1
|
Li L, Wang J, Chen L, Ren Q, Akhtar MF, Liu W, Wang C, Cao S, Liu W, Zhao Q, Li Y, Wang T. Diltiazem HCl suppresses porcine reproductive and respiratory syndrome virus infection in susceptible cells and in swine. Vet Microbiol 2024; 292:110054. [PMID: 38507832 DOI: 10.1016/j.vetmic.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen for swine, resulting in substantial economic losses to the swine industry. However, there has been little success in developing effective vaccines or drugs for PRRSV control. In the present study, we discovered that Diltiazem HCl, an inhibitor of L-type Ca2+ channel, effectively suppresses PRRSV replication in MARC-145, PK-15CD163 and PAM cells in dose-dependent manner. Furthermore, it demonstrates a broad-spectrum activity against both PRRSV-1 and PRRSV-2 strains. Additionally, we explored the underlying mechanisms and found that Diltiazem HCl -induced inhibition of PRRSV associated with regulation of calcium ion homeostasis in susceptible cells. Moreover, we evaluated the antiviral effects of Diltiazem HCl in PRRSV-challenged piglets, assessing rectal temperature, viremia, and gross and microscopic lung lesions. Our results indicate that Diltiazem HCl treatment alleviates PRRSV-induced rectal temperature spikes, pulmonary pathological changes, and serum viral load. In conclusion, our data suggest that Diltiazem HCl could serve as a novel therapeutic drug against PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jiayu Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qinghai Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shengliang Cao
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
2
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Jiang Y, Gao F, Li L, Zhou Y, Tong W, Yu L, Zhang Y, Zhao K, Zhu H, Liu C, Li G, Tong G. The rPRRSV-E2 strain exhibited a low level of potential risk for virulence reversion. Front Vet Sci 2023; 10:1128863. [PMID: 36960147 PMCID: PMC10027928 DOI: 10.3389/fvets.2023.1128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Classical Swine Fever Virus (CSFV) are two important pathogens, which cause serious impact on swine industry worldwide. In our previous research, rPRRSV-E2, the recombinant PRRSV expressing CSFV E2 protein, could provide sufficient protection against the lethal challenge of highly pathogenic PRRSV and CSFV, and could maintained genetically stable in vitro. Here, to evaluate the virulence reversion potential risk, rPRRSV-E2 had been continuously passaged in vivo, the stability of E2 expression and virulence of the passage viruses were analyzed. The results showed that no clinical symptoms or pathological changes could be found in the inoculated groups, and there were no significant differences of viraemia among the test groups. Sequencing and IFA analysis showed that the coding gene of exogenous CSFV E2 protein existed in the passaged viruses without any sequence mutations, deletions or insertions, and could expressed steadily. It could be concluded that the foreign CSFV E2 gene in the genome of rPRRSV-E2 could be maintained genetically stable in vivo, and rPRRSV-E2 strain had relatively low level of potential risk for virulence reversion.
Collapse
Affiliation(s)
- Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Guoxin Li
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- Guangzhi Tong
| |
Collapse
|
4
|
Nonstructural Protein 2 Is Critical to Infection Efficiency of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus on PAMs and Influence Virulence In Vivo. Viruses 2022; 14:v14122613. [PMID: 36560616 PMCID: PMC9782917 DOI: 10.3390/v14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important viral disease, causing significant economic losses to the swine industry worldwide. Atypical cases caused by highly pathogenic PRRS virus (HP-PRRSV) emerged in 2006 in China. The vaccine strain HuN4-F112 has been developed from the wild-type HP-PRRSV HuN4 through repeated passages on MARC-145 cells. However, the mechanisms of attenuation have yet to be defined. Previous studies have shown that the vaccine strain HuN4-F112 could not effectively replicate in porcine alveolar macrophages (PAMs). In the present study, a series of chimeric and mutant PRRSVs were constructed to investigate regions associated with the virus attenuation. Firstly, the corresponding genome regions (ORF1a, ORF1b and ORFs 2-7) were exchanged between two infectious clones of HuN4 and HuN4-F112, and then the influence of small regions in ORF1a and ORF2-7 was evaluated, then influence of specific amino acids on NSP2 was tested. NSP2 was determined to be the key gene that regulated infection efficiency on PAMs, and amino acids at 893 and 979 of NSP2 were the key amino acids. The results of in vivo study indicated that NSP2 was not only important for infection efficiency in vitro, but also influenced the virulence, which was indicated by the results of survival rate, temperature, viremia, lung score and tissue score.
Collapse
|
5
|
Identification of Virulence Associated Region during Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus during Attenuation In Vitro: Complex Question with Different Strain Backgrounds. Viruses 2021; 14:v14010040. [PMID: 35062244 PMCID: PMC8780124 DOI: 10.3390/v14010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus PRRSV (HP-PRRSV) was one of the most devastating diseases of the pig industry, among various strategies, vaccination was one of the most useful tools for PRRS control. Attenuated live vaccine was used worldwide, however, the genetic basis of HP-PRRSV virulence change during attenuation remain to be determined. Here, to identify virulence associated regions of HP-PRRSV during attenuation in vitro, six full-length infectious cDNA clones with interchanges of 5′UTR + ORF1a, ORF1b, and ORF2-7 + 3′UTR regions between HP-PRRSV strain HuN4-F5 and its attenuated vaccine strain HuN4-F112 were generated, and chimeric viruses were rescued. Piglets were inoculated with chimeric viruses and their parental viruses, and rectal temperature were recorded daily, and serum were collected for future experiments. Our results showed that ORF1a played an important role on virus replication, cytokine response and lung damage, the exchange of ORF1b and ORF2-7 in different backbone led to different exhibition on virus replication in vivo/vitro and cytokine response. Among 9 PRRSV attenuated series, consistent amino acid changes during PRRSV attenuation were found in NSP4, NSP9, GP2, E, GP3 and GP4. Our study provides a fundamental data for the investigation of PRRSV attenuation, the different results of the virulence change among different studies indicated that different mechanisms might be used during PRRSV virulence enhancement in vivo and attenuation in vitro.
Collapse
|
6
|
Transcriptome sequencing analysis of porcine alveolar macrophages infected with PRRSV strains to elucidate virus pathogenicity and immune evasion strategies. Virusdisease 2021; 32:559-567. [PMID: 34631980 DOI: 10.1007/s13337-021-00724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/29/2021] [Indexed: 10/20/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) causes a serious disease to the swine industry worldwide. To understand the mechanisms of HP-PRRSV infection, RNA-seq-based transcriptome analyses were performed on porcine alveolar macrophages (PAMs) infected with a HP-PRRSV strain (TJ), a less virulent strain of a classical lineage (CH-1a), and a vaccine strain TJM-F92. Gene ontology, Kyoto Encyclopedia of Genes and Genomes analyses indicate that TJM-F92 led to significant up-regulation of gene expression for proteins associated with membrane-bound organelles. The differentially expressed genes of HP-PRRSV TJ-infected PAM cells were up-regulated in the special G-protein coupled receptor. The six cytokines were tested by real time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). The relative expression levels showed the same trend of expression difference. Significant up-regulation of TMEM173 plays an important role in the cytosolic DNA-sensing pathway and the RIG-I-like receptor signaling pathway in TJM-F92 infected PAM cells. These data provide new insight into PRRSV pathogenicity and immune evasion strategies.
Collapse
|
7
|
Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050480. [PMID: 34068505 PMCID: PMC8150910 DOI: 10.3390/vaccines9050480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.
