1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Dhaka P, Singh A, Nehul S, Choudhary S, Panda PK, Sharma GK, Kumar P, Tomar S. Disruption of Molecular Interactions between the G3BP1 Stress Granule Host Protein and the Nucleocapsid (NTD-N) Protein Impedes SARS-CoV-2 Virus Replication. Biochemistry 2024. [PMID: 39708056 DOI: 10.1021/acs.biochem.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The Ras GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a formidable barrier to viral replication by generating stress granules (SGs) in response to viral infections. Interestingly, viruses, including SARS-CoV-2, have evolved defensive mechanisms to hijack SG proteins like G3BP1 for the dissipation of SGs that lead to the evasion of the host's immune responses. Previous research has demonstrated that the interaction between the NTF2-like domain of G3BP1 (G3BP1NTF-2) and the intrinsically disordered N-terminal domain (NTD-N1-25) of the N-protein plays a crucial role in regulating viral replication and pathogenicity. Interestingly, the current study identified an additional upstream stretch of residues (128KDGIIWVATEG138) (N128-138) within the N-terminal domain of the N-protein (NTD-N41-174) that also forms molecular contacts with the G3BP1 protein, as revealed through in silico analysis, site-directed mutagenesis, and biochemical analysis. Remarkably, WIN-62577, and fluspirilene, the small molecules targeting the conserved peptide-binding pocket in G3BP1NTF-2, not only disrupted the protein-protein interactions (PPIs) between NTD-N41-174 and G3BP1NTF-2 but also exhibited significant antiviral efficacy against SARS-CoV-2 replication with EC50 values of ∼1.8 and ∼1.3 μM, respectively. The findings of this study, validated by biophysical thermodynamics and biochemical investigations, advance the potential of developing therapeutics targeting the SG host protein against SARS-CoV-2, which may also serve as a broad-spectrum antiviral target.
Collapse
Affiliation(s)
- Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prasan Kumar Panda
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh 249203, India
| | - Gaurav Kumar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
3
|
Kim YC, Watanabe Y, Arlen-Celina L, Song X, de Oliveira Souza R, Stass R, Azar SR, Rossi SL, Claser C, Kümmerer BM, Crispin M, Bowden TA, Huiskonen JT, Reyes-Sandoval A. Immunogenic recombinant Mayaro virus-like particles present natively assembled glycoprotein. NPJ Vaccines 2024; 9:243. [PMID: 39690153 DOI: 10.1038/s41541-024-01021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Virus-like particles (VLPs) are an established vaccine platform and can be strong immunogens capable of eliciting both humoral and cellular immune responses against a range of pathogens. Here, we show by cryo-electron microscopy that VLPs of Mayaro virus, which contain envelope glycoproteins E1-E2 and capsid, exhibit an architecture that closely resembles native virus. In contrast to monomeric and soluble envelope 2 (E2) glycoprotein, both VLPs as well as the adenovirus and modified vaccinia virus Ankara (MVA) vaccine platforms expressing the equivalent envelope glycoproteins E1-E2, and capsid induced highly neutralising antibodies after immunisation. The levels of neutralising antibodies elicited by the viral-vectored vaccines of structural proteins and VLPs increased significantly upon boosting. Immunisation of Mayaro virus VLPs in mice with or without an adjuvant (poly:IC) yielded similar levels of neutralising antibodies suggesting that the VLPs may be used for immunisation without the need for an adjuvant. A single or two doses of non-adjuvanted 5 µg of MAYV VLP vaccination provided significant protection against viremia and MAYV-induced foot swelling in the C57BL/6 mouse challenge model. MAYV VLPs represent a non-infectious vaccine candidate, which may constitute a complementary option for future immunisation strategies against this important emerging alphavirus.
