1
|
Kathleena W. Too many cooks in the kitchen: HPV driven carcinogenesis - the result of collaboration or competition? Tumour Virus Res 2024:200311. [PMID: 39733972 DOI: 10.1016/j.tvr.2024.200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Infection by Human Papillomaviruses accounts for the most widespread sexually transmitted infection worldwide. Clinical presentation of these infections can range from subclinical and asymptomatic to anogenital cancers, with the latter associated with persistent infection over a significant period of time. Of the over 200 isotypes of the human virus identified, a subset of these has been characterized as high-risk due to their ability to induce oncogenesis. At the core of Papillomavirus pathogenesis sits three virally encoded oncoproteins: E5, E6, and E7. In this review we will discuss the respective roles of these proteins and how they contribute to carcinogenesis, evaluating key distinguishing features that separate them from their low-risk counterparts. Furthermore, we will consider the complex relationship between this trio and how their interwoven functional networks underpin the development of cancer.
Collapse
Affiliation(s)
- Weimer Kathleena
- IGBMC - CBI: Institut de génétique et de biologie moléculaire et cellulaire - Centre de biologie intégrative 1 rue Laurent Fries - Illkirch-Graffenstaden, BP 10142 - 67404 France.
| |
Collapse
|
2
|
Meyer T, Stockfleth E. Treatment and Prevention of HPV-Associated Skin Tumors by HPV Vaccination. Vaccines (Basel) 2024; 12:1439. [PMID: 39772099 PMCID: PMC11680430 DOI: 10.3390/vaccines12121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
HPV-associated dermatological diseases include benign lesions like cutaneous warts and external genital warts. In addition, HPV infection is associated with the development of epithelial skin cancers, in particular cutaneous squamous cell carcinoma (cSCC). In contrast to anogenital and oropharyngeal cancers caused by mucosal HPV types of genus alpha papillomavirus, cSCC-associated HPV types belong to the genus beta papillomavirus. Currently available HPV vaccines that target mucosal HPV types associated with anogenital cancer and genital warts are type-specific and provide no cross-protection against beta HPV. When implementing vaccination to beta HPV to prevent skin tumors, it must be considered that acquisition of these HPV types occurs early in childhood and that the risk for cSCC increases with growing age and decreasing immune surveillance. Thus, individuals considered for beta HPV vaccination usually have pre-existing infection and are largely immunocompromised. On the other hand, worldwide increasing incidence rates of epithelial skin cancer reflect an urgent need for skin cancer prevention measures. Based on the pathogenic involvement of beta HPV, vaccination may represent a promising prevention strategy. Indeed, various procedures of prophylactic and therapeutic vaccination have been developed, and some of them have shown efficiency in animal models. Thus far, however, none of these vaccine candidates has been approved for application in humans.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology, St. Josef Hospital, Ruhr University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany;
| | | |
Collapse
|
3
|
Gelbard MK, Grace M, von Schoeler-Ames A, Gnanou I, Munger K. The HPV101 E7 protein shares host cellular targets and biological activities with high-risk HPV16 E7. Tumour Virus Res 2024; 19:200300. [PMID: 39643241 PMCID: PMC11714379 DOI: 10.1016/j.tvr.2024.200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Human papillomaviruses (HPVs) are a diverse family of viruses with over 450 members that have been identified and fully sequenced. They are classified into five phylogenetic genera: alpha, beta, gamma, mu, and nu. The high-risk alpha HPVs, such as HPV16, have been studied the most extensively due to their medical significance as cancer-causing agents. However, while nearly 70% of all HPVs are members of the gamma genus, they are almost entirely unstudied. This is because gamma HPVs have been considered medically irrelevant commensals as most of them infect the skin and are not known to cause significant clinical lesions in immunocompetent individuals. Members of the gamma 6 HPVs, however, have been detected in the anogenital tract mucosa and HPV101 has been isolated from a premalignant cervical lesion. Moreover, gamma 6 HPVs have a unique genome structure. They lack E6 proteins but in place of E6, they encode unique, small hydrophobic proteins without any close viral or cellular homologs that have been termed E10. Here, we report that HPV101 E7 shares biochemical activities with the high-risk alpha HPV16 E7, including the ability to target the pRB and PTPN14 tumor suppressors for degradation. This study underscores the importance of further characterizing HPV101 and other unstudied HPV species.
Collapse
Affiliation(s)
- Maya K Gelbard
- Genetics, Molecular, and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, 02111, Boston, MA, USA; Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA
| | | | - Ida Gnanou
- Emmanuel College, MA, 02115, Boston, USA
| | - Karl Munger
- Genetics, Molecular, and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, 02111, Boston, MA, USA; Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA.
| |
Collapse
|
4
|
Jönsson J, Wang L, Kajitani N, Schwartz S. A novel HPV16 splicing enhancer critical for viral oncogene expression and cell immortalization. Nucleic Acids Res 2024; 52:316-336. [PMID: 37994701 PMCID: PMC10783526 DOI: 10.1093/nar/gkad1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
High-risk carcinogenic human papillomaviruses (HPVs), e.g. HPV16, express the E6 and E7 oncogenes from two mRNAs that are generated in a mutually exclusive manner by splicing. The HPV16 E7 mRNA, also known as the E6*I/E7 mRNA, is produced by splicing between splice sites SD226 and SA409, while E6 mRNAs retain the intron between these splice sites. We show that splicing between HPV16 splice sites SD226 and SA409 is controlled by a splicing enhancer consisting of a perfect repeat of an adenosine-rich, 11 nucleotide sequence: AAAAGCAAAGA. Two nucleotide substitutions in both 11 nucleotide sequences specifically inhibited production of the spliced E6*I/E7 mRNA. As a result, production of E7 protein was reduced and the ability of HPV16 to immortalize human primary keratinocytes was abolished. The splicing-enhancing effect was mediated by the cellular TRAP150/THRAP3 protein that also enhanced splicing of other high-risk HPV E6*I/E7 mRNAs, but had no effect on low-risk HPV mRNAs. In summary, we have identified a novel splicing enhancer in the E6 coding region that is specific for high-risk HPVs and that is critically linked to HPV16 carcinogenic properties.
