1
|
Balaraman V, Indran SV, Kim IJ, Trujillo JD, Meekins DA, Shivanna V, Zajac MD, Urbaniak K, Morozov I, Sunwoo SY, Faburay B, Osterrieder K, Gaudreault NN, Wilson WC, Richt JA. Rift Valley Fever Phlebovirus Reassortment Study in Sheep. Viruses 2024; 16:880. [PMID: 38932172 PMCID: PMC11209395 DOI: 10.3390/v16060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Rift Valley fever (RVF) in ungulates and humans is caused by a mosquito-borne RVF phlebovirus (RVFV). Live attenuated vaccines are used in livestock (sheep and cattle) to control RVF in endemic regions during outbreaks. The ability of two or more different RVFV strains to reassort when co-infecting a host cell is a significant veterinary and public health concern due to the potential emergence of newly reassorted viruses, since reassortment of RVFVs has been documented in nature and in experimental infection studies. Due to the very limited information regarding the frequency and dynamics of RVFV reassortment, we evaluated the efficiency of RVFV reassortment in sheep, a natural host for this zoonotic pathogen. Co-infection experiments were performed, first in vitro in sheep-derived cells, and subsequently in vivo in sheep. Two RVFV co-infection groups were evaluated: group I consisted of co-infection with two wild-type (WT) RVFV strains, Kenya 128B-15 (Ken06) and Saudi Arabia SA01-1322 (SA01), while group II consisted of co-infection with the live attenuated virus (LAV) vaccine strain MP-12 and a WT strain, Ken06. In the in vitro experiments, the virus supernatants were collected 24 h post-infection. In the in vivo experiments, clinical signs were monitored, and blood and tissues were collected at various time points up to nine days post-challenge for analyses. Cell culture supernatants and samples from sheep were processed, and plaque-isolated viruses were genotyped to determine reassortment frequency. Our results show that RVFV reassortment is more efficient in co-infected sheep-derived cells compared to co-infected sheep. In vitro, the reassortment frequencies reached 37.9% for the group I co-infected cells and 25.4% for the group II co-infected cells. In contrast, we detected just 1.7% reassortant viruses from group I sheep co-infected with the two WT strains, while no reassortants were detected from group II sheep co-infected with the WT and LAV strains. The results indicate that RVFV reassortment occurs at a lower frequency in vivo in sheep when compared to in vitro conditions in sheep-derived cells. Further studies are needed to better understand the implications of RVFV reassortment in relation to virulence and transmission dynamics in the host and the vector. The knowledge learned from these studies on reassortment is important for understanding the dynamics of RVFV evolution.
Collapse
Affiliation(s)
- Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Sabarish V. Indran
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - In Joong Kim
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Jessie D. Trujillo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - David A. Meekins
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Vinay Shivanna
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Michelle D. Zajac
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA
| | - Kinga Urbaniak
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Igor Morozov
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Sun-Young Sunwoo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Bonto Faburay
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA
| | - Klaus Osterrieder
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (V.B.); (S.V.I.); (J.D.T.); (S.-Y.S.)
| |
Collapse
|
2
|
Trujillo JD, Wilson WC, Craig A, Van den Bergh C, Wang T, Thompson P, Swanepoel R, Morozov I, Richt JA. Rift Valley Fever virus M and L genome segment detection: a comparison of field-deployable reverse transcription insulated isothermal PCR (RT-iiPCR) and laboratory-based multiplex reverse transcription real-time PCR. J Clin Microbiol 2024; 62:e0043023. [PMID: 38305205 PMCID: PMC10935642 DOI: 10.1128/jcm.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/21/2023] [Indexed: 02/03/2024] Open
Abstract
Rift Valley Fever phlebovirus (RVFV) is a mosquito-borne zoonotic pathogen that causes major agricultural and public health problems in Africa and the Arabian Peninsula. It is considered a potential agro-bioterrorism agent for which limited countermeasures are available. To address diagnostic needs, here we describe a rapid and sensitive molecular method immediately employable at sites of suspected outbreaks in animals that commonly precede outbreaks in humans. The strategy involves the concurrent detection of two of the three RVFV genome segments (large and medium) using reverse transcription insulated isothermal PCR (RT-iiPCR) performed on a portable, touch screen nucleic acid analyzer, POCKIT. The analytical sensitivity for both the RT-iiPCR and a laboratory-based L and M multiplex reverse transcription real-time PCR assay was estimated at approximately 0.1-3 copies/reaction using synthetic RNA or viral RNA. The diagnostic sensitivity and specificity of detection of RVFV on the POCKIT, determined using sera from sheep and cattle (n = 181) experimentally infected with two strains of RVFV (SA01 and Ken06), were 93.8% and 100% (kappa = 0.93), respectively. Testing of ruminant field sera (n = 193) in two locations in Africa demonstrated 100% diagnostic sensitivity and specificity. We conclude that the POCKIT dual-gene RVFV detection strategy can provide reliable, sensitive, and specific point-of-need viral RNA detection. Moreover, the field detection of RVFV in vectors or susceptible animal species can aid in the surveillance and epidemiological studies to better understand and control RVFV outbreaks. IMPORTANCE The content of this manuscript is of interest to the diverse readership of the Journal of Clinical Microbiology, including research scientists, diagnosticians, healthcare professionals, and policymakers. Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne pathogen that causes major agricultural and public health problems. Current and most sensitive diagnostic approaches that are molecular-based are performed in highly specialized molecular diagnostic laboratories. To address diagnostic needs, we developed a novel, rapid, and sensitive molecular method using a portable PCR machine, POCKIT, capable of immediate deployment at sites of suspected outbreaks. Here, we demonstrate that field-deployable RVFV detection can provide reliable, sensitive, and specific point-of-need viral RNA detection that could be used for diagnostic investigations and epidemiological studies, and can be performed in the field.
