1
|
Wu W, Alexander JS, Booth JL, Miller CA, Metcalf JP, Drevets DA. Influenza virus infection exacerbates gene expression related to neurocognitive dysfunction in brains of old mice. Immun Ageing 2024; 21:39. [PMID: 38907247 PMCID: PMC11191167 DOI: 10.1186/s12979-024-00447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Age > 65 years is a key risk factor for poor outcomes after human influenza infection. Specifically, in addition to respiratory disease, non-neurotropic influenza A virus (IAV) causes neuro-cognitive complications, e.g. new onset depression and increases the risk of dementia after hospitalization. This study aimed to identify potential mechanisms of these effects by determining differences between young and old mice in brain gene expression in a mouse model of non-neurotropic IAV infection. METHODS Young (12 weeks) and old (70 weeks) C57Bl/6J mice were inoculated intranasally with 200 PFU H1N1 A/PR/34/8 (PR8) or sterile PBS (mock). Gene expression in lung and brain was measured by qRT-PCR and normalized to β-actin. Findings were confirmed using the nCounter Mouse Neuroinflammation Array (NanoString) and analyzed with nSolver 4.0 and Ingenuity Pathway Analysis (IPA, Qiagen). RESULTS IAV PR8 did not invade the central nervous system. Young and old mice differed significantly in brain gene expression at baseline and during non-neurotropic IAV infection. Expression of brain Ifnl, Irf7, and Tnf mRNAs was upregulated over baseline control at 3 days post-infection (p.i.) only in young mice, but old mice expressed more Ifnl than young mice 7 days p.i. Gene arrays showed down-regulation of the Epigenetic Regulation, Insulin Signaling, and Neurons and Neurotransmission pathways in old mice 3 days p.i. while young mice demonstrated no change or induction of these pathways at the same time point. IPA revealed marked baseline differences between old and young mice. Gene expression related to Cognitive Impairment, Memory Deficits and Learning worsened in old mice relative to young mice during IAV infection. Aged mice demonstrate more severe changes in gene expression related to memory loss and cognitive dysfunction by IPA. CONCLUSIONS These data suggest the genes and pathways related to learning and cognitive performance that were worse at baseline in old mice were further worsened by IAV infection, similar to old patients. Early events in the brain triggered by IAV infection portend downstream neurocognitive pathology in old adults.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - Jeremy S Alexander
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Oklahoma State University, Stillwater, OK, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Douglas A Drevets
- Infectious Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Bergmann S, Brunotte L, Schughart K. Differential lung gene expression changes in C57BL/6 and DBA/2 mice carrying an identical functional Mx1 gene reveals crucial differences in the host response. BMC Genom Data 2024; 25:19. [PMID: 38360537 PMCID: PMC10870463 DOI: 10.1186/s12863-024-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Influenza virus infections represent a major global health problem. The dynamin-like GTPase MX1 is an interferon-dependent antiviral host protein that confers resistance to influenza virus infections. Infection models in mice are an important experimental system to understand the host response and susceptibility to developing severe disease following influenza infections. However, almost all laboratory mouse strains carry a non-functional Mx1 gene whereas humans have a functional MX1 gene. Most studies in mice have been performed with strains carrying a non-functional Mx1 gene. It is therefore very important to investigate the host response in mouse strains with a functional Mx1 gene. RESULTS Here, we analyzed the host response to influenza virus infections in two congenic mouse strains carrying the functional Mx1 gene from the A2G strain. B6.A2G-Mx1r/r(B6-Mx1r/r) mice are highly resistant to influenza A virus (IAV) H1N1 infections. On the other hand, D2(B6).A2G-Mx1r/r(D2-Mx1r/r) mice, although carrying a functional Mx1 gene, were highly susceptible, exhibited rapid weight loss, and died. We performed gene expression analysis using RNAseq from infected lungs at days 3 and 5 post-infection (p.i.) of both mouse strains to identify genes and pathways that were differentially expressed between the two mouse strains. The susceptible D2-Mx1r/r mice showed a high viral replication already at day 3 p.i. and exhibited a much higher number of differentially expressed genes (DEGs) and many DEGs had elevated expression levels compared to B6-Mx1r/r mice. On the other hand, some DEGs were specifically up-regulated only in B6-Mx1r/r mice at day 3 p.i., many of which were related to host immune response functions. CONCLUSIONS From these results, we conclude that at early times of infection, D2-Mx1r/r mice showed a very high and rapid replication of the virus, which resulted in lung damage and a hyperinflammatory response leading to death. We hypothesize that the activation of certain immune response genes was missing and that others, especially Mx1, were expressed at a time in D2-Mx1r/r mice when the virus had already massively spread in the lung and were thus not able anymore to protect them from severe disease. Our study represents an important addition to previously published studies in mouse models and contributes to a better understanding of the molecular pathways and genes that protect against severe influenza disease.
Collapse
Affiliation(s)
- Silke Bergmann
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Linda Brunotte
- Institute of Virology Münster, University of Münster, Von-Esmarch-Straße 56, 48149, Münster, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
- Institute of Virology Münster, University of Münster, Von-Esmarch-Straße 56, 48149, Münster, Germany.
| |
Collapse
|
3
|
Fu B, Xiong Y, Sha Z, Xue W, Xu B, Tan S, Guo D, Lin F, Wang L, Ji J, Luo Y, Lin X, Wu H. SEPTIN2 suppresses an IFN-γ-independent, proinflammatory macrophage activation pathway. Nat Commun 2023; 14:7441. [PMID: 37978190 PMCID: PMC10656488 DOI: 10.1038/s41467-023-43283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Interferon-gamma (IFN-γ) signaling is necessary for the proinflammatory activation of macrophages but IFN-γ-independent pathways, for which the initiating stimuli and downstream mechanisms are lesser known, also contribute. Here we identify, by high-content screening, SEPTIN2 (SEPT2) as a negative regulation of IFN-γ-independent macrophage autoactivation. Mechanistically, endoplasmic reticulum (ER) stress induces the expression of SEPT2, which balances the competition between acetylation and ubiquitination of heat shock protein 5 at position Lysine 327, thereby alleviating ER stress and constraining M1-like polarization and proinflammatory cytokine release. Disruption of this negative feedback regulation leads to the accumulation of unfolded proteins, resulting in accelerated M1-like polarization, excessive inflammation and tissue damage. Our study thus uncovers an IFN-γ-independent macrophage proinflammatory autoactivation pathway and suggests that SEPT2 may play a role in the prevention or resolution of inflammation during infection.
Collapse
Affiliation(s)
- Beibei Fu
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, China
| | - Binbin Xu
- School of Pharmaceutical Sciences, Chongqing University, 401331, Chongqing, China
| | - Shun Tan
- Chongqing Public Health Medical Center, 400036, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Feng Lin
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Lulu Wang
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, 400044, Chongqing, China.
| | - Xiaoyuan Lin
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, 400044, Chongqing, China.
| |
Collapse
|
4
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
MacDonald K, Botelho F, Ashkar AA, Richards CD. Type I Interferon Signaling is Required for Oncostatin-M Driven Inflammatory Responses in Mouse Lung. J Interferon Cytokine Res 2022; 42:568-579. [DOI: 10.1089/jir.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Fernando Botelho
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | | | - Carl D. Richards
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Ou H, Chen L, Wu H. Enhanced Programmed Cell Death Protein 1/Programmed Cell Death Ligand 1 Expression Induced by Severe Influenza A Virus Infection Impairs Host's Antiviral Response. Viral Immunol 2022; 35:566-576. [PMID: 36094816 DOI: 10.1089/vim.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Emerging research shows that the Programmed Cell Death Protein 1/Programmed Cell Death Ligand 1(PD-1/PD-L1) pathway modulates the antiviral response following influenza A virus (IAV) infection, and there is a need to understand further the role of the PD-1/PD-L1 signaling pathway in IAV infection. BALB/c mice were infected with different types of IAV to establish models of varying degrees of infection (mild and severe). The mice were pretreated with or without a PD-1 antagonist to evaluate the role of the PD-1/PD-L1 pathway in IAV infection. The general activity, degree of weight change, viral titer, pathological damage, protein expression, transcriptome level, and cytokine expression were evaluated in the mice. IAV infection, especially severe infection, induced expression of PD-1 and PD-L1 in the lungs and spleen of the mice at 6 days postinfection. Moreover, the expression level was positively correlated with the degree of pathological damage in the lung. PD-1 antagonists can alleviate weight loss in severely infected mice, reduce the viral load and pathological damage, enhance immune response-related gene expression, and induce the most robust responses of interferon-gamma without inducing an obvious Th1/Th17 response. The PD-1/PD-L1 signaling pathway induced by severe IAV infection seriously impairs the host's antiviral response; thus, blocking this signaling pathway may promote IAV recovery.