Collapse
Affiliation(s)
- Johanna Jönsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| | - Lianqing Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
- Center of Translational Medicine, Zibo Central Hospital, 255036 Zibo, China
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| |
Collapse
|
5
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
ZER1 Contributes to the Carcinogenic Activity of High-Risk HPV E7 Proteins. mBio 2022; 13:e0203322. [PMID: 36346242 PMCID: PMC9765665 DOI: 10.1128/mbio.02033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human papillomavirus (HPV) E7 proteins bind to host cell proteins to facilitate virus replication. Interactions between HPV E7 and host cell proteins can also drive cancer progression. We hypothesize that HPV E7-host protein interactions specific for high-risk E7 contribute to the carcinogenic activity of high-risk HPV. The cellular protein ZER1 interacts with the E7 protein from HPV16, the genotype most frequently associated with human cancers. The HPV16 E7-ZER1 interaction is unique among HPV E7 tested to date. Other E7 proteins, even from closely related HPV genotypes, do not bind ZER1, which is a substrate specificity factor for a CUL2-RING ubiquitin ligase. In the present study, we investigated the contribution of ZER1 to the carcinogenic activity of HPV16 E7. First, we mapped the ZER1 binding site to specific residues on the C terminus of HPV16 E7. We showed that the mutant HPV16 E7 that cannot bind ZER1 is impaired in the ability to promote the growth of primary keratinocytes. We found that ZER1 and CUL2 contribute to, but are not required for, HPV16 E7 to degrade RB1. Cancer dependency data show that ZER1 is an essential gene in most HPV-positive, but not HPV-negative, cancer cell lines. Depleting ZER1 impaired the growth of primary keratinocytes expressing HPV16 E7 or HPV18 E7 and of HPV16-and HPV18-positive cervical cancer cell lines. Taken together, our work demonstrates that ZER1 contributes to HPV-mediated carcinogenesis and is essential for the growth of HPV-positive cells. IMPORTANCE HPV16 is highly carcinogenic and is the most predominant HPV genotype associated with human cancers. The mechanisms that underlie differences between high-risk HPV genotypes are currently unknown, but many of these differences are likely attributable to the activities of the oncogenic HPV proteins, including E7. The HPV E7 oncoprotein is essential for HPV-mediated carcinogenesis. A large number of HPV E7 targets have been identified. However, it is unclear which of these many interactions contributes to the carcinogenic activity of HPV E7. Here, we characterized the interaction between HPV16 E7 and the host cell protein ZER1, testing whether this genotype-specific interaction could enable some of the carcinogenic activity of HPV16 E7. We found that ZER1 binding contributes to the growth-promoting activity of HPV16 E7 and to the growth of HPV-positive cervical cancer cells. We propose that ZER1 makes an important contribution to HPV-mediated carcinogenesis.
Collapse
|
7
|
Wang Y, Liu R, Liao J, Jiang L, Jeong GH, Zhou L, Polite M, Duong D, Seyfried NT, Wang H, Kiyokawa H, Yin J. Orthogonal ubiquitin transfer reveals human papillomavirus E6 downregulates nuclear transport to disarm interferon-γ dependent apoptosis of cervical cancer cells. FASEB J 2021; 35:e21986. [PMID: 34662469 DOI: 10.1096/fj.202101232rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
The E6 protein of the human papillomavirus (HPV) underpins important protein interaction networks between the virus and host to promote viral infection. Through its interaction with E6AP, a host E3 ubiquitin (UB) ligase, E6 stirs the protein ubiquitination pathways toward the oncogenic transformation of the infected cells. For a systematic measurement of E6 reprogramming of the substrate pool of E6AP, we performed a proteomic screen based on "orthogonal UB transfer (OUT)" that allowed us to identify the ubiquitination targets of E6AP dependent on the E6 protein of HPV-16, a high-risk viral subtype for the development of cervical cancer. The OUT screen identified more than 200 potential substrates of the E6-E6AP pair based on the transfer of UB from E6AP to the substrate proteins. Among them, we verified that E6 would induce E6AP-catalyzed ubiquitination of importin proteins KPNA1-3, protein phosphatase PGAM5, and arginine methyltransferases CARM1 to trigger their degradation by the proteasome. We further found that E6 could significantly reduce the cellular level of KPNA1 that resulted in the suppression of nuclear transport of phosphorylated STAT1 and the inhibition of interferon-γ-induced apoptosis in cervical cancer cells. Overall, our work demonstrates OUT as a powerful proteomic platform to probe the interaction of E6 and host cells through protein ubiquitination and reveals a new role of E6 in down-regulating nuclear transport proteins to attenuate tumor-suppressive signaling.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Ruochuan Liu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Geon H Jeong
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Monica Polite
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Kirschberg M, Syed AS, Dönmez HG, Heuser S, Wilbrand-Hennes A, Alonso A, Hufbauer M, Akgül B. Novel Insights Into Cellular Changes in HPV8-E7 Positive Keratinocytes: A Transcriptomic and Proteomic Analysis. Front Microbiol 2021; 12:672201. [PMID: 34552568 PMCID: PMC8450583 DOI: 10.3389/fmicb.2021.672201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now aimed at characterizing gene and protein/phosphoprotein alterations to narrow down on key cellular targets of HPV8-E7. We now show that gene expression of GADD34 and GDF15 are strongly activated in the presence of E7 in primary human keratinocytes. Further analyses of fibronectin-associated factors led to the identification of the Src kinase family members Fyn and Lyn being aberrantly activated in the presence of HPV8-E7. Phospho-proteomics further revealed that E7 not only targets cell polarity and cytoskeletal organization, but also deregulates the phosphorylation status of nuclear proteins involved in DNA damage repair and replication. Many of these differentially phosphorylated proteins turned out to be targets of Fyn and Lyn. Taken together, by using unbiased experimental approaches we have now arrived at a deeper understanding on how fibronectin may affect the signaling cascades in HPV8 positive keratinocytes, which may be key for skin tumorigenesis and that may also aid in the development of novel therapeutic approaches for betaHPV-mediated cancers.