Collapse
Affiliation(s)
- Jessie D. Trujillo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit (FABADRU), USDA Agricultural Research Service (ARS), Manhattan, Kansas, USA
| | - Anthony Craig
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Vectors and Vector-Borne Diseases Research Programme, Pretoria, South Africa
| | - Carien Van den Bergh
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Vectors and Vector-Borne Diseases Research Programme, Pretoria, South Africa
| | - Thomas Wang
- Research and development, GeneReach USA, Lexington, Massachusetts, USA
| | - Peter Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Vectors and Vector-Borne Diseases Research Programme, Pretoria, South Africa
| | - Igor Morozov
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Vectors and Vector-Borne Diseases Research Programme, Pretoria, South Africa
| |
Collapse
|
3
|
Bron GM, Wichgers Schreur PJ, de Jong MCM, van Keulen L, Vloet RPM, Koenraadt CJM, Kortekaas J, ten Bosch QA. Quantifying Rift Valley fever virus transmission efficiency in a lamb-mosquito-lamb model. Front Cell Infect Microbiol 2023; 13:1206089. [PMID: 38170150 PMCID: PMC10759236 DOI: 10.3389/fcimb.2023.1206089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a (re)emerging mosquito-borne pathogen impacting human and animal health. How RVFV spreads through a population depends on population-level and individual-level interactions between vector, host and pathogen. Here, we estimated the probability for RVFV to transmit to naive animals by experimentally exposing lambs to a bite of an infectious mosquito, and assessed if and how RVFV infection subsequently developed in the exposed animal. Aedes aegypti mosquitoes, previously infected via feeding on a viremic lamb, were used to expose naive lambs to the virus. Aedes aegypti colony mosquitoes were used as they are easy to maintain and readily feed in captivity. Other mosquito spp. could be examined with similar methodology. Lambs were exposed to either 1-3 (low exposure) or 7-9 (high exposure) infectious mosquitoes. All lambs in the high exposure group became viremic and showed characteristic signs of Rift Valley fever within 2-4 days post exposure. In contrast, 3 out of 12 lambs in the low exposure group developed viremia and disease, with similar peak-levels of viremia as the high exposure group but with some heterogeneity in the onset of viremia. These results suggest that the likelihood for successful infection of a ruminant host is affected by the number of infectious mosquitoes biting, but also highlights that a single bite of an infectious mosquito can result in disease. The per bite mosquito-to-host transmission efficiency was estimated at 28% (95% confidence interval: 15 - 47%). We subsequently combined this transmission efficiency with estimates for life traits of Aedes aegypti or related mosquitoes into a Ross-McDonald mathematical model to illustrate scenarios under which major RVFV outbreaks could occur in naïve populations (i.e., R0 >1). The model revealed that relatively high vector-to-host ratios as well as mosquitoes feeding preferably on competent hosts are required for R0 to exceed 1. Altogether, this study highlights the importance of experiments that mimic natural exposure to RVFV. The experiments facilitate a better understanding of the natural progression of disease and a direct way to obtain epidemiological parameters for mathematical models.
Collapse
Affiliation(s)
- Gebbiena M. Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, Netherlands
| | - Lucien van Keulen
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Rianka P. M. Vloet
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | | | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Experimental Infection of Domestic Pigs ( Sus scrofa) with Rift Valley Fever Virus. Viruses 2023; 15:v15020545. [PMID: 36851759 PMCID: PMC9964260 DOI: 10.3390/v15020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Rift valley fever (RVF), caused by the RVF virus (RVFV), is a vector-borne zoonotic disease that primarily affects domestic ruminants. Abortion storms and neonatal deaths characterise the disease in animals. Humans develop flu-like symptoms, which can progress to severe disease. The susceptibility of domestic pigs (Sus scrofa domesticus) to RVFV remains unresolved due to conflicting experimental infection results. To address this, we infected two groups of pregnant sows, neonates and weaners, each with a different RVFV isolate, and a third group of weaners with a mixture of the two viruses. Serum, blood and oral, nasal and rectal swabs were collected periodically, and two neonates and a weaner from group 1 and 2 euthanised from 2 days post infection (DPI), with necropsy and histopathology specimens collected. Sera and organ pools, blood and oronasorectal swabs were tested for RVFV antibodies and RNA. Results confirmed that pigs can be experimentally infected with RVFV, although subclinically, and that pregnant sows can abort following infection. Presence of viral RNA in oronasorectal swab pools on 28 DPI suggest that pigs may shed RVFV for at least one month. It is concluded that precautions should be applied when handling pig body fluids and carcasses during RVF outbreaks.
Collapse
|
5
|
Yao X, Yin Q, Hu D, Fu S, Zhang W, Nie K, Li F, Xu S, He Y, Liang G, Li X, Wang H. In Vitro Infection Dynamics of Wuxiang Virus in Different Cell Lines. Viruses 2022; 14:2383. [PMID: 36366481 PMCID: PMC9699334 DOI: 10.3390/v14112383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Wuxiang virus (WUXV) is a newly discovered Bunyavirales transmitted by sandflies. It is found to infect humans and chickens and can cause neurological symptoms and even death in mice. However, the susceptibility of different hosts and tissue-derived cells to this virus is unclear. In this study, we examined cells derived from murine (BHK-21, N2A), human (HEK-293T, SH-SY5Y), dog (MDCK), pig (PK-15), monkey (Vero), and chicken (DF1), which were inoculated with WUXV at 0.05 MOI, and monitored for monolayer cytopathic effect (CPE). Culture supernatants and cells were collected from 0 to 96 h post-infection, cell viability was determined by trypan blue staining, numbers of infectious virus particles were quantified using plaque tests, and viral nucleic acid contents were determined by RT-qPCR. The presence of WUXV N antigen in infected cells was detected by Western blotting (WB). In response to virus infection, BHK-21, MDCK, and PK-15 cells were characterized by a clear CPE, and we observed reductions in the proportion of viable cells after 96 h. By contrast, no significant CPEs were observed in the other cell lines. We detected increases in viral titers, viral nucleic acid content, and N antigen expression in BHK-21, MDCK, PK-15, HEK-293T, N2A, SH-SY5Y, and DF1 cells post-infection. Vero cells showed no CPE, and the findings for other tests were negative. In conclusion, we tested the susceptibility of different cell lines to WUXV, enhanced our current understanding of WUXV biology at the cellular level, and laid the foundations for further investigation of the underlying virus infection mechanisms.