Collapse
Affiliation(s)
- Huilin Ou
- Ningbo Medical Centre, Li Huili Hospital affiliated of Ningbo University, Ningbo, China
| | - Linfang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongcheng Wu
- Ningbo Medical Centre, Li Huili Hospital affiliated of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Puhach O, Adea K, Hulo N, Sattonnet P, Genecand C, Iten A, Jacquérioz F, Kaiser L, Vetter P, Eckerle I, Meyer B. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat Med 2022. [PMID: 35395151 DOI: 10.1101/2022.01.10.22269010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows guidance of public health measures. In this study, we quantified infectious VL in individuals infected with SARS-CoV-2 during the first five symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta or Omicron BA.1. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL than Delta-infected unvaccinated individuals. Full vaccination (defined as >2 weeks after receipt of the second dose during the primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron BA.1 breakthrough cases, reduced infectious VL was observed only in boosted but not in fully vaccinated individuals compared to unvaccinated individuals. In addition, infectious VL was lower in fully vaccinated Omicron BA.1-infected individuals compared to fully vaccinated Delta-infected individuals, suggesting that mechanisms other than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron BA.1. Our findings indicate that vaccines may lower transmission risk and, therefore, have a public health benefit beyond the individual protection from severe disease.
Collapse
Affiliation(s)
- Olha Puhach
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Pascale Sattonnet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Genecand
- Cantonal Health Service, General Directorate for Health, Geneva, Switzerland
| | - Anne Iten
- Service of Prevention and Infection Control, Directorate of Medicine and Quality, Geneva University Hospitals, Geneva, Switzerland
| | - Frédérique Jacquérioz
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Primary Care Division, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pauline Vetter
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Puhach O, Adea K, Hulo N, Sattonnet P, Genecand C, Iten A, Jacquérioz F, Kaiser L, Vetter P, Eckerle I, Meyer B. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat Med 2022. [PMID: 35395151 DOI: 10.1101/2022.01.10.22269010v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows guidance of public health measures. In this study, we quantified infectious VL in individuals infected with SARS-CoV-2 during the first five symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta or Omicron BA.1. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL than Delta-infected unvaccinated individuals. Full vaccination (defined as >2 weeks after receipt of the second dose during the primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron BA.1 breakthrough cases, reduced infectious VL was observed only in boosted but not in fully vaccinated individuals compared to unvaccinated individuals. In addition, infectious VL was lower in fully vaccinated Omicron BA.1-infected individuals compared to fully vaccinated Delta-infected individuals, suggesting that mechanisms other than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron BA.1. Our findings indicate that vaccines may lower transmission risk and, therefore, have a public health benefit beyond the individual protection from severe disease.
Collapse
Affiliation(s)
- Olha Puhach
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Pascale Sattonnet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Genecand
- Cantonal Health Service, General Directorate for Health, Geneva, Switzerland
| | - Anne Iten
- Service of Prevention and Infection Control, Directorate of Medicine and Quality, Geneva University Hospitals, Geneva, Switzerland
| | - Frédérique Jacquérioz
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Primary Care Division, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pauline Vetter
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Pekarek MJ, Petro-Turnquist EM, Rubrum A, Webby RJ, Weaver EA. Expanding Mouse-Adapted Yamagata-like Influenza B Viruses in Eggs Enhances In Vivo Lethality in BALB/c Mice. Viruses 2022; 14:v14061299. [PMID: 35746770 PMCID: PMC9229684 DOI: 10.3390/v14061299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023] Open
Abstract
Despite the yearly global impact of influenza B viruses (IBVs), limited host range has been a hurdle to developing a readily accessible small animal disease model for vaccine studies. Mouse-adapting IBV can produce highly pathogenic viruses through serial lung passaging in mice. Previous studies have highlighted amino acid changes throughout the viral genome correlating with increased pathogenicity, but no consensus mutations have been determined. We aimed to show that growth system can play a role in mouse-adapted IBV lethality. Two Yamagata-lineage IBVs were serially passaged 10 times in mouse lungs before expansion in embryonated eggs or Madin-Darby canine kidney cells (London line) for use in challenge studies. We observed that virus grown in embryonated eggs was significantly more lethal in mice than the same virus grown in cell culture. Ten additional serial lung passages of one strain again showed virus grown in eggs was more lethal than virus grown in cells. Additionally, no mutations in the surface glycoprotein amino acid sequences correlated to differences in lethality. Our results suggest growth system can influence lethality of mouse-adapted IBVs after serial lung passaging. Further research can highlight improved mechanisms for developing animal disease models for IBV vaccine research.
Collapse
Affiliation(s)
- Matthew J. Pekarek
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
| | - Erika M. Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.J.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.J.W.)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
- Correspondence:
| |
Collapse
|
10
|
Shin DL, Siebert U, Haas L, Valentin-Weigand P, Herrler G, Wu NH. Primary harbor seal (Phoca vitulina) airway epithelial cells show high susceptibility to infection by a seal-derived influenza A virus (H5N8). Transbound Emerg Dis 2022; 69:e2378-e2388. [PMID: 35504691 DOI: 10.1111/tbed.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Highly pathogenic avian influenza viruses of the H5N8 subtype have been circulating in Europe and Asia since 2016, causing huge economic losses to the poultry industry. A new wave of H5Nx infections has begun in 2020. The viruses mainly infect wild birds and waterfowl; from there they spread to poultry and cause disease. Previous studies have shown that the H5N8 viruses have seldom spread to mammals; however, reports in early 2021 indicate that humans may be infected, and some incident reports indicate that H5Nx clade 2.3.4.4B virus may be transmitted to wild mammals, such as red foxes and seals. In order to get more information on how the H5N8 virus affects seals and other marine animals, here, we used primary cultures to analyze the cell tropism of the H5N8 virus, which was isolated from an infected gray seal (H5N8/Seal-2016). Primary tracheal epithelial cells were readily infected by H5N8/Seal -2016 virus; in contrast, the commonly used primary seal kidney cells required the presence of exogenous trypsin to initiate virus infection. When applied to an ex vivo precision-cut lung slice model, compared with recombinant human H3N2 virus or H9N2 LPAI virus, the H5N8/Seal-2016 virus replicated to a high titer and caused a strong detrimental effect; with these characteristics, the virus was superior to a human H3N2 virus and to an H9N2 LPAI virus. By using well-differentiated air-liquid interface cultures, we have observed that ALI cultures of canines, ferrets, and harbor seals are more sensitive to H5N8/Seal-2016 virus than are human or porcine ALI cultures, which cannot be fully explained by sialic acid distribution. Our results indicate that the airway epithelium of carnivores may be the main target of H5N8 viruses. Consideration should be given to an increased monitoring of the distribution of highly pathogenic avian influenza viruses in wild animals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dai-Lun Shin
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ludwig Haas
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Department of Veterinary Medicine, National Taiwan University, Taiwan
| |
Collapse
|
11
|
Puhach O, Adea K, Hulo N, Sattonnet P, Genecand C, Iten A, Bausch FJ, Kaiser L, Vetter P, Eckerle I, Meyer B. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat Med 2022; 28:1491-1500. [PMID: 35395151 DOI: 10.1038/s41591-022-01816-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022]
Abstract
Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines SARS-CoV-2 transmission. RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows to guide public health measures. In this study we quantified infectious VL in SARS-CoV-2 infected individuals during the first 5 symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta, or Omicron. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL compared to Delta-infected unvaccinated individuals. Full vaccination (defined as >2weeks after reception of 2nd dose during primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron breakthrough cases, reduced infectious VL was only observed in boosted but not in fully vaccinated individuals compared to unvaccinated subjects. In addition, infectious VL was lower in fully vaccinated Omicron- compared to fully vaccinated Delta-infected individuals, suggesting that other mechanisms than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron. Our findings indicate that vaccines may lower transmission risk and therefore have a public health benefit beyond the individual protection from severe disease.
