1
|
Zhu Y, Cao Y, Ma L, Fan L, Pu W, Xia Y. Trichohepatoenteric syndrome and cytomegalovirus infection: Case report and literature summary. SAGE Open Med Case Rep 2024; 12:2050313X241248393. [PMID: 38737560 PMCID: PMC11084984 DOI: 10.1177/2050313x241248393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
Trichohepatoenteric syndrome is a rare autosomal recessive genetic disease caused by TTC37 (also known as SKIC3) or SKIV2L gene variant. We present a severely affected 2-month-old male infant with recurrent fever and unexplained diarrhea. Additionally, clinical data of 11 patients with trichohepatoenteric syndrome in China from 1 to 60 days of onset was presented. The infant's condition was not substantially relieved after cefotaxime sulbactam and meropenem treatment. Whole-exome sequencing revealed compound heterozygous variants (c.1708C>T and c.3342-9T>G) in TTC37 of the child whose parents were heterozygous carriers of the corresponding locus. The c.3342-9T>G variant originated from his mother and was reported for the first time. Combined with the clinical manifestations, the infant was diagnosed with trichohepatoenteric syndrome and treated with ganciclovir antiviral, intravenous nutritional support, and liver function protection. The infant was discharged with no fever and high stool frequency, but his condition improved. Therefore, trichohepatoenteric syndrome should be considered for recurrent fever and unexplained diarrhea.
Collapse
Affiliation(s)
- Yumo Zhu
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Yanyan Cao
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Li Ma
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Lili Fan
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Weicong Pu
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Yaofang Xia
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
2
|
Zimmermann C, Watson GM, Bauersfeld L, Berry R, Ciblis B, Lan H, Gerke C, Oberhardt V, Fuchs J, Hofmann M, Freund C, Rossjohn J, Momburg F, Hengel H, Halenius A. Diverse cytomegalovirus US11 antagonism and MHC-A evasion strategies reveal a tit-for-tat coevolutionary arms race in hominids. Proc Natl Acad Sci U S A 2024; 121:e2315985121. [PMID: 38377192 PMCID: PMC10907249 DOI: 10.1073/pnas.2315985121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Gabrielle M. Watson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Liane Bauersfeld
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Barbara Ciblis
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Huan Lan
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195Berlin, Germany
| | - Carolin Gerke
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Valerie Oberhardt
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195Berlin, Germany
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, 69120Heidelberg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| | - Anne Halenius
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
3
|
Penner I, Dejung M, Freiwald A, Butter F, Chen JX, Plachter B. Proteome changes of fibroblasts and endothelial cells upon incubation with human cytomegalovirus subviral Dense Bodies. Sci Data 2023; 10:517. [PMID: 37542058 PMCID: PMC10403606 DOI: 10.1038/s41597-023-02418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen of high medical relevance. Subviral Dense Bodies (DB) were developed as a vaccine candidate to ameliorate the severe consequences of HCMV infection. Development of such a candidate vaccine for human application requires detailed knowledge of its interaction with the host. A comprehensive mass spectrometry (MS)- based analysis was performed regarding the changes in the proteome of cell culture cells, exposed to DB.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Anja Freiwald
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
4
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
5
|
Krauter S, Büscher N, Bräuchle E, Ortega Iannazzo S, Penner I, Krämer N, Gogesch P, Thomas S, Kreutz M, Dejung M, Freiwald A, Butter F, Waibler Z, Plachter B. An Attenuated Strain of Human Cytomegalovirus for the Establishment of a Subviral Particle Vaccine. Vaccines (Basel) 2022; 10:vaccines10081326. [PMID: 36016214 PMCID: PMC9413975 DOI: 10.3390/vaccines10081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe disease conditions either following congenital transmission of the virus or viral reactivation in immunosuppressed individuals. Consequently, the establishment of a protective vaccine is of high medical need. Several candidates have been tested in preclinical and clinical studies, yet no vaccine has been licensed. Subviral dense bodies (DB) are a promising vaccine candidate. We have recently provided a GMP-compliant protocol for the production of DB, based on a genetically modified version of the HCMV laboratory strain Towne, expressing the pentameric complex of envelope protein gH-gL-pUL128-131 (Towne-UL130rep). In this work, we genetically attenuated Towne-UL130rep by abrogating the expression of the tegument protein pUL25 and by fusing the destabilizing domain ddFKBP to the N-terminus of the IE1- and IE2-proteins of HCMV. The resulting strain, termed TR-VAC, produced high amounts of DB under IE1/IE2 repressive conditions and concomitant supplementation of the viral terminase inhibitor letermovir to the producer cell culture. TR-VAC DB retained the capacity to induce neutralizing antibodies. A complex pattern of host protein induction was observed by mass spectrometry following exposure of primary human monocytes with TR-VAC DB. Human monocyte-derived dendritic cells (DC) moderately increased the expression of activation markers and MHC molecules upon stimulation with TR-VAC DB. In a co-culture with autologous T cells, the TR-VAC DB-stimulated DC induced a robust HCMV-specific T cell-activation and –proliferation. Exposure of donor-derived monocytic cells to DB led to the activation of a rapid innate immune response. This comprehensive data set thus shows that TR-VAC is an optimal attenuated seed virus strain for the production of a DB vaccine to be tested in clinical studies.
