1
|
Li M, Xiong J, Zhou H, Liu J, Wang C, Jia M, Wang Y, Zhang N, Chen Y, Zhong T, Zhang Z, Li R, Zhang Y, Guo Y, Peng Q, Kong L. Transcriptomic and Proteomic Analysis of Monkeypox Virus A5L-Expressing HEK293T Cells. Int J Mol Sci 2025; 26:398. [PMID: 39796253 PMCID: PMC11720441 DOI: 10.3390/ijms26010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the Orthopoxvirus genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein. RNA-seq analysis identified a total of 1473 differentially expressed genes (DEGs), comprising 911 upregulated and 562 downregulated genes. Additionally, LC-MS/MS analysis revealed 185 cellular proteins with significantly altered abundance ratios that interact with the A5L protein. Here, we perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the transcriptome and proteome signatures of MPXV A5L-expressing HEK293T cells to gain insights into the virus proteins-host interplay. Transcriptomic analysis revealed that transfection of the MPXV A5L protein modulated genes primarily associated with the cell cycle, ribosome, and DNA replication. Proteomic analysis indicated that this protein predominantly interacted with host ribosomal proteins and cytoskeletal proteins. The combination of transcriptomic and proteomic analysis offers new perspectives for understanding the interaction between pathogens and hosts. Our research emphasizes the significant role of MPXV A5L in facilitating viral internalization and assembly, as well as its impact on the host's translation system.
Collapse
Affiliation(s)
- Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Hao Zhou
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jing Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Chenyi Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Nannan Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yanying Chen
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Tao Zhong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Zhicheng Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yuxin Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yunli Guo
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
| | - Qi Peng
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| |
Collapse
|
2
|
Wieczorek S, Krijnse Locker J. Scanning transmission electron tomography to study virus assembly: Review for the retirement of Paul Walther. J Microsc 2024. [PMID: 39600117 DOI: 10.1111/jmi.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
In this short and popular review, we summarise some of our findings analysing the replication cycles of large DNA viruses using scanning transmission electron tomography (STEM tomography) that we applied in the laboratory of Paul Walther. It is also a tribute to a very kind and expert scientist, who recently retired. Transmission electron microscopy (TEM), in particular cryo-EM, has benefited tremendously from recent developments in instrumentation. However, TEM imaging remains limited by the thickness of the specimen and classical thin-section TEM typically generates 2D representations of 3D volumes. Although TEM tomography can partly overcome this limitation, the thickness of the sample, the volume that can be analysed in 3D, remains limiting. STEM tomography can partly overcome this problem, as it allows for the analysis of thicker samples, up to 1 µm in thickness. As such, it is an interesting imaging technique to analyse large DNA viruses, some of which measure 1 µm or more, and which is the focus of our research interest.
Collapse
Affiliation(s)
- Susanne Wieczorek
- Department of Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany
| | | |
Collapse
|
3
|
Liu J, Corroyer-Dulmont S, Pražák V, Khusainov I, Bahrami K, Welsch S, Vasishtan D, Obarska-Kosińska A, Thorkelsson SR, Grünewald K, Quemin ERJ, Turoňová B, Locker JK. The palisade layer of the poxvirus core is composed of flexible A10 trimers. Nat Struct Mol Biol 2024; 31:1105-1113. [PMID: 38316878 PMCID: PMC11257942 DOI: 10.1038/s41594-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.
Collapse
Affiliation(s)
- Jiasui Liu
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Simon Corroyer-Dulmont
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Karola Bahrami
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany
- University Clinic Frankfurt, Frankfurt am Main, Germany
| | - Sonja Welsch
- Max Planck Institute of Biophysics, Central Electron Microscopy Facility, Frankfurt am Main, Germany
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Sigurdur R Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
- University of Hamburg, Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Université Paris-Saclay, CEA, Gif-sur-Yvette, France.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Jacomina Krijnse Locker
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany.
- Justus Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Ni X, Wang K, Han Y, Lei J. Structural analysis of conformational changes in the mpox virus A7 protein. Virol Sin 2024; 39:331-334. [PMID: 38159644 PMCID: PMC11074635 DOI: 10.1016/j.virs.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
•Phospholipid-binding abilities of mpox virus A7 protein and its truncations are investigated. •The structures of the N-terminal truncations of A7 protein (A7N121 and A7N137) are determined. •Conformational changes of the conserved linking helix in A7 are illustrated. •A structural model of the full-length A7 protein is proposed.
Collapse
Affiliation(s)
- Xincheng Ni
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Wang
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinze Han
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Lei
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. Palisade structure in intact vaccinia virions. mBio 2024; 15:e0313423. [PMID: 38171004 PMCID: PMC10865856 DOI: 10.1128/mbio.03134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Vaccinia virus assembly in the cytoplasm of infected cells involves the formation of a biconcave viral core inside the maturing viral particle. The boundary of the core is defined by a pseudohexagonal palisade layer, composed of trimers projecting from an inner wall. To understand the assembly of this complex core architecture, we obtained a subnanometer structure of the palisade trimer by cryo-electron tomography and subtomogram averaging of purified intact virions. Using AlphaFold2 structure predictions, we determined that the palisade is formed from trimers of the proteolytically processed form of the viral protein A10. In addition, we found that each A10 protomer associates with an α-helix (residues 24-66) of A4. Cellular localization assays outside the context of infection demonstrate that the A4 N-terminus is necessary and sufficient to interact with A10. The interaction between A4 and A10 provides insights into how the palisade layer might become tightly associated with the viral membrane during virion maturation. Reconstruction of the palisade layer reveals that, despite local hexagonal ordering, the A10/A4 trimers are widely spaced, suggesting that additional components organize the lattice. This spacing would, however, allow the adoption of the characteristic biconcave shape of the viral core. Finally, we also found that the palisade incorporates multiple copies of a hexameric portal structure. We suggest that these portals are formed by E6, a viral protein that is essential for virion assembly and required to release viral mRNA from the core early in infection.IMPORTANCEPoxviruses such as variola virus (smallpox) and monkeypox cause diseases in humans. Other poxviruses, including vaccinia and modified vaccinia Ankara, are used as vaccine vectors. Given their importance, a greater structural understanding of poxvirus virions is needed. We now performed cryo-electron tomography of purified intact vaccinia virions to study the structure of the palisade, a protein lattice that defines the viral core boundary. We identified the main viral proteins that form the palisade and their interaction surfaces and provided new insights into the organization of the viral core.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| |
Collapse
|
6
|
Mungmunpuntipantip R, Wiwanitkit V. Orf, a Human Parapoxvirus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:171-181. [PMID: 38801578 DOI: 10.1007/978-3-031-57165-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite being common worldwide, parapoxvirus infections are regarded as neglected zoonoses because their incidence is either unknown or grossly overestimated. In ruminants all throughout the world, parapoxvirus produces oral lesions and infectious pustular dermatitis. The pathogen is typically spread directly via items contaminated with parapoxvirus and indirectly via a near contact with dermatological lesions that contain the virus on affected animals. Animals infected with the parapoxvirus typically exhibit no clinical symptoms, and the mode of parapoxvirus transmission is occasionally unclear. For accurate etiological diagnosis and appropriate therapy of patients affected by zoonotic infections, the significance of adopting a "One Health" approach and cross-sector collaboration between human and veterinary medicine should be emphasized. The causative pathogen of ecthyma contagiosum in general people is the orf virus, which mostly infects various animals, either pets or wildlife species. The illness primarily affects minute wild ruminants, sheep, cattle, deer, and goats, and it can spread to people through contact with infected animals or contaminated meats anywhere in the world. Taxonomically speaking, the virus belongs to the parapoxvirus genus. Thus pathogen can be detected from crusts for a very long period (several months to several years), and the virus is found to be resistant to inactivation with a hot or dry atmosphere. In immunocompetent individuals, the lesions often go away on their own with a period as long 2 months. Nevertheless, it necessitates the applying of diverse strategies, such as antiviral, immunological modulator, or modest surgical excisions in immunosuppressed patients. The interaction of the virus with various host populations aids in the development of a defense mechanism against the immune system. The parapoxvirus illness in humans is covered in this chapter. The orf illness, a significant known human parapoxvirus infection, is given specific attention.