Collapse
Affiliation(s)
- Young Chan Kim
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Yasunori Watanabe
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lücke Arlen-Celina
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Xiyong Song
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sasha R Azar
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site-Bonn-Cologne, Bonn, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro s/n. Unidad Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
4
|
Martin CK, Yin P, Kielian M. The sticky business of Alphavirus capsid-host interactions. Trends Microbiol 2024:S0966-842X(24)00288-9. [PMID: 39665907 DOI: 10.1016/j.tim.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Alphaviruses are a serious threat to global health and can cause lethal encephalitic or arthritogenic disease in humans and animals. As there are no licensed antivirals, it is critical to improve our understanding of alphavirus interactions with the host cell. Here, we focus on the essential alphavirus protein capsid. While its roles in genome packaging and virus assembly have been wellstudied, much less is known about capsid's interactions with host proteins and their functional relevance for infection. Recently, several new capsid interactor candidates were identified, collectively emphasising the complexity of capsid-host biology. In this review we summarise these novel interactor candidates, highlight capsid's emerging role in immune evasion, and discuss the challenges and opportunities arising from capsid-host interactions.
Collapse
Affiliation(s)
- Caroline K Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
6
|
Metibemu DS, Adeyinka OS, Falode J, Crown O, Ogungbe IV. Inhibitors of the Structural and Nonstructural Proteins of Alphaviruses. ACS Infect Dis 2024; 10:2507-2524. [PMID: 38992989 DOI: 10.1021/acsinfecdis.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olawale Samuel Adeyinka
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| |
Collapse
|
7
|
Chykunova Y, Plewka J, Wilk P, Torzyk K, Sienczyk M, Dubin G, Pyrc K. Autoinhibition of suicidal capsid protease from O'nyong'nyong virus. Int J Biol Macromol 2024; 262:130136. [PMID: 38354926 DOI: 10.1016/j.ijbiomac.2024.130136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Alphaviruses pose a significant threat to public health. Capsid protein encoded in the alphaviral genomes constitutes an interesting therapy target, as it also serves as a protease (CP). Remarkably, it undergoes autoproteolysis, leading to the generation of the C-terminal tryptophan that localizes to the active pocket, deactivating the enzyme. Lack of activity hampers the viral replication cycle, as the virus is not capable of producing the infectious progeny. We investigated the structure and function of the CP encoded in the genome of O'nyong'nyong virus (ONNV), which has instigated outbreaks in Africa. Our research provides a high-resolution crystal structure of the ONNV CP in its active state and evaluates the enzyme's activity. Furthermore, we demonstrated a dose-dependent reduction in ONNV CP proteolytic activity when exposed to indole, suggesting that tryptophan analogs may be a promising basis for developing small molecule inhibitors. It's noteworthy that the capsid protease plays an essential role in virus assembly, binding viral glycoproteins through its glycoprotein-binding hydrophobic pocket. We showed that non-aromatic cyclic compounds like dioxane disrupt this vital interaction. Our findings provide deeper insights into ONNV's biology, and we believe they will prove instrumental in guiding the development of antiviral strategies against arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Yuliya Chykunova
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Wilk
- Structural Biology Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Karolina Torzyk
- Wroclaw University of Science and Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Sienczyk
- Wroclaw University of Science and Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Ren P, Li S, Wang S, Zhang X, Bai F. Computer-Aided Prediction of the Interactions of Viral Proteases with Antiviral Drugs: Antiviral Potential of Broad-Spectrum Drugs. Molecules 2023; 29:225. [PMID: 38202808 PMCID: PMC10780089 DOI: 10.3390/molecules29010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human society is facing the threat of various viruses. Proteases are promising targets for the treatment of viral infections. In this study, we collected and profiled 170 protease sequences from 125 viruses that infect humans. Approximately 73 of them are viral 3-chymotrypsin-like proteases (3CLpro), and 11 are pepsin-like aspartic proteases (PAPs). Their