1
|
Wood ML, Neumann R, Roy P, Nair V, Royle NJ. Characterization of integrated Marek's disease virus genomes supports a model of integration by homology-directed recombination and telomere-loop-driven excision. J Virol 2023; 97:e0071623. [PMID: 37737586 PMCID: PMC10617522 DOI: 10.1128/jvi.00716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.
Collapse
Affiliation(s)
- Michael L. Wood
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Poornima Roy
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Nicola J. Royle
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Yang J, Yang K, Wang K, Zhou D, Zhou J, Du X, Liu S, Cheng Z. Serum amyloid A regulates TLR2/4-mediated IFN-β signaling pathway against Marek's disease virus. Virus Res 2023; 326:199044. [PMID: 36652973 DOI: 10.1016/j.virusres.2023.199044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
Serum amyloid A (SAA), an acute response phase protein (APP), is crucial for the innate immune response during pathogenic microorganisms' invasion. Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that activates multiple innate immune molecules, including SAA, in the host during infection. However, the pathway through which SAA participates in MDV-induced host innate immunity remains unknown. The present study aimed to elucidate the pathway through which SAA exerts its anti-MDV function. We observed that MDV infection in vivo and in vitro significantly elevated SAA expression. Furthermore, through SAA overexpression and knockdown experiments, we demonstrated that SAA could inhibit MDV replication. Subsequently, we found that SAA activated Toll-Like Receptor 2/4 (TLR2/4) -mediated Interferon Beta (IFN-β) promoter activity and IFN regulatory factor 7 (IRF7) promoter activity. During MDV infection, SAA enhanced TLR2/4-mediated IFN-β signal transduction and messenger RNAs (mRNAs) expression of type I IFN (IFN-I) and interferon-stimulated genes (ISGs). Finally, TLR2/4 inhibitor OxPAPC inhibits the anti-MDV activity of SAA. These results demonstrated that SAA inhibits MDV replication and enhancing TLR2/4-mediated IFN-β signal transduction to promote IFNs and ISGs expression. This finding is the first to demonstrate the signaling pathway by which SAA exerts its anti-MDV function. It also provides new insights into the control of oncogenic herpesviruses from the perspective of acute response phase proteins.
Collapse
Affiliation(s)
- Jianhao Yang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Kunmei Yang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Kang Wang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Shenglong Liu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| |
Collapse
|
3
|
Tien YT, Akbar H, Jarosinski KW. Temperature-induced reactivation of Marek's disease virus-transformed T cells ex vivo. Front Vet Sci 2023; 10:1145757. [PMID: 36968465 PMCID: PMC10030735 DOI: 10.3389/fvets.2023.1145757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Marek's disease virus (MDV) establishes latency in chicken T lymphocytes that can lead to T cell transformation and cancer. Transformed Marek's disease chicken cell lines (MDCCs) can be expanded ex vivo and provide a valuable model to study latency, transformation, and reactivation. Here, we developed MDCCs from chickens infected with MDV that fluoresce during lytic replication and reactivation. Sodium butyrate treatment increased fluorescent protein expression as evidenced by fluorescent microscopy, flow cytometry, and western blotting; however, it caused significant apoptosis and necrosis. Treatment of MDCCs by decreasing the temperature resulted in robust MDV reactivation without significant induction of apoptosis and necrosis. Furthermore, MDV reactivation was significantly affected by the time in culture that can affect downstream reactivation analyses. In all, our data show that fluorescent protein expression during reactivation is a robust tool to examine viral replication in live cells ex vivo, and temperature treatment is an efficient technique to induce reactivation without punitive effects on cell viability seen with chemical treatment.
