1
|
Yates JL, Hunt DT, Kulas KE, Chave KJ, Styer L, Chakravarthi ST, Cai GY, Bermúdez-González MC, Kleiner G, Altman D, Srivastava K, Simon V, Feihel D, McGowan J, Hogrefe W, Noone P, Egan C, Slifka MK, Lee WT. Development of a novel serological assay for the detection of mpox infection in vaccinated populations. J Med Virol 2023; 95:e29134. [PMID: 37805977 PMCID: PMC10686281 DOI: 10.1002/jmv.29134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 104 nonendemic locations worldwide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.
Collapse
Affiliation(s)
- Jennifer L Yates
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| | - Danielle T Hunt
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Karen E Kulas
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Karen J Chave
- Scientific Cores, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Linda Styer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| | - Sandhya T Chakravarthi
- Scientific Cores, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Gianna Y Cai
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Maria C Bermúdez-González
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Giulio Kleiner
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deena Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Komal Srivastava
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Viviana Simon
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dennis Feihel
- Department of Medicine, North Shore University Hospital, Manhasset, New York, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Joseph McGowan
- Department of Medicine, North Shore University Hospital, Manhasset, New York, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | | | | | - Christina Egan
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| | - Mark K Slifka
- Najit Technologies, Inc., Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - William T Lee
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| |
Collapse
|
2
|
Yates JL, Hunt DT, Kulas KE, Chave K, Styer L, Chakravarthi ST, Cai GY, Bermúdez-González MC, Kleiner G, Altman D, Srivastava K, Simon V, Feihel D, McGowan J, Hogrefe W, Noone P, Egan C, Slifka MK, Lee WT. Development of a Novel Serological Assay for the Detection of Mpox Infection in Vaccinated Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288419. [PMID: 37162953 PMCID: PMC10168407 DOI: 10.1101/2023.04.18.23288419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 103 non-endemic locations world-wide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay (MIA) using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important diagnostic tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.
Collapse
|
3
|
Fludarabine, a Potential DNA-Dependent RNA Polymerase Inhibitor, as a Prospective Drug against Monkeypox Virus: A Computational Approach. Pharmaceuticals (Basel) 2022; 15:ph15091129. [PMID: 36145351 PMCID: PMC9504824 DOI: 10.3390/ph15091129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Monkeypox is a zoonotic contagious disease that has recently re-emerged in different countries worldwide. Due to the lack of an effective treatment that eliminates the virus, there is an urgent need to find effective drugs to stop the spread of the multi-country outbreak. The current study aimed to use computational methods to quickly identify potentially effective drugs against the Monkeypox virus (MPXV). Three MPXV proteins were targeted in this study due to their essential role in viral replication (a DNA-Dependent RNA Polymerase subunit (A6R)), a protein involved in cell entry (D8L), and a protein catalyzing the envelopment of intracellular mature virus particles (F13L). We virtually screened a library of 1615 FDA-approved compounds, utilizing different in-silico approaches including computational modeling, molecular docking, molecular dynamic (MD) simulation, and MM-GBSA. The compound Fludarabine was found to have the best docking score (−7.53 kcal/mol) in relation to the MPXV A6R protein. Additionally, Fludarabine showed in-silico activity on the D8L and F13L proteins. During the whole period of the 100 ns MD simulation, the complex of A6R and Fludarabine exhibited the best stability. This stability was reflected in a good score of MM-GBSA, with an average value of −44.62 kcal/mole in a range between −53.26 and −35.49 and a low value of standard deviation (3.76). Furthermore, Fludarabine blocked efficiently the Asn175 residue which has an important role in the attachment of the virus to a host cell. The results of this study recommend more in vitro studies on this compound, as a starting point to develop a novel treatment against MPXV.
Collapse
|
4
|
Forsyth KS, Roy NH, Peauroi E, DeHaven BC, Wold ED, Hersperger AR, Burkhardt JK, Eisenlohr LC. Ectromelia-encoded virulence factor C15 specifically inhibits antigen presentation to CD4+ T cells post peptide loading. PLoS Pathog 2020; 16:e1008685. [PMID: 32745153 PMCID: PMC7425992 DOI: 10.1371/journal.ppat.1008685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/13/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.
Collapse
Affiliation(s)
- Katherine S. Forsyth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Peauroi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. DeHaven
- Department of Biology, La Salle University, Philadelphia, Pennsylvania, United States of America
| | - Erik D. Wold
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam R. Hersperger
- Department of Biology, Albright College, Reading, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. J Virol 2020; 94:JVI.01625-19. [PMID: 31645446 DOI: 10.1128/jvi.01625-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.
Collapse
|