Collapse
Affiliation(s)
- Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Eric Bräuchle
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Samira Ortega Iannazzo
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nadine Krämer
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Patricia Gogesch
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Simone Thomas
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Marina Kreutz
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Zoe Waibler
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-179232
| |
Collapse
|
6
|
Gergely KM, Podlech J, Becker S, Freitag K, Krauter S, Büscher N, Holtappels R, Plachter B, Reddehase MJ, Lemmermann NAW. Therapeutic Vaccination of Hematopoietic Cell Transplantation Recipients Improves Protective CD8 T-Cell Immunotherapy of Cytomegalovirus Infection. Front Immunol 2021; 12:694588. [PMID: 34489940 PMCID: PMC8416627 DOI: 10.3389/fimmu.2021.694588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) endangers the therapeutic success of hematopoietic cell transplantation (HCT) in tumor patients due to cytopathogenic virus spread that leads to organ manifestations of CMV disease, to interstitial pneumonia in particular. In cases of virus variants that are refractory to standard antiviral pharmacotherapy, immunotherapy by adoptive cell transfer (ACT) of virus-specific CD8+ T cells is the last resort to bridge the "protection gap" between hematoablative conditioning for HCT and endogenous reconstitution of antiviral immunity. We have used the well-established mouse model of CD8+ T-cell immunotherapy by ACT in a setting of experimental HCT and murine CMV (mCMV) infection to pursue the concept of improving the efficacy of ACT by therapeutic vaccination (TherVac) post-HCT. TherVac aims at restimulation and expansion of limited numbers of transferred antiviral CD8+ T cells within the recipient. Syngeneic HCT was performed with C57BL/6 mice as donors and recipients. Recipients were infected with recombinant mCMV (mCMV-SIINFEKL) that expresses antigenic peptide SIINFEKL presented to CD8+ T cells by the MHC class-I molecule Kb. ACT was performed with transgenic OT-I CD8+ T cells expressing a T-cell receptor specific for SIINFEKL-Kb. Recombinant human CMV dense bodies (DB-SIINFEKL), engineered to contain SIINFEKL within tegument protein pUL83/pp65, served for vaccination. DBs were chosen as they represent non-infectious, enveloped, and thus fusion-competent subviral particles capable of activating dendritic cells and delivering antigens directly into the cytosol for processing and presentation in the MHC class-I pathway. One set of our experiments documents the power of vaccination with DBs in protecting the immunocompetent host against a challenge infection. A further set of experiments revealed a significant improvement of antiviral control in HCT recipients by combining ACT with TherVac. In both settings, the benefit from vaccination with DBs proved to be strictly epitope-specific. The capacity to protect was lost when DBs included the peptide sequence SIINFEKA lacking immunogenicity and antigenicity due to C-terminal residue point mutation L8A, which prevents efficient proteasomal peptide processing and binding to Kb. Our preclinical research data thus provide an argument for using pre-emptive TherVac to enhance antiviral protection by ACT in HCT recipients with diagnosed CMV reactivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
7
|
Alnefaie A, Albogami S. Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective. Saudi Pharm J 2020; 28:1333-1352. [PMID: 32905015 PMCID: PMC7462599 DOI: 10.1016/j.jsps.2020.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AHFS, American Hospital Formula Service
- ANGII, angiotensin II
- APCs, antigen presenting cells
- ARDS, acute respiratory distress syndrome
- COVID-19, coronavirus disease
- CoVs, coronaviruses
- Coronavirus
- GVHD, graft versus host disease
- HCoVs, human coronoaviruses
- IBV, infectious bronchitis coronavirus
- IFN-γ, interferon-gamma
- ILCs, innate lymphoid cells
- Investigational medications
- MERS-CoV, Middle East respiratory syndrome
- NKs, natural killer cells
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- Pandemic
- Pathophysiology
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SLE, systemic lupus erythematosus
- TMPRSS2, transmembrane serine protease 2
- Viral immune response
- WHO, World Health Organization
- nsps, nonstructural proteins
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
8
|
Houldcroft CJ, Jackson SE, Lim EY, Sedikides GX, Davies EL, Atkinson C, McIntosh M, Remmerswaal EBM, Okecha G, Bemelman FJ, Stanton RJ, Reeves M, Wills MR. Assessing Anti-HCMV Cell Mediated Immune Responses in Transplant Recipients and Healthy Controls Using a Novel Functional Assay. Front Cell Infect Microbiol 2020; 10:275. [PMID: 32670891 PMCID: PMC7332694 DOI: 10.3389/fcimb.2020.00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
HCMV infection, reinfection or reactivation occurs in 60% of untreated solid organ transplant (SOT) recipients. Current clinical approaches to HCMV management include pre-emptive and prophylactic antiviral treatment strategies. The introduction of immune monitoring to better stratify patients at risk of viraemia and HCMV mediated disease could improve clinical management. Current approaches quantify T cell IFNγ responses specific for predominantly IE and pp65 proteins ex vivo, as a proxy for functional control of HCMV in vivo. However, these approaches have only a limited predictive ability. We measured the IFNγ T cell responses to an expanded panel of overlapping peptide pools specific for immunodominant HCMV proteins IE1/2, pp65, pp71, gB, UL144, and US3 in a cohort of D+R- kidney transplant recipients in a longitudinal analysis. Even with this increased antigen diversity, the results show that while all patients had detectable T cell responses, this did not correlate with control of HCMV replication in some. We wished to develop an assay that could directly measure anti-HCMV cell-mediated immunity. We evaluated three approaches, stimulation of PBMC with (i) whole HCMV lysate or (ii) a defined panel of immunodominant HCMV peptides, or (iii) fully autologous infected cells co-cultured with PBMC or isolated CD8+ T cells or NK cells. Stimulation with HCMV lysate often generated non-specific antiviral responses while stimulation with immunodominant HCMV peptide pools produced responses which were not necessarily antiviral despite strong IFNγ production. We demonstrated that IFNγ was only a minor component of secreted antiviral activity. Finally, we used an antiviral assay system to measure the effect of whole PBMC, and isolated CD8+ T cells and NK cells to control HCMV in infected autologous dermal fibroblasts. The results show that both PBMC and especially CD8+ T cells from HCMV seropositive donors have highly specific antiviral activity against HCMV. In addition, we were able to show that NK cells were also antiviral, but the level of this control was highly variable between donors and not dependant on HCMV seropositivity. Using this approach, we show that non-viraemic D+R+ SOT recipients had significant and specific antiviral activity against HCMV.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Jackson
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Y. Lim
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - George X. Sedikides
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Emma L. Davies
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Claire Atkinson
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Megan McIntosh
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Ester B. M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Georgina Okecha
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederike J. Bemelman
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthew Reeves
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Mark R. Wills
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Zimmermann C, Krämer N, Krauter S, Strand D, Sehn E, Wolfrum U, Freiwald A, Butter F, Plachter B. Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release. Autophagy 2020; 17:779-795. [PMID: 32079454 DOI: 10.1080/15548627.2020.1732686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery interacts with HCMV already at the early nuclear stages of particle morphogenesis. The membrane-bound form of LC3 and several autophagy receptors were packaged into extracellular HCMV virions. This suggested that autophagic membranes were included during secondary envelopment of HCMV virions. To further address the importance of autophagy in HCMV infection, we generated an HCMV mutant that expressed a dominant-negative version of the protease ATG4B (BAD-ATG4BC74A). The proteolytic activity of ATG4B is required for LC3 cleavage, priming it for membrane conjugation. Surprisingly, both genome replication and virus release were enhanced in cells infected with BAD-ATG4BC74A, compared to control strains. These results show that autophagy operates as an antiviral process during HCMV infection but is dispensable for secondary HCMV particle envelopment.Abbreviations: ATG: autophagy-related; BAC: bacterial artificial chromosome; BECN1: beclin 1; CPE: cytopathic effect; cVACs: cytoplasmic viral assembly compartments; d.p.i.: days post-infection; DB: dense body; EBV: Epstein-Barr virus; galK: galactokinase; HCMV: human cytomegalovirus; HFF: human foreskin fibroblasts; IE: immediate-early; IRS: internal repeat short; LC3: MAP1LC3A/B; m.o.i.; multiplicity of infection; MCP: major capsid protein; Pp: phosphoprotein; sCP/UL48a: smallest capsid protein; TRS: terminal repeat short; UL: unique long; US: unique short.