Collapse
|
4
|
Kurokawa A, Yamamoto Y. Development of monoclonal antibodies specific to Marek disease virus- EcoRI-Q (Meq) for the immunohistochemical diagnosis of Marek disease using formalin-fixed, paraffin-embedded samples. J Vet Diagn Invest 2022; 34:458-464. [PMID: 35260010 PMCID: PMC9254047 DOI: 10.1177/10406387221080444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Marek disease (MD) is a viral disease characterized by the development of lymphoma in poultry. Although morphologic confirmation of lymphoma is used to diagnose MD, immunohistochemical detection of MD virus-EcoRI-Q (Meq), which is a viral protein that is expressed exclusively in MD tumor cells, would further improve the accuracy of diagnosis. We developed monoclonal antibodies (mAbs) that specifically detect Meq by immunohistochemistry (IHC) using formalin-fixed, paraffin-embedded (FFPE) sections. We evaluated the sensitivity and specificity of 14 mAbs that we produced, using FFPE samples of MDCC-MSB1 cells, MD tumor tissues, and tissues of uninfected chickens. Four different antigen retrieval conditions were investigated. Thirteen mAbs reacted with Meq in FFPE sections, but immunohistochemical reactivity and specificity varied depending on the mAb and antigen retrieval condition; heat-induced antigen retrieval (HIAR) was more effective at detecting Meq than the other tested conditions. HIAR pH 9 tended to increase immunoreactivity and decrease specificity. Of the 5 mAbs that immunoreacted strongly with Meq without nonspecific reactions under the optimal antigen retrieval conditions, 3 mAbs (1C1-121, 3A3-112, 5F7-82) did not produce background staining of tumor or non-tumor tissues; 2 mAbs (2C5-11, 4A5-54) produced background staining. The mAb 6B5-128 reacted moderately with Meq without nonspecific reactions and background staining. The remaining mAbs showed weak immunoreactivity or problematic nonspecific reactions. Our results suggest that some of our developed mAbs can be used in IHC to detect Meq in FFPE sections with high specificity, and that the use of IHC may greatly improve the diagnosis of MD.
Collapse
Affiliation(s)
- Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Identification and Validation of Ikaros (IKZF1) as a Cancer Driver Gene for Marek’s Disease Virus-Induced Lymphomas. Microorganisms 2022; 10:microorganisms10020401. [PMID: 35208856 PMCID: PMC8877892 DOI: 10.3390/microorganisms10020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Marek’s disease virus (MDV) is the causative agent for Marek’s disease (MD), which is characterized by T-cell lymphomas in chickens. While the viral Meq oncogene is necessary for transformation, it is insufficient, as not every bird infected with virulent MDV goes on to develop a gross tumor. Thus, we postulated that the chicken genome contains cancer driver genes; i.e., ones with somatic mutations that promote tumors, as is the case for most human cancers. To test this hypothesis, MD tumors and matching control tissues were sequenced. Using a custom bioinformatics pipeline, 9 of the 22 tumors analyzed contained one or more somatic mutation in Ikaros (IKFZ1), a transcription factor that acts as the master regulator of lymphocyte development. The mutations found were in key Zn-finger DNA-binding domains that also commonly occur in human cancers such as B-cell acute lymphoblastic leukemia (B-ALL). To validate that IKFZ1 was a cancer driver gene, recombinant MDVs that expressed either wild-type or a mutated Ikaros allele were used to infect chickens. As predicted, birds infected with MDV expressing the mutant Ikaros allele had high tumor incidences (~90%), while there were only a few minute tumors (~12%) produced in birds infected with the virus expressing wild-type Ikaros. Thus, in addition to Meq, key somatic mutations in Ikaros or other potential cancer driver genes in the chicken genome are necessary for MDV to induce lymphomas.
Collapse
|
6
|
Methods for the Manipulation of Herpesvirus Genome and the Application to Marek's Disease Virus Research. Microorganisms 2021; 9:microorganisms9061260. [PMID: 34200544 PMCID: PMC8228275 DOI: 10.3390/microorganisms9061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are a group of double-strand DNA viruses that infect a wide range of hosts, including humans and animals. In the past decades, numerous methods have been developed to manipulate herpesviruses genomes, from the introduction of random mutations to specific genome editing. The development of genome manipulation methods has largely advanced the study of viral genes function, contributing not only to the understanding of herpesvirus biology and pathogenesis, but also the generation of novel vaccines and therapies to control and treat diseases. In this review, we summarize the major methods of herpesvirus genome manipulation with emphasis in their application to Marek’s disease virus research.