Collapse
Affiliation(s)
- Xiaohui Yao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qikai Yin
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Danhe Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shihong Fu
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Weijia Zhang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kai Nie
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Fan Li
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Songtao Xu
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying He
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guodong Liang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Wang
- Department of Arboviruses, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
6
|
de Glanville WA, Nyarobi JM, Kibona T, Halliday JEB, Thomas KM, Allan KJ, Johnson PCD, Davis A, Lankester F, Claxton JR, Rostal MK, Carter RW, de Jong RMF, Rubach MP, Crump JA, Mmbaga BT, Nyasebwa OM, Swai ES, Willett B, Cleaveland S. Inter-epidemic Rift Valley fever virus infection incidence and risks for zoonotic spillover in northern Tanzania. PLoS Negl Trop Dis 2022; 16:e0010871. [PMID: 36306281 PMCID: PMC9665400 DOI: 10.1371/journal.pntd.0010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/15/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that has caused epidemics involving people and animals across Africa and the Arabian Peninsula. A number of studies have found evidence for the circulation of RVFV among livestock between these epidemics but the population-level incidence of infection during this inter-epidemic period (IEP) is rarely reported. General force of infection (FOI) models were applied to age-adjusted cross-sectional serological data to reconstruct the annual FOI and population-level incidence of RVFV infection among cattle, goats, and sheep in northern Tanzania from 2009 through 2015, a period without reported Rift Valley fever (RVF) cases in people or animals. To evaluate the potential for zoonotic RVFV spillover during this period, the relationship between village-level livestock RVFV FOI and human RVFV seropositivity was quantified using multi-level logistic regression. The predicted average annual incidence was 72 (95% Credible Interval [CrI] 63, 81) RVFV infections per 10,000 animals and 96 (95% CrI 81, 113), 79 (95% CrI 62, 98), and 39 (95% CrI 28, 52) per 10,000 cattle, sheep, and goats, respectively. There was variation in transmission intensity between study villages, with the highest estimated village-level FOI 2.49% (95% CrI 1.89, 3.23) and the lowest 0.12% (95% CrI 0.02, 0.43). The human RVFV seroprevalence was 8.2% (95% Confidence Interval 6.2, 10.9). Human seropositivity was strongly associated with the village-level FOI in livestock, with the odds of seropositivity in an individual person increasing by around 1.2 times (95% CrI 1.1, 1.3) for each additional annual RVFV seroconversion per 1,000 animals. A history of raw milk consumption was also positively associated with human seropositivity. RVFV has circulated at apparently low levels among livestock in northern Tanzania in the period since the last reported epidemic. Although our data do not allow us to confirm human RVFV infections during the IEP, a strong association between human seropositivity and the FOI in cattle, goats, and sheep supports the hypothesis that RVFV circulation among livestock during the IEP poses a risk for undetected zoonotic spillover in northern Tanzania. We provide further evidence for the likely role of raw milk consumption in RVFV transmission from animals to people.
Collapse
Affiliation(s)
- William A. de Glanville
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- University of Global Health Equity, Kigali, Rwanda
- * E-mail: (WAdG); (SC)
| | - James M. Nyarobi
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Tito Kibona
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jo E. B. Halliday
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kate M. Thomas
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Kilimanjaro Clinical Research Institute, Moshi, United Republic of Tanzania
| | - Kathryn J. Allan
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul C. D. Johnson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alicia Davis
- School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Felix Lankester
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
- Global Animal Health Tanzania, Arusha, Tanzania
| | - John R. Claxton
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melinda K. Rostal
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- EcoHealth Alliance, New York, New York, United States of America
| | - Ryan W. Carter
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rosanne M. F. de Jong
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew P. Rubach
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| | - John A. Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, United Republic of Tanzania
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| | - Obed M. Nyasebwa
- Ministry of Livestock and Fisheries, Dodoma, United Republic of Tanzania
| | - Emanuel S. Swai
- Ministry of Livestock and Fisheries, Dodoma, United Republic of Tanzania
| | - Brian Willett
- MRC University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sarah Cleaveland
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (WAdG); (SC)
| |
Collapse
|
7
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
8
|
Bracci N, de la Fuente C, Saleem S, Pinkham C, Narayanan A, García-Sastre A, Balaraman V, Richt JA, Wilson W, Kehn-Hall K. Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production. Virology 2022; 567:65-76. [PMID: 35032865 PMCID: PMC8877469 DOI: 10.1016/j.virol.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that was first reported in the Rift Valley of Kenya which causes significant disease in humans and livestock. RVFV is a tri-segmented, negative-sense RNA virus consisting of a L, M, and S segments with the M segment encoding the glycoproteins Gn and Gc. Host factors that interact with Gn are largely unknown. To this end, two viruses containing an epitope tag (V5) on the Gn protein in position 105 or 229 (V5Gn105 and V5Gn229) were generated using the RVFV MP-12 vaccine strain as a backbone. The V5-tag insertion minimally impacted Gn functionality as measured by replication kinetics, Gn localization, and antibody neutralization assays. A proteomics-based approach was used to identify novel Gn-binding host proteins, including the E3 ubiquitin-protein ligase, UBR4. Depletion of UBR4 resulted in a significant decrease in RVFV titers and a reduction in viral RNA production.
Collapse
Affiliation(s)
- Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Cynthia de la Fuente
- The National Institutes of Health, National Institute of Allergy and Infectious Diseases, DEA,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Sahar Saleem
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University
| | | | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University
| | - William Wilson
- National Bio and Agro-Defense Facility, Agricultural Research Service, USDA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University,National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University,Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University,Corresponding Author: Kylene Kehn-Hall, Ph.D., Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Sciences Building, 1981 Kraft Drive, Blacksburg, VA 24060 USA,
| |
Collapse
|
9
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Roberts HC, Padalino B, Pasquali P, Spoolder H, Ståhl K, Calvo AV, Viltrop A, Winckler C, Gubbins S, Broglia A, Aznar I, Van der Stede Y. Assessment of the control measures of the category A diseases of Animal Health Law: Rift Valley Fever. EFSA J 2022; 20:e07070. [PMID: 35079289 PMCID: PMC8767515 DOI: 10.2903/j.efsa.2022.7070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures were assessed for several diseases, with this opinion covering the assessment of control measures for Rift Valley Fever (RVF). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Different risk-based sampling procedures based on clinical visits and laboratory testing are assessed in case of outbreak suspicion, granting animal movements and for repopulation purposes. The length of monitoring period and minimum duration of measures to be implemented in the restricted zones as defined in the Delegated Regulation (30 days) are considered effective for the investigation and control of suspected and confirmed RVF outbreaks, as well as the size of protection and surveillance zone of 20 and 50 km, respectively, which are assessed as sufficient to contain disease transmission with at least 95% probability.