sequences, structures, and substrate characteristics were carefully analyzed to identify their conserved nature for proposing a pan-3CLpro or pan-PAPs inhibitor design strategy. To achieve this, we used computational prediction and modeling methods to predict the binding complex structures for those 73 3CLpro with 4 protease inhibitors of SARS-CoV-2 and 11 protease inhibitors of HCV. Similarly, the complex structures for the 11 viral PAPs with 9 protease inhibitors of HIV were also obtained. The binding affinities between these compounds and proteins were also evaluated to assess their pan-protease inhibition via MM-GBSA. Based on the drugs targeting viral 3CLpro and PAPs, repositioning of the active compounds identified several potential uses for these drug molecules. As a result, Compounds 1-2, modified based on the structures of Ray1216 and Asunaprevir, indicate potential inhibition of DENV protease according to our computational simulation results. These studies offer ideas and insights for future research in the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shiwei Li
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shihang Wang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Xianglei Zhang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Fang Bai
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
9
|
Dhaka P, Singh A, Choudhary S, Peddinti RK, Kumar P, Sharma GK, Tomar S. Mechanistic and thermodynamic characterization of antiviral inhibitors targeting nucleocapsid N-terminal domain of SARS-CoV-2. Arch Biochem Biophys 2023; 750:109820. [PMID: 37956938 DOI: 10.1016/j.abb.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 plays a pivotal role in encapsulating the viral genome. Developing antiviral treatments for SARS-CoV-2 is imperative due to the diminishing immunity of the available vaccines. This study targets the RNA-binding site located in the N-terminal domain (NTD) of the N-protein to identify the potential antiviral molecules against SARS-CoV-2. A structure-based repurposing approach identified the twelve high-affinity molecules from FDA-approved drugs, natural products, and the LOPAC1280 compound libraries that precisely bind to the RNA binding site within the NTD. The interaction of these potential antiviral agents with the purified NTD protein was thermodynamically characterized using isothermal titration calorimetry (ITC). A fluorescence-based plate assay to assess the RNA binding inhibitory activity of small molecules against the NTD has been employed, and the selected compounds exhibited significant RNA binding inhibition with calculated IC50 values ranging from 8.8 μM to 15.7 μM. Furthermore, the antiviral efficacy of these compounds was evaluated using in vitro cell-based assays targeting the replication of SARS-CoV-2. Remarkably, two compounds, Telmisartan and BMS-189453, displayed potential antiviral activity against SARS-CoV-2, with EC50 values of approximately 1.02 μM and 0.98 μM, and a notable selective index of >98 and > 102, respectively. This study gives valuable insight into developing therapeutic interventions against SARS-CoV-2 by targeting the N-protein, a significant effort given the global public health concern posed due to the virus re-emergence and long COVID-19 disease.
Collapse
Affiliation(s)
- Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Gaurav Kumar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
10
|
Souza BGD, Choudhary S, Vilela GG, Passos GFS, Costa CACB, Freitas JDD, Coelho GL, Brandão JDA, Anderson L, Bassi ÊJ, Araújo-Júnior JXD, Tomar S, Silva-Júnior EFD. Design, synthesis, antiviral evaluation, and In silico studies of acrylamides targeting nsP2 from Chikungunya virus. Eur J Med Chem 2023; 258:115572. [PMID: 37364511 DOI: 10.1016/j.ejmech.2023.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
The Togaviridae family comprises several New- and Old-World Alphaviruses that have been responsible for thousands of human illnesses, including the RNA arbovirus Chikungunya virus (CHIKV). Firstly, it was reported in Tanzania in 1952 but rapidly it spread to several countries from Europe, Asia, and the Americas. Since then, CHIKV has been circulating in diverse countries around the world, leading to increased morbidity rates. Currently, there are no FDA-approved drugs or licensed vaccines to specifically treat CHIKV infections. Thus, there is a lack of alternatives to fight against this viral disease, making it an unmet need. Structurally, CHIKV is composed of five structural proteins (E3, E2, E1, C, and 6k) and four non-structural proteins (nsP1-4), in which nsP2 represents an attractive antiviral target for designing novel inhibitors since it has an essential role in the virus replication