Collapse
Affiliation(s)
- Matthias Kirschberg
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Adnan Shahzad Syed
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Hanife Güler Dönmez
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany.,Department of Biology, Hacettepe University, Ankara, Turkey
| | - Sandra Heuser
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Astrid Wilbrand-Hennes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Angel Alonso
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hufbauer
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
10
|
Cho M, Kim H, Je M, Son HS. Analysis of Codon Usage Patterns in the Human Papillomavirus Oncogenes. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200614173136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background:
Persistent high-risk genital human papillomavirus (HPV) infection is a major cause of cervical
cancer in women. The products of the viral transforming genes E6 and E7 in the high-risk HPVs are known to be similar
in their amino acid composition and structure. We performed a comparative analysis of codon usage patterns in the E6
and E7 genes of HPVs.
Methods:
The E6 and E7 gene sequences of eight HPV subtypes were analyzed to determine their nucleotide
composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), neutrality, genetic
variability, selection pressure, and codon adaptation index (CAI). Additionally, a correspondence analysis (CoA) was
performed.
Results:
The analysis to determine the effects of differences in composition on the codon usage patterns revealed that
there may be usage bias for ‘A’ nucleotides. This was consistent with the results of the RSCU analysis, which
demonstrated that the selection of A/T-rich patterns and the preference for A/T-ended codons in HPVs are influenced by
compositional constraints. Moreover, the results reveal that selection pressure plays an important role in the CoA results
for the RSCU values, Tajima’s D tests, and neutrality tests.
Conclusion:
The results of this study are consistent with previous findings that most papillomavirus genes are under
purifying selection pressure, which limits changes to the encoded proteins. Natural selection and mutation pressures
resulting in changes in the nucleotide composition and codon usage bias in the two tumor genes of HPV act differently
during the evolution of the HPV subtype; thus, throughout the viral life cycle, HPV can constantly evolve to adapt to a
new environment.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695,Korea
| | - Mikyeong Je
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,Korea
| | - Hyeon S. Son
- Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,Korea
| |
Collapse
|
11
|
Willemsen A, van den Boom A, Dietz J, Bilge Dagalp S, Dogan F, Bravo IG, Ehrhardt A, Ehrke-Schulz E. Genomic and phylogenetic characterization of ChPV2, a novel goat PV closely related to the Xi-PV1 species infecting bovines. Virol J 2020; 17:167. [PMID: 33126890 PMCID: PMC7602357 DOI: 10.1186/s12985-020-01440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Papillomaviruses (PVs) infecting artiodactyls are very diverse, and only second in number to PVs infecting primates. PVs associated to lesions in economically important ruminant species have been isolated from cattle and sheep. METHODS Potential PV DNA from teat lesions of a Damascus goat was isolated, cloned and sequenced. The PV genome was analyzed using bioinformatics approaches to detect open reading frames and to predict potential features of encoded proteins as well as putative regulatory elements. Sequence comparison and phylogenetic analyses using the concatenated E1E2L2L1 nucleotide and amino acid alignments was used to reveal the relationship of the new PV to the known PV diversity and its closest relevants. RESULTS We isolated and characterized the full-genome of novel Capra hircus papillomavirus. We identified the E6, E7, E1, E2, L2, L1 open reading frames with protein coding potential and putative active elements in the ChPV2 proteins and putative regulatory genome elements. Sequence similarities of L1 and phylogenetic analyses using concatenated E1E2L2L1 nucleotide and amino acid alignments suggest the classification as a new PV type designated ChPV2 with a phylogenetic position within the XiPV genus, basal to the XiPV1 species. ChPV2 is not closely related to ChPV1, the other known goat PV isolated from healthy skin, although both of them belong confidently into a clade composed of PVs infecting cervids and bovids. Interestingly, ChPV2 contains an E6 open reading frame whereas all closely related PVs do not CONCLUSION: ChPV2 is a novel goat PV closely related to the Xi-PV1 species infecting bovines. Phylogenetic relationships and genome architecture of ChPV2 and closely related PV types suggest at least two independent E6 losses within the XiPV clade.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre National de La Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Uni Montpellier), Montpellier, France.,Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander van den Boom
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany
| | - Julienne Dietz
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany
| | - Seval Bilge Dagalp
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
| | - Firat Dogan
- Faculty of Veterinary Medicine, Department of Virology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ignacio G Bravo
- Centre National de La Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Uni Montpellier), Montpellier, France.,Center for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Anja Ehrhardt
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany
| | - Eric Ehrke-Schulz
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department for Human Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Strasse 10, 58453, Witten, Germany.
| |
Collapse
|
12
|
Identification of Small-Molecule Activators of the Ubiquitin Ligase E6AP/UBE3A and Angelman Syndrome-Derived E6AP/UBE3A Variants. Cell Chem Biol 2020; 27:1510-1520.e6. [PMID: 32966807 DOI: 10.1016/j.chembiol.2020.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Genetic aberrations of the UBE3A gene encoding the E3 ubiquitin ligase E6AP underlie the development of Angelman syndrome (AS). Approximately 10% of AS individuals harbor UBE3A genes with point mutations, frequently resulting in the expression of full-length E6AP variants with defective E3 activity. Since E6AP exists in two states, an inactive and an active one, we hypothesized that distinct small molecules can stabilize the active state and that such molecules may rescue the E3 activity of AS-derived E6AP variants. Therefore, we established an assay that allows identifying modulators of E6AP in a high-throughput format. We identified several compounds that not only stimulate wild-type E6AP but also rescue the E3 activity of certain E6AP variants. Moreover, by chemical cross-linking coupled to mass spectrometry we provide evidence that the compounds stabilize an active conformation of E6AP. Thus, these compounds represent potential lead structures for the design of drugs for AS treatment.
