1
|
Dawson KLD, Rosato G, Egloff S, Burgener C, Oevermann A, Grest P, Hilbe M, Seuberlich T. Fatal tick-borne encephalitis virus infection in Dalmatian puppy-dogs after putative vector independent transmission. Vet Q 2024; 44:1-7. [PMID: 38596900 PMCID: PMC11008312 DOI: 10.1080/01652176.2024.2338385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
In a retrospective metatranscriptomics study, we identified tick-borne encephalitis virus (TBEV) to be the causative agent for a fatal non-suppurative meningoencephalitis in a three-week-old Dalmatian puppy in Switzerland. Further investigations showed that the two other littermates with similar signs and pathological lesions were also positive for TBEV. By using an unbiased approach of combining high-throughput sequencing (HTS) and bioinformatics we were able to solve the etiology and discover an unusual case of TBEV in three young puppies. Based on our findings, we suggest that a vector-independent transmission of TBEV occurred and that most likely an intrauterine infection led to the severe and fulminant disease of the entire litter. We were able to demonstrate the presence of TBEV RNA by in situ hybridization (ISH) in the brain of all three puppies. Furthermore, we were able to detect TBEV by RT-qPCR in total RNA extracted from formalin-fixed and paraffin embedded (FFPE) blocks containing multiple peripheral organs. Overall, our findings shed light on alternative vector-independent transmission routes of TBEV infections in dogs and encourage veterinary practitioners to consider TBEV as an important differential diagnosis in neurological cases in dogs.
Collapse
Affiliation(s)
- Kara L. D. Dawson
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Giuliana Rosato
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simone Egloff
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carole Burgener
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Zou S, Chen Z, Tan Y, Tan M, Guo W, Wu S, Liu J, Song S, Peng Y, Wang M, Liang K. Microbiomes detected by cerebrospinal fluid metagenomic next-generation sequencing among patients with and without HIV with suspected central nervous system infection. HIV Med 2024; 25:794-804. [PMID: 38515324 DOI: 10.1111/hiv.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Opportunistic infections in the central nervous system (CNS) can be a serious threat to people living with HIV. Early aetiological diagnosis and targeted treatment are crucial but difficult. Metagenomic next-generation sequencing (mNGS) has significant advantages over traditional detection methods. However, differences in the cerebrospinal fluid (CSF) microbiome profiles of patients living with and without HIV with suspected CNS infections using mNGS and conventional testing methods have not yet been adequately evaluated. METHODS We conducted a retrospective cohort study in the first hospital of Changsha between January 2019 and June 2022 to investigate the microbiomes detected using mNGS of the CSF of patients living with and without HIV with suspected CNS infections. The pathogens causing CNS infections were concurrently identified using both mNGS and traditional detection methods. The spectrum of pathogens identified was compared between the two groups. RESULTS Overall, 173 patients (140 with and 33 without HIV) with suspected CNS infection were enrolled in our study. In total, 106 (75.7%) patients with and 16 (48.5%) patients without HIV tested positive with mNGS (p = 0.002). Among the enrolled patients, 71 (50.7%) with HIV and five (15.2%) without HIV tested positive for two or more pathogens (p < 0.001). Patients with HIV had significantly higher proportions of fungus (20.7% vs. 3.0%, p = 0.016) and DNA virus (59.3% vs. 21.2%, p < 0.001) than those without HIV. Epstein-Barr virus (33.6%) was the most commonly identified potential pathogen in the CSF of patients living with HIV using mNGS, followed by cytomegalovirus (20.7%) and torque teno virus (13.8%). The top three causative pathogens identified in patients without HIV were Streptococcus (18.2%), Epstein-Barr virus (12.1%), and Mycobacterium tuberculosis (9.1%). In total, 113 patients living with HIV were diagnosed as having CNS infections. The rate of pathogen detection in people living with HIV with a CNS infection was significantly higher with mNGS than with conventional methods (93.8% vs. 15.0%, p < 0.001). CONCLUSION CSF microbiome profiles differ between patients living with and without HIV with suspected CNS infection. mNGS is a powerful tool for the diagnosis of CNS infection among people living with HIV, especially in those with mixed infections.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhong Chen
- The Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Miao Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongquan Peng
- Graduate Collaborative Training Base of the First Hospital of Changsha, Hengyang Medical School, Uni-versity of South China, Hengyang, China
| | - Min Wang
- The Institute of HIV/AIDS, The First Hospital of Changsha, Changsha, China
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
3
|
Kubiś P, Kuźmak J. Development of a recombinant protein-based ELISA for detection of antibodies against bovine herpesvirus 6 (BoHV6). J Vet Res 2023; 67:509-515. [PMID: 38130460 PMCID: PMC10730543 DOI: 10.2478/jvetres-2023-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Bovine herpesvirus 6 (BoHV6) belongs to the Herpesviridae family, Gammaherpesvirinae subfamily and Macavirus genus. It is common in cattle, but was also detected in American bison (Bison bison) and water buffalo (Bubalus bubalis). The aim of the experiment was to develop an ELISA for serological examination of cattle sera for the presence of anti-BoHV6 specific antibodies. Material and Methods Viral DNA from a BoHV6-positive cow was amplified by qPCR and the resulting fragments of the gB and gH genes encoding glycoproteins B and H (gB and gH) were cloned into the pLATE52 vector to express recombinant gB (rgB) and gH (rgH) in Rosetta (DE3) E. coli. The expressed recombinant proteins were used as antigens in the developed ELISA. Results The proteins expressed had the expected molecular weight. A total of 143 sera were examined, and 141 of them were positive, according to the chosen cut-off values of 9% and 10% for the sample-to-positive ratios of the rgB and rgH antigens, respectively. Conclusion The rgB and rgH recombinant antigens of BoHV6 were successfully expressed in E. coli and successfully used in a newly developed ELISA.
Collapse
Affiliation(s)
- Piotr Kubiś
- Department of Biochemistry, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
4
|
Randall RE, Young DF, Hughes DJ, Goodbourn S. Persistent paramyxovirus infections: in co-infections the parainfluenza virus type 5 persistent phenotype is dominant over the lytic phenotype. J Gen Virol 2023; 104:001916. [PMID: 37962188 PMCID: PMC10768688 DOI: 10.1099/jgv.0.001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Parainfluenza virus type 5 (PIV5) can either have a persistent or a lytic phenotype in cultured cells. We have previously shown that the phenotype is determined by the phosphorylation status of the phosphoprotein (P). Single amino acid substitutions at critical residues, including a serine-to-phenylalanine substitution at position 157 on P, result in a switch between persistent and lytic phenotypes. Here, using PIV5 vectors expressing either mCherry or GFP with persistent or lytic phenotypes, we show that in co-infections the persistent phenotype is dominant. Thus, in contrast to the cell death observed with cells infected solely with the lytic variant, in co-infected cells persistence is immediately established and both lytic and persistent genotypes persist. Furthermore, 10-20 % of virus released from dually infected cells contains both genotypes, indicating that PIV5 particles can package more than one genome. Co-infected cells continue to maintain both genotypes/phenotypes during cell passage, as do individual colonies of cells derived from a culture of persistently infected cells. A refinement of our model on how the dynamics of virus selection may occur in vivo is presented.