Collapse
|
10
|
Susceptibility and barriers to infection of Colorado mosquitoes with Rift Valley fever virus. PLoS Negl Trop Dis 2021; 15:e0009837. [PMID: 34695125 PMCID: PMC8568276 DOI: 10.1371/journal.pntd.0009837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/04/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. Arrival of RVFV into the United States by infected mosquitoes or humans could result in significant impacts on food security, human health, and wildlife health. Elucidation of the vectors involved in the post-introduction RVFV ecology is paramount to rapid implementation of vector control. We performed vector competence experiments in which field-collected mosquitoes were orally exposed to an epidemic strain of RVFV via infectious blood meals. We targeted floodwater Aedes species known to feed on cattle, and/or deer species (Aedes melanimon Dyar, Aedes increpitus Dyar, Aedes vexans [Meigen]). Two permanent-water-breeding species were targeted as well: Culiseta inornata (Williston) of unknown competence considering United States populations, and Culex tarsalis Coquillett as a control species for which transmission efficiency is known. We tested the potential for midgut infection, midgut escape (dissemination), ovarian infection (vertical transmission), and transmission by bite (infectious saliva). Tissues were assayed by plaque assay and RT-qPCR, to quantify infectious virus and confirm virus identity. Tissue infection data were analyzed using a within-host model under a Bayesian framework to determine the probabilities of infection outcomes (midgut-limited infection, disseminated infection, etc.) while estimating barriers to infection between tissues. Permanent-water-breeding mosquitoes (Cx. tarsalis and Cs. inornata) exhibited more efficient horizontal transmission, as well as potential for vertical transmission, which is contrary to the current assumptions of RVFV ecology. Barrier estimates trended higher for Aedes spp., suggesting systemic factors in the differences between these species and Cx. tarsalis and Cs. inornata. These data indicate higher potential for vertical transmission than previously appreciated, and support the consensus of RVFV transmission including a broad range of potential vectors. Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. To inform vector control priorities upon the introduction of RVFV to the United States, we tested the ability of three floodwater Aedes species known to feed on cattle and/or deer in Colorado (Aedes vexans [Meigen], Aedes melanimon Dyar, Aedes increpitus Dyar) to transmit RVFV (vector competence). We also tested Culiseta inornata (Williston), and Culex tarsalis Coquillett which exhibits high vector competence, and the potential for vertical transmission by testing ovaries. These data were modeled to estimate the potential for virus transmission, based on the infection probabilities of different organs that serve as transmission barriers inside the mosquitoes. The permanent-water-breeders Cs. inornata and Cx. tarsalis exhibited higher efficiency of horizontal transmission as well as potential vertical transmission. Aedes species were less efficient at vertical and horizontal transmission, with high barriers to infection of and dissemination from the midgut. Overall, these data support the transmission of RVFV by a broad range of potential vectors in the United States, posing a major challenge for vector control if this virus is introduced.
Collapse
|
11
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Abstract
Rift Valley fever (RVF) is a zoonotic, vector-borne infectious disease of ruminants and camels transmitted mainly by the Aedes and Culex mosquito species. Contact with the blood or organs of infected animals may infect humans. Its etiological factor is the Rift Valley fever virus (RVFV) of the Phlebovirus genus and Bunyaviridae family. Sheep and goats are most susceptible to infection and newborns and young individuals endure the most severe disease course. High abortion rates and infant mortality are typical for RVF; its clinical signs are high fever, lymphadenitis, nasal and ocular secretions and vomiting. Conventional diagnosis is done by the detection of specific IgM or IgG antibodies and RVFV nucleic acids and by virus isolation. Inactivated and live-attenuated vaccines obtained from virulent RVFV isolates are available for livestock. RVF is endemic in sub-Saharan Africa and the Arabian Peninsula, but in the last two decades, it was also reported in other African regions. Seropositive animals were detected in Turkey, Tunisia and Libya. The wide distribution of competent vectors in non-endemic areas coupled with global climate change threaten to spread RVF transboundarily. The EFSA considers the movement of infected animals and vectors to be other plausible pathways of RVF introduction into Europe. A very low risk both of introduction of the virus through an infected animal or vector and of establishment of the virus, and a moderate risk of its transmission through these means was estimated for Poland. The risk of these specific modes of disease introduction into Europe is rated as very low, but surveillance and response capabilities and cooperation with the proximal endemic regions are recommended.
Collapse
|
13
|
Calvo-Pinilla E, Marín-López A, Moreno S, Lorenzo G, Utrilla-Trigo S, Jiménez-Cabello L, Benavides J, Nogales A, Blasco R, Brun A, Ortego J. A protective bivalent vaccine against Rift Valley fever and bluetongue. NPJ Vaccines 2020; 5:70. [PMID: 32793399 PMCID: PMC7393076 DOI: 10.1038/s41541-020-00218-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever (RVF) and bluetongue (BT) are two important ruminant diseases transmitted by arthropods. Both viruses have shown important geographic spread leading to endemicity of BT virus (BTV) in Africa and Europe. In this work, we report a dual vaccine that simultaneously induces protective immune responses against BTV and RVFV based on modified vaccinia Ankara virus (MVA) expressing BTV proteins VP2, NS1, or a truncated form of NS1 (NS1-Nt), and RVFV Gn and Gc glycoproteins. IFNAR(-/-) mice immunized with two doses of MVA-GnGc-VP2 developed a significant neutralizing antibody response against BTV-4 and RVFV. Furthermore, the homologous prime-boost immunization with MVA-GnGc-NS1 or MVA-GnGc-NS1-Nt triggered neutralizing antibodies against RVFV and NS1-specific cytotoxic CD8+ T cells in mice. Moreover, all mice immunized with MVA-GnGc-NS1 or MVA-GnGc-NS1-Nt remained healthy after lethal challenge with RVFV or BTV-4. The homologous prime-boost vaccination with MVA-GnGc-NS1, which was the best immunization strategy observed in mice, was assayed in sheep. Clinical signs and viremia were absent or highly reduced in vaccinated sheep after challenge with BTV-4 or RVFV. These results indicate that MVA-GnGc-NS1 vaccination elicits immune protection against RVFV and BTV in sheep.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Alejandro Marín-López
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Gema Lorenzo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Luis Jiménez-Cabello
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Rafael Blasco
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Departamento de Biotecnología, Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| |
Collapse
|
14
|
Kroeker AL, Babiuk S, Pickering BS, Richt JA, Wilson WC. Livestock Challenge Models of Rift Valley Fever for Agricultural Vaccine Testing. Front Vet Sci 2020; 7:238. [PMID: 32528981 PMCID: PMC7266933 DOI: 10.3389/fvets.2020.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of Rift Valley Fever virus (RVFV) in Kenya in 1930, the virus has become widespread throughout most of Africa and is characterized by sporadic outbreaks. A mosquito-borne pathogen, RVFV is poised to move beyond the African continent and the Middle East and emerge in Europe and Asia. There is a risk that RVFV could also appear in the Americas, similar to the West Nile virus. In light of this potential threat, multiple studies have been undertaken to establish international surveillance programs and diagnostic tools, develop models of transmission dynamics and risk factors for infection, and to develop a variety of vaccines as countermeasures. Furthermore, considerable efforts to establish reliable challenge models of Rift Valley fever virus have been made and platforms for testing potential vaccines and therapeutics in target species have been established. This review emphasizes the progress and insights from a North American perspective to establish challenge models in target livestock such as cattle, sheep, and goats in comparisons to other researchers' reports. A brief summary of the potential role of wildlife, such as buffalo and white-tailed deer as reservoir species will also be discussed.