Collapse
Affiliation(s)
- Christine Zimmermann
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Krämer
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dennis Strand
- I. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Sehn
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology , University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Zimmermann C, Kowalewski D, Bauersfeld L, Hildenbrand A, Gerke C, Schwarzmüller M, Le-Trilling VTK, Stevanovic S, Hengel H, Momburg F, Halenius A. HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11. PLoS Pathog 2019; 15:e1008040. [PMID: 31527904 PMCID: PMC6764698 DOI: 10.1371/journal.ppat.1008040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/27/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome. The human immune system can cover the presentation of a wide array of pathogen derived antigens owing to the three extraordinary polymorphic MHC class I (MHC-I) gene loci, called HLA-A, -B and -C in humans. Studying the HLA peptide ligands of human cytomegalovirus (HCMV) infected cells, we realized that the HCMV encoded glycoprotein US11 targeted different HLA gene products in distinct manners. More than 20 years ago the first HCMV encoded MHC-I inhibitors were identified, including US11, targeting MHC-I for proteasomal degradation. Here, we describe that the prime target for US11-mediated degradation is HLA-A, whereas HLA-B can resist degradation. Our further mechanistic analysis revealed that US11 uses various domains for distinct functions. Remarkably, the ability of US11 to interact with assembled MHC-I and modify peptide loading of degradation-resistant HLA-B was dependent on a low-complexity region (LCR) located between the signal peptide and the immunoglobulin-like domain of US11. To redirect MHC-I for proteasomal degradation the LCR was dispensable. These findings now raise the intriguing question why US11 has evolved to target HLA-A and -B differentially. Possibly, HLA-B molecules are spared in order to dampen NK cell attack against infected cells.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hildenbrand
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Magdalena Schwarzmüller
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030104. [PMID: 31480520 PMCID: PMC6789746 DOI: 10.3390/vaccines7030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a safe vaccine based on that strain. A GMP-compliant protocol for DB production was established. Furthermore, the DB producer strain Towne-UL130rep was attenuated by deleting the UL25 open reading frame. Additional genetic modifications aim to abrogate its capacity to replicate in vivo by conditionally expressing pUL51 using the Shield-1/FKBP destabilization system. We further show that the terminase inhibitor letermovir can be used to reduce infectious virus contamination of a DB vaccine by more than two orders of magnitude. Taken together, strategies are provided here that allow for the production of a safe and immunogenic DB vaccine for clinical testing.
Collapse
|
12
|
Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response. J Virol 2019; 93:JVI.00931-19. [PMID: 31189713 DOI: 10.1128/jvi.00931-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCE Infections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.
Collapse
|
13
|
Schlottmann F, Strauss S, Hake K, Vogt PM, Bucan V. Down-Regulation of MHC Class I Expression in Human Keratinocytes Using Viral Vectors Containing US11 Gene of Human Cytomegalovirus and Cultivation on Bovine Collagen-Elastin Matrix (Matriderm ®): Potential Approach for an Immune-Privileged Skin Substitute. Int J Mol Sci 2019; 20:E2056. [PMID: 31027326 PMCID: PMC6540026 DOI: 10.3390/ijms20092056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Skin transplantation, especially in burn patients, is still challenging because surgeons are faced with limited disposability of autologous donor side material. The in vitro culture of keratinocytes has become an important reconstructive option. However, only non-immunogenic allogenic keratinocytes offer the opportunity to develop a skin graft that can overcome rejection. The purpose of the study was to develop targeted gene modification of keratinocytes in order to reduce immunogenicity for the use as allogenic transplantable skin graft by decreasing the expression of MHC class I. To reduce MHC class I expression, viral vectors containing the US11 gene of human cytomegalovirus were generated and tested on their functionality using Western blotting, indirect immunofluorescence staining, and flow cytometry. Transfected keratinocytes were seeded on commercially available bovine collagen-elastin matrices and further cultured for histological and cell survival assays. Results showed transient down-regulation of MHC class I after 24 h post-transfection, with recovery of MHC class I expression after 48 h. Histological assessments showed long-term cell survival as well as histological patterns comparable to epidermal layers of healthy human skin. The data postulates the potential application of US11 transfected keratinocytes as an approach towards an immune-privileged skin substitute. Nevertheless, further studies and data are needed.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Kevin Hake
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
14
|
The Abundant Tegument Protein pUL25 of Human Cytomegalovirus Prevents Proteasomal Degradation of pUL26 and Supports Its Suppression of ISGylation. J Virol 2018; 92:JVI.01180-18. [PMID: 30282718 DOI: 10.1128/jvi.01180-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