Collapse
Affiliation(s)
- Olha Puhach
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Pascale Sattonnet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Genecand
- Cantonal Health Service, General Directorate for Health, Geneva, Switzerland
| | - Anne Iten
- Service of Prevention and Infection Control, Directorate of Medicine and Quality, University Hospital Geneva, HUG, Geneva, Switzerland
| | - Frédérique Jacquérioz Bausch
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.,Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland.,Primary Care Division, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.,Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pauline Vetter
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland. .,Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland. .,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination. Cell Mol Immunol 2022; 19:234-244. [PMID: 34992275 PMCID: PMC8739032 DOI: 10.1038/s41423-021-00814-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.
Collapse
|
13
|
Sohail A, Iqbal AA, Sahini N, Chen F, Tantawy M, Waqas SF, Winterhoff M, Ebensen T, Schultz K, Geffers R, Schughart K, Preusse M, Shehata M, Bähre H, Pils MC, Guzman CA, Mostafa A, Pleschka S, Falk C, Michelucci A, Pessler F. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog 2022; 18:e1010219. [PMID: 35025971 PMCID: PMC8846506 DOI: 10.1371/journal.ppat.1010219] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/15/2022] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection. Interferon responses are part of the primary host defenses against infections. However, excessive inflammation is often a major factor in severe disease or even death in respiratory infections such as influenza, as it can lead to acute respiratory distress syndrome and sepsis-like multiorgan involvement. We applied itaconate and chemically modified versions of it (which enter cells more efficiently and can be applied at lower doses) to influenza A virus-infected human cells and lung tissue and found that these compounds markedly repress interferon responses and some pro-inflammatory processes without increasing viral replication. In fact, 4-octyl itaconate greatly decreased viral RNA replication in peripheral blood, and itaconate and 4-octyl itaconate reduced production of infectious virus in a human lung cell line. By analyzing gene expression patterns of single mononuclear cells in peripheral blood, we found that the virus infects predominantly monocytes and that these cells are the only source of ACOD1, the enzyme that synthesizes itaconate in humans. In a mouse model of influenza A virus infection, dimethyl-itaconate prevented lung inflammation and improved survival. Thus, our results suggest that novel medications based on itaconate promise to be effective treatments for influenza because they reduce deleterious inflammation and potentially also limit viral spread in the patient.
Collapse
Affiliation(s)
- Aaqib Sohail
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Azeem A. Iqbal
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nishika Sahini
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fangfang Chen
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Mohamed Tantawy
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Center, Dokki, Giza, Egypt
| | - Syed F.H. Waqas
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Moritz Winterhoff
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Thomas Ebensen
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristin Schultz
- Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Matthias Preusse
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mahmoud Shehata
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Marina C. Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A. Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ahmed Mostafa
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Stephan Pleschka
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen, Germany
| | - Christine Falk
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Frank Pessler
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
- * E-mail: , frank.pesslerwincore.de
| |
Collapse
|
14
|
van Liempd S, Cabrera D, Pilzner C, Kollmus H, Schughart K, Falcón-Pérez JM. Impaired beta-oxidation increases vulnerability to influenza A infection. J Biol Chem 2021; 297:101298. [PMID: 34637789 PMCID: PMC8564733 DOI: 10.1016/j.jbc.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography–coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality.
Collapse
Affiliation(s)
| | - Diana Cabrera
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Juan M Falcón-Pérez
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Achdout H, Vitner EB, Politi B, Melamed S, Yahalom-Ronen Y, Tamir H, Erez N, Avraham R, Weiss S, Cherry L, Bar-Haim E, Makdasi E, Gur D, Aftalion M, Chitlaru T, Vagima Y, Paran N, Israely T. Increased lethality in influenza and SARS-CoV-2 coinfection is prevented by influenza immunity but not SARS-CoV-2 immunity. Nat Commun 2021; 12:5819. [PMID: 34611155 PMCID: PMC8492774 DOI: 10.1038/s41467-021-26113-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hagit Achdout
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Einat B Vitner
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Boaz Politi
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Sharon Melamed
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Yfat Yahalom-Ronen
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Hadas Tamir
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Noam Erez
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Roy Avraham
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Shay Weiss
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Lilach Cherry
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Efi Makdasi
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Nir Paran
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel
| | - Tomer Israely
- Departments of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, 7410001, Israel.
| |
Collapse
|
16
|
Graalmann T, Borst K, Manchanda H, Vaas L, Bruhn M, Graalmann L, Koster M, Verboom M, Hallensleben M, Guzmán CA, Sutter G, Schmidt RE, Witte T, Kalinke U. B cell depletion impairs vaccination-induced CD8 + T cell responses in a type I interferon-dependent manner. Ann Rheum Dis 2021; 80:1537-1544. [PMID: 34226189 PMCID: PMC8600602 DOI: 10.1136/annrheumdis-2021-220435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses. METHODS CD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens. RESULTS Rituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I. CONCLUSIONS Depending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.
Collapse
Affiliation(s)
- Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany.,Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Himanshu Manchanda
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lea Vaas
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lukas Graalmann
- Department for Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Mario Koster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Murielle Verboom
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Michael Hallensleben
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Reinhold E Schmidt
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Torsten Witte
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany .,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Xu F, Gao J, Bergmann S, Sims AC, Ashbrook DG, Baric RS, Cui Y, Jonsson CB, Li K, Williams RW, Schughart K, Lu L. Genetic Dissection of the Regulatory Mechanisms of Ace2 in the Infected Mouse Lung. Front Immunol 2021; 11:607314. [PMID: 33488611 PMCID: PMC7819859 DOI: 10.3389/fimmu.2020.607314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV, MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virus-induced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Silke Bergmann
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David G Ashbrook
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kui Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Klaus Schughart
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Jakubcová L, Vozárová M, Hollý J, Tomčíková K, Fogelová M, Polčicová K, Kostolanský F, Fodor E, Varečková E. Biological properties of influenza A virus mutants with amino acid substitutions in the HA2 glycoprotein of the HA1/HA2 interaction region. J Gen Virol 2020; 100:1282-1292. [PMID: 31329089 PMCID: PMC7414431 DOI: 10.1099/jgv.0.001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Influenza A viruses (IAVs) enter into cells by receptor-dependent endocytosis. Subsequently, conformational changes of haemagglutinin are triggered by low environmental pH and the N terminus of HA2 glycoprotein (gp) is inserted into the endosomal membrane, resulting in fusion pore formation and genomic vRNA release into the cytoplasm. However, the pH optimum of membrane fusion is host- and virus-specific and can have an impact on virus pathogenicity. We prepared mutants of neurotropic IAV A/WSN/33 (H1N1) with aa substitutions in HA2 gp at the site of HA1/HA2 interaction, namely T642H (HA2 numbering position 64, H1 numbering position HA407; referred to as mutant '64'), V662H ('66') (HA409); and a double mutant ('D') with two aa substitutions (T642H, V662H). These substitutions were hypothesized to influence the pH optimum of fusion. The pH optimum of fusion activity was measured by a luciferase assay and biological properties of viruses were monitored. The in vitro and in vivo replication ability and pathogenicity of mutants were comparable (64) or lower (66, D) than those of the wild-type virus. However, the HA2 mutation V662H and double mutation T642H, V662H shifted the fusion pH maximum to lower values (ranging from 5.1 to 5.3) compared to pH from 5.4 to 5.6 for the wild-type and 64 mutant. The decreased replication ability and pathogenicity of 66 and D mutants was accompanied by higher titres in late intervals post-infection in lungs, and viral RNA in brains compared to wild-type virus-infected mice. These results have implications for understanding the pathogenicity of influenza viruses.