Collapse
Affiliation(s)
- Andrea Louise Kroeker
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley S Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Juergen A Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Manhattan, KS, United States
| | - William C Wilson
- USDA, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Manhattan, KS, United States
| |
Collapse
|
15
|
Bilgin Z, Turan N, Cizmecigil UY, Altan E, Esatgil MU, Yilmaz A, Aydin O, Kocazeybek B, Richt JA, Yilmaz H. Investigation of Vector-Borne Viruses in Ticks, Mosquitos, and Ruminants in the Thrace District of Turkey. Vector Borne Zoonotic Dis 2020; 20:670-679. [PMID: 32397953 DOI: 10.1089/vbz.2019.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a considerable increase in vector-borne zoonotic diseases around the world, including Turkey, such as Crimean-Congo hemorrhagic fever (CCHF), tick borne encephalitis (TBE), Rift Valley fever (RVF), and West Nile fever (WNF), causing disease and death in humans and animals and significant economical losses. Hence, the aim of this study was to investigate the presence of CCHF virus (CCHFV) and TBE virus (TBEV) in ticks and RVF virus (RVFV) and WNF virus (WNV) in mosquitos, as well as in sheep and cattle, in the Thrace district of the Marmara region, which borders Bulgaria and Greece. Buffy-coat samples from 86 cattle and 81 sheep, as well as 563 ticks and 7390 mosquitos, were collected and examined by quantitative real-time RT-PCR for the presence of CCHFV, TBEV, RVFV, and WNV. All buffy-coat samples from cattle and sheep were negative for these viruses. Similarly, all tick samples were negative for CCHFV-RNA and TBEV-RNA. Among 245 pools representing 7390 mosquitos, only 1 pool sample was found to be positive for WNV-RNA and was confirmed by sequencing. Phylogenetic analysis revealed that it was WNV lineage-2. No RVFV-RNA was detected in the 245 mosquito pools. In conclusion, results of this study indicate that CCHFV, TBEV, and RVFV are not present in livestock and respective vectors in the Thrace district of Marmara region of Turkey, whereas WNV-RNA was found in mosquitos from this region.
Collapse
Affiliation(s)
- Zahide Bilgin
- Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Utku Y Cizmecigil
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Altan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meltem Ulutas Esatgil
- Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bekir Kocazeybek
- Department of Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
16
|
Kroeker AL, Smid V, Embury-Hyatt C, Collignon B, Pinette M, Babiuk S, Pickering B. Increased Susceptibility of Cattle to Intranasal RVFV Infection. Front Vet Sci 2020; 7:137. [PMID: 32411730 PMCID: PMC7200984 DOI: 10.3389/fvets.2020.00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne virus that belongs to the Phenuiviridae family. Infections in animal herds cause abortion storms, high mortality rates in neonates, and mild to severe symptoms. Infected animals can also transmit the virus to people, particularly people who live or work in close contact with livestock. There is currently an ongoing effort to produce safe and efficacious veterinary vaccines against RVFV in livestock to protect against both primary infection in animals and zoonotic infections in people. To test the efficacy of these vaccines it is essential to have a reliable challenge model in relevant target species, including ruminants. In this study we evaluated three routes of inoculation (intranasal, intradermal and a combination of routes) in Holstein cattle using an infectious dose of 107 pfu/ml and a virus strain from the 2006-2007 outbreak in Kenya and Sudan. Our results demonstrated that all routes of inoculation were effective at producing viremia in all animals; however, the intranasal route induced the highest levels and longest duration of viremia, the most noticeable clinical signs, and the most widespread infection of tissues. We therefore recommend using the intranasal inoculation for future vaccine and challenge studies.
Collapse
Affiliation(s)
- Andrea L Kroeker
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Valerie Smid
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Carissa Embury-Hyatt
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Brad Collignon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Mathieu Pinette
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Odendaal L, Davis AS, Fosgate GT, Clift SJ. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Young Lambs. Vet Pathol 2019; 57:66-81. [PMID: 31842723 DOI: 10.1177/0300985819882633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A clear distinction can be made regarding the susceptibility to and the severity of lesions in young lambs when compared to adult sheep. In particular, there are important differences in the lesions and tropism of Rift Valley fever virus (RVFV) in the liver, kidneys, and lymphoid tissues of young lambs. A total of 84 lambs (<6 weeks old), necropsied during the 2010 to 2011 Rift Valley fever (RVF) outbreak in South Africa, were examined by histopathology and immunohistochemistry (IHC). Of the 84 lambs, 71 were positive for RVFV. The most striking diagnostic feature in infected lambs was diffuse necrotizing hepatitis with multifocal liquefactive hepatic necrosis (primary foci) against a background of diffuse hepatocellular death. Lymphocytolysis was present in all lymphoid organs except for the thymus. Lesions in the kidney rarely progressed beyond hydropic change and occasional pyknosis or karyolysis in renal tubular epithelial cells. Viral antigen was diffusely present in the cytoplasm of hepatocytes, but this labeling was noticeably sparse in primary foci. Immunolabeling for RVFV in young lambs was also detected in macrophages, vascular smooth muscle cells, adrenocortical epithelial cells, renal tubular epithelial cells, renal perimacular cells, and cardiomyocytes. RVFV immunolabeling was also often present in capillaries and small blood vessels either as non-cell-associated viral antigen, as antigen in endothelial cells, or intravascular cellular debris. Specimens from the liver, spleen, kidney, and lungs were adequate to confirm a diagnosis of RVF. Characteristic lesions were present in these organs with the liver and spleen being the most consistently positive for RVFV by IHC.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Sarah J Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
18
|
Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay Based on Recombinant Baculovirus-Expressed Rift Valley Fever Virus Nucleoprotein as the Diagnostic Antigen. J Clin Microbiol 2019; 57:JCM.01058-19. [PMID: 31366690 DOI: 10.1128/jcm.01058-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
The increasing risk of Rift Valley fever virus (RVFV) infection as a global veterinary and public health threat demands the development of safe and accurate diagnostic tests. The aim of this study was to assess the suitability of a baculovirus expression system to produce recombinant RVFV nucleoprotein (N) for use as serodiagnostic antigen in an indirect enzyme-linked immunosorbent assay (ELISA). The ability of the recombinant N antigen to detect RVFV antibody responses was evaluated in ELISA format using antisera from sheep and cattle experimentally infected with two genetically distinct wild-type RVFV strains and sera from indigenous sheep and goat populations exposed to natural RVFV field infection in The Gambia. The recombinant N exhibited specific reactivity with the N-specific monoclonal antibody and various hyperimmune serum samples from ruminants. The indirect ELISA detected N-specific antibody responses in animals with 100% sensitivity compared to the plaque reduction neutralization test (6 to 21 days postinfection) and with 97% and 100% specificity in sheep and cattle, respectively. There was a high level of correlation between the indirect N ELISA and the virus neutralization test for sheep sera (R 2 = 0.75; 95% confidence interval [CI] = 0.73 to 0.92) and cattle sera (R 2 = 0.80; 95% CI = 0.67 to 0.97); in addition, the N-specific ELISA detected RVFV seroprevalence levels of 26.1% and 54.3% in indigenous sheep and goats, respectively, in The Gambia. The high specificity and correlation with the virus neutralization test support the idea of the feasibility of using the recombinant baculovirus-expressed RVFV N-based indirect ELISA to assess RVFV seroprevalence in livestock in areas of endemicity and nonendemicity.