Collapse
|
7
|
Salvador C, Cortes AL, Pandiri AR, Gimeno IM. Cytokine expression in the eye and brain of chickens following infection with a very virulent plus Marek's disease virus strain. Vet Immunol Immunopathol 2021; 237:110277. [PMID: 34090158 DOI: 10.1016/j.vetimm.2021.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
Cytokine transcripts were evaluated chronologically in the brain and in the eye of chickens infected with the very virulent plus Marek's disease virus (vv + MDV) strain 648A. Brain and eye samples were collected from chickens that were either suffering from transient paralysis (TP) (11 days post inoculation, dpi) or had completely recovered from TP but started developing clinical signs of persistent neurological disease (PND) (18-31 dpi). Results obtained from samples collected at 11 dpi are referred as EL (early lesions) and results obtained from samples collected at later times (18-31 dpi) are referred as LL (late lesions). Marked differences were found in the cytokine transcripts in brain and eye. While proinflammatory cytokines (IL-1β, IL-8, IL-18), iNOS, IFN-α, IFN-γ, and IL-15 were upregulated in the brain during EL and LL, only IL-8 and IFN-γ were upregulated in the eye at both times (EL and LL). The two evaluated viral transcripts (gB and meq) were found in both eye and brain during EL and LL. Levels of the two viral transcripts evaluated were higher at LL than at EL in both brain and eye. No differences were found in any of the viral transcripts between eye and brain during EL. However, during the LL, the levels of meq transcripts were higher in the eye than in the brain. Our results suggest that MDV elicits different immune responses in the brain and in the eye of infected chickens. Because immune responses in the eye of chickens have been poorly studied, further studies on the pathogenesis of MDV in the eye could greatly contribute to our knowledge on the chicken eye immunity.
Collapse
Affiliation(s)
- Coral Salvador
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Arun R Pandiri
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Raleigh, NC 27607, USA.
| |
Collapse
|
8
|
Bavananthasivam J, Astill J, Matsuyama-Kato A, Taha-Abdelaziz K, Shojadoost B, Sharif S. Gut microbiota is associated with protection against Marek's disease virus infection in chickens. Virology 2021; 553:122-130. [PMID: 33271490 DOI: 10.1016/j.virol.2020.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
Marek's Disease Virus (MDV) infects chickens via respiratory route and causes lymphomas in internal organs including gastrointestinal tract. MDV infection causes a shift in the gut microbiota composition. However, interactions between the gut microbiota and immune responses against MDV infection are not well understood. Therefore, the current study was performed to understand the effect of the gut microbiota on Marek's disease (MD) pathogenesis. The findings showed that depletion of gut microbiota increased the severity of MD in infected chickens. In addition, an increase in the transcription of interferon (IFN)-α, IFN-β and IFN-γ in the bursa of Fabricius at 4 days post-infection (dpi) was observed in the gut microbiota depleted chickens. The observations in this study shed more light on the association between the gut microbiota and MDV infection in chickens. More research is needed to explore the mechanisms of involvement of the gut microbiota in immunity against MD in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Pathology and Molecular Medicine & McMaster Immunology Research Centre, M.G DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511, Beni-Suef, Egypt
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
9
|
Occurrence of Marek's Disease in Poland on the Basis of Diagnostic Examination in 2015-2018. J Vet Res 2020; 64:503-507. [PMID: 33367138 PMCID: PMC7734681 DOI: 10.2478/jvetres-2020-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Marek’s disease (MD) is a tumourous disease caused by Marek’s disease virus (MDV) and most commonly described in poultry. The aim of the study was to determine the occurrence of Marek’s disease virus infections in Poland and analyse clinical cases in the years 2015–2018. Material and Methods The birds for diagnostic examination originated from 71 poultry flocks of various types of production. Birds were subjected to anatomopathological examination post mortem, during which liver and spleen sections and other pathologically changed internal organs were taken. These sections were homogenised with generally accepted methods, then total DNA was isolated and amplified with a real-time PCR. A pair of primers complementary to the MDV genome region encoding the meq gene were used. Results MDV infection was found predominantly in broiler chicken flocks (69.01%), and also in layer breeder (9.85%) and commercial layer flocks (7.04% each). Conclusion The results of research conducted in the years 2015–2018 clearly indicate that the problem of MDV infections is still current.