Collapse
|
8
|
Dai G, Huang M, Fung TS, Liu DX. Research progress in the development of porcine reproductive and respiratory syndrome virus as a viral vector for foreign gene expression and delivery. Expert Rev Vaccines 2020; 19:1041-1051. [PMID: 33251856 DOI: 10.1080/14760584.2020.1857737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease of swine characterized by respiratory disorders in growing and finishing pigs and reproductive failure in pregnant sows. PRRSV has been recognized as one of the most economically significant pathogens affecting the global pig industry. AREAS COVERED Currently, commercially available vaccines, including traditional killed virus (KV) vaccines and modified live virus (MLV) vaccines, are the cardinal approaches to prevent and control porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the protective efficacy of these vaccines is not satisfactory, resulting in the continuous evolution and recurrent appearance of the virus as well as the emergence of new variants. A safe and effective vaccine against PRRSV is in dire need. Here, we review the research progress in recent years in the development and use of PRRSV as a viral vector to express foreign genes, and their potential application in gene delivery and vaccine development. EXPERT OPINION The potential of using PRRSV-based vectors to express multiple antigens would be particularly instrumental for the development of a new generation of multivalent vaccines against PRRSV and other porcine viruses.
Collapse
Affiliation(s)
- Guo Dai
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control and Integrative Microbiol , Guangzhou, Guangdong, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd ., Zhaoqing, Guangdong, People's Republic of China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control and Integrative Microbiol , Guangzhou, Guangdong, People's Republic of China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control and Integrative Microbiol , Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
10
|
Generation of a porcine reproductive and respiratory syndrome virus expressing a marker gene inserted between ORF4 and ORF5a. Arch Virol 2020; 165:1803-1813. [PMID: 32474688 DOI: 10.1007/s00705-020-04679-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023]
Abstract
In recent years, the availability of reverse genetics systems for porcine reproductive and respiratory syndrome virus (PRRSV) has created new perspectives for the use of recombinant viruses as expression vectors. Most of these recombinant PRRSV vectors express foreign genes through either an independent transcription unit inserted in ORF1b and ORF2, or in ORF7 and the 3' UTR. The aim of this study was to find an alternative site for foreign gene insertion into the PRRSV genome. Here, we constructed an infectious cDNA clone for a cell-adapted PRRSV strain, GXNN1396-P96. This cDNA-clone-derived recombinant virus (rGXAM) was comparable in its growth kinetics in MARC-145 cells to the parental virus, GX1396-P96. Using the infectious cDNA-clone, we inserted an independent transcription unit in ORF4 and ORF5a to generate a novel PRRSV-based recombinant virus expressing the green fluorescent protein (GFP) gene. Biological characterization of the recombinant virus, rGX45BSTRS-GFP, showed that it maintained similar growth characteristics but produced fewer infectious virions than the parental PRRSV. These data demonstrate that the ORF4 and ORF5a site is able to tolerate the insertion of foreign genes.
Collapse
|
11
|
Ginsenoside Rg1 Suppresses Type 2 PRRSV Infection via NF-κB Signaling Pathway In Vitro, and Provides Partial Protection against HP-PRRSV in Piglet. Viruses 2019; 11:v11111045. [PMID: 31717616 PMCID: PMC6893584 DOI: 10.3390/v11111045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a huge threat to the modern pig industry, and current vaccine prevention strategies could not provide full protection against it. Therefore, exploring new anti-PRRSV strategies is urgently needed. Ginsenoside Rg1, derived from ginseng and notoginseng, is shown to exert anti-inflammatory, neuronal apoptosis-suppressing and anti-oxidant effects. Here we demonstrate Rg1-inhibited PRRSV infection both in Marc-145 cells and porcine alveolar macrophages (PAMs) in a dose-dependent manner. Rg1 treatment affected multiple steps of the PRRSV lifecycle, including virus attachment, replication and release at concentrations of 10 or 50 µM. Meanwhile, Rg1 exhibited broad inhibitory activities against Type 2 PRRSV, including highly pathogenic PRRSV (HP-PRRSV) XH-GD and JXA1, NADC-30-like strain HNLY and classical strain VR2332. Mechanistically, Rg1 reduced mRNA levels of the pro-inflammatory cytokines, including IL-1β, IL-8, IL-6 and TNF-α, and decreased NF-κB signaling activation triggered by PRRSV infection. Furthermore, 4-week old piglets intramuscularly treated with Rg1 after being challenged with the HP-PRRSV JXA1 strain display moderate lung injury, decreased viral load in serum and tissues, and an improved survival rate. Collectively, our study provides research basis and supportive clinical data for using Ginsenoside Rg1 in PRRSV therapies in swine.
Collapse
|
12
|
Liu X, Bai J, Jiang C, Song Z, Zhao Y, Nauwynck H, Jiang P. Therapeutic effect of Xanthohumol against highly pathogenic porcine reproductive and respiratory syndrome viruses. Vet Microbiol 2019; 238:108431. [PMID: 31648725 DOI: 10.1016/j.vetmic.2019.108431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
The infection by porcine reproductive and respiratory syndrome virus (PRRSV) has a severe impact on the world swine industry. However, commercially available vaccines provide only incomplete protection against this disease. Thus, novel approaches to control PRRSV infection are essential for the robust and sustainable swine industry. In our previous study, Xanthohumol (Xn), a prenylated flavonoid extracted for hops (Humulus lupulus L), was screened from 386 natural products to inhibit PRRSV proliferation and alleviate oxidative stress induced by PRRSV via the Nrf2-HMOX1 axis in Marc-145 cells. In this study, we furtherly found that Xn could inhibit PRRSV different sub-genotype strains infection with a low IC50 value in porcine primary alveolar macrophages (PAMs). In addition, it caused decreased expression of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α in PAMs infected with PRRSV or treated with lipopolysaccharide. Animal challenge experiments showed that Xn effectively alleviated clinical signs, lung pathology, and inflammatory responses in lung tissues of pigs induced by highly pathogenic PRRSV infection. The results demonstrate that Xn is a promising therapeutic agent to combat PRRSV infections.
Collapse
Affiliation(s)
- Xuewei Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongbao Song
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongxiang Zhao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke Merelbeke, Belgium
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
13
|
Song Z, Bai J, Nauwynck H, Lin L, Liu X, Yu J, Jiang P. 25-Hydroxycholesterol provides antiviral protection against highly pathogenic porcine reproductive and respiratory syndrome virus in swine. Vet Microbiol 2019; 231:63-70. [PMID: 30955825 DOI: 10.1016/j.vetmic.2019.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a severe respiratory disease that leads to huge economic losses in the pig industry throughout the world. Although there are several vaccines available, the protective efficacy is limited. Therefore, new control strategies to prevent PRRS virus (PRRSV) infection are urgently required. We have previously reported that CH25H and 25HC can significantly inhibit the replication of PRRSV by preventing viral entry. In the present study, we found that 25HC with a low IC50 value significantly decreased the replication of different PRRSV strains, and increased the production of IL-1β and IL-8 in porcine primary alveolar macrophages and the lung tissue. In pigs challenged with highly pathogenic PRRSV, treatment with 25HC was associated with an obvious reduction in the level of viremia and viral load in lung samples and nasal swabs, as well as decreased lung injury and an increased survival rate. These findings suggest that 25HC could be a promising antiviral drug against PRRSV in the future.