Collapse
Affiliation(s)
- Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David J. Hughes
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Steve Goodbourn
- Section for Pathogen Research, Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
5
|
Zhang Y, Sharma S, Tom L, Liao YT, Wu VCH. Gut Phageome-An Insight into the Role and Impact of Gut Microbiome and Their Correlation with Mammal Health and Diseases. Microorganisms 2023; 11:2454. [PMID: 37894111 PMCID: PMC10609124 DOI: 10.3390/microorganisms11102454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, and viruses, compose a diverse mammalian gut environment and are highly associated with host health. Bacteriophages, the viruses that infect bacteria, are the primary members of the gastrointestinal virome, known as the phageome. However, our knowledge regarding the gut phageome remains poorly understood. In this review, the critical role of the gut phageome and its correlation with mammalian health were summarized. First, an overall profile of phages across the gastrointestinal tract and their dynamic roles in shaping the surrounding microorganisms was elucidated. Further, the impacts of the gut phageome on gastrointestinal fitness and the bacterial community were highlighted, together with the influence of diets on the gut phageome composition. Additionally, new reports on the role of the gut phageome in the association of mammalian health and diseases were reviewed. Finally, a comprehensive update regarding the advanced phage benchwork and contributions of phage-based therapy to prevent/treat mammalian diseases was provided. This study provides insights into the role and impact of the gut phagenome in gut environments closely related to mammal health and diseases. The findings provoke the potential applications of phage-based diagnosis and therapy in clinical and agricultural fields. Future research is needed to uncover the underlying mechanism of phage-bacterial interactions in gut environments and explore the maintenance of mammalian health via phage-regulated gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
6
|
Park YJ, Kang GU, Jeong M, Singh V, Kim J, Lee K, Choi EJ, Kim HJ, Lee S, Lee SY, Oem JK, Shin JH. Bacterial Profiles of Brain in Downer Cattle with Unknown Etiology. Microorganisms 2022; 11:microorganisms11010098. [PMID: 36677388 PMCID: PMC9862898 DOI: 10.3390/microorganisms11010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Downer cow can be caused by muscular paralysis, neurological damage, metabolic disorder, and/or the complication of microbial infection. However, downer cow with unknown etiology is issued because of the non-detection of its bacterial etiological agent. In this study, differences in the bacterial community in brain tissues between downer cattle with unknown etiology and healthy slaughtered cattle are investigated. Bacterial diversity and representative genera between downer and normal cattle were significantly different (p < 0.05). There are significant differences in representative genera of downer and normal cattle, especially the significance, fold change, and area under the receiver operating characteristic curve score (p < 0.05). Furthermore, the prediction of functional genes in brain microbiota between the downer and normal cattle revealed differences in the cluster of orthologous gene categories, such as lipid transport and metabolism, secondary metabolite biosynthesis, and signal transduction (p < 0.05). This study revealed a significant difference in microbiota between the downer and normal cattle. Thus, we demonstrate that representative genera from downer cattle through 16S rRNA gene amplicon sequencing and microbiota analysis have the potential as candidates for bacterial etiological agents for downer cow.
Collapse
Affiliation(s)
- Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gi-Ung Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongho Kim
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Republic of Korea
| | - Kyunghyun Lee
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
| | - Eun-Jin Choi
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
| | - Heui-Jin Kim
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sook-Young Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Republic of Korea
| | - Jae-Ku Oem
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Republic of Korea
- Correspondence: (J.-K.O.); (J.-H.S.)
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (J.-K.O.); (J.-H.S.)
| |
Collapse
|
7
|
Zhu Q, Li B, Sun D. Bovine Astrovirus—A Comprehensive Review. Viruses 2022; 14:v14061217. [PMID: 35746688 PMCID: PMC9228355 DOI: 10.3390/v14061217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Bovine astrovirus (BoAstV) is a small non-enveloped virus with a single-stranded positive-sense RNA. In 1978, BoAstV was first found in calf diarrhea fecal samples in the United Kingdom and since then it has been reported in many other countries. It has wide tissue tropism and can infect multiple organs, including the intestine, nerves and respiratory tract. Since BoAstV is prevalent in healthy as well as clinically infected bovines, and is mostly associated with co-infection with other viruses, the pathogenic nature of BoAstV is still unclear. At present, there are no stable passage cell lines available for the study of BoAstV and animal model experiments have not been described. In addition, it has been reported that BoAstV may have the possibility of cross-species transmission. This review summarizes the current state of knowledge about BoAstV, including the epidemiology, evolution analysis, detection methods, pathogenesis and potential cross species transmission, to provide reference for further research of BoAstV.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-04596819121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-04596819121 (D.S.)
| |
Collapse
|
8
|
Fernandes AO, Barros GS, Batista MVA. Metatranscriptomics Analysis Reveals Diverse Viral RNA in Cutaneous Papillomatous Lesions of Cattle. Evol Bioinform Online 2022; 18:11769343221083960. [PMID: 35633934 PMCID: PMC9133864 DOI: 10.1177/11769343221083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine papillomavirus (BPV) is associated with bovine papillomatosis, a disease that forms benign warts in epithelial tissues, as well as malignant lesions. Previous studies have detected a co-infection between BPV and other viruses, making it likely that these co-infections could influence disease progression. Therefore, this study aimed to identify and annotate viral genes in cutaneous papillomatous lesions of cattle. Sequences were obtained from the GEO database, and an RNA-seq computational pipeline was used to analyze 3 libraries from bovine papillomatous lesions. In total, 25 viral families were identified, including Poxviridae, Retroviridae, and Herpesviridae. All libraries shared similarities in the viruses and genes found. The viral genes shared similarities with BPV genes, especially for functions as virion entry pathway, malignant progression by apoptosis suppression and immune system control. Therefore, this study presents relevant data extending the current knowledge regarding the viral microbiome in BPV lesions and how other viruses could affect this disease.
Collapse
Affiliation(s)
- Adriana O Fernandes
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Gerlane S Barros
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marcus VA Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
9
|
A novel Betaretrovirus discovered in cattle with neurological disease and encephalitis. Retrovirology 2021; 18:40. [PMID: 34930327 PMCID: PMC8686636 DOI: 10.1186/s12977-021-00585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background The majority of emerging infectious diseases in humans are of animal origin, and many of them are caused by neuropathogenic viruses. Many cases of neurological disease and encephalitis in livestock remain etiologically unresolved, posing a constant threat to animal and human health. Thus, continuous extension of our knowledge of the repertoire of viruses prone to infect the central nervous system (CNS) is vital for pathogen monitoring and the early detection of emerging viruses. Using high-throughput sequencing (HTS) and bioinformatics, we discovered a new retrovirus, bovine retrovirus CH15 (BoRV CH15), in the CNS of a cow with non-suppurative encephalitis. Phylogenetic analysis revealed the affiliation of BoRV CH15 to the genus Betaretrovirus. Results BoRV CH15 genomes were identified prospectively and retrospectively by PCR, RT-PCR, and HTS, with targeting of viral RNA and proviral DNA, in six additional diseased cows investigated over a period of > 20 years and of different geographical origins. The virus was not found in brain samples from healthy slaughtered control animals (n = 130). We determined the full-length proviral genomes from six of the seven investigated animals and, using in situ hybridization, identified viral RNA in the cytoplasm of cells morphologically compatible with neurons in diseased brains. Conclusions Further screening of brain samples, virus isolation, and infection studies are needed to estimate the significance of these findings and the causative association of BoRV CH15 with neurological disease and encephalitis in cattle. However, with the full-length proviral sequences of BoRV CH15 genomes, we provide the basis for a molecular clone and further in vitro investigation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12977-021-00585-x.