and transcription. Herein, we used a rational drug design strategy to select some acrylamide derivatives to be synthesized and evaluated against CHIKV nsP2 and also screened on CHIKV-infected cells. Thus, two regions of modifications were considered for these types of inhibitors, based on a previous study of our group, generating 1560 possible inhibitors. Then, the 24 most promising ones were synthesized and screened by using a FRET-based enzymatic assay protocol targeting CHIKV nsP2, identifying LQM330, 333, 336, and 338 as the most potent inhibitors, with Ki values of 48.6 ± 2.8, 92.3 ± 1.4, 2.3 ± 1.5, and 181.8 ± 2.5 μM, respectively. Still, their Km and Vmax kinetic parameters were also determined, along with their competitive binding modes of CHIKV nsP2 inhibition. Then, ITC analyses revealed KD values of 127, 159, 198, and 218 μM for LQM330, 333, 336, and 338, respectively. Also, their ΔH, ΔS, and ΔG physicochemical parameters were determined. MD simulations demonstrated that these inhibitors present a stable binding mode with nsP2, interacting with important residues of this protease, according to docking analyzes. Moreover, MM/PBSA calculations displayed that van der Waals interactions are mainly responsible for stabilizing the inhibitor-nsP2 complex, and their binding energies corroborated with their Ki values, having -198.7 ± 15.68, -124.8 ± 17.27, -247.4 ± 23.78, and -100.6 ± 19.21 kcal/mol for LQM330, 333, 336, and 338, respectively. Since Sindbis (SINV) nsP2 is similar to CHIKV nsP2, these best inhibitors were screened against SINV-infected cells, and it was verified that LQM330 presented the best result, with an EC50 value of 0.95 ± 0.09 μM. Even at 50 μM concentration, LQM338 was found to be cytotoxic on Vero cells after 48 h. Then, LQM330, 333, and 336 were evaluated against CHIKV-infected cells in antiviral assays, in which LQM330 was found to be the most promising antiviral candidate in this study, exhibiting an EC50 value of 5.2 ± 0.52 μM and SI of 31.78. The intracellular flow cytometry demonstrated that LQM330 is able to reduce the CHIKV cytopathogenic effect on cells, and also reduce the percentage of CHIKV-positive cells from 66.1% ± 7.05 to 35.8% ± 5.78 at 50 μM concentration. Finally, qPCR studies demonstrated that LQM330 was capable of reducing the number of viral RNA copies/μL, suggesting that CHIKV nsP2 is targeted by this inhibitor as its mechanism of action.
Collapse
Affiliation(s)
- Beatriz Gois de Souza
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gabriel Gomes Vilela
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Alagoas, Maceió, Brazil
| | - Grazielle Lobo Coelho
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Júlia de Andrade Brandão
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Leticia Anderson
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; CESMAC University Center, 57051-160, Alagoas, Maceió, Brazil
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil.
| |
Collapse
|
11
|
Ayusso GM, da Silva Sanches PR, Carvalho T, Santos IA, Martins DOS, Lima MLD, da Conceição PJP, Bittar C, Merits A, Cilli EM, Jardim ACG, Rahal P, Calmon MF. The Synthetic Peptide GA-Hecate and Its Analogs Inhibit Multiple Steps of the Chikungunya Virus Infection Cycle In Vitro. Pharmaceuticals (Basel) 2023; 16:1389. [PMID: 37895860 PMCID: PMC10610090 DOI: 10.3390/ph16101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Chikungunya virus (CHIKV) belongs to the Alphavirus genus and is responsible for significant outbreaks worldwide. Currently, there is no approved antiviral therapy against CHIKV. Bioactive peptides have great potential for new drug development. Here, we evaluated the antiviral activity of the synthetic peptide GA-Hecate and its analogs PSSct1905 and PSSct1910 against CHIKV infection. Initial screening showed that all three peptides inhibited the CHIKV replication cycle in baby hamster kidney fibroblast cells (BHK-21) and human hepatocarcinoma epithelial cells (Huh-7). GA-Hecate and its analog PSSct1905 were the most active, demonstrating suppression of viral infection by more than 91%. The analog PSSct1905 exhibited a protective effect in cells against CHIKV infection. We also observed that the analogs PSSct1905 and PSSct1910 affected CHIKV entry into both cell lines, inhibiting viral attachment and internalization. Finally, all tested compounds presented antiviral activity on the post-entry steps of CHIKV infection in all cells evaluated. In conclusion, this study highlights the potential of the peptide GA-Hecate and its analogs as novel anti-CHIKV compounds targeting different stages of the viral replication cycle, warranting the development of GA-Hecate-based compounds with broad antiviral activity.