Collapse
Affiliation(s)
- Zhongbao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Lv Lin
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewei Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Yu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
14
|
An CH, Nazki S, Park SC, Jeong YJ, Lee JH, Park SJ, Khatun A, Kim WI, Park YI, Jeong JC, Kim CY. Plant synthetic GP4 and GP5 proteins from porcine reproductive and respiratory syndrome virus elicit immune responses in pigs. PLANTA 2018; 247:973-985. [PMID: 29313103 DOI: 10.1007/s00425-017-2836-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
We demonstrated successful overexpression of porcine reproductive and respiratory syndrome virus (PRRSV)-derived GP4D and GP5D antigenic proteins in Arabidopsis. Pigs immunized with transgenic plants expressing GP4D and GP5D proteins generated both humoral and cellular immune responses to PRRSV. Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS, the most economically significant disease affecting the swine industry worldwide. However, current commercial PRRSV vaccines (killed virus or modified live vaccines) show poor efficacy and safety due to concerns such as reversion of virus to wild type and lack of cross protection. To overcome these problems, plants are considered a promising alternative to conventional platforms and as a vehicle for large-scale production of recombinant proteins. Here, we demonstrate successful production of recombinant protein vaccine by expressing codon-optimized and transmembrane-deleted recombinant glycoproteins (GP4D and GP5D) from PRRSV in planta. We generated transgenic Arabidopsis plants expressing GP4D and GP5D proteins as candidate antigens. To examine immunogenicity, pigs were fed transgenic Arabidopsis leaves expressing the GP4D and GP5D antigens (three times at 2-week intervals) and then challenged with PRRSV at 6-week post-initial treatment. Immunized pigs showed significantly lower lung lesion scores and reduced viremia and viral loads in the lung than pigs fed Arabidopsis leaves expressing mYFP (control). Immunized pigs also had higher titers of PRRSV-specific antibodies and significantly higher levels of pro-inflammatory cytokines (TNF-α and IL-12). Furthermore, the numbers of IFN-γ+-producing cells were higher, and those of regulatory T cells were lower, in GP4D and GP5D immunized pigs than in control pigs. Thus, plant-derived GP4D and GP5D proteins provide an alternative platform for producing an effective subunit vaccine against PRRSV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Immunity, Cellular
- Immunity, Humoral
- Leukocytes, Mononuclear/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Porcine respiratory and reproductive syndrome virus/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Swine/immunology
- Swine/virology
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Chul Han An
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Salik Nazki
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Ju Huck Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Su-Jin Park
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Youn-Il Park
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
15
|
Spear A, Wang FX, Kappes MA, Das PB, Faaberg KS. Progress toward an enhanced vaccine: Eight marked attenuated viruses to porcine reproductive and respiratory disease virus. Virology 2018; 516:30-37. [PMID: 29324359 DOI: 10.1016/j.virol.2017.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 01/31/2023]
Abstract
Recombinant viruses of strain Ingelvac® PRRS porcine reproductive and respiratory syndrome virus (PRRSV) modified live virus vaccine were produced with two individual small in-frame deletions in nonstructural protein 2 (nsp2; Δ23 and Δ87) and also the same deletions supplanted with foreign tags (Δ23-V5, Δ23-FLAG, Δ23-S, Δ87-V5, Δ87-FLAG, Δ87-S). The viruses, but one (Δ87-FLAG), were stable for 10 passages and showed minimal effects on in vitro growth. Northern hybridization showed that the Δ23-tagged probe detected intracellular viral genome RNA as well as shorter RNAs that may represent heteroclite species, while the Δ87-tagged probe detected predominantly only genome length RNAs. When the tagged viruses were used to probe nsp2 protein in infected cells, perinuclear localization similar to native nsp2 was seen. Dual infection of Δ23-S and Δ87-S viruses allowed some discrimination of individual tagged nsp2 protein, facilitating future research. The mutants could potentially also be used to differentiate infected from vaccinated animals.
Collapse
Affiliation(s)
- Allyn Spear
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Feng-Xue Wang
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Matthew A Kappes
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Phani B Das
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| |
Collapse
|
16
|
van Geelen AGM, Anderson TK, Lager KM, Das PB, Otis NJ, Montiel NA, Miller LC, Kulshreshtha V, Buckley AC, Brockmeier SL, Zhang J, Gauger PC, Harmon KM, Faaberg KS. Porcine reproductive and respiratory disease virus: Evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity. Virology 2017; 513:168-179. [PMID: 29096159 DOI: 10.1016/j.virol.2017.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/14/2023]
Abstract
Recent cases of porcine reproductive and respiratory syndrome virus (PRRSV) infection in United States swine-herds have been associated with high mortality in piglets and severe morbidity in sows. Analysis of the ORF5 gene from such clinical cases revealed a unique restriction fragment polymorphism (RFLP) of 1-7-4. The genome diversity of seventeen of these viruses (81.4% to 99.8% identical; collected 2013-2015) and the pathogenicity of 4 representative viruses were compared to that of SDSU73, a known moderately virulent strain. Recombination analyses revealed genomic breakpoints in structural and nonstructural regions of the genomes with evidence for recombination events between lineages. Pathogenicity varied between the isolates and the patterns were not consistent. IA/2014/NADC34, IA/2013/ISU-1 and IN/2014/ISU-5 caused more severe disease, and IA/2014/ISU-2 did not cause pyrexia and had little effect on pig growth. ORF5 RFLP genotyping was ineffectual in providing insight into isolate pathogenicity and that other parameters of virulence remain to be identified.
Collapse
Affiliation(s)
- Albert G M van Geelen
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Phani B Das
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Nicholas J Otis
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Nestor A Montiel
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Vikas Kulshreshtha
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Alexandra C Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Susan L Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| |
Collapse
|
17
|
Kim JJ, Lee JA, Choi HY, Han JH, Huh W, Pi JH, Lee JK, Park S, Cho KH, Lee JB. In vitro and in vivo studies of deglycosylated chimeric porcine reproductive and respiratory syndrome virus as a vaccine candidate and its realistic revenue impact at commercial pig production level. Vaccine 2017; 35:4966-4973. [PMID: 28802752 DOI: 10.1016/j.vaccine.2017.07.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/23/2017] [Indexed: 02/03/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the swine industry worldwide. Vaccination is the most effective method to control the disease. In a previous study, a chimeric PRRSV named as K418 which had a genome composed of ORF 1 from the FL12 strain and ORF 2-7 from the Korean representative LMY strain was created. We constructed K418DM, K418 with deglycosylated glycoprotein 5 (GP5), to improve its humoral immunity. In the follow-up on in vivo and in vitro virological and serological tests, no back mutation in amino acids of GP5 associated with deglycosylation was shown after 9 passages on MARC-145 cells, whereas only one case of back mutation was detected after single passage in pig. In serological study, K418DM induced higher serum neutralization (SN) antibody and more limited viremia compared with those of K418 virus. In clinical trial and economic analysis, the K418DM elicited SN antibody titers and PRRSV-specific IgG over protection limit. From the economic viewpoint, there was statistically significant reduction in percentage of weak pigs. These results indicated that vaccination with the K418DM may provide enhanced protection for pigs in PRRS endemic situation and increase growth performance in commercial pig farms.