Collapse
|
7
|
Aggarwal T, Kondabagil K. Assembly and Evolution of Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:35-54. [PMID: 38801570 DOI: 10.1007/978-3-031-57165-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxvirus assembly has been an intriguing area of research for several decades. While advancements in experimental techniques continue to yield fresh insights, many questions are still unresolved. Large genome sizes of up to 380 kbp, asymmetrical structure, an exterior lipid bilayer, and a cytoplasmic life cycle are some notable characteristics of these viruses. Inside the particle are two lateral bodies and a protein wall-bound-biconcave core containing the viral nucleocapsid. The assembly progresses through five major stages-endoplasmic reticulum (ER) membrane alteration and rupture, crescent formation, immature virion formation, genome encapsidation, virion maturation and in a subset of viruses, additional envelopment of the virion prior to its dissemination. Several large dsDNA viruses have been shown to follow a comparable sequence of events. In this chapter, we recapitulate our understanding of the poxvirus morphogenesis process while reviewing the most recent advances in the field. We also briefly discuss how virion assembly aids in our knowledge of the evolutionary links between poxviruses and other Nucleocytoplasmic Large DNA Viruses (NCLDVs).
Collapse
Affiliation(s)
- Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
8
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Leão TL, Lourenço KL, de Oliveira Queiroz C, Serufo ÂV, da Silva AM, Barbosa-Stancioli EF, da Fonseca FG. Vaccinia virus induces endoplasmic reticulum stress and activates unfolded protein responses through the ATF6α transcription factor. Virol J 2023; 20:145. [PMID: 37434252 DOI: 10.1186/s12985-023-02122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Cell responses to different stress inducers are efficient mechanisms that prevent and fight the accumulation of harmful macromolecules in the cells and also reinforce the defenses of the host against pathogens. Vaccinia virus (VACV) is an enveloped, DNA virus, belonging to the Poxviridae family. Members of this family have evolved numerous strategies to manipulate host responses to stress controlling cell survival and enhancing their replicative success. In this study, we investigated the activation of the response signaling to malformed proteins (UPR) by the VACV virulent strain-Western Reserve (WR)-or the non-virulent strain-Modified Vaccinia Ankara (MVA). METHODS Through RT-PCR RFLP and qPCR assays, we detected negative regulation of XBP1 mRNA processing in VACV-infected cells. On the other hand, through assays of reporter genes for the ATF6 component, we observed its translocation to the nucleus of infected cells and a robust increase in its transcriptional activity, which seems to be important for virus replication. WR strain single-cycle viral multiplication curves in ATF6α-knockout MEFs showed reduced viral yield. RESULTS We observed that VACV WR and MVA strains modulate the UPR pathway, triggering the expression of endoplasmic reticulum chaperones through ATF6α signaling while preventing IRE1α-XBP1 activation. CONCLUSIONS The ATF6α sensor is robustly activated during infection while the IRE1α-XBP1 branch is down-regulated.
Collapse
Affiliation(s)
- Thiago Lima Leão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karine Lima Lourenço
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Cid de Oliveira Queiroz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ângela Vieira Serufo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Aristóbolo Mendes da Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edel F Barbosa-Stancioli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Flávio Guimarães da Fonseca
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
10
|
Paniz-Mondolfi A, Reidy J, Pagani N, Lednicky JA, McGrail JP, Kasminskaya Y, Patino LH, Garcia-Sastre A, Palacios G, Gonzalez-Reiche AS, van Bakel H, Firpo Betancourt A, Hernandez MM, Cordon-Cardo C, Simon V, Sordillo EM, Ramírez JD, Guerra S. Genomic and ultrastructural analysis of monkeypox virus in skin lesions and in human/animal infected cells reveals further morphofunctional insights into viral pathogenicity. J Med Virol 2023; 95:e28878. [PMID: 37322614 DOI: 10.1002/jmv.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.
Collapse
Affiliation(s)
- Alberto Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jason Reidy
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nina Pagani
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Biotechnology Laboratory Sciences, Valencia College, Orlando, Florida, USA
- Infectious Diseases Research Department, Division of Virology, Venezuelan Science Incubator and The Zoonosis and Emerging Pathogens Regional Collaborative Network, Cabudare, Lara, Venezuela
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Joseph Patrick McGrail
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yana Kasminskaya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Luz H Patino
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo Garcia-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gustavo Palacios
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Harm van Bakel
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo Firpo Betancourt
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. A succession of two viral lattices drives vaccinia virus assembly. PLoS Biol 2023; 21:e3002005. [PMID: 36862727 PMCID: PMC10013923 DOI: 10.1371/journal.pbio.3002005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/14/2023] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
During its cytoplasmic replication, vaccinia virus assembles non-infectious spherical immature virions (IV) coated by a viral D13 lattice. Subsequently, IV mature into infectious brick-shaped intracellular mature virions (IMV) that lack D13. Here, we performed cryo-electron tomography (cryo-ET) of frozen-hydrated vaccinia-infected cells to structurally characterise the maturation process in situ. During IMV formation, a new viral core forms inside IV with a wall consisting of trimeric pillars arranged in a new pseudohexagonal lattice. This lattice appears as a palisade in cross-section. As maturation occurs, which involves a 50% reduction in particle volume, the viral membrane becomes corrugated as it adapts to the newly formed viral core in a process that does not appear to require membrane removal. Our study suggests that the length of this core is determined by the D13 lattice and that the consecutive D13 and palisade lattices control virion shape and dimensions during vaccinia assembly and maturation.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Monkeypox infection elicits strong antibody and B cell response against A35R and H3L antigens. iScience 2023; 26:105957. [PMID: 36687315 PMCID: PMC9838220 DOI: 10.1016/j.isci.2023.105957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Monkeypox virus (MPXV) resides in two forms; mature and enveloped, and depending on it, distinct proteins are displayed on the viral surface. Here, we expressed two MPXV antigens from the mature, and one from the enveloped form, and tested their reactivity to sera of 11 MPXV recoverees while comparing to sera from recently and past vaccinated individuals. 8 out of 11 recoverees exhibited detectable neutralization levels against Vaccinia Lister. Sera from all recoverees bound strongly to A35R and H3L antigens. Moreover, the responses to A35R were significantly higher within the recoverees compared to both recently and past vaccinated donors. Lastly, A35R- and H3L-specific IgG+ B cells ranging from 0.03-0.46% and 0.11-0.36%, respectively, were detected in all recoverees (A35R), and in 9 out of 11 recoverees (H3L). Therefore, A35R and H3L represent MPXV immune targets and could be used in a heat-inactivated serological ELISA for the identification of recent MPXV infection.
Collapse
|
13
|
Hyun J. Poxvirus under the eyes of electron microscope. Appl Microsc 2022; 52:11. [DOI: 10.1186/s42649-022-00080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractZoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.