Collapse
|
13
|
Ebner FA, Sailer C, Eichbichler D, Jansen J, Sladewska-Marquardt A, Stengel F, Scheffner M. A ubiquitin variant-based affinity approach selectively identifies substrates of the ubiquitin ligase E6AP in complex with HPV-11 E6 or HPV-16 E6. J Biol Chem 2020; 295:15070-15082. [PMID: 32855237 DOI: 10.1074/jbc.ra120.015603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
The E6 protein of both mucosal high-risk human papillomaviruses (HPVs) such as HPV-16, which have been causally associated with malignant tumors, and low-risk HPVs such as HPV-11, which cause the development of benign tumors, interacts with the cellular E3 ubiquitin ligase E6-associated protein (E6AP). This indicates that both HPV types employ E6AP to organize the cellular proteome to viral needs. However, whereas several substrate proteins of the high-risk E6-E6AP complex are known, e.g. the tumor suppressor p53, potential substrates of the low-risk E6-E6AP complex remain largely elusive. Here, we report on an affinity-based enrichment approach that enables the targeted identification of potential substrate proteins of the different E6-E6AP complexes by a combination of E3-selective ubiquitination in whole-cell extracts and high-resolution MS. The basis for the selectivity of this approach is the use of a ubiquitin variant that is efficiently used by the E6-E6AP complexes for ubiquitination but not by E6AP alone. By this approach, we identified ∼190 potential substrate proteins for low-risk HPV-11 E6 and high-risk HPV-16 E6. Moreover, subsequent validation experiments in vitro and within cells with selected substrate proteins demonstrate the potential of our approach. In conclusion, our data represent a reliable repository for potential substrates of the HPV-16 and HPV-11 E6 proteins in complex with E6AP.
Collapse
Affiliation(s)
- Felix A Ebner
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Carolin Sailer
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Daniela Eichbichler
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Jasmin Jansen
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Anna Sladewska-Marquardt
- Department of Biology, University of Konstanz, Germany; Proteomics Center, University of Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany.
| |
Collapse
|
14
|
Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Pathogens 2020; 9:pathogens9040292. [PMID: 32316236 PMCID: PMC7238203 DOI: 10.3390/pathogens9040292] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
Collapse
|
15
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
16
|
Bonhoure A, Demenge A, Kostmann C, San José L, De la Cal E, Armisen P, Nominé Y, Travé G. One-step affinity purification of fusion proteins with optimal monodispersity and biological activity: application to aggregation-prone HPV E6 proteins. Microb Cell Fact 2018; 17:191. [PMID: 30501645 PMCID: PMC6271572 DOI: 10.1186/s12934-018-1039-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bacterial expression and purification of recombinant proteins under homogeneous active form is often challenging. Fusion to highly soluble carrier proteins such as Maltose Binding Protein (MBP) often improves their folding and solubility, but self-association may still occur. For instance, HPV E6 oncoproteins, when produced as MBP-E6 fusions, are expressed as mixtures of biologically inactive oligomers and active monomers. While a protocol was previously developed to isolate MBP-E6 monomers for structural studies, it allows the purification of only one MBP-E6 construct at the time. Here, we explored a parallelizable strategy more adapted for biophysical assays aiming at comparing different E6 proteins. RESULTS In this study, we took advantage of the distinct size and diffusion properties of MBP-E6 monomers and oligomers to separate these two species using a rapid batch preparation protocol on affinity resins. We optimized resin reticulation, contact time and elution method in order to maximize the proportion of monomeric MBP-E6 in the final sample. Analytical size-exclusion chromatography was used to quantify the different protein species after purification. Thus, we developed a rapid, single-step protocol for the parallel purification of highly monomeric MBP-E6 samples. MBP-fused HPV16 E6 samples obtained by this approach were validated by testing the binding to their prototypical peptide targets (the LXXLL motif from ubiquitine ligase E6AP) by BIAcore-SPR assay. CONCLUSIONS We have designed a rapid single-step batch affinity purification approach to isolate biologically active monomers of MBP-fused E6 proteins. This protocol should be generalizable to isolate the monomer (or the minimal biologically active oligomer) of other proteins prone to self-association.
Collapse
Affiliation(s)
- Anna Bonhoure
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Auguste Demenge
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Leticia San José
- ABT-Agarose Bead Technologies, C/La Forja, 9, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Eva De la Cal
- ABT-Agarose Bead Technologies, C/La Forja, 9, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Pilar Armisen
- ABT-Agarose Bead Technologies, C/La Forja, 9, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| |
Collapse
|
17
|
Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537-1556. [DOI: 10.1016/j.biopha.2018.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
|
18
|
Szalmás A. Commentary: Induction of Dormancy in Hypoxic Human Papillomavirus-Positive Cancer Cells. Front Oncol 2018; 8:77. [PMID: 29637045 PMCID: PMC5881186 DOI: 10.3389/fonc.2018.00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Anita Szalmás
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Fei D, Wei D, Yu X, Yue J, Li M, Sun L, Jiang L, Li Y, Diao Q, Ma M. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method. Virus Res 2018; 248:24-30. [PMID: 29452163 DOI: 10.1016/j.virusres.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection.
Collapse
Affiliation(s)
- Dongliang Fei
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China; College of Veterinary Medicine, Northeast Agricultural University, No. 59, Xiangfang the public Hamaji timber Street, Harbin, Heilongjiang Province, 150030, China
| | - Dong Wei
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Xiaolei Yu
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Jinjin Yue
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Ming Li
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Li Sun
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Lili Jiang
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 59, Xiangfang the public Hamaji timber Street, Harbin, Heilongjiang Province, 150030, China
| | - Qingyun Diao
- Honeybee Research Institute, Chinese Academy of Agricultural Sciences, Xiangshan, Beijing 100093, China
| | - Mingxiao Ma
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China.
| |
Collapse
|
21
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
22
|
Structural Insights in Multifunctional Papillomavirus Oncoproteins. Viruses 2018; 10:v10010037. [PMID: 29342959 PMCID: PMC5795450 DOI: 10.3390/v10010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.