Collapse
Affiliation(s)
- Jung-Ju Kim
- Animal Health Management Division, Ministry of Agriculture, Food and Rural Affairs, 94 Dasom2-ro, Government Complex-Sejong, Sejong-si 30110, Republic of Korea; Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Research, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Osong Health Technology Administration Complex, Osongsaengmueong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Hwi-Yeon Choi
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jang-Hyuck Han
- KBNP, INC., 254-18, Dugok-ri, Sinam, Yesan-si, Chungchungnam-do 32417, Republic of Korea
| | - Won Huh
- Daesung Microbiological Labs. Co., Ltd., 5F, Soam Building, 208, Bangbae-ro, Seocho-gu, Seoul 06585, Republic of Korea
| | - Jae-Ho Pi
- Sungwoo Agricultural Co., 40-3 Hongnamseo-ro, 843 beon-gil, Gyeolseong-myeon, Hongseong-gun, Chungcheongnam-do 32210, Republic of Korea
| | - Jung-Keun Lee
- College of Veterinary Medicine, Midwestern University, 19555, North 59th Avenue, Glendale, AZ 85308, USA
| | - Sangshin Park
- The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ki-Hyun Cho
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, 177 Hyeoksin8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| | - Joong-Bok Lee
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2017; 7:41886. [PMID: 28157199 PMCID: PMC5291100 DOI: 10.1038/srep41886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV.
Collapse
|
19
|
Correas I, Osorio FA, Steffen D, Pattnaik AK, Vu HLX. Cross reactivity of immune responses to porcine reproductive and respiratory syndrome virus infection. Vaccine 2017; 35:782-788. [PMID: 28062126 DOI: 10.1016/j.vaccine.2016.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/19/2023]
Abstract
Because porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation among field isolates, characterizing the extent of cross reactivity of immune responses, and most importantly cell-mediated immunity (CMI), could help in the development of broadly cross-protective vaccines. We infected 12 PRRSV-naïve pigs with PRRSV strain FL12 and determined the number of interferon (IFN)-γ secreting cells (SC) by ELISpot assay using ten type 2 and one type 1 PRRSV isolates as recall antigens. The number of IFN-γ SC was extremely variable among animals, and with exceptions, late to appear. Cross reactivity of IFN-γ SC among type 2 isolates was broad, and we found no evidence of an association between increased genetic distance among isolates and the intensity of the CMI response. Comparable to IFN-γ SC, total antibodies evaluated by indirect immunofluorescence assay (IFA) were cross reactive, however, neutralizing antibody titers could only be detected against the strain used for infection. Finally, we observed a moderate association between homologous IFN-γ SC and neutralizing antibodies.
Collapse
Affiliation(s)
- Ignacio Correas
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Fernando A Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Hiep L X Vu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States.
| |
Collapse
|
20
|
Zhang J, Zheng Y, Xia XQ, Chen Q, Bade SA, Yoon KJ, Harmon KM, Gauger PC, Main RG, Li G. High-throughput whole genome sequencing of Porcine reproductive and respiratory syndrome virus from cell culture materials and clinical specimens using next-generation sequencing technology. J Vet Diagn Invest 2016; 29:41-50. [PMID: 28074712 DOI: 10.1177/1040638716673404] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have increasingly played crucial roles in biological and medical research, but are not yet in routine use in veterinary diagnostic laboratories. We developed and applied a procedure for high-throughput RNA sequencing of Porcine reproductive and respiratory syndrome virus (PRRSV) from cell culture-derived isolates and clinical specimens. Ten PRRSV isolates with known sequence information, 2 mixtures each with 2 different PRRSV isolates, and 51 clinical specimens (19 sera, 16 lungs, and 16 oral fluids) with various PCR threshold cycle (Ct) values were subjected to nucleic acid extraction, cDNA library preparation (24-plexed), and sequencing. Whole genome sequences were obtained from 10 reference isolates with expected sequences and from sera with a PRRSV real-time reverse transcription PCR Ct ≤ 23.6, lung tissues with Ct ≤ 21, and oral fluids with Ct ≤ 20.6. For mixtures with PRRSV-1 and -2 isolates (57.8% nucleotide identity), NGS was able to distinguish them as well as obtain their respective genome sequences. For mixtures with 2 PRRSV-2 isolates (92.4% nucleotide identity), sequence reads with nucleotide ambiguity at numerous sites were observed, indicating mixed infection; however, individual virus sequences could only be separated when 1 isolate identity and sequence in the mixture is known. The NGS approach described herein offers the prospect of high-throughput sequencing and could be adapted to routine workflows in veterinary diagnostic laboratories, although further improvement of sequencing outcomes from clinical specimens with higher Ct values remains to be investigated.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Xiao-Qin Xia
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Sarah A Bade
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Rodger G Main
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Zhang, Zheng, Chen, Bade, Yoon, Harmon, Gauger, Main, Li).,Laboratory of Aquatic Bioinformatics, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China (Xia)
| |
Collapse
|
21
|
Yu J, Zhang Y, Du Y, Li J, Huang B, Sun W, Cong X, Peng J, Ren S, Gou L, Shi J, Chen Z, Chen L, Li J, Yang J, Wu J, Wang J. The BALB/c mouse infection model for improving the Haemophilus parasuis serotyping scheme. Res Vet Sci 2016; 109:166-168. [PMID: 27892867 DOI: 10.1016/j.rvsc.2016.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 11/16/2022]
Abstract
The use of BALB/c mouse as an alternative model to study Haemophilus parasuis (HPS) infections was evaluated, supplying the serotyping scheme by comparing the pathogenicity of different serovar HPS in pigs and mice challenge using statistical analysis. Results showed that the pathogenicity of different serovar HPS in mouse was consistent with in pigs, proving that this model is a viable alternative to pigs. It provides a convenient methodology for determining the virulence of HPS strains.
Collapse
Affiliation(s)
- Jiang Yu
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Yuyu Zhang
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Yijun Du
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Jun Li
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Baohua Huang
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Wenbo Sun
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Xiaoyan Cong
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Jun Peng
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China; College of Veterinary Medicine, Shandong Agricultural University, Taian, People's Republic of China
| | - Sufang Ren
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Lihui Gou
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Jianli Shi
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Zhi Chen
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Lei Chen
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Jianda Li
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Jie Yang
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China
| | - Jiaqiang Wu
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China.
| | - Jinbao Wang
- Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China; Shandong Key Lab of Animal Disease Control and Breeding, Jinan, People's Republic of China.
| |
Collapse
|
22
|
Wang X, Yang X, Zhou R, Zhou L, Ge X, Guo X, Yang H. Genomic characterization and pathogenicity of a strain of type 1 porcine reproductive and respiratory syndrome virus. Virus Res 2016; 225:40-49. [DOI: 10.1016/j.virusres.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
|
23
|
Evaluation of the Cross-Protective Efficacy of a Chimeric Porcine Reproductive and Respiratory Syndrome Virus Constructed Based on Two Field Strains. Viruses 2016; 8:v8080240. [PMID: 27556483 PMCID: PMC4997602 DOI: 10.3390/v8080240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
One of the major hurdles to porcine reproductive and respiratory syndrome (PRRS) vaccinology is the limited or no cross-protection conferred by current vaccines. To overcome this challenge, a PRRS chimeric virus (CV) was constructed using an FL12-based cDNA infectious clone in which open reading frames (ORFs) 3-4 and ORFs 5-6 were replaced with the two Korean field isolates K08-1054 and K07-2273,respectively. This virus was evaluated as a vaccine candidate to provide simultaneous protection against two genetically distinct PRRS virus (PRRSV) strains. Thirty PRRS-negative three-week-old pigs were divided into five groups and vaccinated with CV, K08-1054, K07-2273, VR-2332, or a mock inoculum. At 25 days post-vaccination (dpv), the pigs in each group were divided further into two groups and challenged with either K08-1054 or K07-2273. All of the pigs were observed until 42 dpv and were euthanized for pathological evaluation. Overall, the CV-vaccinated group exhibited higher levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12) expression and of serum virus-neutralizing antibodies compared with the other groups after vaccination and also demonstrated better protection levels against both viruses compared with the challenge control group. Based on these results, it was concluded that CV might be an effective vaccine model that can confer a broader range of cross-protection to various PRRSV strains.