Collapse
|
14
|
Tonnemacher S, Folly-Klan M, Gazi AD, Schäfer S, Pénard E, Eberle R, Kunz R, Walther P, Krijnse Locker J. Vaccinia virus H7-protein is required for the organization of the viral scaffold protein into hexamers. Sci Rep 2022; 12:13007. [PMID: 35906465 PMCID: PMC9338303 DOI: 10.1038/s41598-022-16999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Viruses of the giant virus family are characterized by a structurally conserved scaffold-capsid protein that shapes the icosahedral virion. The vaccinia virus (VACV) scaffold protein D13, however, transiently shapes the newly assembled viral membrane in to a sphere and is absent from the mature brick-shaped virion. In infected cells D13, a 62 kDa polypeptide, forms trimers that arrange in hexamers and a honey-comb like lattice. Membrane association of the D13-lattice may be mediated by A17, an abundant 21 kDa viral membrane protein. Whether membrane binding mediates the formation of the honey-comb lattice or if other factors are involved, remains elusive. Here we show that H7, a 17 kDa protein conserved among poxviruses, mediates proper formation of D13-hexamers, and hence the honey comb lattice and spherical immature virus. Without H7 synthesis D13 trimers assemble into a large 3D network rather than the typical well organized scaffold layer observed in wild-type infection, composed of short D13 tubes of discrete length that are tightly associated with the endoplasmic reticulum (ER). The data show an unexpected role for H7 in D13 organization and imply that formation of the honey-comb, hexagonal, lattice is essential for VACV membrane assembly and production of infectious progeny. The data are discussed with respect to scaffold proteins of other giant viruses.
Collapse
Affiliation(s)
- Susanne Tonnemacher
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Paul Ehrlichstreet 51-59, 63225, Langen, Germany
| | - Marcia Folly-Klan
- Ultrastructural Bio-Imaging Unit, Institut Pasteur, 28, rue du Dr. Roux, 75015, Paris, France
| | - Anastasia D Gazi
- Ultrastructural Bio-Imaging Unit, Institut Pasteur, 28, rue du Dr. Roux, 75015, Paris, France
| | - Simon Schäfer
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Paul Ehrlichstreet 51-59, 63225, Langen, Germany
| | - Esthel Pénard
- Ultrastructural Bio-Imaging Unit, Institut Pasteur, 28, rue du Dr. Roux, 75015, Paris, France
| | - Regina Eberle
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Paul Ehrlichstreet 51-59, 63225, Langen, Germany
| | - Renate Kunz
- Central Facility for Electron Microscopy, Ulm University, 80981, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 80981, Ulm, Germany
| | - Jacomine Krijnse Locker
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Paul Ehrlichstreet 51-59, 63225, Langen, Germany. .,Ultrastructural Bio-Imaging Unit, Institut Pasteur, 28, rue du Dr. Roux, 75015, Paris, France. .,Justus Liebig University, Giessen, Germany.
| |
Collapse
|
15
|
Vection S, O'Callaghan D, Keriel A. CD98hc in host-pathogen interactions: roles of the multifunctional host protein during infections. FEMS Microbiol Rev 2022; 46:6590039. [PMID: 35595511 DOI: 10.1093/femsre/fuac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic protein CD98hc (also known as 4F2, FRP-1 or SLC3A2) is a membrane glycoprotein and one of the heavy chains of the family of heterodimeric amino acids transporters. It can associate with any of 6 different light chains to form distinct amino acid transporters. CD98hc is also involved in mediation of intracellular integrin signaling. Besides its physiological roles in the development of the placenta and the immune system, CD98hc is important during pathological processes such as tumorigenesis and host-pathogen interaction. Since its first identification as Fusion Regulatory Protein 1 regulating cell fusion in cells infected by the Newcastle disease virus, CD98hc has been reported to be mediating many viral, apicomplexan, and bacterial infectious processes. In this review we describe the role of CD98hc and its associated light chains in bacterial, apicomplexan, and viral pathogenesis. We also discuss the consequences of infection on the expression and localization of these proteins. The identification of the cellular processes in which CD98hc is involved during pathogenesis highlights the key role of this host protein in infectious diseases.
Collapse
Affiliation(s)
- Sonia Vection
- VBIC, U1047 INSERM, Université de Montpellier, Nîmes, France.,Centre National de Référence des Brucella, Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| | - David O'Callaghan
- VBIC, U1047 INSERM, Université de Montpellier, Nîmes, France.,Centre National de Référence des Brucella, Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| | - Anne Keriel
- VBIC, U1047 INSERM, Université de Montpellier, Nîmes, France.,Centre National de Référence des Brucella, Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| |
Collapse
|
16
|
Carten JD, Greseth M, Traktman P. Structure-Function Analysis of Two Interacting Vaccinia Proteins That Are Critical for Viral Morphogenesis: L2 and A30.5. J Virol 2022; 96:e0157721. [PMID: 34730390 PMCID: PMC8791271 DOI: 10.1128/jvi.01577-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro), suggestive of an aberrant posttranslational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2 and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.
Collapse
Affiliation(s)
- Juliana Debrito Carten
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Greseth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
17
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
18
|
Lu Y, Zhang L. DNA-Sensing Antiviral Innate Immunity in Poxvirus Infection. Front Immunol 2020; 11:1637. [PMID: 32983084 PMCID: PMC7483915 DOI: 10.3389/fimmu.2020.01637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
As pattern recognition receptors, cytosolic DNA sensors quickly induce an effective innate immune response. Poxvirus, a large DNA virus, is capable of evading the host antiviral innate immune response. In this review, we summarize the latest studies on how poxvirus is sensed by the host innate immune system and how poxvirus-encoded proteins antagonize DNA sensors. A comprehensive understanding of the interplay between poxvirus and DNA-sensing antiviral immune responses of the host will contribute to the development of new antiviral therapies and vaccines in the future.
Collapse
Affiliation(s)
- Yue Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China
| | - Leiliang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China.,Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China.,Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
19
|
O’Connell CM, Jasperse B, Hagen CJ, Titong A, Verardi PH. Replication-inducible vaccinia virus vectors with enhanced safety in vivo. PLoS One 2020; 15:e0230711. [PMID: 32240193 PMCID: PMC7117657 DOI: 10.1371/journal.pone.0230711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) has been used extensively as the vaccine against smallpox and as a viral vector for the development of recombinant vaccines and cancer therapies. Replication-competent, non-attenuated VACVs induce strong, long-lived humoral and cell-mediated immune responses and can be effective oncolytic vectors. However, complications from uncontrolled VACV replication in vaccinees and their close contacts can be severe, particularly in individuals with predisposing conditions. In an effort to develop replication-competent VACV vectors with improved safety, we placed VACV late genes encoding core or virion morphogenesis proteins under the control of tet operon elements to regulate their expression with tetracycline antibiotics. These replication-inducible VACVs would only express the selected genes in the presence of tetracyclines. VACVs inducibly expressing the A3L or A6L genes replicated indistinguishably from wild-type VACV in the presence of tetracyclines, whereas there was no evidence of replication in the absence of antibiotics. These outcomes were reflected in mice, where the VACV inducibly expressing the A6L gene caused weight loss and mortality equivalent to wild-type VACV in the presence of tetracyclines. In the absence of tetracyclines, mice were protected from weight loss and mortality, and viral replication was not detected. These findings indicate that replication-inducible VACVs based on the conditional expression of the A3L or A6L genes can be used for the development of safer, next-generation live VACV vectors and vaccines. The design allows for administration of replication-inducible VACV in the absence of tetracyclines (as a replication-defective vector) or in the presence of tetracyclines (as a replication-competent vector) with enhanced safety.