The tegument of human cytomegalovirus (HCMV) virions contains proteins that interfere with both the intrinsic and the innate immunity. One protein with a thus far unknown function is pUL25. The deletion of pUL25 in a viral mutant (Towne-ΔUL25) had no impact on the release of virions and subviral dense bodies or on virion morphogenesis. Proteomic analyses showed few alterations in the overall protein composition of extracellular particles. A surprising result, however, was the almost complete absence of pUL26 in virions and dense bodies of Towne-ΔUL25 and a reduction of the large isoform pUL26-p27 in mutant virus-infected cells. pUL26 had been shown to inhibit protein conjugation with the interferon-stimulated gene 15 protein (ISG15), thereby supporting HCMV replication. To test for a functional relationship between pUL25 and pUL26, we addressed the steady-state levels of pUL26 and found them to be reduced in Towne-ΔUL25-infected cells. Coimmunoprecipitation experiments proved an interaction between pUL25 and pUL26. Surprisingly, the overall protein ISGylation was enhanced in Towne-ΔUL25-infected cells, thus mimicking the phenotype of a pUL26-deleted HCMV mutant. The functional relevance of this was confirmed by showing that the replication of Towne-ΔUL25 was more sensitive to beta interferon. The increase of protein ISGylation was also seen in cells infected with a mutant lacking the tegument protein pp65. Upon retesting, we found that pUL26 degradation was also increased when pp65 was unavailable. Our experiments show that both pUL25 and pp65 regulate pUL26 degradation and the pUL26-dependent reduction of ISGylation and add pUL25 as another HCMV tegument protein that interferes with the intrinsic immunity of the host cell.IMPORTANCE Human cytomegalovirus (HCMV) expresses a number of tegument proteins that interfere with the intrinsic and the innate defense mechanisms of the cell. Initial induction of the interferon-stimulated gene 15 protein (ISG15) and conjugation of proteins with ISG15 (ISGylation) by HCMV infection are subsequently attenuated by the expression of the viral IE1, pUL50, and pUL26 proteins. This study adds pUL25 as another factor that contributes to suppression of ISGylation. The tegument protein interacts with pUL26 and prevents its degradation by the proteasome. By doing this, it supports its restrictive influence on ISGylation. In addition, a lack of pUL25 enhances the levels of free ISG15, indicating that the tegument protein may interfere with the interferon response on levels other than interacting with pUL26. Knowledge obtained in this study widens our understanding of HCMV immune evasion and may also provide a new avenue for the use of pUL25-negative strains for vaccine production.
Collapse
|
15
|
Hosie L, Pachnio A, Zuo J, Pearce H, Riddell S, Moss P. Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 + T-Cell Repertoire in Older People. Front Immunol 2017; 8:1776. [PMID: 29312307 PMCID: PMC5732243 DOI: 10.3389/fimmu.2017.01776] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection elicits a strong T-cell immune response, which increases further during aging in a process termed "memory inflation." CMV downregulates the expression of HLA-A and HLA-B on the surface of infected cells to limit presentation of viral peptides to T-cells although HLA-C is relatively spared as it also engages with inhibitory killer immunoglobulin receptor receptors and therefore reduces lysis by natural killer cells. We investigated the magnitude and functional properties of CMV-specific CD8+ T-cells specific for 10 peptides restricted by HLA-C in a cohort of 53 donors between the age of 23 and 91 years. This was achieved via peptide stimulation of PBMCs followed by multicolor flow cytometry. Three peptides, derived from proteins generated in the immediate-early period of viral replication and restricted by HLA-Cw*0702, elicited strong immune responses, which increased substantially with age such that the average aggregate response represented 37% of the CD8+ T-cell pool within donors above 70 years of age. Remarkably, a single response represented 70% of the total CD8+ T-cell pool within a 91-year-old donor. HLA-Cw*0702-restricted CD8+ T-cell responses were immunodominant over HLA-A and HLA-B-restricted CMV-specific responses and did not show features of exhaustion such as PD-1 or CD39 expression. Indeed, such CTL exhibit a polyfunctional cytokine profile with co-expression of IFN-γ and TNF-α and a strong cytotoxic phenotype with intracellular expression of perforin and granzymeB. Functionally, HLA-Cw*0702-restricted CTL show exceptionally high avidity for cognate peptide-HLA and demonstrate very early and efficient recognition of virally infected cells. These observations indicate that CD8+ T-cells restricted by HLA-C play an important role in the control of persistent CMV infection and could represent a novel opportunity for CD8+ T-cell therapy of viral infection within immunosuppressed patients. In addition, the findings provide further evidence for the importance of HLA-C-restricted T-cells in the control of chronic viral infection.
Collapse
Affiliation(s)
- Louise Hosie
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Annette Pachnio
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Hayden Pearce
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Paul Moss
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Proff J, Walterskirchen C, Brey C, Geyeregger R, Full F, Ensser A, Lehner M, Holter W. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. Front Microbiol 2016; 7:844. [PMID: 27375569 PMCID: PMC4899442 DOI: 10.3389/fmicb.2016.00844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.