Collapse
Affiliation(s)
- L Jakubcová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - M Vozárová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - J Hollý
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - K Tomčíková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - M Fogelová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - K Polčicová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - F Kostolanský
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - E Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - E Varečková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
19
|
Ivan FX, Kwoh CK. Rule-based meta-analysis reveals the major role of PB2 in influencing influenza A virus virulence in mice. BMC Genomics 2019; 20:973. [PMID: 31874643 PMCID: PMC6929465 DOI: 10.1186/s12864-019-6295-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Influenza A virus (IAV) poses threats to human health and life. Many individual studies have been carried out in mice to uncover the viral factors responsible for the virulence of IAV infections. Nonetheless, a single study may not provide enough confident about virulence factors, hence combining several studies for a meta-analysis is desired to provide better views. For this, we documented more than 500 records of IAV infections in mice, whose viral proteins could be retrieved and the mouse lethal dose 50 or alternatively, weight loss and/or survival data, was/were available for virulence classification. Results IAV virulence models were learned from various datasets containing aligned IAV proteins and the corresponding two virulence classes (avirulent and virulent) or three virulence classes (low, intermediate and high virulence). Three proven rule-based learning approaches, i.e., OneR, JRip and PART, and additionally random forest were used for modelling. PART models achieved the best performance, with moderate average model accuracies ranged from 65.0 to 84.4% and from 54.0 to 66.6% for the two-class and three-class problems, respectively. PART models were comparable to or even better than random forest models and should be preferred based on the Occam’s razor principle. Interestingly, the average accuracy of the models was improved when host information was taken into account. For model interpretation, we observed that although many sites in HA were highly correlated with virulence, PART models based on sites in PB2 could compete against and were often better than PART models based on sites in HA. Moreover, PART had a high preference to include sites in PB2 when models were learned from datasets containing the concatenated alignments of all IAV proteins. Several sites with a known contribution to virulence were found as the top protein sites, and site pairs that may synergistically influence virulence were also uncovered. Conclusion Modelling IAV virulence is a challenging problem. Rule-based models generated using viral proteins are useful for its advantage in interpretation, but only achieve moderate performance. Development of more advanced approaches that learn models from features extracted from both viral and host proteins shall be considered for future works.
Collapse
Affiliation(s)
- Fransiskus Xaverius Ivan
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Chee Keong Kwoh
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
21
|
Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge. PLoS Pathog 2019; 15:e1008036. [PMID: 31525249 PMCID: PMC6763260 DOI: 10.1371/journal.ppat.1008036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections. Vaccines against influenza typically induce immune responses based on antibodies, small molecules that recognize the virus particles outside of cells and neutralize them before they infect a cell. However, influenza rapidly evolves, escaping immune recognition, and the fastest evolution is seen in the part of the virus that is recognized by antibodies. Therefore, every year we are confronted with new flu strains that are not recognized by our antibodies against the strains from previous years. The other branch of the immune system is made of killer T cells, which recognize infected cells and target them for killing. Influenza does not rapidly evolve to escape T cell killing; thus, vaccines inducing T-cell responses to influenza might provide long-term protection. We introduced an antigen from influenza into the murine cytomegalovirus (MCMV) and used it as a vaccine vector inducing killer T-cell responses of unparalleled strength. Our vector controls influenza replication and provides relief to infected mice, but only if we administered it through the nose, to activate killer T cells that will persist in the lungs close to the airways. Therefore, our data show that the subset of lung-resident killer T cells is sufficient to protect against influenza.
Collapse
|
22
|
Hao X, Li F, Lv Q, Xu Y, Han Y, Gao H. Establishment of BALB/C mouse models of influenza A H1N1 aerosol inhalation. J Med Virol 2019; 91:1918-1929. [DOI: 10.1002/jmv.25550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Xin‐Yan Hao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging infectiousBeijing China
| | - Feng‐Di Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging infectiousBeijing China
| | - Qi Lv
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging infectiousBeijing China
| | - Yan‐Feng Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging infectiousBeijing China
| | - Yun‐Lin Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging infectiousBeijing China
| | - Hong Gao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging infectiousBeijing China
| |
Collapse
|
23
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:E252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
24
|
Vashist N, Trittel S, Ebensen T, Chambers BJ, Guzmán CA, Riese P. Influenza-Activated ILC1s Contribute to Antiviral Immunity Partially Influenced by Differential GITR Expression. Front Immunol 2018; 9:505. [PMID: 29623077 PMCID: PMC5874297 DOI: 10.3389/fimmu.2018.00505] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Innate lymphoid cells (ILCs) represent diversified subsets of effector cells as well as immune regulators of mucosal immunity and are classified into group 1 ILCs, group 2 ILCs, and group 3 ILCs. Group 1 ILCs encompass natural killer (NK) cells and non-NK ILCs (ILC1s) and mediate their functionality via the rapid production of IFN-γ and TNF-α. The current knowledge of ILC1s mainly associates them to inflammatory processes. Much less is known about their regulation during infection and their capacity to interact with cells of the adaptive immune system. The present study dissected the role of ILC1s during early influenza A virus infection, thereby revealing their impact on the antiviral response. Exploiting in vitro and in vivo H1N1 infection systems, a cross-talk of ILC1s with cells of the innate and the adaptive immunity was demonstrated, which contributes to anti-influenza immunity. A novel association of ILC1 functionality and the expression of the glucocorticoid-induced TNFR-related protein (GITR) was observed, which hints toward a so far undescribed role of GITR in regulating ILC1 responsiveness. Overexpression of GITR inhibits IFN-γ production by ILC1s, whereas partial reduction of GITR expression can reverse this effect, thereby regulating ILC1 functionality. These new insights into ILC1 biology define potential intervention targets to modulate the functional properties of ILC1s, thus contributing toward the development of new immune interventions against influenza.
