency of viral replication in transformed or normal human cells. However, substitutions of conserved residues in the C-terminal segment of an RNA recognition motif specifically inhibited degradation of Mre11. We conclude that, if the E1B 55 kDa protein binds to RNA in infected cells in the same manner as in in vitro assays, this activity is not required for such well established functions as induction of selective export of viral late mRNAs.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
43
|
Tarakanova VL, Wold WSM. Adenovirus E1A and E1B-19K proteins protect human hepatoma cells from transforming growth factor beta1-induced apoptosis. Virus Res 2009; 147:67-76. [PMID: 19854227 DOI: 10.1016/j.virusres.2009.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/19/2023]
Abstract
Primary and some transformed hepatocytes undergo apoptosis in response to transforming growth factor beta1 (TGFbeta). We report that infection with species C human adenovirus conferred resistance to TGFbeta-induced apoptosis in human hepatocellular carcinoma cells (Huh-7). Protection against TGFbeta-mediated cell death in adenovirus-infected cells correlated with the maintenance of normal nuclear morphology, lack of pro-caspases 8 and 3 processing, maintenance of the mitochondrial membrane potential, and lack of cellular DNA degradation. The TGFbeta pro-apoptotic signaling pathway was blocked upstream of mitochondria in adenovirus-infected cells. Both the N-terminal sequences of the E1A proteins and the E1B-19K protein were necessary to protect infected cells against TGFbeta-induced apoptosis.
Collapse
Affiliation(s)
- Vera L Tarakanova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | |
Collapse
|
44
|
Activation of the interferon-induced STAT pathway during an adenovirus type 12 infection. Virology 2009; 392:186-95. [DOI: 10.1016/j.virol.2009.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/02/2009] [Accepted: 07/14/2009] [Indexed: 12/24/2022]
|
45
|
Miller DL, Rickards B, Mashiba M, Huang W, Flint SJ. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription. J Virol 2009; 83:3591-603. [PMID: 19211769 PMCID: PMC2663238 DOI: 10.1128/jvi.02269-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/30/2009] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | | | |
Collapse
|
46
|
Connell CM, Wheatley SP, McNeish IA. Nuclear survivin abrogates multiple cell cycle checkpoints and enhances viral oncolysis. Cancer Res 2008; 68:7923-31. [PMID: 18829549 DOI: 10.1158/0008-5472.can-08-0817] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Survivin (BIRC5) promotes cell division and survival with roles as chromosomal passenger protein and inhibitor of apoptosis protein (IAP). It is overexpressed in many cancers and is associated with resistance to chemotherapy and radiation. Previously, we showed that expression of survivin within the nucleus of HeLa cells accelerates its degradation and blocks apoptosis inhibition without affecting localization during mitosis. Here, we have investigated the effects of survivin on cell cycle control and potential therapeutic consequences using HeLa and IGROV1 cells expressing wild-type and nuclear-targeted survivin. We show that overexpression of survivin, especially within the nucleus, increases control over G(1)-S checkpoint via increased nuclear accumulation of cyclin D and cyclin-dependent kinase 4 and subsequent pRb phosphorylation. We investigated the influence of survivin on the activity of the E1A CR2-deleted oncolytic adenovirus dl922-947, which depends critically on an aberrant G(1)-S checkpoint. Nuclear expression of survivin augments virus-induced S-phase induction and increases viral protein expression and overall viral replication. There is a consequent increase in antitumor activity both in vitro and in vivo. The increased dl922-947 activity is restricted to malignant cells and is not associated with induction of apoptosis, nor does it rely on the role of survivin as an IAP. In addition, we observe the appearance of a large >or=4N population coincident with multiple mitotic defects in dl922-947-infected cells, both of which are significantly increased by nuclear survivin. This indicates that adenoviral activity is facilitated by abrogation of multiple cell cycle checkpoints and can be enhanced by expression of survivin within the nucleus.
Collapse
Affiliation(s)
- Claire M Connell
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | | | | |
Collapse
|
47
|
Adenovirus E4orf4 protein downregulates MYC expression through interaction with the PP2A-B55 subunit. J Virol 2008; 82:9381-8. [PMID: 18653458 DOI: 10.1128/jvi.00791-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The adenovirus E4 open reading frame 4 (E4orf4) protein is a multifunctional viral regulator that is involved in the temporal regulation of viral gene expression by modulating cellular and viral genes at the transcription and translation levels and by controlling alternative splicing of adenoviral late mRNAs. When expressed individually, E4orf4 induces apoptosis in transformed cells. Using oligonucleotide microarray analysis, validated by quantitative real time PCR, we found that MYC (also known as c-Myc) is downregulated early after the induction of E4orf4 expression. As a result, Myc protein levels are reduced in E4orf4-expressing cells. MYC downregulation is observed both when E4orf4 is expressed individually and within the context of viral infection. E4orf4 reduces MYC transcription but does not affect transcriptional elongation or RNA stability. An interaction with the PP2A-B55 subunit is required for the downregulation of MYC by E4orf4. Since Myc overexpression was previously shown to inhibit adenovirus replication, the downregulation of Myc by E4orf4 would contribute to efficient virus infection.
Collapse
|