Collapse
Affiliation(s)
- Julia Proff
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Children's University Hospital, Universitätsklinikum ErlangenErlangen, Germany
| | | | - Charlotte Brey
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Rene Geyeregger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum ErlangenErlangen, Germany; Department of Microbiology, The University of ChicagoChicago, IL, USA
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen Erlangen, Germany
| | - Manfred Lehner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Wolfgang Holter
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Department of Pediatrics, St. Anna Kinderspital, Medical University of ViennaVienna, Austria
| |
Collapse
|
17
|
Bruno L, Cortese M, Monda G, Gentile M, Calò S, Schiavetti F, Zedda L, Cattaneo E, Piccioli D, Schaefer M, Notomista E, Maione D, Carfì A, Merola M, Uematsu Y. Human cytomegalovirus pUL10 interacts with leukocytes and impairs TCR-mediated T-cell activation. Immunol Cell Biol 2016; 94:849-860. [PMID: 27192938 DOI: 10.1038/icb.2016.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/27/2023]
Abstract
Human cytomegalovirus (HCMV) is known to exert suppressive effects on the host immune system through expression of various viral genes, thus directly and indirectly affecting antiviral immunity of the infected individuals. We report here that HCMV UL10 encodes a protein (pUL10) with immunosuppressive properties. UL10 has been classified as a member of the HCMV RL11 gene family. Although pUL10 is known to be dispensable for viral replication in cultured cells, its amino-acid sequence is well conserved among different HCMV isolates, suggesting that the protein has a crucial role in viral survival in the host environment. We show that pUL10 is cleaved from the cell surface of fibroblasts as well as epithelial cells and interacts with a cellular receptor ubiquitously expressed on the surface of human leukocytes, demonstrated by ex vivo cell-based assays and flow cytometric analyses on both lymphoid cell lines and primary blood cells. Furthermore, preincubation of peripheral blood mononuclear cells with purified pUL10 ectodomain results in significantly impaired proliferation and substantially reduced pro-inflammatory cytokine production, in particular in CD4+ T cells upon in vitro T-cell stimulation. The inhibitory effect of pUL10 is also observed on antigen receptor-mediated intracellular tyrosine phosphorylation in a T-cell line. Based on these observations, we suggest that pUL10 is a newly identified immunomodulatory protein encoded by HCMV. Further elucidation of interactions between pUL10 and the host immune system during HCMV may contribute to finding ways towards new therapies for HCMV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | | | | | - Marcello Merola
- Research, GSK Vaccines, Siena, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | | |
Collapse
|
18
|
Ferguson SD, Srinivasan VM, Ghali MG, Heimberger AB. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope? Immunotherapy 2016; 8:413-23. [PMID: 26973123 DOI: 10.2217/imt.16.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.
Collapse
Affiliation(s)
- Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Michael Gz Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, PA, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| |
Collapse
|
19
|
Thomas S, Klobuch S, Podlech J, Plachter B, Hoffmann P, Renzaho A, Theobald M, Reddehase MJ, Herr W, Lemmermann NAW. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice. PLoS Pathog 2015; 11:e1005049. [PMID: 26181057 PMCID: PMC4504510 DOI: 10.1371/journal.ppat.1005049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease. Pre-emptive CD8 T-cell therapy of human cytomegalovirus (HCMV) disease in immunocompromised recipients of hematopoietic stem cell transplantation gave promising results in clinical trials, but limited efficacy and the need of HCMV-seropositive memory cell donors has so far prevented adoptive cell transfer from becoming clinical routine. Further development is currently hampered by the lack of experimental animal models that allow preclinical testing of the protective efficacy of human T cells in functional organs. While humanized mouse models with human tissue implants are technically and statistically demanding, and are limited to studying human T-cell activation and local virus control in the implants, a more feasible model for control of systemic infection and prevention of multiple-organ CMV disease is regrettably missing. Here we introduce such a model based on infection of genetically immunocompromised, HLA-A2.1-transgenic NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV engineered to express the HCMV NLV-peptide epitope. Mimicking the scenario of HCMV-unexperienced donors, human T cells transduced with a human T-cell receptor specific for HLA-A.2.1-presented NLV peptide controlled systemic infection and moderated organ disease resulting in a survival benefit. The model promises to become instrumental in defining T-cell properties that determine their protective efficacy for a further development of adoptive immunotherapy of post-transplantation CMV infection.
Collapse
Affiliation(s)
- Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Angelique Renzaho
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Theobald
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
20
|
Christiaansen A, Varga SM, Spencer JV. Viral manipulation of the host immune response. Curr Opin Immunol 2015; 36:54-60. [PMID: 26177523 DOI: 10.1016/j.coi.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
Viruses are obligate intracellular parasites that require a host for essential machinery to replicate and ultimately be transmitted to new susceptible hosts. At the same time, the immune system has evolved to protect the human body from invasion by viruses and other pathogens. To counter this, viruses have developed an arsenal of strategies to not only avoid immune detection but to actively manipulate host immune responses to create an environment more favorable for infection. Here, we describe recent advances uncovering novel mechanisms by which viruses skew host immune responses through modulation of cytokine and chemokine signaling networks, interference with antigen presentation and T cell responses, and preventing antibody production.
Collapse
Affiliation(s)
- Allison Christiaansen
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Steven M Varga
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Department of Pathology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA.
| |
Collapse
|
21
|
Gabaev I, Elbasani E, Ameres S, Steinbrück L, Stanton R, Döring M, Lenac Rovis T, Kalinke U, Jonjic S, Moosmann A, Messerle M. Expression of the human cytomegalovirus UL11 glycoprotein in viral infection and evaluation of its effect on virus-specific CD8 T cells. J Virol 2014; 88:14326-39. [PMID: 25275132 PMCID: PMC4249143 DOI: 10.1128/jvi.01691-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Endrit Elbasani
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany
| | - Lars Steinbrück
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Richard Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marius Döring
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Tihana Lenac Rovis
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ulrich Kalinke
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| |
Collapse
|
22
|
The tegument protein pp65 of human cytomegalovirus acts as an optional scaffold protein that optimizes protein uploading into viral particles. J Virol 2014; 88:9633-46. [PMID: 24920816 DOI: 10.1128/jvi.01415-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The mechanisms that lead to the tegumentation of herpesviral particles are only poorly defined. The phosphoprotein 65 (pp65) is the most abundant constituent of the virion tegument of human cytomegalovirus (HCMV). It is, however, nonessential for virion formation. This seeming discrepancy has not met with a satisfactory explanation regarding the role of pp65 in HCMV particle morphogenesis. Here, we addressed the question of how the overall tegument composition of the HCMV virion depended on pp65 and how the lack of pp65 influenced the packaging of particular tegument proteins. To investigate this, we analyzed the proteomes of pp65-positive (pp65pos) and pp65-negative (pp65neg) virions by label-free quantitative mass spectrometry and determined the relative abundances of tegument proteins. Surprisingly, only pUL35 was elevated in pp65neg virions. As the abundance of pUL35 in the HCMV tegument is low, it is unlikely that it replaced pp65 as a structural component in pp65neg virions. A subset of proteins, including the third most abundant tegument protein, pUL25, as well as pUL43, pUL45, and pUL71, were reduced in pp65neg or pp65low virions, indicating that the packaging of these proteins was related to pp65. The levels of tegument components, like pp28 and the capsid-associated tegument proteins pp150, pUL48, and pUL47, were unaffected by the lack of pp65. Our analyses demonstrate that deletion of pp65 is not compensated for by other viral proteins in the process of virion tegumentation. The results are concordant with a model of pp65 serving as an optional scaffold protein that facilitates protein upload into the outer tegument of HCMV particles. IMPORTANCE The assembly of the tegument of herpesviruses is only poorly understood. Particular proteins, like HCMV pp65, are abundant tegument constituents. pp65 is thus considered to play a major role in tegument assembly in the process of virion morphogenesis. We show here that deletion of the pp65 gene leads to reduced packaging of a subset of viral proteins, indicating that pp65 acts as an optional scaffold protein mediating protein upload into the tegument.