Collapse
|
10
|
Wildi N, Seuberlich T. Neurotropic Astroviruses in Animals. Viruses 2021; 13:1201. [PMID: 34201545 PMCID: PMC8310007 DOI: 10.3390/v13071201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections are among the main causes of diarrhea in children, but their significance for animal health has remained underestimated and largely unknown. This is changing due to the increasing amount of newly identified neurotropic astroviruses in cases of nonsuppurative encephalitis and neurological disease in humans, pigs, ruminant species and minks. Neurological cases in ruminants and humans usually occur sporadically and as isolated cases. This contrasts with the situation in pigs and minks, in which diseases associated with neurotropic astroviruses are endemic and occur on the herd level. Affected animals show neurological signs such as mild ataxia to tetraplegia, loss of orientation or trembling, and the outcome is often fatal. Non-suppurative inflammation with perivascular cuffing, gliosis and neuronal necrosis are typical histological lesions of astrovirus encephalitis. Since astroviruses primarily target the gastrointestinal tract, it is assumed that they infect the brain through the circulatory system or retrograde following the nerves. The phylogenetic analysis of neurotropic astroviruses has revealed that they are genetically closely related, suggesting the presence of viral determinants for tissue tropism and neuroinvasion. In this review, we summarize the current knowledge on neurotropic astrovirus infections in animals and propose future research activities.
Collapse
Affiliation(s)
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
11
|
Folgueiras-González A, van den Braak R, Deijs M, van der Hoek L, de Groof A. A Versatile Processing Workflow to Enable Pathogen Detection in Clinical Samples from Organs Using VIDISCA. Diagnostics (Basel) 2021; 11:diagnostics11050791. [PMID: 33925752 PMCID: PMC8145099 DOI: 10.3390/diagnostics11050791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, refined molecular methods coupled with powerful high throughput sequencing technologies have increased the potential of virus discovery in clinical samples. However, host genetic material remains a complicating factor that interferes with discovery of novel viruses in solid tissue samples as the relative abundance of the virus material is low. Physical enrichment processing methods, although usually complicated, labor-intensive, and costly, have proven to be successful for improving sensitivity of virus detection in complex samples. In order to further increase detectability, we studied the application of fast and simple high-throughput virus enrichment methods on tissue homogenates. Probe sonication in high EDTA concentrations, organic extraction with Vertrel™ XF, or a combination of both, were applied prior to chromatography-like enrichment using Capto™ Core 700 resin, after which effects on virus detection sensitivity by the VIDISCA method were determined. Sonication in the presence of high concentrations of EDTA showed the best performance with an increased proportion of viral reads, up to 9.4 times, yet minimal effect on the host background signal. When this sonication procedure in high EDTA concentrations was followed by organic extraction with Vertrel™ XF and two rounds of core bead chromatography enrichment, an increase up to 10.5 times in the proportion of viral reads in the processed samples was achieved, with reduction of host background sequencing. We present a simple and semi-high-throughput method that can be used to enrich homogenized tissue samples for viral reads.
Collapse
Affiliation(s)
- Alba Folgueiras-González
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Robin van den Braak
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Ad de Groof
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Correspondence:
| |
Collapse
|
12
|
Beyond the Gastrointestinal Tract: The Emerging and Diverse Tissue Tropisms of Astroviruses. Viruses 2021; 13:v13050732. [PMID: 33922259 PMCID: PMC8145421 DOI: 10.3390/v13050732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Astroviruses are single stranded, positive-sense RNA viruses that have been historically associated with diseases of the gastrointestinal tract of vertebrates, including humans. However, there is now a multitude of evidence demonstrating the capacity of these viruses to cause extraintestinal diseases. The most striking causal relationship is neurological diseases in humans, cattle, pigs, and other mammals, caused by astrovirus infection. Astroviruses have also been associated with disseminated infections, localized disease of the liver or kidneys, and there is increasing evidence suggesting a potential tropism to the respiratory tract. This review will discuss the current understanding of the tissue tropisms for astroviruses and their emerging capacity to cause disease in multiple organ systems.
Collapse
|
13
|
Küchler L, Rüfli I, Koch MC, Hierweger MM, Kauer RV, Boujon CL, Hilbe M, Oevermann A, Zanolari P, Seuberlich T, Gurtner C. Astrovirus-Associated Polioencephalomyelitis in an Alpaca. Viruses 2020; 13:v13010050. [PMID: 33396858 PMCID: PMC7824642 DOI: 10.3390/v13010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
An 8-year-old alpaca was admitted to the emergency service of the Clinic for Ruminants in Bern due to a reduced general condition and progressive neurological signs. Despite supportive treatment, its condition deteriorated and the animal had to be euthanized. Histopathological analysis revealed a severe non-suppurative polioencephalomyelitis with neuronal necrosis, most likely of viral origin. We detected abundant neuronal labelling with antibodies directed against two different epitopes of Bovine Astrovirus CH13/NeuroS1 (BoAstV-CH13/NeuroS1), which is a common viral agent associated with non-suppurative encephalitis in Swiss cattle. These findings were further verified by detection of viral RNA by use of in-situ hybridization and real-time RT-PCR. Next generation sequencing revealed that the detected virus genome had a pairwise identity of 98.9% to the genome of BoAstV-CH13/NeuroS1. To our knowledge, this is the first report of an astrovirus-associated polioencephalomyelitis in an alpaca. These results point to the possibility of an interspecies transmission of BoAstV-CH13/NeuroS1.