Collapse
Affiliation(s)
- Neha Vashist
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stephanie Trittel
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
25
|
Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J Neurosci 2018; 38:3060-3080. [PMID: 29487124 DOI: 10.1523/jneurosci.1740-17.2018] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acute influenza infection has been reported to be associated with neurological symptoms. However, the long-term consequences of an infection with neurotropic and non-neurotropic influenza A virus (IAV) variants for the CNS remain elusive. We can show that spine loss in the hippocampus after infection with neurotropic H7N7 (rSC35M) and non-neurotropic H3N2 (maHK68) in female C57BL/6 mice persists well beyond the acute phase of the disease. Although spine number was significantly reduced at 30 d postinfection (dpi) with H7N7 or H3N2, full recovery could only be observed much later at 120 dpi. Infection with H1N1 virus, which was shown previously to affect spine number and hippocampus-dependent learning acutely, had no significant long-term effects. Spine loss was associated with an increase in the number of activated microglia, reduced long-term potentiation in the hippocampus, and impairment in spatial memory formation, indicating that IAV-associated inflammation induced functional and structural alterations in hippocampal networks. Transcriptome analyses revealed regulation of many inflammatory and neuron- and glia-specific genes in H3N2- and H7N7-infected mice at day 18 and in H7N7-infected mice at day 30 pi that related to the structural and functional alterations. Our data provide evidence that neuroinflammation induced by neurotropic H7N7 and infection of the lung with a non-neurotropic H3N2 IAV result in long-term impairments in the CNS. IAV infection in humans may therefore not only lead to short-term responses in infected organs, but may also trigger neuroinflammation and associated chronic alterations in the CNS.SIGNIFICANCE STATEMENT In the acute phase of influenza infection, neuroinflammation can lead to alterations in hippocampal neuronal morphology and cognitive deficits. The results of this study now also provide evidence that neuroinflammation induced by influenza A virus (IAV) infection can induce longer-lasting, virus-specific alterations in neuronal connectivity that are still detectable 1 month after infection and are associated with impairments in spatial memory formation. IAV infection in humans may therefore not only lead to short-term responses in infected organs, but may also trigger neuroinflammation and associated chronic alterations in the CNS.
Collapse
|
26
|
Verification of genetic loci responsible for the resistance/susceptibility to the Sendai virus infection using congenic mice. INFECTION GENETICS AND EVOLUTION 2018; 57:75-81. [DOI: 10.1016/j.meegid.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/11/2023]
|
27
|
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
28
|
Yang W, Lambertz RLO, Punyadarsaniya D, Leist SR, Stech J, Schughart K, Herrler G, Wu NH, Meng F. Increased virulence of a PB2/HA mutant of an avian H9N2 influenza strain after three passages in porcine differentiated airway epithelial cells. Vet Microbiol 2017; 211:129-134. [PMID: 29102108 DOI: 10.1016/j.vetmic.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
We analyzed the adaptation of influenza viruses to growth in differentiated airway epithelial cells of a new host by passaging an avian H9N2 virus three times in porcine precision-cut lung slices (PCLS). Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins, and two in the HA protein. In this study, we characterized the PB2 mutation G685R by generating recombinant H9N2 viruses containing the PB2 single mutation alone or in combination with one of the HA mutations (A190V or T212I). When analyzed in porcine cells - a tracheal cell line (NPTr) or PCLS - the PB2-685 mutant did not provide a growth advantage and had no effect on the ciliary activity which is a virulence marker of swine influenza viruses. Pathogenicity for mice was also not increased by the single PB2 mutation. However, both double mutants (HA-190+PB2-685 and HA-212+PB2-685) showed significantly increased virulence in mice. Therefore, the mutations in the HA and PB2 proteins may confer early adaptation of an avian H9N2 virus to a mammalian host. In conclusion, we expect that a broader ensemble of mutations will be required to render an H9N2 virus virulent for pigs.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ruth L O Lambertz
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Darsaniya Punyadarsaniya
- Virology and Immunology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | - Jürgen Stech
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany; University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
29
|
Bera BC, Virmani N, Kumar N, Anand T, Pavulraj S, Rash A, Elton D, Rash N, Bhatia S, Sood R, Singh RK, Tripathi BN. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genomics 2017; 18:652. [PMID: 28830350 PMCID: PMC5568313 DOI: 10.1186/s12864-017-4063-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.
Collapse
Affiliation(s)
- Bidhan Ch Bera
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Nitin Virmani
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India.
| | - Naveen Kumar
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Taruna Anand
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - S Pavulraj
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Adam Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Debra Elton
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Nicola Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Sandeep Bhatia
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Richa Sood
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Raj Kumar Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
30
|
Popkin DL, Zilka S, Dimaano M, Fujioka H, Rackley C, Salata R, Griffith A, Mukherjee PK, Ghannoum MA, Esper F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses in vitro and in vivo. Pathog Immun 2017; 2:252-269. [PMID: 28936484 PMCID: PMC5605151 DOI: 10.20411/pai.v2i2.200] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: There is a continued need for strategies to prevent influenza. While cetylpyridinium chloride (CPC), a broad-spectrum antimicrobial agent, has an extensive antimicrobial spectrum, its ability to affect respiratory viruses has not been studied in detail. Objectives: Here, we evaluate the ability of CPC to disrupt influenza viruses in vitro and in vivo. Methods: The virucidal activity of CPC was evaluated against susceptible and oseltamivir- resistant strains of influenza viruses. The effective virucidal concentration (EC) of CPC was determined using a hemagglutination assay and tissue culture infective dose assay. The effect of CPC on viral envelope morphology and ultrastructure was evaluated using transmission electron microscopy (TEM). The ability of influenza virus to develop resistance was evaluated after multiple passaging in sub-inhibitory concentrations of CPC. Finally, the efficacy of CPC in formulation to prevent and treat influenza infection was evaluated using the PR8 murine influenza model. Results: The virucidal effect of CPC occurred within 10 minutes, with mean EC50 and EC2log ranging between 5 to 20 μg/mL, for most strains of influenza tested regardless of type and resistance to oseltamivir. Examinations using TEM showed that CPC disrupted the integrity of the viral envelope and its morphology. Influenza viruses demonstrated no resistance to CPC despite prolonged exposure. Treated mice exhibited significantly increased survival and maintained body weight compared to untreated mice. Conclusions: The antimicrobial agent CPC possesses virucidal activity against susceptible and resistant strains of influenza virus by targeting and disrupting the viral envelope. Substantial virucidal activity is seen even at very low concentrations of CPC without development of resistance. Moreover, CPC in formulation reduces influenza-associated mortality and morbidity in vivo.
Collapse
Affiliation(s)
- Daniel L Popkin
- Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| | - Sarah Zilka
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| | - Matthew Dimaano
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine
| | - Cristina Rackley
- Hathaway Brown Science Research and Engineering Program, Cleveland, Ohio
| | - Robert Salata
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| | - Alexis Griffith
- Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| | - Pranab K Mukherjee
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| | - Frank Esper
- Division of Pediatric Infectious Diseases, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
31
|
VanLeuven JT, Ridenhour BJ, Gonzalez AJ, Miller CR, Miura TA. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses. PLoS One 2017; 12:e0178408. [PMID: 28575086 PMCID: PMC5456070 DOI: 10.1371/journal.pone.0178408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/13/2017] [Indexed: 12/28/2022] Open
Abstract
The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.
Collapse
Affiliation(s)
- James T. VanLeuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Benjamin J. Ridenhour
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Andres J. Gonzalez
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R. Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Tanya A. Miura
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
32
|
Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice. J Virol 2017; 91:JVI.02125-16. [PMID: 28148793 DOI: 10.1128/jvi.02125-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
The natural reservoir for influenza viruses is waterfowl, and from there they succeeded in crossing the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1 to P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. In contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.IMPORTANCE Swine play an important role in the interspecies transmission of influenza viruses. Avian influenza A viruses (IAV) of the H9N2 subtype have successfully infected hosts from different species but have not established a stable lineage. We have analyzed the adaptation of IAV-H9N2 virus to target cells of a new host by passaging the virus three times in differentiated porcine respiratory epithelial cells. Among the four mutations detected, the two HA mutations were analyzed by generating recombinant viruses. Depending on the infection system used, the mutations differed in their phenotypic expression, e.g., sialic acid binding activity, replication kinetics, plaque size, and pathogenicity in inbred mice. However, none of the mutations affected the ciliary activity which serves as a virulence marker. Thus, early adaptive mutation enhances the replication kinetics, but more mutations are required for IAV of the H9N2 subtype to become virulent.