Collapse
Affiliation(s)
- Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | | | - Tamara Carvalho
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Daniel Oliveira Silva Martins
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Maria Letícia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Pâmela Jóyce Previdelli da Conceição
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Cíntia Bittar
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia;
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-060, SP, Brazil;
| | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Marilia Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| |
Collapse
|
12
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
13
|
Rani R, Long S, Pareek A, Dhaka P, Singh A, Kumar P, McInerney G, Tomar S. Multi-target direct-acting SARS-CoV-2 antivirals against the nucleotide-binding pockets of virus-specific proteins. Virology 2022; 577:1-15. [PMID: 36244310 PMCID: PMC9539459 DOI: 10.1016/j.virol.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The nucleotide-binding pockets (NBPs) in virus-specific proteins have proven to be the most successful antiviral targets for several viral diseases. Functionally important NBPs are found in various structural and non-structural proteins of SARS-CoV-2. In this study, the first successful multi-targeting attempt to identify effective antivirals has been made against NBPs in nsp12, nsp13, nsp14, nsp15, nsp16, and nucleocapsid (N) proteins of SARS-CoV-2. A structure-based drug repurposing in silico screening approach with ADME analysis identified small molecules targeting NBPs in SARS-CoV-2 proteins. Further, isothermal titration calorimetry (ITC) experiments validated the binding of top hit molecules to the purified N-protein. Importantly, cell-based antiviral assays revealed antiviral potency for INCB28060, darglitazone, and columbianadin with EC50 values 15.71 μM, 5.36 μM, and 22.52 μM, respectively. These effective antivirals targeting multiple proteins are envisioned to direct the development of antiviral therapy against SARS-CoV-2 and its emerging variants.
Collapse
Affiliation(s)
- Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Siwen Long
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Akshay Pareek
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
14
|
Vasconcellos AF, Melo RM, Mandacaru SC, de Oliveira LS, de Oliveira AS, Moraes ECDS, Trugilho MRDO, Ricart CAO, Báo SN, Resende RO, Charneau S. Aedes aegypti Aag-2 Cell Proteome Modulation in Response to Chikungunya Virus Infection. Front Cell Infect Microbiol 2022; 12:920425. [PMID: 35782121 PMCID: PMC9240781 DOI: 10.3389/fcimb.2022.920425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 01/16/2023] Open
Abstract
Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus–vector interaction does not disturb the mosquito’s fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.
Collapse
Affiliation(s)
- Anna Fernanda Vasconcellos
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Reynaldo Magalhães Melo
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Toxinology and Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Athos Silva de Oliveira
- Laboratory of Virology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | | | | | - Carlos André Ornelas Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Sônia Nair Báo
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Renato Oliveira Resende
- Laboratory of Virology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- *Correspondence: Sébastien Charneau, ; Renato Oliveira Resende,
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- *Correspondence: Sébastien Charneau, ; Renato Oliveira Resende,
| |
Collapse
|
15
|
Sundar S, Piramanayagam S, Natarajan J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes 2022; 58:151-171. [PMID: 35394596 DOI: 10.1007/s11262-022-01898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
Collapse
Affiliation(s)
- Shobana Sundar
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
16
|
Muniz LS, da Rocha Pita SS. In silico studies revealed interaction mechanisms of benzylidene–acrylohydrazide derivatives and nsP2 CHIKV. NEW J CHEM 2022. [DOI: 10.1039/d1nj05593c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here we studied benzylidene–acrylohydrazide derivatives via ADMET properties and docking analysis in the hope that they will be useful chemical moieties against the Chikungunya virus.