Collapse
Affiliation(s)
- Leonore Küchler
- Institute of Veterinary Pathology, Vetsuisse-Faculty, Universitiy of Bern, 3012 Bern, Switzerland;
- Correspondence:
| | - Isabelle Rüfli
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (I.R.); (P.Z.)
| | - Michel C. Koch
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Melanie M. Hierweger
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Ronja V. Kauer
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Céline L. Boujon
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Monika Hilbe
- Institute for Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Anna Oevermann
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Patrik Zanolari
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (I.R.); (P.Z.)
| | - Torsten Seuberlich
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Corinne Gurtner
- Institute of Veterinary Pathology, Vetsuisse-Faculty, Universitiy of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
14
|
Hierweger MM, Boujon CL, Kauer RV, Meylan M, Seuberlich T, Oevermann A. Cerebral Ovine Herpesvirus 2 Infection of Cattle Is Associated With a Variable Neuropathological Phenotype. Vet Pathol 2020; 58:384-395. [PMID: 33205708 DOI: 10.1177/0300985820970493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cross-species infection with ovine herpesvirus 2 (OvHV-2) in cattle causes malignant catarrhal fever (MCF). MCF may involve the central nervous system (CNS) with necrotizing arteritis and/or vasculitis described to be unique to MCF and discriminatory compared to other viral CNS infections. However, a systematic histopathological characterization of the neural form of MCF in cattle is lacking. We examined medulla oblongata (n = 9) or the entire brain (n = 9) of 18 cattle in which OvHV-2 was identified by quantitative polymerase chain reaction (qPCR), in order to pinpoint potential variations in neuropathology. In 2/18 animals (11%) no lesions were identified, while 16/18 cattle (89%) had brain lesions of varying severity. Presence and quantities of OvHV-2 nucleic acid were determined by in situ hybridization and qPCR, respectively, and were related to the severity of lesions. Fifteen of 18 animals (83%) showed vasculitis, which was mainly of the lymphohistiocytic type, while pathognomonic necrotizing arteritis was only rarely present. Neuroparenchymal lesions included gliosis and/or neuronal changes in 7/16 brains with lesions (44%). The number of CD3+ lymphocytes was highest in animals with simultaneous vascular and neuroparenchymal lesions and high viral genome load. In one animal, OvHV-2 was exclusively observed in CD3+ lymphocytes but not in neurons or microglia. In conclusion, the neuropathological phenotype of bovine MCF in the brain was variable. In some cases, lesions mimicked neurotropic viral encephalitis, while pathognomonic necrotizing arteritis was not a consistent feature of neural MCF. Therefore, molecular detection of OvHV-2 is warranted in the presence of nonsuppurative encephalitis and in the absence of necrotizing arteritis.
Collapse
Affiliation(s)
- Melanie M Hierweger
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Céline L Boujon
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ronja V Kauer
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mireille Meylan
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Clinic for Ruminants, Department of Clinical Veterinary Medicine, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, 54179Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Bovine Polyomavirus 2 is a Probable Cause of Non-Suppurative Encephalitis in Cattle. Pathogens 2020; 9:pathogens9080620. [PMID: 32751201 PMCID: PMC7459705 DOI: 10.3390/pathogens9080620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Tissues from two cows with neurological signs that were admitted to the Vetsuisse Faculty under suspicion of rabies and bovine spongiform encephalopathy (BSE), respectively, were further analyzed for this case report. After histopathological examination and exclusion of BSE and rabies, the animals were diagnosed with etiologically unresolved disseminated non-suppurative encephalitis. Using next-generation sequencing, we detected the full genome of bovine polyomavirus 2 (BoPyV2) in brain samples from both animals. This virus has been identified in beef samples in three independent studies conducted in the United States and Germany, but has not been linked to any disease. Analysis of the two new BoPyV2 genome sequences revealed close phylogenetic relationships to one another and to BoPyV2 isolates detected in beef samples. In situ hybridization demonstrated the presence of viral nucleic acid in all investigated brain areas and in areas with signs of inflammation in both animals. Thus, we provide the first evidence that BoPyV2 is a probable cause of non-suppurative encephalitis in cattle, and encourage further molecular and serological testing to elucidate the disease's epidemiology, as well as experimental transmission studies to prove causality between the infection and disease.
Collapse
|
16
|
Zhang Y, Cui P, Zhang HC, Wu HL, Ye MZ, Zhu YM, Ai JW, Zhang WH. Clinical application and evaluation of metagenomic next-generation sequencing in suspected adult central nervous system infection. J Transl Med 2020; 18:199. [PMID: 32404108 PMCID: PMC7222471 DOI: 10.1186/s12967-020-02360-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accurate etiology diagnosis is crucial for central nervous system infections (CNS infections). The diagnostic value of metagenomic next-generation sequencing (mNGS), an emerging powerful platform, remains to be studied in CNS infections. METHODS We conducted a single-center prospective cohort study to compare mNGS with conventional methods including culture, smear and etc. 248 suspected CNS infectious patients were enrolled and clinical data were recorded. RESULTS mNGS reported a 90.00% (9/10) sensitivity in culture-positive patients without empirical treatment and 66.67% (6/9) in empirically-treated patients. Detected an extra of 48 bacteria and fungi in culture-negative patients, mNGS provided a higher detection rate compared to culture in patients with (34.45% vs. 7.56%, McNemar test, p < 0.0083) or without empirical therapy (50.00% vs. 25.00%, McNemar test, p > 0.0083). Compared to conventional methods, positive percent agreement and negative percent agreement was 75.00% and 69.11% separately. mNGS detection rate was significantly higher in patients with cerebrospinal fluid (CSF) WBC > 300 * 106/L, CSF protein > 500 mg/L or glucose ratio ≤ 0.3. mNGS sequencing read is correlated with CSF WBC, glucose ratio levels and clinical disease progression. CONCLUSION mNGS showed a satisfying diagnostic performance in CNS infections and had an overall superior detection rate to culture. mNGS may held diagnostic advantages especially in empirically treated patients. CSF laboratory results were statistically relevant to mNGS detection rate, and mNGS could dynamically monitor disease progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Peng Cui
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Hao-Cheng Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Hong-Long Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ming-Zhi Ye
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yi-Min Zhu
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jing-Wen Ai
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Wen-Hong Zhang
- Department of Infectious Diseases, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| |
Collapse
|
17
|
Parainfluenza Virus 5 Infection in Neurological Disease and Encephalitis of Cattle. Int J Mol Sci 2020; 21:ijms21020498. [PMID: 31941046 PMCID: PMC7013525 DOI: 10.3390/ijms21020498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
The etiology of viral encephalitis in cattle often remains unresolved, posing a potential risk for animal and human health. In metagenomics studies of cattle with bovine non-suppurative encephalitis, parainfluenza virus 5 (PIV5) was identified in three brain samples. Interestingly, in two of these animals, bovine herpesvirus 6 and bovine astrovirus CH13 were additionally found. We investigated the role of PIV5 in bovine non-suppurative encephalitis and further characterized the three cases. With traditional sequencing methods, we completed the three PIV5 genomes, which were compared to one another. However, in comparison to already described PIV5 strains, unique features were revealed, like an 81 nucleotide longer open reading frame encoding the small hydrophobic (SH) protein. With in situ techniques, we demonstrated PIV5 antigen and RNA in one animal and found a broad cell tropism of PIV5 in the brain. Comparative quantitative analyses revealed a high viral load of PIV5 in the in situ positive animal and therefore, we propose that PIV5 was probably the cause of the disease. With this study, we clearly show that PIV5 is capable of naturally infecting different brain cell types in cattle in vivo and therefore it is a probable cause of encephalitis and neurological disease in cattle.