Collapse
|
23
|
Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5894-905. [PMID: 24808364 DOI: 10.4049/jimmunol.1302281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.
Collapse
Affiliation(s)
- Stefanie Ameres
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| | - Katrin Besold
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Andreas Moosmann
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| |
Collapse
|
24
|
Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, Edwards DM, Bimber B, Legasse A, Planer S, Sprague J, Axthelm MK, Pickup DJ, Lewinsohn DM, Gold MC, Wong SW, Sacha JB, Slifka MK, Früh K. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog 2014; 10:e1004123. [PMID: 24832205 PMCID: PMC4022744 DOI: 10.1371/journal.ppat.1004123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Collapse
Affiliation(s)
- Dina Alzhanova
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jason Reed
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erin Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Stephanie Rawlings
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Caroline A. Ray
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Ben Bimber
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Alfred Legasse
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Shannon Planer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jerald Sprague
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - David J. Pickup
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| |
Collapse
|
25
|
Human CD8+ memory and EBV-specific T cells show low alloreactivity in vitro and in CD34+ stem cell-engrafted NOD/SCID/IL-2Rγc null mice. Exp Hematol 2013; 42:28-38.e1-2. [PMID: 24120693 DOI: 10.1016/j.exphem.2013.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
Abstract
Current strategies in cellular immunotherapy of cancer and viral infections include the adoptive transfer of T cell receptor (TCR) and chimeric antigen receptor engineered T cells. When using transient RNA expression systems in clinical studies, multiple infusions with receptor-redirected T cells appear necessary. However, in allogeneic hematopoietic stem-cell transplantation, repeated transfer of donor-derived T cells increases the risk of alloreactive graft-versus-host disease. We investigated naive-derived (TN), memory-derived (TM), and Epstein Barr virus-specific (TEBV) CD8(+) T cell subsets for alloreactivity upon redirection with RNA encoding a cytomegalovirus-specific model TCR. We observed that alloreactivity to human leukocyte antigen (HLA)-mismatched hematopoietic cells developed at much stronger levels in TN compared with TM or TEBV populations in cytokine-release and cytotoxicity assays. Cytomegalovirus-specific effector function was higher in TCR-transfected TEBV and TM over TN cells. To measure alloreactivity in vivo, we reconstituted NOD/SCID/IL-2Rγc(null) mice with human CD34(+) stem cells and adoptively transferred them with CD8(+) T cell subsets previously stimulated against cells of the HLA-mismatched stem-cell donor. TN cells showed a significant ability to eliminate CD34-derived hematopoietic cells, which was not found with TM and TEBV cells. This reduced alloreactive potential along with strong effector function upon receptor RNA engineering makes CD8(+) memory and EBV-specific T cells advantageous tools in adoptive immunotherapy after allogeneic transplantation.
Collapse
|
26
|
Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, Moosmann A. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion. PLoS Pathog 2013; 9:e1003383. [PMID: 23717207 PMCID: PMC3662661 DOI: 10.1371/journal.ppat.1003383] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.
Collapse
Affiliation(s)
- Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
| | - Josef Mautner
- DZIF – German Center for Infection Research, Munich, Germany
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Children's Hospital, Technische Universität München, Munich, Germany
| | - Fabian Schlott
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
27
|
Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 2013; 54:140-51. [PMID: 22454101 DOI: 10.1007/s12026-012-8304-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.
Collapse
Affiliation(s)
- Vanessa Noriega
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
28
|
van Domselaar R, de Poot SAH, Remmerswaal EBM, Lai KW, ten Berge IJM, Bovenschen N. Granzyme M targets host cell hnRNP K that is essential for human cytomegalovirus replication. Cell Death Differ 2013; 20:419-29. [PMID: 23099853 PMCID: PMC3569982 DOI: 10.1038/cdd.2012.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 09/03/2012] [Accepted: 09/14/2012] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and HCMV infection in immunocompromised patients may trigger devastating disease. Cytotoxic lymphocytes control HCMV by releasing granzymes towards virus-infected cells. In mice, granzyme M (GrM) has a physiological role in controlling murine CMV infection. However, the underlying mechanism remains poorly understood. In this study, we showed that human GrM was expressed by HCMV-specific CD8(+) T cells both in latently infected healthy individuals and in transplant patients during primary HCMV infection. We identified host cell heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a physiological GrM substrate. GrM most efficiently cleaved hnRNP K in the presence of RNA at multiple sites, thereby likely destroying hnRNP K function. Host cell hnRNP K was essential for HCMV replication not only by promoting viability of HCMV-infected cells but predominantly by regulating viral immediate-early 2 (IE2) protein levels. Furthermore, hnRNP K interacted with IE2 mRNA. Finally, GrM decreased IE2 protein expression in HCMV-infected cells. Our data suggest that targeting of hnRNP K by GrM contributes to the mechanism by which cytotoxic lymphocytes inhibit HCMV replication. This is the first evidence that cytotoxic lymphocytes target host cell proteins to control HCMV infections.