Collapse
Affiliation(s)
- Caitlin M. O’Connell
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Brittany Jasperse
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Caitlin J. Hagen
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Allison Titong
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paulo H. Verardi
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
20
|
Kieser Q, Noyce RS, Shenouda M, Lin YCJ, Evans DH. Cytoplasmic factories, virus assembly, and DNA replication kinetics collectively constrain the formation of poxvirus recombinants. PLoS One 2020; 15:e0228028. [PMID: 31945138 PMCID: PMC6964908 DOI: 10.1371/journal.pone.0228028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Poxviruses replicate in cytoplasmic structures called factories and each factory begins as a single infecting particle. Sixty-years ago Cairns predicted that this might have effects on vaccinia virus (VACV) recombination because the factories would have to collide and mix their contents to permit recombination. We've since shown that factories collide irregularly and that even then the viroplasm mixes poorly. We’ve also observed that while intragenic recombination occurs frequently early in infection, intergenic recombination is less efficient and happens late in infection. Something inhibits factory fusion and viroplasm mixing but what is unclear. To study this, we’ve used optical and electron microscopy to track factory movement in co-infected cells and correlate these observations with virus development and recombinant formation. While the technical complexity of the experiments limited the number of cells that are amenable to extensive statistical analysis, these studies do show that intergenic recombination coincides with virion assembly and when VACV replication has declined to ≤10% of earlier levels. Along the boundaries between colliding factories, one sees ER membrane remnants and other cell constituents like mitochondria. These collisions don't always cause factory fusion, but when factories do fuse, they still entrain cell constituents like mitochondria and ER-wrapped microtubules. However, these materials wouldn’t seem to pose much of a further barrier to DNA mixing and so it’s likely that the viroplasm also presents an omnipresent impediment to DNA mixing. Late packaging reactions might help to disrupt the viroplasm, but packaging would sequester the DNA just as the replication and recombination machinery goes into decline and further reduce recombinant yields. Many factors thus appear to conspire to limit recombination between co-infecting poxviruses.
Collapse
Affiliation(s)
- Quinten Kieser
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Mira Shenouda
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Y.-C. James Lin
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
22
|
Complex Membrane Remodeling during Virion Assembly of the 30,000-Year-Old Mollivirus Sibericum. J Virol 2019; 93:JVI.00388-19. [PMID: 30996095 DOI: 10.1128/jvi.00388-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
Cellular membranes ensure functional compartmentalization by dynamic fusion-fission remodeling and are often targeted by viruses during entry, replication, assembly, and egress. Nucleocytoplasmic large DNA viruses (NCLDVs) can recruit host-derived open membrane precursors to form their inner viral membrane. Using complementary three-dimensional (3D)-electron microscopy techniques, including focused-ion beam scanning electron microscopy and electron tomography, we show that the giant Mollivirus sibericum utilizes the same strategy but also displays unique features. Indeed, assembly is specifically triggered by an open cisterna with a flat pole in its center and open curling ends that grow by recruitment of vesicles never reported for NCLDVs. These vesicles, abundant in the viral factory (VF), are initially closed but open once in close proximity to the open curling ends of the growing viral membrane. The flat pole appears to play a central role during the entire virus assembly process. While additional capsid layers are assembled from it, it also shapes the growing cisterna into immature crescent-like virions and is located opposite to the membrane elongation and closure sites, thereby providing virions with a polarity. In the VF, DNA-associated filaments are abundant, and DNA is packed within virions prior to particle closure. Altogether, our results highlight the complexity of the interaction between giant viruses and their host. Mollivirus assembly relies on the general strategy of vesicle recruitment, opening, and shaping by capsid layers similar to all NCLDVs studied until now. However, the specific features of its assembly suggest that the molecular mechanisms for cellular membrane remodeling and persistence are unique.IMPORTANCE Since the first giant virus Mimivirus was identified, other giant representatives are isolated regularly around the world and appear to be unique in several aspects. They belong to at least four viral families, and the ways they interact with their hosts remain poorly understood. We focused on Mollivirus sibericum, the sole representative of "Molliviridae," which was isolated from a 30,000-year-old permafrost sample and exhibits spherical virions of complex composition. In particular, we show that (i) assembly is initiated by a unique structure containing a flat pole positioned at the center of an open cisterna, (ii) core packing involves another cisterna-like element seemingly pushing core proteins into particles being assembled, and (iii) specific filamentous structures contain the viral genome before packaging. Altogether, our findings increase our understanding of how complex giant viruses interact with their host and provide the foundation for future studies to elucidate the molecular mechanisms of Mollivirus assembly.
Collapse
|
23
|
Mirzakhanyan Y, Gershon P. The Vaccinia virion: Filling the gap between atomic and ultrastructure. PLoS Pathog 2019; 15:e1007508. [PMID: 30615658 PMCID: PMC6336343 DOI: 10.1371/journal.ppat.1007508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 12/06/2018] [Indexed: 01/19/2023] Open
Abstract
We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality. Crosslink density strongly tracked the individual proteolytic maturation products of p4a and p4b, the two major virion structural proteins, and supported the prediction of transmembrane domains within membrane proteins. A clear sub-network of four virion structural proteins provided structural insights into the virion core wall, and proteins VP8 and A12 formed a strongly-detected crosslinked pair with an apparent structural role. A strongly-detected sub-network of membrane proteins A17, H3, A27 and A26 represented an apparent interface of the early-forming virion envelope with structures added later during virion morphogenesis. Protein H3 seemed to be the central hub not only for this sub-network but also for an 'attachment protein' sub-network comprising membrane proteins H3, ATI, CAHH(D8), A26, A27 and G9. Crosslinking data lent support to a number of known interactions and interactions within known complexes. Evidence is provided for the membrane targeting of genome telomeres. In covering several orders of magnitude in protein abundance, this study may have come close to the bottom of the protein-protein crosslinkome of an intact organism, namely a complex animal virus.
Collapse
Affiliation(s)
- Yeva Mirzakhanyan
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| | - Paul Gershon
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| |
Collapse
|
24
|
The 2.1 Å structure of protein F9 and its comparison to L1, two components of the conserved poxvirus entry-fusion complex. Sci Rep 2018; 8:16807. [PMID: 30429486 PMCID: PMC6235832 DOI: 10.1038/s41598-018-34244-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/12/2018] [Indexed: 11/18/2022] Open
Abstract
The poxvirus F9 protein is a component of the vaccinia virus entry fusion complex (EFC) which consists of 11 proteins. The EFC forms a unique apparatus among viral fusion proteins and complexes. We solved the atomic structure of the F9 ectodomain at 2.10 Å. A structural comparison to the ectodomain of the EFC protein L1 indicated a similar fold and organization, in which a bundle of five α-helices is packed against two pairs of β-strands. However, instead of the L1 myristoylation site and hydrophobic cavity, F9 possesses a protruding loop between α-helices α3 and α4 starting at Gly90. Gly90 is conserved in all poxviruses except Salmon gill poxvirus (SGPV) and Diachasmimorpha longicaudata entomopoxvirus. Phylogenetic sequence analysis of all Poxviridae F9 and L1 orthologs revealed the SGPV genome to contain the most distantly related F9 and L1 sequences compared to the vaccinia proteins studied here. The structural differences between F9 and L1 suggest functional adaptations during evolution from a common precursor that underlie the present requirement for each protein.