Collapse
Affiliation(s)
- Larissa Silva Muniz
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, 147, Salvador, 40170-115, Bahia, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Pharmacy College, Federal University of Bahia (UFBA), Rua Barão de Jeremoabo, 147, Salvador, 40170-115, Bahia, Brazil
| |
Collapse
|
17
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
19
|
Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses 2021; 13:1307. [PMID: 34372513 PMCID: PMC8310245 DOI: 10.3390/v13071307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.
Collapse
Affiliation(s)
| | | | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, A-1090 Vienna, Austria; (V.B.); (E.U.)
| |
Collapse
|
20
|
Kumar R, Nehul S, Singh A, Tomar S. Identification and evaluation of antiviral potential of thymoquinone, a natural compound targeting Chikungunya virus capsid protein. Virology 2021; 561:36-46. [PMID: 34146962 DOI: 10.1016/j.virol.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Capsid protein (CP) of Chikungunya virus (CHIKV) is a multifunctional protein with a conserved hydrophobic pocket that plays a crucial role in the capsid assembly and virus budding process. This study demonstrates antiviral activity of thymoquinone (TQ), a natural compound targeting the hydrophobic pocket of CP. The binding of TQ to the hydrophobic pocket of CHIKV CP was analysed by structure-based molecular docking, isothermal titration calorimetry and fluorescence spectroscopy. The binding constant KD obtained for TQ was 27 μM. Additionally, cell-based antiviral studies showed that TQ diminished CHIKV replication with an EC50 value 4.478 μM. Reduction in viral RNA copy number and viral replication as assessed by the qRT-PCR and immunofluorescence assay, confirmed the antiviral potential of TQ. Our study reveals that TQ is an effective antiviral targeting the hydrophobic pocket of CHIKV CP and may serve as the basis for development of a broad-spectrum therapy against alphaviral diseases.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ankur Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
21
|
Cryo-EM structure of the mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses. Nat Commun 2021; 12:3038. [PMID: 34031424 PMCID: PMC8144435 DOI: 10.1038/s41467-021-23400-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus of the Americas that may cause a debilitating arthritogenic disease. The biology of MAYV is not fully understood and largely inferred from related arthritogenic alphaviruses. Here, we present the structure of MAYV at 4.4 Å resolution, obtained from a preparation of mature, infective virions. MAYV presents typical alphavirus features and organization. Interactions between viral proteins that lead to particle formation are described together with a hydrophobic pocket formed between E1 and E2 spike proteins and conformational epitopes specific of MAYV. We also describe MAYV glycosylation residues in E1 and E2 that may affect MXRA8 host receptor binding, and a molecular “handshake” between MAYV spikes formed by N262 glycosylation in adjacent E2 proteins. The structure of MAYV is suggestive of structural and functional complexity among alphaviruses, which may be targeted for specificity or antiviral activity. Mayaro virus (MAYV) is an emerging arbovirus in Central and South America that is transmitted by mosquitoes and causes arthritogenic disease. Here, the authors present the 4.4 Å resolution cryo-EM structure of MAYV and describe specific features of the virus, which could be exploited for the design of MAYV-specific diagnostics and therapeutics.