Collapse
|
23
|
Vora M, Alattia LA, Ansari J, Ong M, Cotelingam J, Coppola D, Shackelford R. Nicotinamide Phosphoribosyl Transferase a Reliable Marker of Progression in Cervical Dysplasia. Anticancer Res 2017; 37:4821-4825. [PMID: 28870901 DOI: 10.21873/anticanres.11889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Nicotinamide phosphoribosyl transferase (Nampt) catalyses the rate-limiting step of the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway. Nampt is highly expressed in several epithelial and mesenchymal neoplasms, where is promotes cell-cycle progression ans chemotherapy resistance. To our knowledge, alterations in Nampt expression have not been examined in cervical intraepithelial neoplasia (CIN) or squamous cell carcinoma (SCC). MATERIALS AND METHODS We performed immunohistochemical analysis for Nampt using tissue microarrays on 14 samples of benign cervical squamous epithelium and 15 CIN I, 15 CIN II, and 13 samples of CIN III. The SCCs included 5 low-grade, 67 intermediate-grade, and 81 high-grade tumors. RESULTS Nampt levels increased with increased CIN grades were compared to benign cervical squamous epithelium. Similarly, Nampt levels increased with increasing SCC grade. CONCLUSION Nampt expression is a reliable marker of progression in cervical dysplasia and SCC.
Collapse
Affiliation(s)
- Moiz Vora
- Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA, U.S.A
| | - Lubna A Alattia
- Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA, U.S.A
| | - Junaid Ansari
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, U.S.A
| | - Menchu Ong
- Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA, U.S.A
| | - James Cotelingam
- Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Rodney Shackelford
- Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA, U.S.A.
| |
Collapse
|
24
|
Hufbauer M, Akgül B. Molecular Mechanisms of Human Papillomavirus Induced Skin Carcinogenesis. Viruses 2017; 9:v9070187. [PMID: 28708084 PMCID: PMC5537679 DOI: 10.3390/v9070187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Infection of the cutaneous skin with human papillomaviruses (HPV) of genus betapapillomavirus (βHPV) is associated with the development of premalignant actinic keratoses and squamous cell carcinoma. Due to the higher viral loads of βHPVs in actinic keratoses than in cancerous lesions, it is currently discussed that these viruses play a carcinogenic role in cancer initiation. In vitro assays performed to characterize the cell transforming activities of high-risk HPV types of genus alphapapillomavirus have markedly contributed to the present knowledge on their oncogenic functions. However, these assays failed to detect oncogenic functions of βHPV early proteins. They were not suitable for investigations aiming to study the interactive role of βHPV positive epidermis with mesenchymal cells and the extracellular matrix. This review focuses on βHPV gene functions with special focus on oncogenic mechanisms that may be relevant for skin cancer development.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| |
Collapse
|
25
|
The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7. J Virol 2017; 91:JVI.00057-17. [PMID: 28100625 DOI: 10.1128/jvi.00057-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays.IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor.
Collapse
|
26
|
Araldi RP, Assaf SMR, Carvalho RFD, Carvalho MACRD, Souza JMD, Magnelli RF, Módolo DG, Roperto FP, Stocco RDC, Beçak W. Papillomaviruses: a systematic review. Genet Mol Biol 2017; 40:1-21. [PMID: 28212457 PMCID: PMC5409773 DOI: 10.1590/1678-4685-gmb-2016-0128] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
In the last decades, a group of viruses has received great attention due to its
relationship with cancer development and its wide distribution throughout the
vertebrates: the papillomaviruses. In this article, we aim to review some of the most
relevant reports concerning the use of bovines as an experimental model for studies
related to papillomaviruses. Moreover, the obtained data contributes to the
development of strategies against the clinical consequences of bovine
papillomaviruses (BPV) that have led to drastic hazards to the herds. To overcome the
problem, the vaccines that we have been developing involve recombinant DNA
technology, aiming at prophylactic and therapeutic procedures. It is important to
point out that these strategies can be used as models for innovative procedures
against HPV, as this virus is the main causal agent of cervical cancer, the second
most fatal cancer in women.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | - Jacqueline Mazzuchelli de Souza
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Roberta Fiusa Magnelli
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Franco Peppino Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Campania, Italy
| | | | - Willy Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
27
|
McBride AA. The Promise of Proteomics in the Study of Oncogenic Viruses. Mol Cell Proteomics 2017; 16:S65-S74. [PMID: 28104704 DOI: 10.1074/mcp.o116.065201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic viruses are responsible for about 15% human cancers. This article explores the promise and challenges of viral proteomics in the study of the oncogenic human DNA viruses, HPV, McPyV, EBV and KSHV. These viruses have coevolved with their hosts and cause persistent infections. Each virus encodes oncoproteins that manipulate key cellular pathways to promote viral replication and evade the host immune response. Viral proteomics can identify cellular pathways perturbed by viral infection, identify cellular proteins that are crucial for viral persistence and oncogenesis, and identify important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Alison A McBride
- From the ‡Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
28
|
Cai Y, Pan L, Miao J, Liu T. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:381-389. [PMID: 27497785 DOI: 10.1016/j.ecoenv.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.
Collapse
Affiliation(s)
- Yuefeng Cai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Tong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
29
|
Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins. Virology 2016; 500:71-81. [PMID: 27771561 DOI: 10.1016/j.virol.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing (Arroyo Muhr et al., Int. J. Cancer 136: 2546-55, 2015). To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro.
Collapse
|
30
|
Abstract
The major transformation activity of the high-risk human papillomaviruses (HPV) is associated with the E7 oncoprotein. The interaction of HPV E7 with retinoblastoma family proteins is important for several E7 activities; however, this interaction does not fully account for the high-risk E7-specific cellular immortalization and transformation activities. We have determined that the cellular non-receptor protein tyrosine phosphatase PTPN14 interacts with HPV E7 from many genus alpha and beta HPV types. We find that high-risk genus alpha HPV E7, but not low-risk genus alpha or beta HPV E7, is necessary and sufficient to reduce the steady-state level of PTPN14 in cells. High-risk E7 proteins target PTPN14 for proteasome-mediated degradation, which requires the ubiquitin ligase UBR4, and PTPN14 is degraded by the proteasome in HPV-positive cervical cancer cell lines. Residues in the C terminus of E7 interact with the C-terminal phosphatase domain of PTPN14, and interference with the E7-PTPN14 interaction restores PTPN14 levels in cells. Finally, PTPN14 degradation correlates with the retinoblastoma-independent transforming activity of high-risk HPV E7. High-risk human papillomaviruses (HPV) are the cause of cervical cancer, some other anogenital cancers, and a growing fraction of oropharyngeal carcinomas. The high-risk HPV E6 and E7 oncoproteins enable these viruses to cause cancer, and the mechanistic basis of their carcinogenic activity has been the subject of intense study. The high-risk E7 oncoprotein is especially important in the immortalization and transformation of human cells, which makes it a central component of HPV-associated cancer development. E7 oncoproteins interact with retinoblastoma family proteins, but for several decades, it has been recognized that high-risk HPV E7 oncoproteins have additional cancer-associated activities. We have determined that high-risk E7 proteins target the proteolysis of the cellular protein tyrosine phosphatase PTPN14 and find that this activity is correlated with the retinoblastoma-independent transforming activity of E7.