Collapse
|
25
|
Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin. Proc Natl Acad Sci U S A 2018; 115:8424-8429. [PMID: 30068608 DOI: 10.1073/pnas.1810398115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Poxviruses are large DNA viruses that cause disease in animals and humans. They differ from classical enveloped viruses, because their membrane is acquired from cytoplasmic membrane precursors assembled onto a viral protein scaffold formed by the D13 protein rather than budding through cellular compartments. It was found three decades ago that the antibiotic rifampicin blocks this process and prevents scaffold formation. To elucidate the mechanism of action of rifampicin, we have determined the crystal structures of six D13-rifamycin complexes. These structures reveal that rifamycin compounds bind to a phenylalanine-rich region, or F-ring, at the membrane-proximal opening of the central channel of the D13 trimer. We show by NMR, surface plasmon resonance (SPR), and site-directed mutagenesis that A17, a membrane-associated viral protein, mediates the recruitment of the D13 scaffold by also binding to the F-ring. This interaction is the target of rifampicin, which prevents A17 binding, explaining the inhibition of viral morphogenesis. The F-ring of D13 is both conserved in sequence in mammalian poxviruses and essential for interaction with A17, defining a target for the development of assembly inhibitors. The model of the A17-D13 interaction describes a two-component system for remodeling nascent membranes that may be conserved in other large and giant DNA viruses.
Collapse
|
26
|
Meade N, Furey C, Li H, Verma R, Chai Q, Rollins MG, DiGiuseppe S, Naghavi MH, Walsh D. Poxviruses Evade Cytosolic Sensing through Disruption of an mTORC1-mTORC2 Regulatory Circuit. Cell 2018; 174:1143-1157.e17. [PMID: 30078703 DOI: 10.1016/j.cell.2018.06.053] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023]
Abstract
Viruses employ elaborate strategies to coopt the cellular processes they require to replicate while simultaneously thwarting host antiviral responses. In many instances, how this is accomplished remains poorly understood. Here, we identify a protein, F17 encoded by cytoplasmically replicating poxviruses, that binds and sequesters Raptor and Rictor, regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2, respectively. This disrupts mTORC1-mTORC2 crosstalk that coordinates host responses to poxvirus infection. During infection with poxvirus lacking F17, cGAS accumulates together with endoplasmic reticulum vesicles around the Golgi, where activated STING puncta form, leading to interferon-stimulated gene expression. By contrast, poxvirus expressing F17 dysregulates mTOR, which localizes to the Golgi and blocks these antiviral responses in part through mTOR-dependent cGAS degradation. Ancestral conservation of Raptor/Rictor across eukaryotes, along with expression of F17 across poxviruses, suggests that mTOR dysregulation forms a conserved poxvirus strategy to counter cytosolic sensing while maintaining the metabolic benefits of mTOR activity.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Colleen Furey
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hua Li
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rita Verma
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qingqing Chai
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Pathak PK, Peng S, Meng X, Han Y, Zhang B, Zhang F, Xiang Y, Deng J. Structure of a lipid-bound viral membrane assembly protein reveals a modality for enclosing the lipid bilayer. Proc Natl Acad Sci U S A 2018; 115:7028-7032. [PMID: 29915071 PMCID: PMC6142198 DOI: 10.1073/pnas.1805855115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cellular membranes are maintained as closed compartments, broken up only transiently during membrane reorganization or lipid transportation. However, open-ended membranes, likely derived from scissions of the endoplasmic reticulum, persist in vaccinia virus-infected cells during the assembly of the viral envelope. A group of viral membrane assembly proteins (VMAPs) were identified as essential for this process. To understand the mechanism of VMAPs, we determined the 2.2-Å crystal structure of the largest member, named A6, which is a soluble protein with two distinct domains. The structure of A6 displays a novel protein fold composed mainly of alpha helices. The larger C-terminal domain forms a unique cage that encloses multiple glycerophospholipids with a lipid bilayer-like configuration. The smaller N-terminal domain does not bind lipid but negatively affects lipid binding by A6. Mutations of key hydrophobic residues lining the lipid-binding cage disrupt lipid binding and abolish viral replication. Our results reveal a protein modality for enclosing the lipid bilayer and provide molecular insight into a viral machinery involved in generating and/or stabilizing open-ended membranes.
Collapse
Affiliation(s)
- Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yue Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Fushun Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yan Xiang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
28
|
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
29
|
Quemin ER, Corroyer-Dulmont S, Krijnse-Locker J. Entry and Disassembly of Large DNA Viruses: Electron Microscopy Leads the Way. J Mol Biol 2018; 430:1714-1724. [DOI: 10.1016/j.jmb.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
|
30
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
31
|
Weisberg AS, Maruri-Avidal L, Bisht H, Hansen BT, Schwartz CL, Fischer ER, Meng X, Xiang Y, Moss B. Enigmatic origin of the poxvirus membrane from the endoplasmic reticulum shown by 3D imaging of vaccinia virus assembly mutants. Proc Natl Acad Sci U S A 2017; 114:E11001-E11009. [PMID: 29203656 PMCID: PMC5754806 DOI: 10.1073/pnas.1716255114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The long-standing inability to visualize connections between poxvirus membranes and cellular organelles has led to uncertainty regarding the origin of the viral membrane. Indeed, there has been speculation that viral membranes form de novo in cytoplasmic factories. Another possibility, that the connections are too short-lived to be captured by microscopy during a normal infection, motivated us to identify and characterize virus mutants that are arrested in assembly. Five conserved vaccinia virus proteins, referred to as Viral Membrane Assembly Proteins (VMAPs), that are necessary for formation of immature virions were found. Transmission electron microscopy studies of two VMAP deletion mutants had suggested retention of connections between viral membranes and the endoplasmic reticulum (ER). We now analyzed cells infected with each of the five VMAP deletion mutants by electron tomography, which is necessary to validate membrane continuity, in addition to conventional transmission electron microscopy. In all cases, connections between the ER and viral membranes were demonstrated by 3D reconstructions, supporting a role for the VMAPs in creating and/or stabilizing membrane scissions. Furthermore, coexpression of the viral reticulon-like transmembrane protein A17 and the capsid-like scaffold protein D13 was sufficient to form similar ER-associated viral structures in the absence of other major virion proteins. Determination of the mechanism of ER disruption during a normal VACV infection and the likely participation of both viral and cell proteins in this process may provide important insights into membrane dynamics.
Collapse
Affiliation(s)
- Andrea S Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Himani Bisht
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yan Xiang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
32
|
Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein. J Virol 2017; 91:JVI.00767-17. [PMID: 28659486 DOI: 10.1128/jvi.00767-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
The Western Reserve (WR) strain of mature vaccinia virus contains an A26 envelope protein that mediates virus binding to cell surface laminin and subsequent endocytic entry into HeLa cells. Removal of the A26 protein from the WR strain mature virus generates a mutant, WRΔA26, that enters HeLa cells through plasma membrane fusion. Here, we infected murine bone marrow-derived macrophages (BMDM) with wild-type strain WR and the WRΔA26 mutant and analyzed viral gene expression and cellular innate immune signaling. In contrast to previous studies, in which both HeLa cells infected with WR and HeLa cells infected with WRΔA26 expressed abundant viral late proteins, we found that WR expressed much less viral late protein than WRΔA26 in BMDM. Microarray analysis of the cellular transcripts in BMDM induced by virus infection revealed that WR preferentially activated type 1 interferon receptor (IFNAR)-dependent signaling but WRΔA26 did not. We consistently detected a higher level of soluble beta interferon secretion and phosphorylation of the STAT1 protein in BMDM infected with WR than in BMDM infected with WRΔA26. When IFNAR-knockout BMDM were infected with WR, late viral protein expression increased, confirming that IFNAR-dependent signaling was differentially induced by WR and, in turn, restricted viral late gene expression. Finally, wild-type C57BL/6 mice were more susceptible to mortality from WRΔA26 infection than to that from WR infection, whereas IFNAR-knockout mice were equally susceptible to WR and WRΔA26 infection, demonstrating that the ability of WRΔA26 to evade IFNAR signaling has an important influence on viral pathogenesis in vivoIMPORTANCE The vaccinia virus A26 protein was previously shown to mediate virus attachment and to regulate viral endocytosis. Here, we show that infection with strain WR induces a robust innate immune response that activates type 1 interferon receptor (IFNAR)-dependent cellular genes in BMDM, whereas infection with the WRΔA26 mutant does not. We further demonstrated that the differential activation of IFNAR-dependent cellular signaling between WR and WRΔA26 not only is important for differential host restriction in BMDM but also is important for viral virulence in vivo Our study reveals a new property of WRΔA26, which is in regulating host antiviral innate immunity in vitro and in vivo.