Collapse
|
19
|
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that was first discovered in Kenya in 1930 and is now endemic throughout multiple African countries and the Arabian Peninsula. RVF virus primarily infects domestic livestock (sheep, goats, cattle) causing high rates of neonatal mortality and abortion, with human infection resulting in a wide variety of clinical outcomes, ranging from self-limiting febrile illness to life-threatening haemorrhagic diatheses, and miscarriage in pregnant women. Since its discovery, RVF has caused many outbreaks in Africa and the Arabian Peninsula with major impacts on human and animal health. However, options for the control of RVF outbreaks are limited by the lack of licensed human vaccines or therapeutics. For this reason, RVF is prioritized by the World Health Organization for urgent research and development of countermeasures for the prevention and control of future outbreaks. In this review, we highlight the current understanding of RVF, including its epidemiology, pathogenesis, clinical manifestations and status of vaccine development.
Collapse
Affiliation(s)
- Daniel Wright
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Thomas A. Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford OX1 2JD, UK
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
20
|
Wilson WC, Kim IJ, Trujillo JD, Sunwoo SY, Noronha LE, Urbaniak K, McVey DS, Drolet BS, Morozov I, Faburay B, Schirtzinger EE, Koopman T, Indran SV, Balaraman V, Richt JA. Susceptibility of White-Tailed Deer to Rift Valley Fever Virus. Emerg Infect Dis 2019; 24:1717-1719. [PMID: 30124402 PMCID: PMC6106403 DOI: 10.3201/eid2409.180265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus, a zoonotic arbovirus, poses major health threats to livestock and humans if introduced into the United States. White-tailed deer, which are abundant throughout the country, might be sentinel animals for arboviruses. We determined the susceptibility of these deer to this virus and provide evidence for a potentially major epidemiologic role.
Collapse
|
21
|
Maluleke MR, Phosiwa M, van Schalkwyk A, Michuki G, Lubisi BA, Kegakilwe PS, Kemp SJ, Majiwa PAO. A comparative genome analysis of Rift Valley Fever virus isolates from foci of the disease outbreak in South Africa in 2008-2010. PLoS Negl Trop Dis 2019; 13:e0006576. [PMID: 30897082 PMCID: PMC6445458 DOI: 10.1371/journal.pntd.0006576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/02/2019] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Rift Valley fever (RVF) is a re-emerging zoonotic disease responsible for major losses in livestock production, with negative impact on the livelihoods of both commercial and resource-poor farmers in sub-Sahara African countries. The disease remains a threat in countries where its mosquito vector thrives. Outbreaks of RVF usually follow weather conditions which favour increase in mosquito populations. Such outbreaks are usually cyclical, occurring every 10–15 years. Recent outbreaks of the disease in South Africa have occurred unpredictably and with increased frequency. In 2008, outbreaks were reported in Mpumalanga, Limpopo and Gauteng provinces, followed by 2009 outbreaks in KwaZulu-Natal, Mpumalanga and Northern Cape provinces and in 2010 in the Eastern Cape, Northern Cape, Western Cape, North West, Free State and Mpumalanga provinces. By August 2010, 232 confirmed infections had been reported in humans, with 26 confirmed deaths.To investigate the evolutionary dynamics of RVF viruses (RVFVs) circulating in South Africa, we undertook complete genome sequence analysis of isolates from animals at discrete foci of the 2008–2010 outbreaks. The genome sequences of these viruses were compared with those of the viruses from earlier outbreaks in South Africa and in other countries. The data indicate that one 2009 and all the 2008 isolates from South Africa and Madagascar (M49/08) cluster in Lineage C or Kenya-1. The remaining of the 2009 and 2010 isolates cluster within Lineage H, except isolate M259_RSA_09, which is a probable segment M reassortant. This information will be useful to agencies involved in the control and management of Rift Valley fever in South Africa and the neighbouring countries. A single RVF virus serotype exists, yet differences in virulence and pathogenicity of the virus have been observed. This necessitates the need for detailed genetic characterization of various isolates of the virus. Some of the RVF virus isolates that caused the 2008–2010 disease outbreaks in South Africa were most probably reassortants resulting from exchange of portions of the genome, particularly those of segment M. Although clear association between RVFV genotype and phenotype has not been established, various amino acid substitutions have been implicated in the phenotype. Viruses with amino acid substitutions from glycine to glutamic acid at position 277 of segment M have been shown to be more virulent in mice in comparison to viruses with glycine at the same position. Phylogenetic analysis carried out in this study indicated that the viruses responsible for the 2008–2010 RVF outbreaks in South Africa were not introduced from outside the country, but mutated over time and caused the outbreaks when environmental conditions became favourable.