Collapse
|
18
|
Yuan L, Hensley C, Mahsoub HM, Ramesh AK, Zhou P. Microbiota in viral infection and disease in humans and farm animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:15-60. [PMID: 32475521 PMCID: PMC7181997 DOI: 10.1016/bs.pmbts.2020.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The influence of the microbiota on viral infection susceptibility and disease outcome is undisputable although varies among viruses. The purpose of understanding the interactions between microbiota, virus, and host is to identify practical, effective, and safe approaches that target microbiota for the prevention and treatment of viral diseases in humans and animals, as currently there are few effective and reliable antiviral therapies available. The initial step for achieving this goal is to gather clinical evidences, focusing on the viral pathogens-from human and animal studies-that have already been shown to interact with microbiota. The subsequent step is to identify mechanisms, through experimental evidences, to support the development of translational applications that target microbiota. In this chapter, we review evidences of virus infections altering microbiota and of microbiota enhancing or suppressing infectivity, altering host susceptibility to certain viral diseases, and influencing vaccine immunogenicity in humans and farm animals.
Collapse
Affiliation(s)
- Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States.
| | - Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Ashwin K Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| |
Collapse
|
19
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
20
|
Zhou X, Wu H, Ruan Q, Jiang N, Chen X, Shen Y, Zhu YM, Ying Y, Qian YY, Wang X, Ai JW, Zhang WH. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol 2019; 9:351. [PMID: 31681628 PMCID: PMC6813183 DOI: 10.3389/fcimb.2019.00351] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Tuberculosis (TB) is now the leading cause of death from infectious disease. Rapid screening and diagnostic methods for TB are urgently required. Rapid development of metagenomics next-generation sequencing (mNGS) in recent years showed promising and satisfying application of mNGS in several kinds of infectious diseases. However, research directly evaluating the ability of mNGS in TB infection is still scarce. Methods: We conducted an adult prospective study in mainland China to evaluate the diagnostic performance of mNGS for detection of Mycobacterium tuberculosis complex (MTB) in multiple forms of direct clinical samples compared with GeneXpert MTB/RIF assay (Xpert), traditional diagnostic methods, and the clinical final diagnosis. Results: Of 123 patients presenting with suspected active TB infection between June 1, 2017, and May 21, 2018, 105 patients underwent synchronous tuberculous testing with culture, Xpert, and mNGS on direct clinical samples including sputum, cerebrospinal fluids, pus, etc. During follow-up, 45 of 105 participants had clinical final diagnosis of active TB infection, including 13 pulmonary TB cases and 32 extrapulmonary TB cases. Compared to clinical final diagnosis, mNGS produced a sensitivity of 44% for all active TB cases, which was similar to Xpert (42%) but much higher than conventional methods (29%). With only one false-positive result, mNGS had a specificity of 98% in our study. mNGS yielded significantly much higher sensitivity in pre-treatment samples (76%) than post-treatment ones (31%) (P = 0.005), which was also true for Xpert and conventional methods. Combining Xpert and mNGS together, the study identified 27 of 45 active TB cases (60%), including all 13 conventional method-identified cases, and the result reached statistical significance compared to conventional methods (McNemar-test P < 0.001). Conclusions: mNGS had a similar diagnostic ability of MTB compared with Xpert and showed potential for a variety of clinical samples. Combined mNGS and Xpert showed an overall superior advantage over conventional methods and significantly improved the etiology diagnosis of both MTB and other pathogens. The result that anti-TB treatment significantly reduced diagnostic efficacy of culture, Xpert, and mNGS highlighted the importance of collecting samples before empirical treatment.
Collapse
Affiliation(s)
- Xian Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Honglong Wu
- Tianjin Translational Genomics Center, BGI-Tianjin, Binhai Genomics Institute, BGI-Shenzhen, Tianjin, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xinchang Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaojie Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Ying
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Yi Qian
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuyang Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Wen Ai
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Hong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Wohlgemuth N, Honce R, Schultz-Cherry S. Astrovirus evolution and emergence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:30-37. [PMID: 30639546 PMCID: PMC7106029 DOI: 10.1016/j.meegid.2019.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Astroviruses are small, non-enveloped, positive-sense, single-stranded RNA viruses that belong to the Astroviridae family. Astroviruses infect diverse hosts and are typically associated with gastrointestinal illness; although disease can range from asymptomatic to encephalitis depending on the host and viral genotype. Astroviruses have high genetic variability due to an error prone polymerase and frequent recombination events between strains. Once thought to be species specific, recent evidence suggests astroviruses can spread between different host species, although the frequency with which this occurs and the restrictions that regulate the process are unknown. Recombination events can lead to drastic evolutionary changes and contribute to cross-species transmission events. This work reviews the current state of research on astrovirus evolution and emergence, especially as it relates to cross-species transmission and recombination of astroviruses.
Collapse
Affiliation(s)
- Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
22
|
Küchler L, Koch MC, Seuberlich T, Boujon CL. Archive Mining Brings to Light a 25-Year Old Astrovirus Encephalitis Case in a Sheep. Front Vet Sci 2019; 6:51. [PMID: 30886851 PMCID: PMC6409300 DOI: 10.3389/fvets.2019.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
In mammals, the small, positive-sense single-stranded RNA astroviruses are known as being mostly enterotropic and host-specific. Over the past years, however, they were identified several times in central nervous system tissues of humans, minks, cattle, sheep, and pigs with nonsuppurative inflammatory disease of that organ system. We recently reported such neurotropic astroviruses, amongst which bovine astrovirus CH15 (BoAstV-CH15) in two cows, and ovine astrovirus CH16 (OvAstV-CH16) in a sheep, which were genetically almost identical to one another. In order to investigate the occurrence of this virus species in Switzerland over time, we selected formalin-fixed, paraffin-embedded (FFPE) brain tissues of small ruminants diagnosed with severe encephalitis between 1969 and 2012 and screened those by immunohistochemistry for the capsid protein of BoAstV-CH15/OvAstV-CH16. We found one sheep, which died in 1992, that displayed positive immunostaining in various brain regions, and observed that immunostained cells were generally co-localized with the strongest histopathological lesions. We confirmed the virus presence with a second immunohistochemical protocol and demonstrated its close genetic relationship to other BoAstV-CH15/ OvAstV-CH16 strains by next-generation sequencing of an RNA extract from FFPE brain material. Our findings demonstrate that astrovirus BoAstV-CH15/OvAstV-CH16 existed in Switzerland already more than 2 decades ago and underline again the close relationship of the bovine and ovine strains of this virus.