Collapse
Affiliation(s)
- R van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S A H de Poot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - K W Lai
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - I J M ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - N Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Human cytomegalovirus pp71 stimulates major histocompatibility complex class i presentation of IE1-derived peptides at immediate early times of infection. J Virol 2013; 87:5229-38. [PMID: 23449799 DOI: 10.1128/jvi.03484-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation. Intriguingly, this polypeptide is also critically engaged in the initial derepression of the major IE gene locus, leading to enhanced expression of IE proteins IE1-pp72 and IE2-pp86. Using a set of viral mutants, we addressed the role of pp71 in MHC class I presentation of IE1-pp72-derived peptides. We show that the amount of "incoming" pp71 positively correlates with IE1-pp72 protein levels and with the presentation of IE1-derived peptides. This indicates that the amount of the IE1 protein, induced by pp71, rather than a putative immunoevasive function of the tegument protein, determines MHC class I antigen presentation of IE1-derived peptides. This process proved to be independent of the presence of pp65, which had been reported to interfere with IE1 presentation. It may thus be beneficial for the success of HCMV replication to limit the level of pp71 delivered from infecting particles in order to avoid critical levels of MHC class I presentation of IE protein-derived peptides.
Collapse
|
30
|
Hesse J, Ameres S, Besold K, Krauter S, Moosmann A, Plachter B. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 2012; 94:376-386. [PMID: 23100361 DOI: 10.1099/vir.0.045682-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8(+) T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2-11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2-11 interfere(s) with antigen presentation to CD8(+) T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only one of the immunoevasins gpUS2, gpUS3 or gpUS11. Infection with RV-US3 had only a limited impact on the presentation of peptides from the CD8(+) T-cell antigens IE1 and pp65 under immediate-early (IE) conditions imposed by cycloheximide/actinomycin D blocking. Unexpectedly, both RV-US2 and RV-US11 considerably impaired the recognition of IE1 and pp65 by CD8(+) T-cells, and both US2 and, to a lesser extent, US11 were transcribed under IE conditions. Thus, gpUS2 and gpUS11 are key effectors of MHC class I immunoevasion immediately after HCMV infection.
Collapse
Affiliation(s)
- Julia Hesse
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Besold
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
31
|
Thomas S, Klobuch S, Besold K, Plachter B, Dörrie J, Schaft N, Theobald M, Herr W. Strong and sustained effector function of memory- versus naïve-derived T cells upon T-cell receptor RNA transfer: Implications for cellular therapy. Eur J Immunol 2012; 42:3442-53. [DOI: 10.1002/eji.201242666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/19/2012] [Accepted: 08/24/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Simone Thomas
- Department of Medicine III; University Medical Center of Johannes Gutenberg-University Mainz; Mainz Germany
| | - Sebastian Klobuch
- Department of Medicine III; University Medical Center of Johannes Gutenberg-University Mainz; Mainz Germany
| | - Katrin Besold
- Institute of Virology; University Medical Center of Johannes Gutenberg-University Mainz; Mainz Germany
| | - Bodo Plachter
- Institute of Virology; University Medical Center of Johannes Gutenberg-University Mainz; Mainz Germany
| | - Jan Dörrie
- Department of Dermatology; Universitätsklinikum Erlangen; Erlangen Germany
| | - Niels Schaft
- Department of Dermatology; Universitätsklinikum Erlangen; Erlangen Germany
| | - Matthias Theobald
- Department of Medicine III; University Medical Center of Johannes Gutenberg-University Mainz; Mainz Germany
| | - Wolfgang Herr
- Department of Medicine III; University Medical Center of Johannes Gutenberg-University Mainz; Mainz Germany
| |
Collapse
|
32
|
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that is prevalent in the human population. HCMV has recently been implicated in different cancer forms where it may provide mechanisms for oncogenic transformation, oncomodulation and tumour cell immune evasion. Moreover, antiviral treatment against HCMV has been shown to inhibit tumour growth in preclinical models. Here we describe the possible involvement of HCMV in cancer and discuss the potential molecular impact expression of HCMV proteins have on tumour cells and the surrounding tumour microenvironment.
Collapse
|
33
|
Noriega VM, Hesse J, Gardner TJ, Besold K, Plachter B, Tortorella D. Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Mol Immunol 2012; 51:245-53. [PMID: 22497807 DOI: 10.1016/j.molimm.2012.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/18/2022]
Abstract
Human cytomegalovirus (HCMV), a member of the Herpesviridae family, is proficient at establishing lifelong persistence within the host in part due to immune modulating genes that limit immune recognition. HCMV encodes at least five glycoproteins within its unique short (US) genomic region that interfere with MHC class I antigen presentation, thus hindering viral clearance by cytotoxic T lymphocytes (CTL). Specifically, US3 retains class I within the endoplasmic reticulum (ER), while US2 and US11 induce class I heavy chain destruction. A cooperative effect on class I down-regulation during stable expression of HCMV US2 and US3 has been established. To address the impact of US3 on US11-mediated MHC class I down-regulation, the fate of class I molecules was examined in US3/US11-expressing cells and virus infection studies. Co-expression of US3 and US11 resulted in a decrease of surface expression of class I molecules. However, the class I molecules in US3/US11 cells were mostly retained in the ER with an attenuated rate of proteasome destruction. Analysis of class I levels from virus-infected cells using HCMV variants either expressing US3 or US11 revealed efficient surface class I down-regulation upon expression of both viral proteins. Cells infected with both US3 and US11 expressing viruses demonstrate enhanced retention of MHC class I complexes within the ER. Collectively, the data suggests a paradigm where HCMV-induced surface class I down-regulation occurs by diverse mechanisms dependent on the expression of specific US genes. These results validate the commitment of HCMV to limiting the surface expression of class I levels during infection.