Collapse
Affiliation(s)
- Moabi R. Maluleke
- ARC-Onderstepoort Veterinary Research, Gauteng, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Gauteng, South Africa
| | - Maanda Phosiwa
- ARC-Onderstepoort Veterinary Research, Gauteng, South Africa
| | | | - George Michuki
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Phemelo S. Kegakilwe
- Department of Agriculture, Land Reform and Rural Development, Veterinary Services, Northern Cape Province, South Africa
| | - Steve J. Kemp
- Department of Veterinary Tropical Diseases, University of Pretoria, Gauteng, South Africa
| | - Phelix A. O. Majiwa
- ARC-Onderstepoort Veterinary Research, Gauteng, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Gauteng, South Africa
- * E-mail:
| |
Collapse
|
22
|
Ragan IK, Schuck KN, Upreti D, Odendaal L, Richt JA, Trujillo JD, Wilson WC, Davis AS. Rift Valley Fever Viral RNA Detection by In Situ Hybridization in Formalin-Fixed, Paraffin-Embedded Tissues. Vector Borne Zoonotic Dis 2019; 19:553-556. [PMID: 30720389 DOI: 10.1089/vbz.2018.2383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sporadic outbreaks of Rift Valley fever virus (RVFV), a zoonotic, mosquito-borne Phlebovirus, cause abortion storms and death in sheep and cattle resulting in catastrophic economic impacts in endemic regions of Africa. More recently, with changes in competent vector distribution, growing international trade, and its potential use for bioterrorism, RVFV has become a transboundary animal disease of significant concern. New and sensitive techniques that determine RVFV presence, while lessening the potential for environmental contamination and human risk, through the use of inactivated, noninfectious samples such as formalin-fixed, paraffin-embedded (FFPE) tissues are needed. FFPE tissue in situ hybridization (ISH) enables the detection of nucleic acid sequences within the visual context of cellular and tissue morphology. Here, we present a chromogenic pan-RVFV ISH assay based on RNAscope® technology, which is able to detect multiple RVFV strains in FFPE tissues, enabling visual correlation of RVFV RNA presence with histopathologic lesions.
Collapse
Affiliation(s)
- Izabela K Ragan
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Kaitlynn N Schuck
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Deepa Upreti
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lieza Odendaal
- 2 Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Juergen A Richt
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jessie D Trujillo
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - William C Wilson
- 3 USDA-ARS Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - A Sally Davis
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,2 Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
23
|
Kroeker AL, Smid V, Embury-Hyatt C, Moffat E, Collignon B, Lung O, Lindsay R, Weingartl H. RVFV Infection in Goats by Different Routes of Inoculation. Viruses 2018; 10:v10120709. [PMID: 30545088 PMCID: PMC6316315 DOI: 10.3390/v10120709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus of the Phenuiviridae family. Infection causes abortions in pregnant animals, high mortality in neonate animals, and mild to severe symptoms in both people and animals. There is currently an ongoing effort to produce safe and efficacious veterinary vaccines against RVFV in livestock to protect against both primary infection in animals and zoonotic infections in people. To test the efficacy of these vaccines, it is essential to have a reliable challenge model in relevant target species, including ruminants. We evaluated two goat breeds (Nubian and LaMancha), three routes of inoculation (intranasal, mosquito-primed subcutaneous, and subcutaneous) using an infectious dose of 107 pfu/mL, a virus strain from the 2006–2007 Kenyan/Sudan outbreak and compared the effect of using virus stocks produced in either mammalian or mosquito cells. Our results demonstrated that the highest and longest viremia titers were achieved in Nubian goats. The Nubian breed was also efficient at producing clinical signs, consistent viremia (peak viremia: 1.2 × 103–1.0 × 105 pfu/mL serum), nasal and oral shedding of viral RNA (1.5 × 101–8 × 106 genome copies/swab), a systemic infection of tissues, and robust antibody responses regardless of the inoculation route. The Nubian goat breed and a needle-free intranasal inoculation technique could both be utilized in future vaccine and challenge studies. These studies are important for preventing the spread and outbreak of zoonotic viruses like RVFV and are supported by the Canadian-led BSL4ZNet network.
Collapse
Affiliation(s)
| | - Valerie Smid
- Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada.
| | | | - Estella Moffat
- Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada.
| | - Brad Collignon
- Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada.
| | - Oliver Lung
- Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada.
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Robbin Lindsay
- Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada.
- Department of Entomology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hana Weingartl
- Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
24
|
Odendaal L, Clift SJ, Fosgate GT, Davis AS. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Adult Sheep. Vet Pathol 2018; 56:61-77. [DOI: 10.1177/0300985818806049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne disease that affects both ruminants and humans, with epidemics occurring more frequently in recent years in Africa and the Middle East, probably as a result of climate change and intensified livestock trade. Sheep necropsied during the 2010 RVF outbreak in South Africa were examined by histopathology and immunohistochemistry (IHC). A total of 124 sheep were available for study, of which 99 cases were positive for RVF. Multifocal-random, necrotizing hepatitis was confirmed as the most distinctive lesion of RVF cases in adult sheep. Of cases where liver, spleen, and kidney tissues were available, 45 of 70 had foci of acute renal tubular epithelial injury in addition to necrosis in both the liver and spleen. In some cases, acute renal injury was the most significant RVF lesion. Immunolabeling for RVFV was most consistent and unequivocal in liver, followed by spleen, kidney, lung, and skin. RVFV antigen-positive cells included hepatocytes, adrenocortical epithelial cells, renal tubular epithelial cells, macrophages, neutrophils, epidermal keratinocytes, microvascular endothelial cells, and vascular smooth muscle. The minimum set of specimens to be submitted for histopathology and IHC to confirm or exclude a diagnosis of RVFV are liver, spleen, and kidney. Skin from areas with visible crusts and lung could be useful additional samples. In endemic areas, cases of acute renal tubular injury should be investigated further if other more common causes of renal lesions have already been excluded. RVFV can also cause an acute infection in the testis, which requires further investigation.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - Sarah J. Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - Geoffrey T. Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
| | - A. Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
25
|
Upreti D, Cernicchiaro N, Richt JA, Wilson WC, Clavijo A, Davis AS. Preliminary evaluation of diagnostic accuracy and precision of a competitive ELISA for detection of antibodies to Rift Valley fever virus in cattle and sheep sera. J Virol Methods 2018; 262:6-11. [PMID: 30205125 DOI: 10.1016/j.jviromet.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
Abstract
Rift Valley fever virus (RVFV), a mosquito-borne, zoonotic pathogen, is endemic to sub-Saharan Africa and has spread beyond the continent to the Arabian Peninsula. The high likelihood of RVFV's spread to other non-endemic countries spurs the need for development and implementation of rapid diagnostic tests and surveillance programs. In this preliminary evaluation, we assessed the diagnostic accuracy and precision of a recombinant RVFV nucleoprotein based competitive ELISA (cELISA) assay to detect RVFV antibodies compared to a plaque reduction neutralization test (PRNT80), using sera of cattle and sheep that were experimentally infected with either the MP-12 RVFV vaccine or a wild-type RVFV strain, as well as using known RVFV negative sera. With the manufacturer recommended 60% inhibition for the cELISA and a 1:40 titer for the PRNT80, the sensitivity and specificity of the cELISA assay was determined to be 95.1% (95% CI = 83.5-99.4%) and 91.8% (95% CI = 85.0-96.2%), respectively. Antibodies to RVFV were first detected at 5 days post inoculation (dpi) in both species' sera. The prototype cELISA is an easy to implement, sensitive, specific, and safe test for the detection of antibodies to RVFV that can be used in surveillance programs.