Collapse
|
10
|
Ennis S, Tai SHS, Kihara I, Niikura M. Marek's disease virus oncogene Meq expression in infected cells in vaccinated and unvaccinated hosts. Vet Microbiol 2020; 248:108821. [PMID: 32891023 DOI: 10.1016/j.vetmic.2020.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
Marek's disease (MD) vaccines are unique in their capability to prevent MD lymphomas as early as a few days after vaccination, despite the fact that they do not eliminate virulent viruses from the host. To help understand the mechanism behind this unique MD vaccine effect, we compared the expression of MDV oncoprotein Meq among CD4+ T cells between vaccinated and unvaccinated birds. Chickens were vaccinated by an MD vaccine, herpesvirus of turkeys, and then challenged by a recombinant virulent MDV that expresses green fluorescent protein simultaneously with Meq. We found significantly fewer Meq-expressing CD4+ T cells appeared in peripheral blood mononuclear cells (PBMC) of the vaccinated birds compared to the unvaccinated birds as early as one week after the virulent virus challenge. In contrast, the quantity of virulent MDV genome remained similar in Meq- PBMC in both vaccinated and unvaccinated birds. Our results suggest that MD vaccination affects the dynamics of Meq-expressing, possibly transformed, cells while impact on the overall infection in the Meq- cells was not significant.
Collapse
Affiliation(s)
- Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Canada
| | | | - Ibuki Kihara
- Faculty of Health Sciences, Simon Fraser University, Canada
| | | |
Collapse
|
11
|
Stolz ML, McCormick C. The bZIP Proteins of Oncogenic Viruses. Viruses 2020; 12:v12070757. [PMID: 32674309 PMCID: PMC7412551 DOI: 10.3390/v12070757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek’s disease virus (MDV), Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.
Collapse
|
12
|
Bertzbach LD, van Haarlem DA, Härtle S, Kaufer BB, Jansen CA. Marek's Disease Virus Infection of Natural Killer Cells. Microorganisms 2019; 7:microorganisms7120588. [PMID: 31757008 PMCID: PMC6956363 DOI: 10.3390/microorganisms7120588] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are key players in the innate immune response. They kill virus-infected cells and are crucial for the induction of adaptive immune responses. Marek’s disease virus (MDV) is a highly contagious alphaherpesvirus that causes deadly T cell lymphomas in chickens. Host resistance to MDV is associated with differences in NK cell responses; however, the exact role of NK cells in the control of MDV remains unknown. In this study, we assessed if MDV can infect NK cells and alter their activation. Surprisingly, we could demonstrate that primary chicken NK cells are very efficiently infected with very virulent RB-1B MDV and the live-attenuated CVI988 vaccine. Flow cytometry analysis revealed that both RB-1B and CVI988 enhance NK cell degranulation and increase interferon gamma (IFNγ) production in vitro. In addition, we could show that the MDV Eco Q-encoded oncogene (meq) contributes to the induction of NK cell activation using meq knockout viruses. Taken together, our data revealed for the first time that NK cells are efficiently infectable with MDV and that this oncogenic alphaherpesvirus enhances NK cell degranulation and increased IFNγ production in vitro.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Daphne A. van Haarlem
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence: (B.B.K.); (C.A.J.)
| | - Christine A. Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands;
- Correspondence: (B.B.K.); (C.A.J.)