Collapse
Affiliation(s)
- Leonore Küchler
- Division of Experimental Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michel C Koch
- Division of Experimental Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Division of Experimental Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Céline L Boujon
- Division of Experimental Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
23
|
Reuter G, Pankovics P, Boros Á. Nonsuppurative (Aseptic) Meningoencephalomyelitis Associated with Neurovirulent Astrovirus Infections in Humans and Animals. Clin Microbiol Rev 2018; 31:e00040-18. [PMID: 30158300 PMCID: PMC6148189 DOI: 10.1128/cmr.00040-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Astroviruses are thought to be enteric pathogens. Since 2010, a certain group of astroviruses has increasingly been recognized, using up-to-date random amplification and high-throughput next-generation sequencing (NGS) methods, as potential neurovirulent (Ni) pathogens of severe central nervous system (CNS) infections, causing encephalitis, meningoencephalitis, and meningoencephalomyelitis. To date, neurovirulent astrovirus cases or epidemics have been reported for humans and domesticated mammals, including mink, bovines, ovines, and swine. This comprehensive review summarizes the virology, epidemiology, pathology, diagnosis, therapy, and future perspective related to neurovirulent astroviruses in humans and mammals, based on a total of 30 relevant articles available in PubMed (searched by use of the terms "astrovirus/encephalitis" and "astrovirus/meningitis" on 2 March 2018). A paradigm shift should be considered based on the increasing knowledge of the causality-effect association between neurotropic astroviruses and CNS infection, and attention should be drawn to the role of astroviruses in unknown CNS diseases.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
24
|
Lüthi R, Boujon CL, Kauer R, Koch MC, Bouzalas IG, Seuberlich T. Accurate and precise real-time RT-PCR assays for the identification of astrovirus associated encephalitis in cattle. Sci Rep 2018; 8:9215. [PMID: 29907784 PMCID: PMC6003944 DOI: 10.1038/s41598-018-27533-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022] Open
Abstract
A novel bovine astrovirus genotype species (BoAstV-CH13/NeuroS1) was recently identified in brain tissues of cattle as a plausible cause of encephalitis. The purpose of the present study was to develop and validate real time RT-PCR assays for the detection of BoAstV-CH13/NeuroS1 in brain tissues of cattle. Three different primer-probe combinations were designed based on BoAstV-CH13/NeuroS1 full-genome sequences of 11 different strains identified in cattle, and established in three distinct one-step real time RT-PCR protocols. These protocols were compared regarding their diagnostic performance using brain tissues of cattle with and without astrovirus associated encephalitis. The limit of detection (LOD) of all three assays was between 1.34 × 101 and 1.34 × 102 RNA copies, leading to an analytical sensitivity two orders of magnitude superior compared to a conventional pan-astrovirus RT-PCR protocol (LOD 1.31 × 104 RNA copies). Amplification efficiency was in the range of 97.3% to 107.5% with linearity (R2) > 0.99. The diagnostic sensitivity and specificity of the assays was determined as 100%, and all three revealed good intra- and inter-test repeatability. In conclusion, the newly developed RT-qPCRs are sensitive, specific, and reliable test formats that will facilitate BoAstV-CH13/NeuroS1 detection in routine diagnostics as well as in research settings.
Collapse
Affiliation(s)
- Ramona Lüthi
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Céline L Boujon
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ronja Kauer
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michel C Koch
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ilias G Bouzalas
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Campus of Thermi, Thessaloniki, Greece
| | - Torsten Seuberlich
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Propagation of Astrovirus VA1, a Neurotropic Human Astrovirus, in Cell Culture. J Virol 2017; 91:JVI.00740-17. [PMID: 28701405 DOI: 10.1128/jvi.00740-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/21/2017] [Indexed: 01/11/2023] Open
Abstract
Astrovirus VA1/HMO-C (VA1; mamastrovirus 9) is a recently discovered astrovirus genotype that is divergent from the classic human astroviruses (mamastrovirus 1). The gastrointestinal tract is presumed to be the primary site of infection and pathogenicity for astroviruses. However, VA1 has been independently detected in brain tissue of five cases of human encephalitis. Studies of the pathogenicity of VA1 are currently impossible because there are no reported cell culture systems or in vivo models that support VA1 infection. Here, we describe successful propagation of VA1 in multiple human cell lines. The initial inoculum, a filtered clinical stool sample from the index gastroenteritis case cluster that led to the discovery of VA1, was first passaged in Vero cells. Serial blind passage in Caco-2 cells yielded increasing copies of VA1 RNA, and multistep growth curves demonstrated a >100-fold increase in VA1 RNA 72 h after inoculation. The full-length genomic and subgenomic RNA strands were detected by Northern blotting, and crystalline lattices of viral particles of ∼26-nm diameter were observed by electron microscopy in infected Caco-2 cells. Unlike other human astrovirus cell culture systems, which require addition of exogenous trypsin for continued propagation, VA1 could be propagated equally well with or without the addition of trypsin. Furthermore, VA1 was sensitive to the type I interferon (IFN-I) response, as VA1 RNA levels were reduced by pretreatment of Caco-2 cells with IFN-β1a. The ability to propagate VA1 in cell culture will facilitate studies of the neurotropism and neuropathogenesis of VA1.IMPORTANCE Astroviruses are an emerging cause of central nervous system infections in mammals, and astrovirus VA1/HMO-C is the most prevalent astrovirus in cases of human encephalitis. This virus has not been previously propagated, preventing elucidation of the biology of this virus. We describe the first cell culture system for VA1, a key step necessary for the study of its ability to cause disease.
Collapse
|
27
|
Neuropathological survey reveals underestimation of the prevalence of neuroinfectious diseases in cattle in Switzerland. Vet Microbiol 2017; 208:137-145. [PMID: 28888628 DOI: 10.1016/j.vetmic.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Neuroinfectious diseases in livestock represent a severe threat to animal health, but their prevalence is not well documented and the etiology of disease often remains unidentified. The aims of this study were to generate baseline data on the prevalence of neuroinfectious diseases in cattle in Switzerland by neuropathological survey, and to identify disease-associated pathogens. The survey was performed over a 1-year period using a representative number of brainstem samples (n=1816) from fallen cattle. In total, 4% (n=73) of the animals had significant lesions, the most frequent types of which were indicative of viral (n=27) and bacterial (n=31) etiologies. Follow-up diagnostics by immunohistochemistry, PCR protocols and next-generation sequencing identified infection with Listeria monocytogenes (n=6), ovine herpesvirus 2 (n=7), bovine astrovirus CH13 (n=2), bovine herpesvirus 6 (n=6), bovine retrovirus CH15 (n=2), posavirus 1 (n=2), and porcine astroviruses (n=2). A retrospective questionnaire-based investigation indicated that animals' owners observed clinical signs of neurological disease in about one-third of cases with lesions, which was estimated to correspond to approximately 85 cases per year in the adult fallen cattle population in Switzerland. This estimate stands in sharp contrast to the number of cases reported to the authorities and reveals a gap in disease surveillance. Systematic neuropathological examination and follow-up molecular testing of neurologically diseased cattle could significantly enhance the efficiency of disease detection for the purposes of estimating the prevalence of endemic diseases, identifying new or re-emerging pathogens, and providing "early warnings" of disease outbreaks.