Collapse
|
31
|
Abstract
Human papillomaviruses (HPVs) represent a large collection of viral types associated with significant clinical disease of cutaneous and mucosal epithelium. HPV-associated cancers are found in anogenital and oral mucosa, and at various cutaneous sites. Papillomaviruses are highly species and tissue restricted, and these viruses display both mucosotropic, cutaneotropic or dual tropism for epithelial tissues. A subset of HPV types, predominantly mucosal, are also oncogenic and cancers with these HPV types account for more than 200,000 deaths world-wide. Host control of HPV infections requires both innate and adaptive immunity, but the viruses have developed strategies to escape immune detection. Viral proteins can disrupt both innate pathogen-sensing pathways and T-cell based recognition and subsequent destruction of infected tissues. Current treatments to manage HPV infections include mostly ablative strategies in which recurrences are common and only active disease is treated. Although much is known about the papillomavirus life cycle, viral protein functions, and immune responsiveness, we still lack knowledge in a number of key areas of PV biology including tissue tropism, site-specific cancer progression, codon usage profiles, and what are the best strategies to mount an effective immune response to the carcinogenic stages of PV disease. In this review, disease transmission, protection and control are discussed together with questions related to areas in PV biology that will continue to provide productive opportunities of discovery and to further our understanding of this diverse set of human viral pathogens.
Collapse
Affiliation(s)
- Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Systems-level effects of ectopic galectin-7 reconstitution in cervical cancer and its microenvironment. BMC Cancer 2016; 16:680. [PMID: 27558259 PMCID: PMC4997669 DOI: 10.1186/s12885-016-2700-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. Methods Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn’s Multiple Comparison and T tests. Kaplan–Meier and log-rank tests were used to determine overall survival. Results Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. Conclusions Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2700-8) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Abstract
High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18-transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc.
Collapse
|
34
|
Wang J, Dupuis C, Tyring SK, Underbrink MP. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins. PLoS One 2016; 11:e0149859. [PMID: 26901061 PMCID: PMC4764768 DOI: 10.1371/journal.pone.0149859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein.
Collapse
Affiliation(s)
- Jia Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Crystal Dupuis
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stephen K. Tyring
- Department of Dermatology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael P. Underbrink
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mutagenic Potential ofBos taurus Papillomavirus Type 1 E6 Recombinant Protein: First Description. BIOMED RESEARCH INTERNATIONAL 2015; 2015:806361. [PMID: 26783529 PMCID: PMC4689895 DOI: 10.1155/2015/806361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023]
Abstract
Bovine papillomavirus (BPV) is considered a useful model to study HPV oncogenic process. BPV interacts with the host chromatin, resulting in DNA damage, which is attributed to E5, E6, and E7 viral oncoproteins activity. However, the oncogenic mechanisms of BPV E6 oncoprotein per se remain unknown. This study aimed to evaluate the mutagenic potential of Bos taurus papillomavirus type 1 (BPV-1) E6 recombinant oncoprotein by the cytokinesis-block micronucleus assay (CBMNA) and comet assay (CA). Peripheral blood samples of five calves were collected. Samples were subjected to molecular diagnosis, which did not reveal presence of BPV sequences. Samples were treated with 1 μg/mL of BPV-1 E6 oncoprotein and 50 μg/mL of cyclophosphamide (positive control). Negative controls were not submitted to any treatment. The samples were submitted to the CBMNA and CA. The results showed that BPV E6 oncoprotein induces clastogenesis per se, which is indicative of genomic instability. These results allowed better understanding the mechanism of cancer promotion associated with the BPV E6 oncoprotein and revealed that this oncoprotein can induce carcinogenesis per se. E6 recombinant oncoprotein has been suggested as a possible vaccine candidate. Results pointed out that BPV E6 recombinant oncoprotein modifications are required to use it as vaccine.
Collapse
|
36
|
Hufbauer M, Cooke J, van der Horst GTJ, Pfister H, Storey A, Akgül B. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Mol Cancer 2015; 14:183. [PMID: 26511842 PMCID: PMC4625724 DOI: 10.1186/s12943-015-0453-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The failure to mount an effective DNA damage response to repair UV induced cyclobutane pyrimidine dimers (CPDs) results in an increased propensity to develop cutaneous squamous cell carcinoma (cSCC). High-risk patient groups, such as organ transplant recipients (OTRs) frequently exhibit field cancerization at UV exposed body sites from which multiple human papillomavirus (HPV)-associated cSCCs develop rapidly, leading to profound morbidity and increased mortality. In vitro molecular evidence indicates that HPV of genus beta-papillomavirus (β-PV) play an important role in accelerating the early stages of skin tumorigenesis. METHODS We investigated the effects of UV induced DNA damage in murine models of β-PV E6 oncoprotein driven skin tumorigenesis by crossing K14-HPV8-E6wt mice (developing skin tumors after UV treatment) with K14-CPD-photolyase animals and by generating the K14-HPV8-E6-K136N mutant mouse strain. Thymine dimers (marker for CPDs) and γH2AX (a marker for DNA double strand breaks) levels were determined in the murine skin and organotypic skin cultures of E6 expressing primary human keratinocytes after UV-irradiation by immunohistochemistry and in cell lines by In Cell Western blotting. Phosphorylation of ATR/Chk1 and ATM were assessed in cell lines and organotypic skin cultures by Western blots and immunohistochemistry. RESULTS Skin tumor development after UV-irradiation in K14-HPV8-E6wt mice could completely be blocked through expression of CPD-photolyase. Through quantification of thymine dimers after UV irradiation in cells expressing E6 proteins with point mutations at conserved residues we identified a critical lysine in the C-terminal part of the protein for prevention of DNA damage repair and p300 binding. Whereas all K14-HPV8-E6wt animals develop skin tumors after UV expression of the HPV8-E6-K136N mutant significantly blocked skin tumor development after UV treatment. The persistence of CPDs in hyperproliferative epidermis K14-HPV8-E6wt skin resulted in the accumulation of γH2AX foci. DNA damage sensing was impaired in E6 positive cells grown as monolayer culture and in organotypic cultures, due to lack of phosphorylation of ATM, ATR and Chk1. CONCLUSION We showed that cells expressing E6 fail to sense and mount an effective response to repair UV-induced DNA lesions and demonstrated a physiological relevance of E6-mediated inhibition of DNA damage repair for tumor initiation. These are the first mechanistical in vivo data on the tumorigenicity of HPV8 and demonstrate that the impairment of DNA damage repair pathways by the viral E6 protein is a critical factor in HPV-driven skin carcinogenesis.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - James Cooke
- Centre for Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Gijsbertus T J van der Horst
- MGC, Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, 3000, CA, The Netherlands
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany.