| |
Collapse
|
13
|
Blakey J, Crispo M, Bickford A, Stoute S. Liposarcoma in a Backyard Silkie and Retrospective Summary of Neoplasms Diagnosed in Backyard Chickens Submitted to the California Animal Health and Food Safety Laboratory System, 2008-2017. Avian Dis 2019; 62:124-129. [PMID: 29620466 DOI: 10.1637/11782-121217-case.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liposarcomas are a malignant neoplasm of adipocytes, and are rarely diagnosed in avian species. This case report describes the evidence supporting a diagnosis of metastatic liposarcoma in a backyard silkie chicken. On September 28, 2017, a dead 3-yr-old backyard silkie chicken, with a history of unknown skin lesions involving the entire body and severe weight loss, was submitted to California Animal Health and Food Safety Laboratory System-Turlock branch for necropsy. At necropsy, raised necrotic lesions involving the majority of the skin and multiple nodules in the liver, spleen, and bone marrow were noticed. Microscopically, stellate, spindle, and myxoid cells containing large vacuoles, which were confirmed as lipid droplets by Oil Red O, were observed infiltrating the dermis and underlying a necrotic epidermis, with metastasis to liver, spleen, bone marrow, and ovary being the most significant findings. PAS, Oil Red O, Ziehl-Neelsen, Congo red, Gram, and Von Kossa stains, along with immunohistochemistry for pan cytokeratin, vimentin, S100, CD3, pp38, and Meq were used to classify the lesions. Intensely positive vimentin immunohistochemistry, along with large quantities of Oil Red O-positive lipid droplets within the neoplastic cells, were supportive of our diagnosis of liposarcoma. The incidence of neoplastic diseases diagnosed in backyard flock submissions to CAHFS system wide from 2008 to 2017 was also reviewed.
Collapse
Affiliation(s)
- Julia Blakey
- California Animal Health & Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 North Soderquist Road, Turlock, CA 95381
| | - Manuela Crispo
- California Animal Health & Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 North Soderquist Road, Turlock, CA 95381
| | - Arthur Bickford
- California Animal Health & Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 North Soderquist Road, Turlock, CA 95381
| | - Simone Stoute
- California Animal Health & Food Safety Laboratory System, University of California, Davis, Turlock Branch, 1550 North Soderquist Road, Turlock, CA 95381
| |
Collapse
|
14
|
Mescolini G, Lupini C, Felice V, Guerrini A, Silveira F, Cecchinato M, Catelli E. Molecular characterization of the meq gene of Marek's disease viruses detected in unvaccinated backyard chickens reveals the circulation of low- and high-virulence strains. Poult Sci 2019; 98:3130-3137. [PMID: 30850833 DOI: 10.3382/ps/pez095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is an important lymphoproliferative disease of chickens, caused by Gallid alphaherpesvirus 2 (GaHV-2). Outbreaks are commonly reported in commercial flocks, but also in backyard chickens. Whereas the molecular characteristics of GaHV-2 strains from the commercial poultry sector have been reported, no recent data are available for the rural sector. To fill this gap, 19 GaHV-2 strains detected in 19 Italian backyard chicken flocks during suspected MD outbreaks were molecularly characterized through an analysis of the meq gene, the major GaHV-2 oncogene. The number of four consecutive prolines (PPPP) within the proline-rich repeats of the Meq transactivation domain, the proline content, and the presence of amino acid (aa) substitutions were determined. Phylogenetic analysis was performed using the Maximum Likelihood method. Sequence analysis revealed a heterogeneous population of GaHV-2 strains circulating in Italian backyard flocks. Seven strains, detected from birds affected by classical MD, showed a unique meq isoform of 418 aa with a very high number of PPPP motifs. Molecular and clinical features are suggestive of a low oncogenic potential of these strains. The remaining 12 strains, detected from flocks experiencing acute MD, transient paralysis, or sudden death, had shorter Meq protein isoforms (298 or 339 aa) with a lower number of PPPP motifs and point mutations interrupting PPPP. These features allow us to assert the high virulence of these strains. These findings reveal the circulation of low- and high-virulence GaHV-2 strains in the Italian rural sector.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Viviana Felice
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Flavio Silveira
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro (PD), Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
15
|
Bertzbach LD, Kheimar A, Ali FAZ, Kaufer BB. Viral Factors Involved in Marek’s Disease Virus (MDV) Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0104-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|