Collapse
|
33
|
Preusse M, Schughart K, Pessler F. Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection. Front Immunol 2017; 8:246. [PMID: 28377766 PMCID: PMC5359533 DOI: 10.3389/fimmu.2017.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. RESULTS miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs (n = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs (n = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the more susceptible DBA/2J strain. CONCLUSION Substantial differences in pulmonary miRNA expression between the two differentially susceptible mouse strains were evident even before infection, but evolved further throughout infection and could in part be attributed to differences in peripheral blood leukocyte populations. Thus, pulmonary miRNA expression both before and during IAV infection is in part determined genetically and contributes to susceptibility to IAV infection in this murine host, and likely in humans.
Collapse
Affiliation(s)
- Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
34
|
Hatesuer B, Hoang HTT, Riese P, Trittel S, Gerhauser I, Elbahesh H, Geffers R, Wilk E, Schughart K. Deletion of Irf3 and Irf7 Genes in Mice Results in Altered Interferon Pathway Activation and Granulocyte-Dominated Inflammatory Responses to Influenza A Infection. J Innate Immun 2016; 9:145-161. [PMID: 27811478 DOI: 10.1159/000450705] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
The interferon (IFN) pathway plays an essential role in the innate immune response following viral infections and subsequent shaping of adaptive immunity. Infections with influenza A viruses (IAV) activate the IFN pathway after the recognition of pathogen-specific molecular patterns by respective pattern recognition receptors. The IFN regulatory factors IRF3 and IRF7 are key players in the regulation of type I and III IFN genes. In this study, we analyzed the role of IRF3 and IRF7 for the host response to IAV infections in Irf3-/-, Irf7-/-, and Irf3-/-Irf7-/- knockout mice. While the absence of IRF3 had only a moderate impact on IFN expression, deletion of IRF7 completely abolished IFNα production after infection. In contrast, lack of both IRF3 and IRF7 resulted in the absence of both IFNα and IFNβ after IAV infection. In addition, IAV infection of double knockout mice resulted in a strong increase of mortality associated with a massive influx of granulocytes in the lung and reduced activation of the adaptive immune response.
Collapse
Affiliation(s)
- Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brauer R, Ge L, Schlesinger SY, Birkland TP, Huang Y, Parimon T, Lee V, McKinney BL, McGuire JK, Parks WC, Chen P. Syndecan-1 Attenuates Lung Injury during Influenza Infection by Potentiating c-Met Signaling to Suppress Epithelial Apoptosis. Am J Respir Crit Care Med 2016; 194:333-44. [PMID: 26959387 PMCID: PMC4970595 DOI: 10.1164/rccm.201509-1878oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Syndecan-1 is a cell surface heparan sulfate proteoglycan primarily expressed in the lung epithelium. Because the influenza virus is tropic to the airway epithelium, we investigated the role of syndecan-1 in influenza infection. OBJECTIVES To determine the mechanism by which syndecan-1 regulates the lung mucosal response to influenza infection. METHODS Wild-type (WT) and Sdc1(-/-) mice were infected with a H1N1 virus (PR8) as an experimental model of influenza infection. Human and murine airway epithelial cell cultures were also infected with PR8 to study the mechanism by which syndecan-1 regulates the inflammatory response. MEASUREMENT AND MAIN RESULTS We found worsened outcomes and lung injury in Sdc1(-/-) mice compared with WT mice after influenza infection. Our data demonstrated that syndecan-1 suppresses bronchial epithelial apoptosis during influenza infection to limit widespread lung inflammation. Furthermore, we determined that syndecan-1 attenuated apoptosis by crosstalking with c-Met to potentiate its cytoprotective signals in airway epithelial cells during influenza infection. CONCLUSIONS Our work shows that cell-associated syndecan-1 has an important role in regulating lung injury. Our findings demonstrate a novel mechanism in which cell membrane-associated syndecan-1 regulates the innate immune response to influenza infection by facilitating cytoprotective signals through c-Met signaling to limit bronchial epithelial apoptosis, thereby attenuating lung injury and inflammation.
Collapse
Affiliation(s)
- Rena Brauer
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lingyin Ge
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
| | | | - Timothy P. Birkland
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Ying Huang
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
| | - Vivian Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - John K. McGuire
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - William C. Parks
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Peter Chen
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
36
|
The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases. J Virol 2016; 90:4298-4307. [PMID: 26889029 PMCID: PMC4836353 DOI: 10.1128/jvi.02693-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2−/−Tmprss4−/− double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo. IMPORTANCE Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes, Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza viruses in vivo.
Collapse
|
37
|
Leist SR, Kollmus H, Hatesuer B, Lambertz RLO, Schughart K. Lst1 deficiency has a minor impact on course and outcome of the host response to influenza A H1N1 infections in mice. Virol J 2016; 13:17. [PMID: 26817701 PMCID: PMC4729168 DOI: 10.1186/s12985-016-0471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously, we performed a quantitative trait locus (QTL) mapping study in BXD recombinant inbred mice to identify host genetic factors that confer resistance to influenza A virus infection. We found Lst1 (leukocyte specific transcript 1) as one of the most promising candidate genes in the Qivr17-2 locus because it is non-functional in DBA/2 J mice. Several studies have proposed that LST1 plays a role in the immune response to inflammatory diseases in humans and has additional immune-regulatory functions. Here, we evaluated the relevance of LST1 for the host response to influenza A infection in B6-Lst1 (-/-) mutant mice. FINDINGS To investigate the role of LST1, we infected B6-Lst1 (-/-) mutant and C57BL/6 N wild-type mice with a low-virulent influenza A virus (PR8M; H1N1). Lst1 deficient mice exhibited significantly increased body weight loss at days 5 and 6 after infection and slightly increased lethality compared to infected wild-type mice. Determination of viral loads, histopathological examination and analysis of immune cell composition in bronchoalveolar lavage of infected lungs did not reveal any obvious differences between KO and wild-type mice. CONCLUSIONS The absence of Lst1 leads to a slightly more susceptible phenotype. However, deletion of Lst1 in DBA/2 J mice alone does not explain the high susceptibility of this strain to PR8M influenza infections.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Ruth L O Lambertz
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| |
Collapse
|
38
|
Duerr CU, McCarthy CDA, Mindt BC, Rubio M, Meli AP, Pothlichet J, Eva MM, Gauchat JF, Qureshi ST, Mazer BD, Mossman KL, Malo D, Gamero AM, Vidal SM, King IL, Sarfati M, Fritz JH. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat Immunol 2015; 17:65-75. [DOI: 10.1038/ni.3308] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
39
|
Milanez-Almeida P, Ulas T, Pasztoi M, Glage S, Schughart K, Lutz MB, Schultze JL, Huehn J. CD11b(+)Ly6C(++)Ly6G(-) Cells with Suppressive Activity Towards T Cells Accumulate in Lungs of Influenza a Virus-Infected Mice. Eur J Microbiol Immunol (Bp) 2015; 5:246-55. [PMID: 26716013 PMCID: PMC4681352 DOI: 10.1556/1886.2015.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 02/03/2023] Open
Abstract
Influenza A virus (IAV) infection causes an acute respiratory disease characterized by a strong inflammatory immune response and severe immunopathology. Proinflammatory mechanisms are well described in the murine IAV infection model, but less is known about the mechanisms leading to the resolution of inflammation. Here, we analyzed the contribution of CD11b+Ly6C++Ly6G– cells to this process. An accumulation of CD11b+Ly6C++Ly6G– cells within the lungs was observed during the course of IAV infection. Phenotypic characterization of these CD11b+Ly6C++Ly6G– cells by flow cytometry and RNA-Seq revealed an activated phenotype showing both pro- and anti-inflammatory features, including the expression of inducible nitric oxide synthase (iNOS) by a fraction of cells in an IFN-γ-dependent manner. Moreover, CD11b+Ly6C++Ly6G– cells isolated from lungs of IAV-infected animals displayed suppressive activity when tested in vitro, and iNOS inhibitors could abrogate this suppressive activity. Collectively, our data suggest that during IAV infection, CD11b+Ly6C++Ly6G– cells acquire immunoregulatory function, which might contribute to the prevention of pathology during this life-threatening disease.