Collapse
|
28
|
Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus Biology and Pathogenesis. Annu Rev Virol 2017; 4:327-348. [PMID: 28715976 DOI: 10.1146/annurev-virology-101416-041742] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astroviruses are nonenveloped, positive-sense single-stranded RNA viruses that cause gastrointestinal illness. Although a leading cause of pediatric diarrhea, human astroviruses are among the least characterized enteric RNA viruses. However, by using in vitro methods and animal models to characterize virus-host interactions, researchers have discovered several important properties of astroviruses, including the ability of the astrovirus capsid to act as an enterotoxin, disrupting the gut epithelial barrier. Improved animal models are needed to study this phenomenon, along with the pathogenesis of astroviruses, particularly in those strains that can cause extraintestinal disease. Much like for other enteric viruses, the current dogma states that astroviruses infect in a species-specific manner; however, this assumption is being challenged by growing evidence that these viruses have potential to cross species barriers. This review summarizes these remarkable facets of astrovirus biology, highlighting critical steps toward increasing our understanding of this unique enteric pathogen.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , , .,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Cydney Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| |
Collapse
|
29
|
Deiss R, Selimovic-Hamza S, Seuberlich T, Meylan M. Neurologic Clinical Signs in Cattle With Astrovirus-Associated Encephalitis. J Vet Intern Med 2017; 31:1209-1214. [PMID: 28544318 PMCID: PMC5508366 DOI: 10.1111/jvim.14728] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 11/27/2022] Open
Abstract
Background Evidence of neurotropic astroviruses has been established using novel genetic methods in cattle suffering from viral encephalitis of previously unknown origin. Objectives To describe the clinical signs observed in cattle with astrovirus‐associated encephalitis. Animals Eight cattle (4 cows, 3 heifers, and 1 bull of 4 different breeds) admitted to the Clinic for Ruminants for neurologic disease and 1 cow investigated in the field. Methods Cases were selected based on neuropathologic diagnosis of nonsuppurative encephalitis, positive in situ hybridization result for astrovirus, and availability of the results of physical and neurologic evaluations. Laboratory results were evaluated if available. Results The most frequently observed clinical signs were decreased awareness of surroundings (7), cranial nerve dysfunction (5), and recumbency (5). The cow seen in the field was the only animal that had severe behavioral changes. Cell counts in cerebrospinal fluid (CSF) were increased in 4 animals, and protein concentration was increased in 3 of 5 specimens. In 1 case, the presence of astrovirus could be identified in a CSF sample by reverse transcriptase polymerase chain reaction. Other laboratory abnormalities were nonspecific. Conclusions and Clinical Importance Astrovirus infection may be an important differential diagnosis in cattle with clinical signs of brain disease and should be considered after exclusion of other causes. The clinical and epidemiological relevance of encephalitis associated with astrovirus infection should be further investigated.
Collapse
Affiliation(s)
- R Deiss
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - S Selimovic-Hamza
- Division of Neurological Sciences, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - T Seuberlich
- Division of Neurological Sciences, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - M Meylan
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Donato C, Vijaykrishna D. The Broad Host Range and Genetic Diversity of Mammalian and Avian Astroviruses. Viruses 2017; 9:v9050102. [PMID: 28489047 PMCID: PMC5454415 DOI: 10.3390/v9050102] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023] Open
Abstract
Astroviruses are a diverse family of viruses that infect a wide range of mammalian and avian hosts. Here we describe the phylogenetic diversity and current classification methodology of astroviruses based on the ORF1b and ORF2 genes, highlighting the propensity of astroviruses to undergo interspecies transmission and genetic recombination which greatly increase diversity and complicate attempts at a unified and comprehensive classification strategy.
Collapse
Affiliation(s)
- Celeste Donato
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Dhanasekaran Vijaykrishna
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Duke-NUS Medical School, Singapore 169857, Singapore.
| |
Collapse
|
31
|
Cagnini D, Andrade D, Cunha P, Oliveira-Filho J, Amorim R, Alfieri A, Borges A. Retrospective study of Bovine herpesvirus 5 meningoencephalitis in cattle from São Paulo State, Brazil. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Meningoencephalitis caused by Bovine herpesvirus 5 (BoHV-5) is an important neurological disease that affects Brazilian cattle herds. The present study investigated the presence of BoHV-5 DNA in cattle diagnosed with meningoencephalitis at Faculdade de Medicina Veterinária e Zootecnia, UNESP - Univ Estadual Paulista from 1980 to 2009. The records obtained from the Large Animal Internal Medicine Service and the Animal Pathology Service were reviewed to identify clinical and epidemiological data from cattle with neurological signs. Excluding rabies cases, we found 115 cases of cattle with neurological signs that had been necropsied. Non-suppurative meningoencephalitis was diagnosed in 28 animals of the 115 initially selected based on histopathological examination of brain tissues. Of these 28 animals, 15 (54%) were positive for BoHV-5 DNA by polymerase chain reaction (PCR) of formalin-fixed paraffin-embedded (FFPE) brain samples. PCR target was 159-bp fragment from the BoHV-5 glycoprotein C gene. The oldest case identified in the present study was from 1988. PCR was a good tool for the diagnosis of BoHV-5 DNA extracted from FFPE tissues, allowing retrospective studies of samples stored for more than 20 years.
Collapse
|
32
|
Vu DL, Bosch A, Pintó RM, Guix S. Epidemiology of Classic and Novel Human Astrovirus: Gastroenteritis and Beyond. Viruses 2017; 9:v9020033. [PMID: 28218712 PMCID: PMC5332952 DOI: 10.3390/v9020033] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Since they were identified in 1975, human astroviruses have been considered one of the most important agents of viral acute gastroenteritis in children. However, highly divergent astroviruses infecting humans have been recently discovered and associated with extra-intestinal infections. The report of cases of fatal meningitis and encephalitis, especially in immunocompromised individuals, has broadened their disease spectrum. Although zoonotic transmission among animal and human astroviruses has not been clearly recognized, the genetic similarity between some human and animal viruses makes it likely to occur. This review provides an update on the epidemiology of both classic and novel human astroviruses, and a comprehensive view on confirmed or potential association between astrovirus and human disease.
Collapse
Affiliation(s)
- Diem-Lan Vu
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain.
| |
Collapse
|
33
|
Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality. Viruses 2017; 9:v9010012. [PMID: 28106800 PMCID: PMC5294981 DOI: 10.3390/v9010012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing (NGS) has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV) CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS) in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections.
Collapse
|
34
|
Pérot P, Lecuit M, Eloit M. Astrovirus Diagnostics. Viruses 2017; 9:v9010010. [PMID: 28085120 PMCID: PMC5294979 DOI: 10.3390/v9010010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 01/25/2023] Open
Abstract
Various methods exist to detect an astrovirus infection. Current methods include electron microscopy (EM), cell culture, immunoassays, polymerase chain reaction (PCR) and various other molecular approaches that can be applied in the context of diagnostic or in surveillance studies. With the advent of metagenomics, novel human astrovirus (HAstV) strains have been found in immunocompromised individuals in association with central nervous system (CNS) infections. This work reviews the past and current methods for astrovirus detection and their uses in both research laboratories and for medical diagnostic purposes.
Collapse
Affiliation(s)
- Philippe Pérot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Laboratory of Pathogen Discovery, 75015 Paris, France.
- Institut Pasteur, Centre d'innovation et de Recherche Technologique (Citech), 75015 Paris, France.
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Laboratory of Pathogen Discovery, 75015 Paris, France.
- Paris Descartes University, Sorbonne Paris Cité, 75005, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, 75015 Paris, France.
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Laboratory of Pathogen Discovery, 75015 Paris, France.