Collapse
|
33
|
Lorenzo MM, Sanchez-Puig JM, Blasco R. Vaccinia virus and Cowpox virus are not susceptible to the interferon-induced antiviral protein MxA. PLoS One 2017; 12:e0181459. [PMID: 28727764 PMCID: PMC5519081 DOI: 10.1371/journal.pone.0181459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
MxA protein is expressed in response to type I and type III Interferon and constitute an important antiviral factor with broad antiviral activity to diverse RNA viruses. In addition, some studies expand the range of MxA antiviral activity to include particular DNA viruses like Monkeypox virus (MPXV) and African Swine Fever virus (ASFV). However, a broad profile of activity of MxA to large DNA viruses has not been established to date. Here, we investigated if some well characterized DNA viruses belonging to the Poxviridae family are sensitive to human MxA. A cell line inducibly expressing MxA to inhibitory levels showed no anti-Vaccinia virus (VACV) virus activity, indicating either lack of susceptibility of the virus, or the existence of viral factors capable of counteracting MxA inhibition. To determine if VACV resistance to MxA was due to a virus-encoded anti-MxA activity, we performed coinfections of VACV and the MxA-sensitive Vesicular Stomatitis virus (VSV), and show that VACV does not protect VSV from MxA inhibition in trans. Those results were extended to several VACV strains and two CPXV strains, thus confirming that those Orthopoxviruses do not block MxA action. Overall, these results point to a lack of susceptibility of the Poxviridae to MxA antiviral activity.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - Juana M. Sanchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
- * E-mail:
| |
Collapse
|
34
|
Suarez C, Hoppe S, Pénard E, Walther P, Krijnse-Locker J. Vaccinia virus A11 is required for membrane rupture and viral membrane assembly. Cell Microbiol 2017; 19. [PMID: 28618160 DOI: 10.1111/cmi.12756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 06/05/2017] [Indexed: 01/22/2023]
Abstract
Although most enveloped viruses acquire their membrane from the host by budding or by a wrapping process, collective data argue that nucleocytoplasmic large DNA viruses (NCLDVs) may be an exception. The prototype member of NCLDVs, vaccinia virus (VACV) may induce rupture of endoplasmic-reticulum-derived membranes to build an open-membrane sphere that closes after DNA uptake. This unconventional membrane assembly pathway is also used by at least 3 other members of the NCLDVs. In this study, we identify the VACV gene product of A11, as required for membrane rupture, hence for VACV membrane assembly and virion formation. By electron tomography, in the absence of A11, the site of assembly formed by the viral scaffold protein D13 is surrounded by endoplasmic reticulum cisternae that are closed. We use scanning transmission electron microscopy-electron tomography to analyse large volumes of cells and demonstrate that in the absence of A11, no open membranes are detected. Given the pivotal role of D13 in initiating VACV membrane assembly, we also analyse viral membranes in the absence of D13 synthesis and show that this protein is not required for rupture. Finally, consistent with a role in rupture, we show that during wild-type infection, A11 localises predominantly to the small ruptured membranes, the precursors of VACV membrane assembly. These data provide strong evidence in favour of the unusual membrane biogenesis of VACV and are an important step towards understanding its molecular mechanism.
Collapse
Affiliation(s)
- Cristina Suarez
- EM Core Facility & Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Hoppe
- EM Core Facility & Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Esthel Pénard
- Center for Innovation and Technological Research, Ultrapole, Ultrastructural Bio-imaging, Paris, France
| | - Paul Walther
- Central Facility for EM, Ulm University, Ulm, Germany
| | - Jacomine Krijnse-Locker
- EM Core Facility & Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Center for Innovation and Technological Research, Ultrapole, Ultrastructural Bio-imaging, Paris, France
| |
Collapse
|
35
|
Gao WND, Carpentier DCJ, Ewles HA, Lee SA, Smith GL. Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms. Traffic 2017; 18:505-518. [PMID: 28485852 PMCID: PMC5519951 DOI: 10.1111/tra.12494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
Vaccinia virus (VACV) utilizes microtubule‐mediated trafficking at several stages of its life cycle, of which virus egress is the most intensely studied. During egress VACV proteins A36, F12 and E2 are involved in kinesin‐1 interactions; however, the roles of these proteins remain poorly understood. A36 forms a direct link between virions and kinesin‐1, yet in its absence VACV egress still occurs on microtubules. During a co‐immunoprecipitation screen to seek an alternative link between virions and kinesin, A36 was found to bind isoform KLC1 rather than KLC2. The F12/E2 complex associates preferentially with the C‐terminal tail of KLC2, to a region that overlaps the binding site of cellular 14‐3‐3 proteins. F12/E2 displaces 14‐3‐3 from KLC and, unlike 14‐3‐3, does not require phosphorylation of KLC for its binding. The region determining the KLC1 specificity of A36 was mapped to the KLC N‐terminal heptad repeat region that is responsible for its association with kinesin heavy chain. Despite these differing binding properties F12/E2 can co‐operatively enhance A36 association with KLC, particularly when using a KLC1‐KLC2 chimaera that resembles several KLC1 spliceforms and can bind A36 and F12/E2 efficiently. This is the first example of a pathogen encoding multiple proteins that co‐operatively associate with kinesin‐1.