Collapse
|
24
|
Shi X, Zhang X, Chang Y, Jiang B, Deng R, Wang A, Zhang G. Nonstructural protein 11 (nsp11) of porcine reproductive and respiratory syndrome virus (PRRSV) promotes PRRSV infection in MARC-145 cells. BMC Vet Res 2016; 12:90. [PMID: 27268206 PMCID: PMC4895886 DOI: 10.1186/s12917-016-0717-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) induces one of most important devastating disease of swine worldwide, and the current methods poorly control it. Previous studies have indicated that the nonstructural protein 11 (nsp11) of PRRSV may be an important protein for the immune escape of PRRSV. Results Here, we firstly explored the effect of over-expression of nsp11 on PRRSV infection and found that over-expression of nsp11 enhanced the PRRSV titers while the small interfering RNA (siRNAs) specifically targeting nsp11 could reduce the PRRSV titers in MARC-145 cells. Conclusion In conclusion, PRRSV nsp11 promotes PRRSV infection in MARC-145 cells and siRNAs targeting nsp11 may be a potential therapeutic strategy to control PRRSV in future.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,College of Veterinary Medicine and Animal Science, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Yongzhe Chang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bo Jiang
- Office of Science & Technology, Chongqing Police College, Chongqing, 401331, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan, 450000, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China. .,College of Veterinary Medicine and Animal Science, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
25
|
Peng J, Yuan Y, Du Y, Wu J, Li B, Li J, Yu J, Hu L, Shen S, Wang J, Zhu R. Potentiation of Taishan Pinus massoniana pollen polysaccharide on the immune response and protection elicited by a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit in pigs. Mol Cell Probes 2016; 30:83-92. [PMID: 26828953 DOI: 10.1016/j.mcp.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yanmei Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoquan Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jun Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Hu
- Shandong Center for Animal Disease Prevention and Control, Jinan, China
| | - Si Shen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China.
| | - Ruiliang Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, China.
| |
Collapse
|
26
|
Peng J, Yuan Y, Shen S, Niu Z, Du Y, Wu J, Li J, Yu J, Wang T, Wang J. Immunopotentiation of four natural adjuvants co-administered with a highly pathogenic porcine reproductive and respiratory syndrome virus glycoprotein 5 subunit. Virus Genes 2016; 52:261-9. [DOI: 10.1007/s11262-016-1299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
|
27
|
Production of porcine TNFα by ADAM17-mediated cleavage negatively regulates porcine reproductive and respiratory syndrome virus infection. Immunol Res 2016; 64:711-20. [DOI: 10.1007/s12026-015-8772-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Li Z, Wang G, Wang Y, Zhang C, Wang X, Huang B, Li Q, Li L, Xue B, Ding P, Syed SF, Wang C, Cai X, Zhou EM. Rescue and evaluation of a recombinant PRRSV expressing porcine Interleukin-4. Virol J 2015; 12:185. [PMID: 26573719 PMCID: PMC4647277 DOI: 10.1186/s12985-015-0380-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current vaccines for porcine reproductive and respiratory syndrome virus (PRRSV) have failed to provide broad protection against infection by various strains of PRRSV. Porcine Interleukin-4 (pIL-4) plays an important role in the regulation of the immune response and has been used previously as an immunological adjuvant. The objective of this study was to construct a recombinant PRRSV expressing pIL-4 and to evaluate the immune response of the recombinant virus in piglets. METHODS The pIL-4 gene was inserted in the PRRSV (CH-1R strain) infectious clone by overlap PCR. Indirect immunofluorescence assay (IFA) and Western blotting were used to confirm the recombinant virus. The stability of the recombinant virus was assessed by DNA sequencing and IFA after 15 passages in vitro. Recombinant virus was injected into pigs and efficacy of immune protection was evaluated in comparison with the parental virus. RESULTS The recombinant virus (CH-1R/pIL-4) was successfully rescued and shown to have similar growth kinetics as the parental virus. The recombinant virus was stable for 15 passages in cell culture. Pigs vaccinated with CH-1R/pIL-4 produced a similar humoral response to the response elicited by parental virus, but IL-4 level in the supernatant of PBMCs from pigs vaccinated with CH-1R/pIL-4 was significantly higher than the parent virus at 28 days post-immunization (DPI). Flow cytometric (FCM) analysis showed that the percentage of CD4(+)CD8(+) double positive T (DPT) cells in the CH-1R/pIL-4 vaccinated group was significantly higher than the parental virus at 3 and 7 Days Post-Challenge (DPC), and the IL-4 level in the blood significantly increased at 7 DPC. However, the viral load and histopathology did not show significant difference between the two groups. CONCLUSIONS A recombinant PRRSV expressing porcine IL-4 was rescued and it remained genetically stable in vitro. The recombinant virus induced higher DPT ratios and IL-4 levels in the blood after HP-PRRSV challenge compared to the parental virus in piglets. However, it did not significantly improve protection efficacy of PRRSV vaccine.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, China.
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, China.
| | - Xinglong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Peiyang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Shahid Faraz Syed
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
A Synthetic Porcine Reproductive and Respiratory Syndrome Virus Strain Confers Unprecedented Levels of Heterologous Protection. J Virol 2015; 89:12070-83. [PMID: 26401031 DOI: 10.1128/jvi.01657-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine. IMPORTANCE The extraordinary genetic variation of RNA viruses poses a monumental challenge for the development of broadly protective vaccines against these viruses. To minimize the genetic dissimilarity between vaccine immunogens and contemporary circulating viruses, computational strategies have been developed for the generation of artificial immunogen sequences (so-called "centralized" sequences) that have equal genetic distances to the circulating viruses. Thus far, the generation of centralized vaccine immunogens has been carried out at the level of individual viral proteins. We expand this concept to PRRSV, a highly variable RNA virus, by creating a synthetic PRRSV strain based on a centralized PRRSV genome sequence. This study provides the first example of centralizing the whole genome of an RNA virus to improve vaccine coverage. This concept may be significant for the development of vaccines against genetically variable viruses that require active viral replication in order to achieve complete immune protection.