Collapse
Affiliation(s)
- Vanessa M Noriega
- Mount Sinai School of Medicine, Department of Microbiology, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
34
|
Polyethylenimine is a strong inhibitor of human papillomavirus and cytomegalovirus infection. Antimicrob Agents Chemother 2011; 56:75-82. [PMID: 21968369 DOI: 10.1128/aac.05147-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyethylenimines are cationic polymers with potential as delivery vectors in gene therapy and with proven antimicrobial activity. However, the antiviral activity of polyethylenimines has not been addressed in detail thus far. We have studied the inhibitory effects of a linear 25-kDa polyethylenimine on infections with human papillomaviruses and human cytomegaloviruses. Preincubation of cells with polyethylenimine blocked primary attachment of both viruses to cells, resulting in a significant reduction of infection. In addition, the dissemination of human cytomegalovirus in culture cells was efficiently reduced by recurrent administration of polyethylenimine. Polyethylenimine concentrations required for inhibition of human papillomavirus and cytomegalovirus did not cause any cytotoxic effects. Polyethylenimines and their derivatives may thus be attractive molecules for the development of antiviral microbicides.
Collapse
|
35
|
Human cytomegalovirus immunity and immune evasion. Virus Res 2010; 157:151-60. [PMID: 21056604 DOI: 10.1016/j.virusres.2010.10.031] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) infection induces both innate immune responses including Natural Killer cells as well as adaptive humoral and cell mediated (CD4+ helper, CD8+ cytotoxic and γδ T cell) responses which lead to the resolution of acute primary infection. Despite such a robust primary immune response, HCMV is still able to establish latency. Long term memory T cell responses are maintained at high frequency and are thought to prevent clinical disease following periodic reactivation of the virus. As such, a balance is established between the immune response and viral reactivation. Loss of this balance in the immunocompromised host can lead to unchecked viral replication following reactivation of latent virus, with consequent disease and mortality. HCMV encodes multiple immune evasion mechanisms that target both the innate and acquired immune system. This article describes the current understanding of Natural killer cell, antibody and T cell mediated immune responses and the mechanisms that the virus utilizes to subvert these responses.
Collapse
|
36
|
Soroceanu L, Cobbs CS, Colapietro P, Pileri P, Colleoni F, Avagliano L, Doi P, Bulfamante G, Miozzo M, Cetin I. Is HCMV a tumor promoter? Virus Res 2010; 157:193-203. [PMID: 21036194 DOI: 10.1016/j.virusres.2010.10.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a beta-herpesvirus that causes persistent infection in humans and can cause severe disease in fetuses and immunocompromised individuals. Although HCMV is not currently causally implicated in human cancer, emerging evidence suggests that HCMV infection and expression may be specifically associated with human malignancies including malignant glioma, colon, and prostate cancer. In addition, multiple investigators have demonstrated that HCMV can dysregulate signaling pathways involved in initiation and promotion of malignancy, including tumor suppressor, mitogenic signaling, inflammatory, immune regulation, angiogenesis and invasion, and epigenetic mechanisms. This review highlights some of the recent evidence that HCMV might play a role in modulating the tumor microenvironment as well as in the initiation and promotion of tumor cells themselves.
Collapse
Affiliation(s)
- Liliana Soroceanu
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA. liliana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Optimized recombinant dense bodies of human cytomegalovirus efficiently prime virus specific lymphocytes and neutralizing antibodies without the addition of adjuvant. Vaccine 2010; 28:6191-8. [PMID: 20655401 DOI: 10.1016/j.vaccine.2010.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/25/2010] [Accepted: 07/07/2010] [Indexed: 11/23/2022]
Abstract
Control of human cytomegalovirus (HCMV) infection correlates with the reconstitution of antiviral T lymphocytes in haematopoietic stem cell transplant recipients. A vaccine to foster this reconstitution and to ameliorate the severe consequences of HCMV reactivation is yet unavailable. This work focused on providing a rationale for the amendment of the yields and the antigenic composition of a vaccine, based on subviral dense bodies (DB) of HCMV. Modified DB were generated that contained the HLA-A2 presented IE1 model peptide TMYGGISLL, integrated at different positions in the major DB protein pp65. Insertion at position W175 of pp65 allowed efficient formation of recDB in the cytoplasm of infected cells and resulted in considerable yields of these particles. Even in the absence of adjuvant, these particles proved to be highly immunogenic with respect to CD8 and CD4 T cell and neutralizing antibody responses.
Collapse
|
38
|
Becke S, Fabre-Mersseman V, Aue S, Auerochs S, Sedmak T, Wolfrum U, Strand D, Marschall M, Plachter B, Reyda S. Modification of the major tegument protein pp65 of human cytomegalovirus inhibits virus growth and leads to the enhancement of a protein complex with pUL69 and pUL97 in infected cells. J Gen Virol 2010; 91:2531-41. [PMID: 20592110 DOI: 10.1099/vir.0.022293-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tegument protein pp65 of human cytomegalovirus (HCMV) is abundant in lytically infected human foreskin fibroblasts (HFF), as well as in virions and subviral dense bodies (DB). Despite this, we showed previously that pp65 is dispensable for growth in HFF. In the process of refining a DB-based vaccine candidate, different HCMV mutants were generated, expressing a dominant HLA-A2-presented peptide of the IE1 protein fused to pp65. One of the mutant viruses (RV-VM1) surprisingly showed marked impairment in virus release from HFF. We hypothesized that analysis of the phenotypic alterations of RV-VM1 would provide insight into the functions of pp65, poorly defined thus far. RV-VM1 infection resulted in nuclear retention of the fusion protein and reorganization of nuclear inclusion bodies. Coimmunoprecipitation experiments suggested that wild-type (wt) pp65 and pp65-VM1 were substrates of the viral pUL97 kinase in vitro and formed a complex with the viral RNA-export protein pUL69 and with pUL97 in lysates of infected cells. No evidence for an impairment of pUL97 within this complex was found. However, RV-VM1 replication in infected cells was resistant to a pUL97 inhibitor, and pUL97 inhibitors mimicked the mutant in terms of pp65 being retained in the nucleus. The results suggest that the life cycle of RV-VM1 was impeded at the stages of early-late transcription, RNA export or capsid maturation. wt-pp65 may play a role at these stages of infection, and complex formation with pUL69 and pUL97 may be important for that function.
Collapse
Affiliation(s)
- Sabine Becke
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|