Collapse
Affiliation(s)
- William N D Gao
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Helen A Ewles
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stacey-Ann Lee
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
36
|
Vaccinia Virus A6 Is a Two-Domain Protein Requiring a Cognate N-Terminal Domain for Full Viral Membrane Assembly Activity. J Virol 2017; 91:JVI.02405-16. [PMID: 28275183 DOI: 10.1128/jvi.02405-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Poxvirus virion biogenesis is a complex, multistep process, starting with the formation of crescent-shaped viral membranes, followed by their enclosure of the viral core to form spherical immature virions. Crescent formation requires a group of proteins that are highly conserved among poxviruses, including A6 and A11 of vaccinia virus (VACV). To gain a better understanding of the molecular function of A6, we established a HeLa cell line that inducibly expressed VACV-A6, which allowed us to construct VACV mutants with an A6 deletion or mutation. As expected, the A6 deletion mutant of VACV failed to replicate in noncomplementing cell lines with defects in crescent formation and A11 localization. Surprisingly, a VACV mutant that had A6 replaced with a close ortholog from the Yaba-like disease virus YLDV-97 also failed to replicate. This mutant, however, developed crescents and had normal A11 localization despite failing to form immature virions. Limited proteolysis of the recombinant A6 protein identified an N domain and a C domain of approximately 121 and 251 residues, respectively. Various chimeras of VACV-A6 and YLDV-97 were constructed, but only one that precisely combined the N domain of VACV-A6 and the C domain of YLDV-97 supported VACV replication albeit at a reduced efficiency. Our results show that VACV-A6 has a two-domain architecture and functions in both crescent formation and its enclosure to form immature virions. While a cognate N domain is not required for crescent formation, it is required for virion formation, suggesting that interactions of the N domain with cognate viral proteins may be critical for virion assembly.IMPORTANCE Poxviruses are unique among enveloped viruses in that they acquire their primary envelope not through budding from cellular membranes but by forming and extending crescent membranes. The crescents are highly unusual, open-ended membranes, and their origin and biogenesis have perplexed virologists for decades. A group of five viral proteins were recently identified as being essential for crescent formation, including the A6 protein of vaccinia virus. It is thus important to understand the structure and function of A6 in order to solve the long-standing mystery of poxvirus membrane biogenesis. Here, we established an experimental system that allowed the genetic manipulation of the essential A6L gene. By studying A6 mutant viruses, we found that A6 plays an essential role not only in the formation of crescents but also in their subsequent enclosure to form immature virions. We defined the domain architecture of A6 and suggested that one of its two domains cooperates with cognate viral proteins.
Collapse
|
37
|
Vaccinia Virus Uses Retromer-Independent Cellular Retrograde Transport Pathways To Facilitate the Wrapping of Intracellular Mature Virions during Virus Morphogenesis. J Virol 2016; 90:10120-10132. [PMID: 27581988 PMCID: PMC5105650 DOI: 10.1128/jvi.01464-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 01/09/2023] Open
Abstract
Poxviruses, such as vaccinia virus (VACV), undertake a complex cytoplasmic replication cycle which involves morphogenesis through four distinct virion forms and includes a crucial wrapping step whereby intracellular mature virions (IMVs) are wrapped in two additional membranes to form intracellular enveloped virions (IEVs). To determine if cellular retrograde transport pathways are required for this wrapping step, we examined VACV morphogenesis in cells with reduced expression of the tetrameric tethering factor known as the GARP (Golgi-associated retrograde pathway), a central component of retrograde transport. VACV multistep replication was significantly impaired in cells transfected with small interfering RNA targeting the GARP complex and in cells with a mutated GARP complex. Detailed analysis revealed that depletion of the GARP complex resulted in a reduction in the number of IEVs, thereby linking retrograde transport with the wrapping of IMVs. In addition, foci of viral wrapping membrane proteins without an associated internal core accumulated in cells with a mutated GARP complex, suggesting that impaired retrograde transport uncouples nascent IMVs from the IEV membranes at the site of wrapping. Finally, small-molecule inhibitors of retrograde transport strongly suppressed VACV multistep growth in vitro and reduced weight loss and clinical signs in an in vivo murine model of systemic poxviral disease. This work links cellular retrograde transport pathways with the morphogenesis of poxviruses and identifies a panel of novel inhibitors of poxvirus replication. IMPORTANCE Cellular retrograde transport pathways traffic cargo from endosomes to the trans-Golgi network and are a key part of the intracellular membrane network. This work reveals that the prototypic poxvirus vaccinia virus (VACV) exploits cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions and therefore promote the production of extracellular virus. Inhibition of retrograde transport by small-molecule inhibitors reduced the replication of VACV in cell culture and alleviated disease in mice experimentally infected with VACV. This research provides fundamental new knowledge about the wrapping step of poxvirus morphogenesis, furthers our knowledge of the complex cellular retrograde pathways, and identifies a new group of antipoxvirus drugs.
Collapse
|
38
|
Hine PM, Wakefield SJ, Mackereth G, Morrison R. Ultrastructural morphogenesis of a virus associated with lymphocystis-like lesions in parore Girella tricuspidata (Kyphosidae: Perciformes). DISEASES OF AQUATIC ORGANISMS 2016; 121:129-139. [PMID: 27667810 DOI: 10.3354/dao03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The morphogenesis of large icosahedral viruses associated with lymphocystis-like lesions in the skin of parore Girella tricuspidata is described. The electron-lucent perinuclear viromatrix comprised putative DNA with open capsids at the periphery, very large arrays of smooth endoplasmic reticulum (sER), much of it with a reticulated appearance (rsER) or occurring as rows of vesicles. Lysosomes, degenerating mitochondria and virions in various stages of assembly, and paracrystalline arrays were also present. Long electron-dense inclusions (EDIs) with 15 nm repeating units split terminally and curled to form tubular structures internalising the 15 nm repeating structures. These tubular structures appeared to form the virion capsids. Large parallel arrays of sER sometimes alternated with aligned arrays of crinkled cisternae along which passed a uniformly wide (20 nm) thread-like structure. Strings of small vesicles near open capsids may also have been involved in formation of an inner lipid layer. Granules with a fine fibrillar appearance also occurred in the viromatrix, and from the presence of a halo around mature virions it appeared that the fibrils may form a layer around the capsid. The general features of virogenesis of large icosahedral dsDNA viruses, the large amount of ER, particularly rsER and the EDIs, are features of nucleo-cytoplasmic large DNA viruses, rather than features of 1 genus or family.
Collapse
Affiliation(s)
- P M Hine
- National Centre for Disease Investigation, MAF Operations, Ministry of Agriculture and Forestry, PO Box 40-742, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|
39
|
Retrograde Transport from Early Endosomes to the trans-Golgi Network Enables Membrane Wrapping and Egress of Vaccinia Virus Virions. J Virol 2016; 90:8891-905. [PMID: 27466413 DOI: 10.1128/jvi.01114-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/18/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED The anterograde pathway, from the endoplasmic reticulum through the trans-Golgi network to the cell surface, is utilized by trans-membrane and secretory proteins. The retrograde pathway, which directs traffic in the opposite direction, is used following endocytosis of exogenous molecules and recycling of membrane proteins. Microbes exploit both routes: viruses typically use the anterograde pathway for envelope formation prior to exiting the cell, whereas ricin and Shiga-like toxins and some nonenveloped viruses use the retrograde pathway for cell entry. Mining a human genome-wide RNA interference (RNAi) screen revealed a need for multiple retrograde pathway components for cell-to-cell spread of vaccinia virus. We confirmed and extended these results while discovering that retrograde trafficking was required for virus egress rather than entry. Retro-2, a specific retrograde trafficking inhibitor of protein toxins, potently prevented spread of vaccinia virus as well as monkeypox virus, a human pathogen. Electron and confocal microscopy studies revealed that Retro-2 prevented wrapping of virions with an additional double-membrane envelope that enables microtubular transport, exocytosis, and actin polymerization. The viral B5 and F13 protein components of this membrane, which are required for wrapping, normally colocalize in the trans-Golgi network. However, only B5 traffics through the secretory pathway, suggesting that F13 uses another route to the trans-Golgi network. The retrograde route was demonstrated by finding that F13 was largely confined to early endosomes and failed to colocalize with B5 in the presence of Retro-2. Thus, vaccinia virus makes novel use of the retrograde transport system for formation of the viral wrapping membrane. IMPORTANCE Efficient cell-to-cell spread of vaccinia virus and other orthopoxviruses depends on the wrapping of infectious particles with a double membrane that enables microtubular transport, exocytosis, and actin polymerization. Interference with wrapping or subsequent steps results in severe attenuation of the virus. Some previous studies had suggested that the wrapping membrane arises from the trans-Golgi network, whereas others suggested an origin from early endosomes. Some nonenveloped viruses use retrograde trafficking for entry into the cell. In contrast, we provided evidence that retrograde transport from early endosomes to the trans-Golgi network is required for the membrane-wrapping step in morphogenesis of vaccinia virus and egress from the cell. The potent in vitro inhibition of this step by the drug Retro-2 suggests that derivatives with enhanced pharmacological properties might serve as useful antipoxviral agents.