Collapse
|
30
|
Li Z, Wang G, Wang Y, Zhang C, Huang B, Li Q, Li L, Xue B, Ding P, Cai X, Wang C, Zhou EM. Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF. Vet Immunol Immunopathol 2015; 168:40-8. [PMID: 26300317 DOI: 10.1016/j.vetimm.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has spread worldwide, causing huge economic losses to the swine industry. The current PRRSV vaccines have failed to provide broad protection against various strains. Granulocyte macrophage colony-stimulating factor (GM-CSF), an efficacious adjuvant, has been shown to enhance the immunogenicity of various vaccines. The purpose of this study was to construct a recombinant live attenuated PRRSV that expresses porcine GM-CSF (pGM-CSF) and evaluate the immune responses of pigs immunized with the recombinant virus. The results showed that the recombinant PRRSV was successfully rescued and had similar growth properties to parental virus grown in Marc-145 cells. The recombinant virus was stable for 10 passages in cell culture. Pigs intramuscularly immunized with the recombinant virus produced a similar humoral response to that elicited using parental virus. With regard to cell-mediated immunity assessed in peripheral blood, the recombinant virus induced higher proportion of CD4(+)CD8(+) double-positive T cells (DPT), higher IFN-γ level at 0 and 7 days post-challenge (DPC), and lower viremia at 21 DPC than pigs immunized with parental virus. These results indicate that recombinant PRRSV expressing pGM-CSF can induce a significant higher cellular immune response and reduce the persistent infection compared pigs vaccinated with the parental virus. This is first report of evaluation of immune response in pigs elicited by a recombinant live attenuated PRRSV expressing porcine GM-CSF. It may represent a novel strategy for future development of genetic engineered vaccines against PRRSV infection.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peiyang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
31
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction. Vaccine 2015; 33:4069-80. [PMID: 26148878 DOI: 10.1016/j.vaccine.2015.06.092] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork producers and biologics companies.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
32
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
33
|
Development of a genome copy specific RT-qPCR assay for divergent strains of type 2 porcine reproductive and respiratory syndrome virus. J Virol Methods 2015; 218:1-6. [PMID: 25766790 DOI: 10.1016/j.jviromet.2015.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/10/2014] [Accepted: 02/08/2015] [Indexed: 11/21/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) became a significant pathogen of swine upon its emergence in the late 1980s and since then has exemplified a rapidly evolving, constantly re-emerging pathogen. In addition to the challenges faced in development of vaccines and diagnostics, research on the basic molecular pathogenesis of PRRSV is also restrained by the ability to accurately and comparatively quantitate levels of replication in different tissues and between strains. This is further complicated by the presence of non-genomic RNA within infected tissues which are generally detected with equivalent efficiency by RT-qPCR based techniques, thereby introducing inherent error in these measurements that may differ significantly by tissue and strain. To address this, an RT-qPCR based technique was developed which targets the viral RNA-dependent RNA polymerase gene (nsp9) which is unique to genomic RNA, being absent from all subgenomic and heteroclite RNAs. This assay targets a region of considerable sequence conservation, and based on sequence only, should be quantitative for approximately 40% of all Type 2 PRRSV strains in GenBank for which nsp9 sequence is available. The assay was demonstrated to be linear over nine orders of magnitude (10(10)-10(2) copies) and can be readily adapted for multiplex detection of additional divergent PRRSV strains. This assay will add significantly to the ability to assess and compare PRRSV replication in a variety of tissues and between divergent strains, including highly pathogenic strains of considerable concern to the global pork industry.
Collapse
|
34
|
Gu W, Guo L, Yu H, Niu J, Huang M, Luo X, Li R, Tian Z, Feng L, Wang Y. Involvement of CD16 in antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection. J Gen Virol 2015; 96:1712-22. [PMID: 25752917 DOI: 10.1099/vir.0.000118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The immunological effect of porcine reproductive and respiratory syndrome disease virus (PRRSV) vaccines is thought to be influenced by a variety of host factors, in which antibody-dependent enhancement (ADE) of infection is one crucial factor. Here, we assessed the mechanism of ADE of PRRSV infection. First, we found that subneutralizing serum could induce ADE of PRRSV infection in porcine alveolar macrophages (PAMs). Quantitative PCR, Western blotting and flow cytometry revealed that CD16 is the most abundant Fcγ receptor (FcγR) expressed on the surface of PAMs; thus, the role of CD16 in ADE of PRRSV infection was examined in PAMs. By using functional blocking antibodies, we demonstrated that CD16 is involved in enhanced virus production in PRRSV-antibody immune complex-infected PAMs. Because PAMs co-express different FcγR isoforms, we evaluated the effects of CD16 in FcγR-non-bearing cells by transfection. Using these engineered cells, we found that CD16 could specifically bind to the PRRSV-antibody immune complex and subsequently mediate internalization of the virus, resulting in the generation of progeny virus. We also showed that efficient expression of CD16 required association of the FcR γ-chain. Together, our findings provide significant new insights into PRRSV infection, which can be enhanced by CD16-mediated PRRSV-antibody immune complexes. This CD16-mediated ADE may induce a shift in PRRSV tropism towards CD16-expressing cells, distributing virus to more organs during virus infection.
Collapse
Affiliation(s)
- Weihong Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Haidong Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Junwei Niu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mingming Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaolei Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ren Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
35
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide. Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
36
|
Shi X, Chang Y, Zhang X, Wang L, Li C, Jiang K, Chen J, Wang C, Deng R, Fan J, Zhang G. Small interfering RNA targeting nonstructural protein1 α (nsp1α) of porcine reproductive and respiratory syndrome virus (PRRSV) can reduce the replication of PRRSV in MARC-145 cells. Res Vet Sci 2015; 99:215-7. [PMID: 25683113 PMCID: PMC7111734 DOI: 10.1016/j.rvsc.2015.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 11/15/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically devastating and pandemic diseases of swine, which is poorly controlled by current methods. The inhibition of specific genes by small interfering RNA (siRNA) has been proven to be a potential therapeutic strategy against viral infection. Previous studies have indicated that the nonstructural protein 1α (nsp1α) of PRRSV may take an important role in virulence of PRRSV. The present work was involved to explore the effect of siRNA targeting nsp1α on the replication of PRRSV in MARC-145 cells, and the results showed that over-expression of nsp1α enhanced the replication of PRRSV and that siRNAs specifically targeting nsp1α significantly inhibited the replication of PRRSV in MARC-145 cells. In conclusion, this work indicated that nsp1α may be a viral pathogenicity factor of PRRSV and that siRNAs specifically targeting nsp1α may be a new strategy to control PRRSV in the future.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; College of Veterinary Medicine and Animal Science, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Yongzhe Chang
- College of Veterinary Medicine and Animal Science, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Chunxi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jing Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Chao Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Jianming Fan
- The Laboratory of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiping Zhang
- College of Veterinary Medicine and Animal Science, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China.
| |
Collapse
|
37
|
Identification of putative virulence-associated genes among Haemophilus parasuis strains and the virulence difference of different serovars. Microb Pathog 2014; 77:17-23. [PMID: 25283960 DOI: 10.1016/j.micpath.2014.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
This study was aimed at determining virulence-associated genes among Haemophilus parasuis (H. parasuis) strains, and supplying for the Kielstein-Rapp-Gabrielson serotyping scheme. The subtractive fragments, obtained through suppression subtractive hybridization and reverse Southern blot hybridization, were found to encode genes representative of 7 different functions. PCR was used to investigate the distribution of these fragments in H. parasuis strains isolated from different infection sites in pigs. Mice challenge was then used to analyze the correlationship between subtractive fragments, infection sites and bacterial virulence. Eight weeks old female BALB/c mice (10 mice/group) were inoculated intraperitoneally with 3.0 × 10(9) CFU suspension (0.5 ml/mouse) of H. parasuis strains in PBS. Results indicated that H. parasuis possessed varied virulence even among the same serovar strains. Transcription units hsdR, hsdS, gpT and ompP2, identified from the subtractive fragments, were uniformly expressed in highly virulent strains, while absent in weakly virulent strains, and demonstrated variable degrees of expression in moderately virulent strains. Moreover, H. parasuis strains, isolated from pericardium and heart blood, were all highly virulent strains, while from nasal cavity and joint were moderately or weakly virulent strains. This study indicated that fragments hsdR, hsdS, gpT and ompP2 were associated with the virulence of H. parasuis. The virulence of H. parasuis strains isolated from different infection sites was different. The current research provides a new reference for determining bacterial virulence in different H. parasuis strains.