Collapse
Affiliation(s)
- P Milanez-Almeida
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - T Ulas
- Genomics and Immunoregulation, LIMES - Institute, University of Bonn , Bonn, Germany
| | - M Pasztoi
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - S Glage
- Institute for Laboratory Animal Science, Hannover Medical School , Hannover, Germany
| | - K Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research , Braunschweig, Germany , University of Veterinary Medicine Hannover, University of Tennessee Health Science Center , Memphis, USA
| | - M B Lutz
- Institute of Virology and Immunobiology, University of Würzburg , Würzburg, Germany
| | - J L Schultze
- Genomics and Immunoregulation, LIMES - Institute, University of Bonn , Bonn, Germany
| | - J Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| |
Collapse
|
40
|
Wilk E, Pandey AK, Leist SR, Hatesuer B, Preusse M, Pommerenke C, Wang J, Schughart K. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection. BMC Genomics 2015; 16:655. [PMID: 26329040 PMCID: PMC4557482 DOI: 10.1186/s12864-015-1867-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Background The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. Results We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Conclusions Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1867-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, 855 Madison Avenue, Memphis, TN, 38163, USA
| | - Sarah Rebecca Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Junxi Wang
- Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
41
|
Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background. J Virol 2015. [PMID: 26202236 PMCID: PMC4577889 DOI: 10.1128/jvi.01305-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1r/r) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1r/r). Most remarkably, congenic D2-Mx1r/r mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1r/r mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans.
IMPORTANCE Influenza A virus represents a major health threat to humans. Seasonal influenza epidemics cause high economic loss, morbidity, and deaths each year. Genetic factors of the host strongly influence susceptibility and resistance to virus infections. The Mx1 (MX dynamin-like GTPase 1) gene has been described as a major resistance gene in mice and humans. Most inbred laboratory mouse strains are deficient in Mx1, but congenic B6-Mx1r/r mice that carry the wild-type Mx1 gene from the A2G mouse strain are highly resistant. Here, we show that, very unexpectedly, congenic D2-Mx1r/r mice carrying the wild-type Mx1 gene from the A2G strain are not fully protected against lethal influenza virus infections. These observations demonstrate that the genetic background is very important for the protective function of the Mx1 resistance gene. Our results are also highly relevant for understanding genetic susceptibility to influenza virus infections in humans.
Collapse
|
42
|
Casanova T, Van de Paar E, Desmecht D, Garigliany MM. Hyporeactivity of Alveolar Macrophages and Higher Respiratory Cell Permissivity Characterize DBA/2J Mice Infected by Influenza A Virus. J Interferon Cytokine Res 2015; 35:808-20. [PMID: 26134384 DOI: 10.1089/jir.2014.0237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus remains a major public health problem. Mouse models have been widely used to study influenza infection in mammals. DBA/2J and C57BL/6J represent extremes in terms of susceptibility to influenza A infection among inbred laboratory mouse strains. Several studies focused specifically on the factors responsible for the susceptibility of DBA/2J or the resistance of C57BL/6J and resulted in impressive lists of candidate genes or factors over- or underexpressed in one of the strains. We adopted a different phenotypical approach to identify the critical steps of the infection process accounting for the differences between DBA/2J and C57BL/6J strains. We concluded that both a dysfunction of alveolar macrophages and an increased permissivity of respiratory cells rendered DBA/2J more susceptible to influenza infection.
Collapse
Affiliation(s)
- Tomás Casanova
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Els Van de Paar
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | - Daniel Desmecht
- Department of Veterinary Pathology, University of Liège , Liège, Belgium
| | | |
Collapse
|
43
|
Preusse M, Schughart K, Wilk E, Klawonn F, Pessler F. Hematological parameters in the early phase of influenza A virus infection in differentially susceptible inbred mouse strains. BMC Res Notes 2015; 8:225. [PMID: 26047817 PMCID: PMC4467623 DOI: 10.1186/s13104-015-1195-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/20/2015] [Indexed: 12/29/2022] Open
Abstract
Background Hematological parameters have not received much attention in small animal models of infection, particularly at very early time points. We therefore studied changes in leukocyte and thrombocyte numbers in a mouse model of influenza A virus (IAV) infection, including measurements within the first 24 h after infection, and also assessing effects, if any, of the infection/anesthesia procedure on these parameters. Methods DBA/2J and C57BL/6J mice (n = 5–8 per observation) were evaluated in a time course experiment of IAV infection, focusing on early time points. After anesthesia with ketamine/xylazine, a suspension of 2 × 103 focus forming units of the mouse-adapted IAV strain A/Puerto Rico/8/1934 (H1N1) in 20 µl sterile PBS, or 20 µl sterile PBS only (“mock treatment”), were instilled intranasally. Weight loss was assessed daily, and eight common hematological parameters and viral hemagglutinin (HA) mRNA expression were determined after 6, 12, 18, 24, 48 and 120 h. Results Hematological differences between the strains were apparent even in untreated mice. Infection-dependent changes, in particular increased granulocyte and decreased lymphocyte counts, were first detectable after 18 h in DBA/2J, were fully manifest in both strains at 48 h, and were usually more pronounced in the DBA/2J mice. In this strain, relative granulocyte and lymphocyte counts and the granulocyte/lymphocyte ratio correlated with viral HA mRNA expression and weight loss. In C57BL/6J, hematological parameters did not correlate with weight loss, but HA mRNA expression correlated weakly with total leukocyte counts, granulocyte/lymphocyte ratio, relative and absolute granulocyte counts, and relative lymphocyte counts. Significant changes due to mock treatment were mild and were detected only in C57BL/6J. Conclusion This study underscores the value of hematological parameters in monitoring disease evolution in the early phase of IAV infection, and likely other pathogens. The hematological response to infection may differ significantly among inbred mouse strains.
Collapse
Affiliation(s)
- Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.
| | - Klaus Schughart
- Bioinformatics, Helmholtz Centre for Infection Research, Brunswick, Germany. .,University of Veterinary Medicine, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | - Frank Klawonn
- Bioinformatics, Helmholtz Centre for Infection Research, Brunswick, Germany.
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.
| |
Collapse
|
44
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
45
|
Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 2015; 385:243-74. [PMID: 25038937 DOI: 10.1007/82_2014_388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.
Collapse
Affiliation(s)
- Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA,
| | | | | |
Collapse
|
46
|
Zhu Y, Yang Y, Liu W, Liu X, Yang D, Sun Z, Ju Y, Chen S, Peng D, Liu X. Comparison of biological characteristics of H9N2 avian influenza viruses isolated from different hosts. Arch Virol 2015; 160:917-27. [PMID: 25616845 DOI: 10.1007/s00705-015-2337-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
The pathogenicity and transmissibility of H9N2 influenza viruses has been widely investigated; however, few studies comparing the biological characteristics of H9N2 viruses isolated from different hosts have been performed. In this study, eight H9N2 viruses, isolated from chickens (Ck/F98, Ck/AH and Ck/TX), pigeons (Pg/XZ), quail/(Ql/A39), ducks (Dk/Y33) and swine (Sw/YZ and Sw/TZ) were selected, and their biological characteristics were determined. The results showed that all H9N2 viruses maintained a preference for both the avian- and human-type receptors, except for Sw/TZ, which had exclusive preference for the human-type receptor. The viruses replicated well in DF-1 and MDCK cells, whereas only three isolates, Ck/F98, Ck/TX and Sw/TZ, could replicate in A549 cells and also replicated in mouse lungs, resulting in body weight loss in mice. All H9N2 viruses were nonpathogenic to chickens and were detected in the trachea and lung tissues. The viruses were shed primarily by the oropharynx and were transmitted efficiently to naïve contact chickens. Our findings suggest that all H9N2 viruses from different hosts exhibit efficient replication and contact-transmission among chickens, and chickens serve as a good reservoir for the persistence and interspecies transmission of H9N2 influenza viruses.