Collapse
|
40
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses 2016; 8:v8060160. [PMID: 27338443 PMCID: PMC4926180 DOI: 10.3390/v8060160] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles.
Collapse
|
42
|
Ravindran MS, Bagchi P, Cunningham CN, Tsai B. Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nat Rev Microbiol 2016; 14:407-420. [PMID: 27265768 PMCID: PMC5272919 DOI: 10.1038/nrmicro.2016.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses exploit the functions of the endoplasmic reticulum (ER) to promote both early and later stages of their life cycle, including entry, translation, replication, assembly, morphogenesis and egress. This observation reveals a shared principle that underlies virus–host cell relationships. Viral entry often requires disassembly of the incoming virus particle. This is best exemplified in the case of polyomavirus entry, in which ER-associated machineries are hijacked to disassemble the virus and promote entry to the cytosol en route to the nucleus. Many enveloped viruses, such as HIV and influenza virus, co-opt the ER-associated protein biosynthetic machinery to translate their genome and produce structural proteins that are necessary for the formation of virus particles and non-structural proteins that are essential during genome replication. Replication of the viral genome, particularly for positive-sense RNA ((+)RNA) viruses including hepatitis C virus (HCV), dengue virus (DENV) and West Nile virus (WNV), occurs in virus-induced membranous structures that are most often derived from the ER. The formation of these structures requires morphological changes to the ER membrane, involving membrane rearrangements that are induced by viral non-structural proteins that are targeted to the ER. As virus assembly is often coupled to genome replication, the assembly process frequently relies on the ER membrane. This strategy is seen for both RNA and DNA viruses. Morphogenesis of assembled virus particles can also take advantage of the ER. This is best observed in the non-enveloped rotavirus, for which a transient enveloped intermediate is converted to the mature and infectious particle in the lumen of the ER. After maturation in the ER, progeny virus particles egress the host through the ER-dependent secretory pathway, which provides a physical conduit to the extracellular environment. The overall observations that the ER actively promotes all steps of viral infection have therapeutic implications. The development of chemical inhibitors of selective ER-associated components is emerging as a potential avenue of antiviral therapy, provided that these inhibitors have minimal toxicity to the host cell.
Many host structures are vital for viral infection and the endoplasmic reticulum (ER), in particular, is essential. In this Review, Tsai and colleagues highlight examples of subversion of the ER by diverse viruses to promote all stages of their life cycle, from entry to egress. Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Corey Nathaniel Cunningham
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
43
|
The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose. J Virol 2016; 90:5020-5030. [PMID: 26937025 PMCID: PMC4859701 DOI: 10.1128/jvi.02933-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The highly conserved H3 poxvirus protein is a major target of the human antibody response against poxviruses and is likely a key contributor to protection against infection. Here, we present the crystal structure of H3 from vaccinia virus at a 1.9-Å resolution. H3 looks like a glycosyltransferase, a family of enzymes that transfer carbohydrate molecules to a variety of acceptor substrates. Like glycosyltransferases, H3 binds UDP-glucose, as shown by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, and this binding requires Mg(2+) Mutation of the glycosyltransferase-like metal ion binding motif in H3 greatly diminished its binding to UDP-glucose. We found by flow cytometry that H3 binds to the surface of human cells but does not bind well to cells that are deficient in surface glycosaminoglycans. STD NMR experiments using a heparin sulfate decasaccharide confirmed that H3 binds heparin sulfate. We propose that a surface of H3 with an excess positive charge may be the binding site for heparin. Heparin binding and glycosyltransferase activity may be involved in the function of H3 in the poxvirus life cycle. IMPORTANCE Poxviruses are under intense research because of bioterrorism concerns, zoonotic infections, and the side effects of existing smallpox vaccines. The smallpox vaccine using vaccinia virus has been highly successful, but it is still unclear why the vaccine is so effective. Studying the antigens that the immune system recognizes may allow a better understanding of how the vaccine elicits immunity and how improved vaccines can be developed. Poxvirus protein H3 is a major target of the immune system. The H3 crystal structure shows that it has a glycosyltransferase protein fold. We demonstrate that H3 binds the sugar nucleotide UDP-glucose, as do glycosyltransferases. Our experiments also reveal that H3 binds cell surface molecules that are involved in the attachment of poxviruses to cells. These structural and functional studies of H3 will help in designing better vaccines and therapeutics.
Collapse
|
44
|
Erlandson KJ, Bisht H, Weisberg AS, Hyun SI, Hansen BT, Fischer ER, Hinshaw JE, Moss B. Poxviruses Encode a Reticulon-Like Protein that Promotes Membrane Curvature. Cell Rep 2016; 14:2084-2091. [PMID: 26923595 DOI: 10.1016/j.celrep.2016.01.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/16/2015] [Accepted: 01/25/2016] [Indexed: 12/01/2022] Open
Abstract
Poxviruses are enveloped DNA viruses that replicate within the cytoplasm. The first viral structures are crescents and spherical particles, with a lipoprotein membrane bilayer, that are thought to be derived from the ER. We determined that A17, a conserved viral transmembrane protein essential for crescent formation, forms homo-oligomers and shares topological features with cellular reticulon-like proteins. The latter cell proteins promote membrane curvature and contribute to the tubular structure of the ER. When the purified A17 protein was incorporated into liposomes, 25 nm diameter vesicles and tubules formed at low and high A17 concentrations, respectively. In addition, intracellular expression of A17 in the absence of other viral structural proteins transformed the ER into aggregated three-dimensional (3D) tubular networks. We suggest that A17 is a viral reticulon-like protein that contributes to curvature during biogenesis of the poxvirus membrane.
Collapse
Affiliation(s)
- Karl J Erlandson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Himani Bisht
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Andrea S Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Seong-In Hyun
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Jenny E Hinshaw
- Structural Cell Biology Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Milrot E, Mutsafi Y, Fridmann-Sirkis Y, Shimoni E, Rechav K, Gurnon JR, Van Etten JL, Minsky A. Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus. Cell Microbiol 2015; 18:3-16. [PMID: 26248343 DOI: 10.1111/cmi.12486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022]
Abstract
The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.
Collapse
Affiliation(s)
- Elad Milrot
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Fridmann-Sirkis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - James R Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
46
|
Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae. J Virol 2015; 89:9348-67. [PMID: 26136578 PMCID: PMC4542343 DOI: 10.1128/jvi.01174-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global source of high-quality food. To sustain the growth in aquaculture, disease control in fish farming is essential. Moreover, the spread of disease from farmed fish to wildlife is a concern. Serious poxviral diseases are emerging in aquaculture, but very little is known about the viruses and the diseases that they cause. There is a possibility that viruses with enhanced virulence may spread to new species, as has occurred with the myxoma poxvirus in rabbits. Provision of the first fish poxvirus genome sequence and specific diagnostics for the salmon gill poxvirus in Atlantic salmon may help curb this disease and provide comparative knowledge. Furthermore, because salmon gill poxvirus represents the deepest branch of chordopoxvirus so far discovered, the genome analysis provided substantial insight into the evolution of different functional modules in this important group of viruses.
Collapse
|