- Ecole Nationale Vétérinaire d'Alfort, 94700 Maisons-Alfort, France.
| |
Collapse
|
35
|
Detection and genome characterization of bovine polyomaviruses in beef muscle and ground beef samples from Germany. Int J Food Microbiol 2017; 241:168-172. [DOI: 10.1016/j.ijfoodmicro.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
|
36
|
Identification and characterization of multiple porcine astrovirus genotypes in Hunan province, China. Arch Virol 2016; 162:943-952. [PMID: 27990567 DOI: 10.1007/s00705-016-3185-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Astroviruses (AstVs) can infect a variety of hosts, including mammalian and avian species, and are commonly associated with enteric infections. Recently, mammalian AstVs have been linked to extra-intestinal manifestations, including neurologic disorders in humans, cattle and minks, demonstrating zoonotic potential. So far, five porcine AstV (PAstV) genotypes have been identified, with PAstV1, PAstV2, PAstV3 and PAstV5 implicated in cross-species transmission. Our knowledge about PAstV epidemiology in China is still limited. In this study, two duplex differential RT-PCR assays were developed to investigate the distribution and prevalence of PAstV1, PAstV2, PAstV4 and PAstV5. Two hundred eighteen samples were collected from 33 farms and pigs with known diarrhea status in nine regions of Hunan province in China. Specifically, 126 small intestines, 51 fecal swabs, 20 lungs, 19 spleens and two kidneys were obtained. PAstVs were detected in all nine regions and in 81.8% (27/33) of the pig farms investigated. The overall prevalence of PAstV was 46.3% (101/218), with PAstV5 as the predominant type, with a positive rate of 24.8% (54/218). The prevalence of PAstV4, PAstV1 and PAstV2 was 16.1% (35/218), 14.7% (32/218) and 10.1% (22/218), respectively. Besides being present in intestines and fecal swabs, PAstV RNA was also detected in lungs, spleens and kidneys. Sequencing revealed a high level of genetic divergence within each genotype, and a higher positive rate of PAstV5 was associated with pigs with diarrhea compared to pigs without diarrhea. This study revealed for the first time that PAstV4 is circulating in China, and that PAstV5 is the dominant genotype in pig herds in Hunan province in China.
Collapse
|
37
|
Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson TP, Li L, Deng X, Resende T, Vannucci F, Delwart E. Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol J 2016; 13:184. [PMID: 27835942 PMCID: PMC5105309 DOI: 10.1186/s12985-016-0642-z] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine circovirus 2 causes different clinical syndromes resulting in a significant economic loss in the pork industry. Three pigs with unexplained cardiac and multi-organ inflammation that tested negative for PCV2 and other known porcine pathogens were further analyzed. METHODS Histology was used to identify microscopic lesions in multiple tissues. Metagenomics was used to detect viral sequences in tissue homogenates. In situ hybridization was used to detect viral RNA expression in cardiac tissue. RESULTS In all three cases we characterized the genome of a new circovirus we called PCV3 with a replicase and capsid proteins showing 55 and 35 % identities to the genetically-closest proteins from a bat-feces associated circovirus and were even more distant to those of porcine circovirus 1 and 2. Common microscopic lesions included non-suppurative myocarditis and/or cardiac arteriolitis. Viral mRNA was detected intralesionally in cardiac cells. Deep sequencing in tissues also revealed the presence of porcine astrovirus 4 in all three animals as well as rotavirus A, porcine cytomegalovirus and porcine hemagglutinating encephalomyelitis virus in individual cases. CONCLUSION The pathogenicity and molecular epidemiology of this new circovirus, alone or in the context of co-infections, warrants further investigations.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA
| | - Federico Giannitti
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN, 55108, USA
- Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Colonia, 70000, Uruguay
| | - Stephanie Rossow
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Douglas Marthaler
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Todd P Knutson
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, 94118, USA
| | - Talita Resende
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Fabio Vannucci
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA.
| |
Collapse
|
38
|
Selimovic-Hamza S, Bouzalas IG, Vandevelde M, Oevermann A, Seuberlich T. Detection of Astrovirus in Historical Cases of European Sporadic Bovine Encephalitis, Switzerland 1958-1976. Front Vet Sci 2016; 3:91. [PMID: 27781208 PMCID: PMC5058262 DOI: 10.3389/fvets.2016.00091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/27/2016] [Indexed: 11/17/2022] Open
Abstract
European sporadic bovine encephalitis is a frequent diagnosis in neurologically diseased cattle, but its etiology remained unresolved. Using in situ hybridization, we have detected a recently discovered neurotropic bovine astrovirus in historical tissues in a high proportion of brain samples of affected cattle. Our results suggest that astroviruses were already involved in the pathogenesis of the disease several decades ago, but have gone undetected.
Collapse
Affiliation(s)
- Senija Selimovic-Hamza
- DCR-VPH, Division of Neurological Sciences, NeuroCenter, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ilias G Bouzalas
- DCR-VPH, Division of Neurological Sciences, NeuroCenter, University of Bern , Bern , Switzerland
| | - Marc Vandevelde
- DCR-VPH, Division of Neurological Sciences, NeuroCenter, University of Bern , Bern , Switzerland
| | - Anna Oevermann
- DCR-VPH, Division of Neurological Sciences, NeuroCenter, University of Bern , Bern , Switzerland
| | - Torsten Seuberlich
- DCR-VPH, Division of Neurological Sciences, NeuroCenter, University of Bern , Bern , Switzerland
| |
Collapse
|
39
|
Bouzalas IG, Wüthrich D, Selimovic-Hamza S, Drögemüller C, Bruggmann R, Seuberlich T. Full-genome based molecular characterization of encephalitis-associated bovine astroviruses. INFECTION GENETICS AND EVOLUTION 2016; 44:162-168. [PMID: 27378415 DOI: 10.1016/j.meegid.2016.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023]
Abstract
Novel types of astrovirus have been identified recently in association with neurological disease in cattle. Among those viruses is bovine astrovirus CH13 (BoAstV CH13) that has been identified in Switzerland in a cow with encephalitis. Molecular testing by a combination of reverse transcription (RT-) PCR and in situ hybridization (ISH) indicated that astrovirus infection accounts for around one quarter of viral encephalitis cases of unknown etiology in cattle. Yet, it remained to be explored whether these animals were infected by BoAstV CH13 or other astrovirus species. In the present study we sequenced the entire astrovirus genome in brain tissues of eight RT-PCR and/or ISH positive cattle. Phylogenetic comparison of the genomic RNA and the encoded non-structural and structural proteins revealed that all these astrovirus strains were very similar to BoAstV CH13 as well as to a bovine encephalitis strain reported from the USA (BoAstV NeuroS1), and clearly distinct from other previously reported astroviruses. Conserved 5' and 3' untranslated regions (UTRs) were predicted to display distinct secondary RNA structures, which likely play a role in viral RNA replication and/or protein translation. Based on these data we propose that BoAstV CH13/NeuroS1 represents a new genotype species within the genus Mammastrovirus. The high degree of similarity between the strains and their relative distance to other genotype species suggest that during evolution some astroviruses acquired factors that specifically contribute to neuroinvasion.
Collapse
Affiliation(s)
- Ilias G Bouzalas
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern,Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | - Senija Selimovic-Hamza
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern,Bremgartenstrasse 109a, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | - Torsten Seuberlich
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern,Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| |
Collapse
|