| |
Collapse
|
37
|
Abstract
Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here.
Collapse
Affiliation(s)
- Nicholas A Wallace
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| | - Denise A Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109;
| |
Collapse
|
38
|
Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015; 7:3863-90. [PMID: 26193301 PMCID: PMC4517131 DOI: 10.3390/v7072802] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted.
Collapse
|
39
|
Construction and characterization of yeast two-hybrid cDNA library derived from LFBK cell line. Biologicals 2015; 43:202-8. [DOI: 10.1016/j.biologicals.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/28/2015] [Indexed: 11/20/2022] Open
|
40
|
Beta genus papillomaviruses and skin cancer. Virology 2015; 479-480:290-6. [PMID: 25724416 DOI: 10.1016/j.virol.2015.02.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
A role for the beta genus HPVs in keratinocyte carcinoma (KC) remains to be established. In this article we examine the potential role of the beta HPVs in cancer revealed by the epidemiology associating these viruses with KC and supported by oncogenic properties of the beta HPV proteins. Unlike the cancer associated alpha genus HPVs, in which transcriptionally active viral genomes are invariably found associated with the cancers, that is not the case for the beta genus HPVs and keratinocyte carcinomas. Thus a role for the beta HPVs in KC would necessarily be in the carcinogenesis initiation and not in the maintenance of the tumor.
Collapse
|
41
|
Howley PM. Gordon Wilson Lecture: Infectious Disease Causes of Cancer: Opportunities for Prevention and Treatment. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2015; 126:117-32. [PMID: 26330666 PMCID: PMC4530691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The role of infectious agents in cancer is generally underappreciated. However, approximately 20% of human cancers are caused by infectious agents and as such they rank second only to tobacco as a potentially preventable cause in humans. Specific viruses, parasites, and bacteria have been linked to specific human cancers. The infectious etiology for these specific cancers provides opportunities for prevention and treatment.
Collapse
|
42
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Fischer NM, Favrot C, Birkmann K, Jackson M, Schwarzwald CC, Müller M, Tobler K, Geisseler M, Lange CE. Serum antibodies and DNA indicate a high prevalence of equine papillomavirus 2 (EcPV2) among horses in Switzerland. Vet Dermatol 2014; 25:210-e54. [DOI: 10.1111/vde.12129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nina. M. Fischer
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Claude Favrot
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Katharina Birkmann
- Equine Department; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Michele Jackson
- Equine Department; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Colin C. Schwarzwald
- Equine Department; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Martin Müller
- Deutsches Krebsforschungszentrum; Im Neuenheimer Feld 242 69120 Heidelberg Germany
| | - Kurt Tobler
- Institute of Virology; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Marco Geisseler
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
- Institute of Virology; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
| | - Christian E. Lange
- Dermatology Department; Clinic for Small Animal Internal Medicine; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
- Institute of Virology; Vetsuisse Faculty; Winterthurerstrasse 260, 8057 Zurich Switzerland
- Microbiology and Immunobiology Department; Harvard Medical School; 77 Ave Louis Pasteur, Boston MA 02115 USA
| |
Collapse
|
44
|
Amaya M, Baer A, Voss K, Campbell C, Mueller C, Bailey C, Kehn-Hall K, Petricoin E, Narayanan A. Proteomic strategies for the discovery of novel diagnostic and therapeutic targets for infectious diseases. Pathog Dis 2014; 71:177-89. [PMID: 24488789 PMCID: PMC7108530 DOI: 10.1111/2049-632x.12150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 12/14/2022] Open
Abstract
Viruses have developed numerous and elegant strategies to manipulate the host cell machinery to establish a productive infectious cycle. The interaction of viral proteins with host proteins plays an important role in infection and pathogenesis, often bypassing traditional host defenses such as the interferon response and apoptosis. Host–viral protein interactions can be studied using a variety of proteomic approaches ranging from genetic and biochemical to large‐scale high‐throughput technologies. Protein interactions between host and viral proteins are greatly influenced by host signal transduction pathways. In this review, we will focus on comparing proteomic information obtained through differing technologies and how their integration can be used to determine the functional aspect of the host response to infection. We will briefly review and evaluate techniques employed to elucidate viral–host interactions with a primary focus on Protein Microarrays (PMA) and Mass Spectrometry (MS) as potential tools in the discovery of novel therapeutic targets. As many potential molecular markers and targets are proteins, proteomic profiling is expected to yield both clearer and more direct answers to functional and pharmacologic questions.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Williams RAJ, Escudero Duch C, Pérez-Tris J, Benítez L. Polymerase chain reaction detection of avipox and avian papillomavirus in naturally infected wild birds: comparisons of blood, swab and tissue samples. Avian Pathol 2014; 43:130-4. [PMID: 24456300 DOI: 10.1080/03079457.2014.886326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian poxvirus (avipox) is widely reported from avian species, causing cutaneous or mucosal lesions. Mortality rates of up to 100% are recorded in some hosts. Three major avipox clades are recognized. Several diagnostic techniques have been reported, with molecular techniques used only recently. Avipox has been reported from 278 different avian species, but only 111 of these involved sequence and/or strain identification. Collecting samples from wild birds is challenging as only few wild bird individuals or species may be symptomatic. Also, sampling regimes are tightly regulated and the most efficient sampling method, whole bird collection, is ethically challenging. In this study, three alternative sampling techniques (blood, cutaneous swabs and tissue biopsies) from symptomatic wild birds were examined. Polymerase chain reaction was used to detect avipoxvirus and avian papillomavirus (which also induces cutaneous lesions in birds). Four out of 14 tissue samples were positive but all 29 blood samples and 22 swab samples were negative for papillomavirus. All 29 blood samples were negative but 6/22 swabs and 9/14 tissue samples were avipox-positive. The difference between the numbers of positives generated from tissue samples and from swabs was not significant. The difference in the avipox-positive specimens in paired swab (4/6) and tissue samples (6/6) was also not significant. These results therefore do not show the superiority of swab or tissue samples over each other. However, both swab (6/22) and tissue (8/9) samples yielded significantly more avipox-positive cases than blood samples, which are therefore not recommended for sampling these viruses.