Collapse
Affiliation(s)
- Deepa Upreti
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Natalia Cernicchiaro
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juergen A Richt
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - William C Wilson
- USDA-ARS Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, KS, United States
| | - Alfonso Clavijo
- National Center for Animal Diseases, Canadian Food Inspection Agency, Winnipeg, Canada
| | - A Sally Davis
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
26
|
Evaluation of Fluorescence Microsphere Immunoassay for Detection of Antibodies to Rift Valley Fever Virus Nucleocapsid Protein and Glycoproteins. J Clin Microbiol 2018; 56:JCM.01626-17. [PMID: 29563201 DOI: 10.1128/jcm.01626-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne, zoonotic virus that infects ruminants, including cattle, sheep, goats, camels, and buffalo. Multiplexing diagnostic assays that can simultaneously detect antibodies against multiple RVFV antigens offer a high-throughput test for disease surveillance and vaccine evaluations. We describe the improvement and evaluation of a previously developed fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies against the RVFV glycoprotein (Gn) and the immunogenic nucleocapsid protein (Np). Well-characterized vaccinated and experimentally infected ruminant sera were used for the evaluation of the assay. Recombinant viral proteins were produced and then coupled to polystyrene magnetic beads for analysis using the Luminex MAGPIX system with xMAP technology. The FMIA was performed in parallel with virus neutralization tests. Our results revealed the highest median fluorescence intensity (MFI) values for the detection of IgG antibodies against RVFV Np, indicating that this antigen would be a good candidate for a screening assay. The Np and Gn targets could differentiate infected animals from animals vaccinated with a candidate subunit vaccine formulation based on the RVFV Gn and Gc proteins. The results presented in this report demonstrate that FMIA provides a rapid and robust serological diagnostic tool for the detection of antibodies against RVFV. The targets developed in this assay provide the basis for the development of a companion diagnostic test for an RVFV Gn/Gc subunit vaccine that is capable of differentiating infected from vaccinated animals (DIVA), as well as a multiplex serodiagnostic assay that can simultaneously screen for several ruminant diseases.
Collapse
|
27
|
Beckham TR, Brake DA, Fine JB. Strengthening One Health Through Investments in Agricultural Preparedness. Health Secur 2018; 16:92-107. [DOI: 10.1089/hs.2017.0069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|
29
|
Palisson A, Courcoul A, Durand B. Analysis of the Spatial Organization of Pastures as a Contact Network, Implications for Potential Disease Spread and Biosecurity in Livestock, France, 2010. PLoS One 2017; 12:e0169881. [PMID: 28060913 PMCID: PMC5218577 DOI: 10.1371/journal.pone.0169881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022] Open
Abstract
The use of pastures is part of common herd management practices for livestock animals, but contagion between animals located on neighbouring pastures is one of the major modes of infectious disease transmission between herds. At the population level, this transmission is strongly constrained by the spatial organization of pastures. The aim of this study was to answer two questions: (i) is the spatial configuration of pastures favourable to the spread of infectious diseases in France? (ii) would biosecurity measures allow decreasing this vulnerability? Based on GIS data, the spatial organization of pastures was represented using networks. Nodes were the 3,159,787 pastures reported in 2010 by the French breeders to claim the Common Agricultural Policy subsidies. Links connected pastures when the distance between them was below a predefined threshold. Premises networks were obtained by aggregating into a single node all the pastures under the same ownership. Although the pastures network was very fragmented when the distance threshold was short (1.5 meters, relevant for a directly-transmitted disease), it was not the case when the distance threshold was larger (500 m, relevant for a vector-borne disease: 97% of the nodes in the largest connected component). The premises network was highly connected as the largest connected component always included more than 83% of the nodes, whatever the distance threshold. Percolation analyses were performed to model the population-level efficacy of biosecurity measures. Percolation thresholds varied according to the modelled biosecurity measures and to the distance threshold. They were globally high (e.g. >17% of nodes had to be removed, mimicking the confinement of animals inside farm buildings, to obtain the disappearance of the large connected component). The network of pastures thus appeared vulnerable to the spread of diseases in France. Only a large acceptance of biosecurity measures by breeders would allow reducing this structural risk.
Collapse
Affiliation(s)
- Aurore Palisson
- University Paris Sud, Orsay, France
- University Paris Est, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Aurélie Courcoul
- University Paris Est, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Benoit Durand
- University Paris Est, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
30
|
Complete Genome Sequence of Two Rift Valley Fever Virus Strains Isolated from Outbreaks in Saudi Arabia (2000) and Kenya (2006 to 2007). GENOME ANNOUNCEMENTS 2016; 4:4/5/e00926-16. [PMID: 27609913 PMCID: PMC5017218 DOI: 10.1128/genomea.00926-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence, including the untranslated regions, of two Rift Valley fever virus (RVFV) strains isolated from mosquitoes that were collected from disease outbreaks in Saudi Arabia (2001) and Kenya (2006 to 2007) were sequenced using next-generation sequencing technology.
Collapse
|
31
|
Faburay B, Wilson WC, Gaudreault NN, Davis AS, Shivanna V, Bawa B, Sunwoo SY, Ma W, Drolet BS, Morozov I, McVey DS, Richt JA. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Sci Rep 2016; 6:27719. [PMID: 27296136 PMCID: PMC4906348 DOI: 10.1038/srep27719] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.
Collapse
Affiliation(s)
- Bonto Faburay
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - A Sally Davis
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Vinay Shivanna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Sun Young Sunwoo
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - D Scott McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
32
|
Wilson WC, Davis AS, Gaudreault NN, Faburay B, Trujillo JD, Shivanna V, Sunwoo SY, Balogh A, Endalew A, Ma W, Drolet BS, Ruder MG, Morozov I, McVey DS, Richt JA. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus. Viruses 2016; 8:v8050145. [PMID: 27223298 PMCID: PMC4885100 DOI: 10.3390/v8050145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/07/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves.
Collapse
Affiliation(s)
- William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS 66502, USA.
| | - A Sally Davis
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Natasha N Gaudreault
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS 66502, USA.
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Jessie D Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Vinay Shivanna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Sun Young Sunwoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Aaron Balogh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Abaineh Endalew
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS 66502, USA.
| | - Mark G Ruder
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS 66502, USA.
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| | - D Scott McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS 66502, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA.
| |
Collapse
|