Collapse
|
38
|
Ren J, Lu H, Wen S, Sun W, Yan F, Chen X, Jing J, Liu H, Liu C, Xue F, Xiao P, Xin S, Jin N. Enhanced immune responses in pigs by DNA vaccine coexpressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus. J Virol Methods 2014; 206:27-37. [PMID: 24882496 DOI: 10.1016/j.jviromet.2014.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/20/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
|
39
|
Li Y, Zhou L, Zhang J, Ge X, Zhou R, Zheng H, Geng G, Guo X, Yang H. Nsp9 and Nsp10 contribute to the fatal virulence of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China. PLoS Pathog 2014; 10:e1004216. [PMID: 24992286 PMCID: PMC4081738 DOI: 10.1371/journal.ppat.1004216] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
Atypical porcine reproductive and respiratory syndrome (PRRS), which is caused by the Chinese highly pathogenic PRRS virus (HP-PRRSV), has resulted in large economic loss to the swine industry since its outbreak in 2006. However, to date, the region(s) within the viral genome that are related to the fatal virulence of HP-PRRSV remain unknown. In the present study, we generated a series of full-length infectious cDNA clones with swapped coding regions between the highly pathogenic RvJXwn and low pathogenic RvHB-1/3.9. Next, the in vitro and in vivo replication and pathogenicity for piglets of the rescued chimeric viruses were systematically analyzed and compared with their backbone viruses. First, we swapped the regions including the 5′UTR+ORF1a, ORF1b, and structural proteins (SPs)-coding region between the two viruses and demonstrated that the nonstructural protein-coding region, ORF1b, is directly related to the fatal virulence and increased replication efficiency of HP-PRRSV both in vitro and in vivo. Furthermore, we substituted the nonstructural protein (Nsp) 9-, Nsp10-, Nsp11- and Nsp12-coding regions separately; or Nsp9- and Nsp10-coding regions together; or Nsp9-, Nsp10- and Nsp11-coding regions simultaneously between the two viruses. Our results indicated that the HP-PRRSV Nsp9- and Nsp10-coding regions together are closely related to the replication efficiency in vitro and in vivo and are related to the increased pathogenicity and fatal virulence for piglets. Our findings suggest that Nsp9 and Nsp10 together contribute to the fatal virulence of HP-PRRSV emerging in China, helping to elucidate the pathogenesis of this virus. PRRS is a considerable threat to the pig industry worldwide. A large-scale atypical PRRS caused by highly pathogenic PRRSV (HP-PRRSV) that emerged in 2006 has resulted in considerable economic loss to Chinese pig production. The disease is characterized by a high body temperature (41°C–42°C), morbidity and by mortality of the affected pigs. Although the genomic marker, the 30-amino-acid deletion in its Nsp2-coding region has been previously verified to have no relation to its increased pathogenicity, the genomic region(s) associated with the fatal virulence of HP-PRRSV remain unclear. A series of chimeric viruses with swapped coding regions between HP- and LP-PRRSV were constructed, and their growth abilities and pathogenicities in piglets were analyzed. Our results demonstrated that Nsp9 and Nsp10 together contribute to the replication efficiency and the fatal virulence of HP-PRRSV for piglets. Our finding is not only the first unambiguous illumination concerning the key virulence determinant of Chinese HP-PRRSV but it also provides a novel insight for understanding the molecular pathogenesis of this virus and for designing new drugs and vaccines against PRRSV infection in the future.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jialong Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Rong Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Huaguo Zheng
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Gang Geng
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
40
|
Modulation of CD163 expression by metalloprotease ADAM17 regulates porcine reproductive and respiratory syndrome virus entry. J Virol 2014; 88:10448-58. [PMID: 24965453 DOI: 10.1128/jvi.01117-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED As a consequence of their effects on ectodomain shedding, members of the A disintegrin and metalloprotease (ADAM) family have been implicated in the control of various cellular processes. Although ADAM family members are also involved in cancer, inflammation, and other pathologies, it is unclear whether they affect porcine reproductive and respiratory syndrome virus (PRRSV) infection. Here, we demonstrate for the first time that inhibition of ADAM17 enhances PRRSV entry in Marc-145 and porcine alveolar macrophages (PAMs). We also demonstrate that the inhibition of ADAM17 upregulates membrane CD163 expression, a putative PRRSV receptor that is exogenously expressed in BHK-21 and endogenously expressed in Marc-145 and PAMs. Furthermore, overexpression of ADAM17 induced downregulation of CD163 expression and a reduction in PRRSV infection, whereas ablation of ADAM17 expression using specific small interfering RNA resulted in upregulation of CD163 expression with a corresponding increase in PRRSV infection. These ADAM17-mediated effects were confirmed with PRRSV nonpermissive BHK-21 cells transfected with CD163 cDNA. Overall, these findings indicate that ADAM17 downregulates CD163 expression and hinders PRRSV entry. Hence, downregulation of ADAM17 particular substrates may be an additional component of the anti-infection defenses. IMPORTANCE ADAM17 is one of the important membrane-associated metalloproteases that mediate various cellular events, as well as inflammation, cancer, and other pathologies. Here, we investigate for the first time the role of the metalloprotease ADAM17 in PRRSV infection. By using inhibitor and genetic modification methods, we demonstrate that ADAM17 negatively regulate PRRSV entry by regulating its substrate(s). More specifically, ADAM 17 mediates the downregulation of the PRRSV cellular receptor CD163. The reduction in CD163 expression represents another component of the anti-infection response initiated by ADAM17.
Collapse
|
41
|
Attenuation and immunogenicity of a live high pathogenic PRRSV vaccine candidate with a 32-amino acid deletion in the nsp2 protein. J Immunol Res 2014; 2014:810523. [PMID: 25009824 PMCID: PMC4070328 DOI: 10.1155/2014/810523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) QY1 was serially passed on Marc-145 cells. Virulence of different intermediate derivatives of QY1 (P5, P60, P80, and P100) were determined. The study found that QY1 had been gradually attenuated during the in vitro process. Pathogenicity study showed that pigs inoculated with QY1 P100 and P80 did not develop any significant PRRS clinic symptoms. However, mild-to-moderate clinical signs and acute HP-PRRSV symptoms of infection were observed in pigs inoculated with QY1 P60 and P5, respectively. Furthermore, we determined the whole genome sequences of these four intermediate viruses. The results showed that after 100 passages, compared to QY1 P5, a total of 32 amino acid mutations were found. Moreover, there were one nucleotide deletion and a unique 34-amino acid deletion found at 5′UTR and in nsp2 gene during the attenuation process, respectively. Such deletions were genetically stable in vivo. Following PRRSV experimental challenge, pigs inoculated with a single dose of QY1 P100 developed no significant clinic symptoms and well tolerated lethal challenge, while QY1 P80 group still developed mild fever in the clinic trial after challenge. Thus, we concluded that QY1 P100 was a promising and highly attenuated PRRSV vaccine candidate.
Collapse
|
42
|
The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference. Virology 2014; 454-455:247-53. [PMID: 24725951 DOI: 10.1016/j.virol.2014.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 11/24/2022]
Abstract
Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease, recently exacerbated by the emergence of highly pathogenic strains (HP-PRRSV). Within the nonstructural protein 2 of PRRSV is a deubiquitinating enzyme domain belonging to the viral ovarian tumor (vOTU) protease superfamily. vOTUs, which can greatly vary in their preference for their host ubiquitin (Ub) and Ub-like substrates such as interferon stimulated gene 15 (ISG15), have been implicated as a potential virulence factor. Since various strains of PRRSV have large variations in virulence, the specificity of vOTUs from two PRRSV strains of varying virulence were determined. While both vOTUs showed de-ubiquitinating activity and markedly low deISGylating activity, HP-PRRSV demonstrated a strong preference for lysine 63-linked poly-Ubiquitin, tied to innate immune response regulation. This represents the first report of biochemical activity unique to HP-PRRSV that has implications for a potential increase in immunosuppression and virulence.