Collapse
Affiliation(s)
- Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Intratracheal administration of influenza virus is superior to intranasal administration as a model of acute lung injury. J Virol Methods 2014; 209:116-20. [PMID: 25239366 DOI: 10.1016/j.jviromet.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/27/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022]
Abstract
Infection of mice with human or murine adapted influenza A viruses results in a severe pneumonia. However, the results of studies from different laboratories show surprising variability, even in genetically similar strains. Differences in inoculum size related to the route of viral delivery (intranasal vs. intratracheal) might explain some of this variability. To test this hypothesis, mice were infected intranasally or intratracheally with different doses of influenza A virus (A/WSN/33 [H1N1]). Daily weights, a requirement for euthanasia, viral load in the lungs and brains, inflammatory cytokines, wet-to-dry ratio, total protein and histopathology of the infected mice were examined. With all doses of influenza tested, intranasal delivery resulted in less severe lung injury, as well as smaller and more variable viral loads in the lungs when compared with intratracheal delivery. Virus was not detected in the brain following either method of delivery. It is concluded that compared to intranasal infection, intratracheal infection with influenza A virus is a more reliable method to deliver virus to the lungs.
Collapse
|
48
|
Cheng K, Yu Z, Chai H, Sun W, Xin Y, Zhang Q, Huang J, Zhang K, Li X, Yang S, Wang T, Zheng X, Wang H, Qin C, Qian J, Chen H, Hua Y, Gao Y, Xia X. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology 2014; 468-470:207-213. [PMID: 25194918 DOI: 10.1016/j.virol.2014.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
H6N1 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H6N1 virus infection in 2013. Here, we set out to elucidate viral determinants critical to the pathogenesis of this virus using a mouse model. We found that the recombinant H6N1 viruses possessing both the PA-T97I and PB2-E627K substitutions displayed the greatest enhancement of replication in vitro and in vivo. Polymerase complexes possessing either PB2-E627K, PA-T97I, and PB2-E627K/PA-T97I displayed higher virus polymerase activity when compared to the wild-type virus, which may account for the increased replication kinetics and enhanced virulence of variant viruses. Our results demonstrate that PB2-E627K and PA-T97I enhance the ability of H6N1 virus to replicate and cause disease in mammals. Influenza surveillance efforts should include scrutiny of these regions of PB2 and PA because of their impact on the increased virulence of H6N1 AIVs in mice.
Collapse
Affiliation(s)
- Kaihui Cheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China; Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250132, People׳s Republic of China
| | - Zhijun Yu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People׳s Republic of China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People׳s Republic of China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Yue Xin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Qianyi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People׳s Republic of China
| | - Jing Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Kun Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Xue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People׳s Republic of China
| | - Jun Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People׳s Republic of China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People׳s Republic of China.
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, PLA 666 Liuyingxi Street, Changchun 130122, People׳s Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People׳s Republic of China.
| |
Collapse
|
49
|
Tantawy MA, Hatesuer B, Wilk E, Dengler L, Kasnitz N, Weiß S, Schughart K. The interferon-induced gene Ifi27l2a is active in lung macrophages and lymphocytes after influenza A infection but deletion of Ifi27l2a in mice does not increase susceptibility to infection. PLoS One 2014; 9:e106392. [PMID: 25184786 PMCID: PMC4153650 DOI: 10.1371/journal.pone.0106392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
Abstract
Interferons represent one of the first and essential host defense mechanisms after infection, and the activation of the IFN-pathway results in the transcriptional activation of hundreds of interferon-stimulated genes. The alpha-inducible protein 27 like 2A (Ifi27l2a) gene (human synonym: ISG12) is strongly up-regulated in the lung after influenza A infection in mice and has been shown in gene expression studies to be highly correlated to other activated genes. Therefore, we investigated the role of Ifi27l2a for the host defense to influenza A infections in more detail. RT-PCR analyses in non-infected mice demonstrated that Ifi27l2a was expressed in several tissues, including the lung. Detailed analyses of reporter gene expression in lungs from Ifi27l2a-LacZ mice revealed that Ifi27l2a was expressed in macrophages and lymphocytes but not in alveolar cells or bronchiolar epithelium cells. The number of macrophages and lymphocyte strongly increased in the lung after infection, but no significant increase in expression levels of the LacZ reporter gene was found within individual immune cells. Also, no reporter gene expression was found in bronchiolar epithelial cells, alveolar cells or infiltrating neutrophils after infection. Thus, up-regulation of Ifi27l2a in infected lungs is mainly due to the infiltration of macrophages and lymphocytes. Most surprisingly, deletion of Ifi27l2a in mouse knock-out lines did not result in increased susceptibility to infections with H1N1 or H7N7 influenza A virus compared to wild type C57BL/6N mice, suggesting a less important role of the gene for the host response to influenza infections than for bacterial infections.
Collapse
Affiliation(s)
- Mohamed A. Tantawy
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Nadine Kasnitz
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Hannover, Germany
| | - Siegfried Weiß
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
50
|
Vidaña B, Martínez J, Martínez-Orellana P, García Migura L, Montoya M, Martorell J, Majó N. Heterogeneous pathological outcomes after experimental pH1N1 influenza infection in ferrets correlate with viral replication and host immune responses in the lung. Vet Res 2014; 45:85. [PMID: 25163545 PMCID: PMC4161856 DOI: 10.1186/s13567-014-0085-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/31/2014] [Indexed: 01/13/2023] Open
Abstract
The swine-origin pandemic (p) H1N1 influenza A virus causes mild upper-respiratory tract disease in most human patients. However, some patients developed severe lower-respiratory tract infections with fatal consequences, and the cause of these infections remain unknown. Recently, it has been suggested that different populations have different degrees of susceptibility to pH1N1 strains due to host genetic variations that are associated with inappropriate immune responses against viral genetic characteristics. Here, we tested whether the pathologic patterns of influenza strains that produce different disease outcomes in humans could be reproduced in a ferret model. Our results revealed that the severities of infection did not correspond to particular viral isolate and were not associated with the clinical phenotypes of the corresponding patients. Severe pathological outcomes were associated with higher viral replication, especially in alveolar areas, and with an exacerbated innate cellular immune response that was characterised by substantial phagocytic and cytotoxic cell migration into the lungs. Moreover, detrimental innate cellular responses were linked to the up-regulation of several proinflammatory cytokines and chemokines and the down-regulation of IFNα in the lungs. Additionally, severe lung lesions were associated with greater up-regulations of pro-apoptotic markers and higher levels of apoptotic neutrophils and macrophages. In conclusion, this study confirmed that the clinicopathological outcomes of pH1N1 infection in ferrets were not only due to viral replication abilities but also depended on the hosts’ capacities to mount efficient immune responses to control viral infection of the lung.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Pamela Martínez-Orellana
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Lourdes García Migura
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - María Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Institut de Recerca i Tecnologia Agroalimentaria (IRTA), Barcelona, Spain
| | - Jaime Martorell
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Natàlia Majó
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| |
Collapse
|