Collapse
Affiliation(s)
- Richard A J Williams
- a Department of Zoology and Physical Anthropology, Faculty of Biological Sciences , Universidad Complutense de Madrid , Madrid , Spain
| | | | | | | |
Collapse
|
46
|
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: relevance to cervical cancer. Expert Rev Proteomics 2014; 10:461-72. [DOI: 10.1586/14789450.2013.842469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Sahni N, Yi S, Zhong Q, Jailkhani N, Charloteaux B, Cusick ME, Vidal M. Edgotype: a fundamental link between genotype and phenotype. Curr Opin Genet Dev 2013; 23:649-57. [PMID: 24287335 DOI: 10.1016/j.gde.2013.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/06/2013] [Accepted: 11/01/2013] [Indexed: 11/17/2022]
Abstract
Classical 'one-gene/one-disease' models cannot fully reconcile with the increasingly appreciated prevalence of complicated genotype-to-phenotype associations in human disease. Genes and gene products function not in isolation but as components of intricate networks of macromolecules (DNA, RNA, or proteins) and metabolites linked through biochemical or physical interactions, represented in 'interactome' network models as 'nodes' and 'edges', respectively. Accordingly, mechanistic understanding of human disease will require understanding of how disease-causing mutations affect systems or interactome properties. The study of 'edgetics' uncovers specific loss or gain of interactions (edges) to interpret genotype-to-phenotype relationships. We review how distinct genetic variants, the genotype, lead to distinct phenotypic outcomes, the phenotype, through edgetic perturbations in interactome networks altogether representing the 'edgotype'.
Collapse
Affiliation(s)
- Nidhi Sahni
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Niebler M, Qian X, Höfler D, Kogosov V, Kaewprag J, Kaufmann AM, Ly R, Böhmer G, Zawatzky R, Rösl F, Rincon-Orozco B. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53. PLoS Pathog 2013; 9:e1003536. [PMID: 23935506 PMCID: PMC3731255 DOI: 10.1371/journal.ppat.1003536] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HPVs) are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β) which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1β towards cervical cancer could be discerned. Hence, attenuation of IL-1β by the HPV16 E6 oncoprotein in immortalized cells is apparently a crucial step in viral immune evasion and initiation of malignancy. Persistently high-risk HPV-infected individuals have an increased risk to develop anogenital cancer. HPV encodes the viral proteins E6 and E7 that interact with and induce the degradation of the cell cycle regulators p53 and pRb, respectively, priming immortalized keratinocytes towards malignant transformation. In early antiviral immune response, IL-1β is an important factor for the initiation of inflammation and activation of immune cells such as macrophages and T cells. Our study describes a post-translationally controlled pathway where E6 mediates proteasomal degradation of IL-1β in HPV16-immortalized human keratinocytes. This process depends on the cellular ubiquitin ligase E6-AP and p53 highlighting a novel molecular mechanism of a virus-host interaction that is critical for evading innate immune defense. IL-1β dysregulation is also found in tissue sections which represent different stages of virus-induced carcinogenesis, underlining the clinical relevance of our findings.
Collapse
Affiliation(s)
- Martina Niebler
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xu Qian
- Gynecological Tumor-Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Daniela Höfler
- Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vlada Kogosov
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jittranan Kaewprag
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andreas M. Kaufmann
- Gynecological Tumor-Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Regina Ly
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerd Böhmer
- Deutsche Klinik Bad Münder, Hannover, Germany
| | - Rainer Zawatzky
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (FR); (BRO)
| | - Bladimiro Rincon-Orozco
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (FR); (BRO)
| |
Collapse
|
49
|
Van Doorslaer K. Evolution of the papillomaviridae. Virology 2013; 445:11-20. [PMID: 23769415 DOI: 10.1016/j.virol.2013.05.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/02/2013] [Accepted: 05/09/2013] [Indexed: 02/08/2023]
Abstract
Viruses belonging to the Papillomaviridae family have been isolated from a variety of mammals, birds and non-avian reptiles. It is likely that most, if not all, amniotes carry a broad array of viral types. To date, the complete genomic sequence of more than 240 distinct viral types has been characterized at the nucleotide level. The analysis of this sequence information has begun to shed light on the evolutionary history of this important virus family. The available data suggests that many different evolutionary mechanisms have influenced the papillomavirus phylogenetic tree. Increasing evidence supports that the ancestral papillomavirus initially specialized to infect different ecological niches on the host. This episode of niche sorting was followed by extensive episodes of co-speciation with the host. This review attempts to summarize our current understanding of the papillomavirus evolution.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- DNA Tumor Virus Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 209892, USA.
| |
Collapse
|
50
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|