Collapse
|
43
|
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB, Renukaradhya GJ. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomedicine 2014; 9:679-94. [PMID: 24493925 PMCID: PMC3908835 DOI: 10.2147/ijn.s56127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.
Collapse
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Yun Wu
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Ly James Lee
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| |
Collapse
|
44
|
Peng J, Wang J, Wu J, Du Y, Li J, Guo Z, Yu J, Xu S, Zhang Y, Sun W, Cong X, Shi J. Positive Inductive Effect of Swine Interleukin-4 on Immune Responses Elicited by Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine. Viral Immunol 2013; 26:404-14. [DOI: 10.1089/vim.2013.0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jinbao Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jiaqiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Yijun Du
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Zhongkun Guo
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jiang Yu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Shaojian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Yuyu Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Wenbo Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xiaoyan Cong
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jianli Shi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| |
Collapse
|
45
|
A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit. Vet Res 2013; 44:104. [PMID: 24176053 PMCID: PMC4176086 DOI: 10.1186/1297-9716-44-104] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Here we report the rescue of a recombinant porcine reproductive and respiratory syndrome virus (PRRSV) carrying an enhanced green fluorescent protein (EGFP) reporter gene as a separate transcription unit. A copy of the transcription regulatory sequence for ORF6 (TRS6) was inserted between the N protein and 3′-UTR to drive the transcription of the EGFP gene and yield a general purpose expression vector. Successful recovery of PRRSV was obtained using an RNA polymerase II promoter to drive transcription of the full-length virus genome, which was assembled in a bacterial artificial chromosome (BAC). The recombinant virus showed growth replication characteristics similar to those of the wild-type virus in the infected cells. In addition, the recombinant virus stably expressed EGFP for at least 10 passages. EGFP expression was detected at approximately 10 h post infection by live-cell imaging to follow the virus spread in real time and the infection of neighbouring cells occurred predominantly through cell-to-cell-contact. Finally, the recombinant virus generated was found to be an excellent tool for neutralising antibodies and antiviral compound screening. The newly established reverse genetics system for PRRSV could be a useful tool not only to monitor virus spread and screen for neutralising antibodies and antiviral compounds, but also for fundamental research on the biology of the virus.
Collapse
|
46
|
Experimental infection and comparative genomic analysis of a highly pathogenic PRRSV-HBR strain at different passage levels. Vet Microbiol 2013; 166:337-46. [DOI: 10.1016/j.vetmic.2013.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/07/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022]
|
47
|
Guo B, Lager KM, Schlink SN, Kehrli ME, Brockmeier SL, Miller LC, Swenson SL, Faaberg KS. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine. Virology 2013; 446:238-50. [PMID: 24074587 DOI: 10.1016/j.virol.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 08/09/2013] [Indexed: 01/12/2023]
Abstract
An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared and was demonstrated to contain multiple amino acid differences throughout the genome when compared to Chinese highly pathogenic PRRSV strain rJXwn06. Virus rescued from the rSRV07 infectious clone was compared to rJXwn06 and US Type 2 prototype strain VR-2332 to examine the effects of virus genotype and phenotype on in vitro growth, and virus challenge dose on in vivo pathogenicity and host response. After swine inoculation at high- and low-doses of virus, rSRV07 was shown to replicate to an approximately 10-fold lower level in serum than rJXwn06, produced lower body temperatures than rJXwn06 and resulted in decreased mortality. Furthermore, a 9-plex cytokine panel revealed that the cytokine responses varied between different strains of PRRSV, as well as between tissues examined and by inoculum dose.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
49
|
Zhang L, Liu J, Bai J, Wang X, Li Y, Jiang P. Comparative expression of Toll-like receptors and inflammatory cytokines in pigs infected with different virulent porcine reproductive and respiratory syndrome virus isolates. Virol J 2013; 10:135. [PMID: 23631691 PMCID: PMC3673858 DOI: 10.1186/1743-422x-10-135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 04/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is largely responsible for heavy economic losses in the swine industry worldwide because of its high mutation rate and subsequent emergence of virulent strains. However, the immunological and pathological responses of pigs to PRRSV strains with different virulence have not been completely elucidated. METHODS Twenty-four piglets were divided into 4 groups (n = 6 each) and inoculated with highly pathogenic PRRSV isolate BB0907 (HP), low pathogenic PRRSV NT0801 (LP), LP derivative strain NT0801-F70 (LP-der), and DMEM medium (control), respectively. The changes in TLR2, 3, 7, and 8 gene expression and TNF-α, IL-1β, IL-6, IFN-γ, and IL-10 secretion were evaluated using real-time PCR and ELISA at 6, 9, and 15 days post inoculation (d.p.i.). The cytokine levels were evaluated in the supernatants of porcine alveolar macrophages (PAMs) and peripheral blood mononuclear cells (PBMCs) following stimulation with LTA, poly(I:C), CL097, and PRRSV individually. RESULTS HP caused more severe clinical signs and pathological lesions in swine than LP and LP-der had almost no virulence compared with LP. The serum levels of IL-1β, IL-6, TNF-α, and IFN-γ were increased in HP-infected piglets, which were greater than in those infected with LP or LP-der. The mRNA levels of TLR3, 7, and 8 were significantly up-regulated in PAMs in HP-infected pigs compared to those in groups LP and LP-der. Furthermore, TNF-α and IL-1β secretion in PAMs from group LP was statistically greater than those from the control group after stimulation with either poly(I:C) or CL097. Meanwhile, TNF-α, IL-1β, and IL-6 levels in CL097-stimulated PBMCs from HP-infected pigs were markedly higher than those from the LP- and LP-der-infected groups. CONCLUSIONS We found that HP was a stronger inducer of TLR 3, 7, and 8 expression and IL-1β, IL-6, TNF-α, and IFN-γ production compared to LP and LP-der. HP enhanced production of TNF-α, IL-1β, and IL-6 in PBMCs following CL097-stimulation more than LP and LP-der, whereas LP enhanced the secretion of TNF-α and IL-1β in poly(I:C)- and CL097-stimulated PAMs. Our data regarding cellular reactivity to different isolates should be useful in the development of more efficacious vaccines.
Collapse
|
50
|
Gao F, Yao H, Lu J, Wei Z, Zheng H, Zhuang J, Tong G, Yuan S. Replacement of the heterologous 5' untranslated region allows preservation of the fully functional activities of type 2 porcine reproductive and respiratory syndrome virus. Virology 2013; 439:1-12. [PMID: 23453581 PMCID: PMC7111940 DOI: 10.1016/j.virol.2012.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/20/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
The 5' untranslated region (UTR) is believed to be vital for the replication of porcine reproductive and respiratory syndrome virus (PRRSV), yet its functional mechanism remains largely unknown. In this study, to define the cis-acting elements for viral replication and infectivity, The 5' UTR swapping chimeric clones pTLV8 and pSHSP5 were constructed based on two different genotypes full-length infectious cDNA clone pAPRRS and pSHE backbones. Between them, vTLV8 could be rescued from pTLV8 and had similar virological properties to vAPRRS, including phenotypic characteristic and RNA synthesis level. However, pSHSP5 exhibited no evidence of infectivity. Taken together, the results presented here demonstrate that only the 5' UTR of type 1 PRRSV did not affect the infectivity and replication of type 2 PRRSV in vitro. The 5' UTR of type 2 PRRSV could be functionally replaced by its counterpart from type 1.
Collapse
Affiliation(s)
- Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | | | | | | | | | | | | | | |
Collapse
|