Collapse
|
22
|
Gaurav N, Tripathi PK, Kumar V, Chugh A, Sundd M, Patel AK. Role of nuclear localization signals in the DNA delivery function of Chikungunya virus capsid protein. Arch Biochem Biophys 2021; 702:108822. [PMID: 33722536 DOI: 10.1016/j.abb.2021.108822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Capsids of several RNA viruses are reported to have unconventional roles attributed to their subcellular trafficking property. The capsid of CHIKV is also found to localize in the nucleus, but the rationale is not yet clear. To understand the role of the nuclear-localized capsid, we examined the nucleic acid binding and cargo delivery activity of the CHIKV capsid. We used bacterially purified capsid protein to probe the binding affinity with CHIKV genome-specific and non-specific nucleic acids. We found that the capsid was able to bind non-specifically to different forms of nucleic acids. The successful transfection of GFP-tagged plasmid DNA by CHIKV capsid protein shows the DNA delivery ability of the protein. Further, we selected and investigated the DNA binding and cargo delivery activity of commercially synthesized Nuclear Localization Signal sequences (NLS 1 and NLS2) of capsid protein. Both peptides showed comparable DNA binding affinity, however, only the NLS1 peptide was capable of delivering plasmid DNA inside the cell. Furthermore, the cellular uptake study using the FITC-labelled NLS1 peptide was performed to highlight the membrane penetrating ability. Structural analysis was performed using circular dichroism and NMR spectroscopy to elucidate the transfection ability of the NLS1 peptides. Our findings suggest that the capsid of CHIKV might influence cellular trafficking in the infected cell via non-specific interactions. Our study also indicates the significance of NLS sequences in the multifunctionality of CHIKV capsid protein.
Collapse
Affiliation(s)
- Nitika Gaurav
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Praveen Kumar Tripathi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vivek Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
23
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
24
|
Thite A, Agrawal M, Pavitrakar D, Cherian S, Damle R. Delineation of an epitope recognized by a chikungunya virus anti-capsid monoclonal antibody on the protease domain using an immuno-informatics approach. J Biomol Struct Dyn 2021; 40:5623-5633. [PMID: 33480314 DOI: 10.1080/07391102.2021.1872416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The capsid-protein (CP) of chikungunya virus (CHIKV) is reported to generate a primary immune response in infected individuals during disease progression. CP-specific monoclonal antibodies (mAbs) developed in our laboratory, exhibited promising potential in diagnosing recent CHIKV infection in IgM capture ELISA. In this study we focused on the molecular and structural characterization of one such representative mAb ClVE4/D9 to delineate the epitope recognized by it using an immuno-informatics approach. The antigen-antibody interacting residues were found to lie within the dimer interface region of the CP, also predicted as a conformational epitope. This implies that the mAb could interfere during the process of nucleocapsid assembly, ultimately preventing budding and egress of the virus particle. The binding specificity of the mAb highlights the possibility of using this anti-CP antibody for therapeutic or prophylactic treatment against CHIKV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aabha Thite
- NIBEC, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra, India.,Department of Bioinformatics & Data Management, National Institute of Virology, Pune, India
| | - Megha Agrawal
- Department of Bioinformatics & Data Management, National Institute of Virology, Pune, India
| | - Daya Pavitrakar
- NIBEC, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra, India
| | - Sarah Cherian
- Department of Bioinformatics & Data Management, National Institute of Virology, Pune, India
| | - Rekha Damle
- NIBEC, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra, India
| |
Collapse
|
25
|
Eaglesham JB, McCarty KL, Kranzusch PJ. Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict. eLife 2020; 9:e59753. [PMID: 33191912 PMCID: PMC7688311 DOI: 10.7554/elife.59753] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA viruses in the family Poxviridae encode poxin enzymes that degrade the immune second messenger 2'3'-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2'3'-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA-virus polyproteins. Our data suggest widespread 2'3'-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.
Collapse
Affiliation(s)
- James B Eaglesham
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard UniversityBostonUnited States
| | - Kacie L McCarty
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard UniversityBostonUnited States
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer InstituteBostonUnited States
| |
Collapse
|
26
|
Noval MG, Rodriguez-Rodriguez BA, Rangel MV, Stapleford KA. Evolution-Driven Attenuation of Alphaviruses Highlights Key Glycoprotein Determinants Regulating Viral Infectivity and Dissemination. Cell Rep 2020; 28:460-471.e5. [PMID: 31291581 DOI: 10.1016/j.celrep.2019.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
Understanding the fundamental mechanisms of arbovirus transmission and pathogenesis is essential to develop strategies for treatment and prevention. We previously took an in vivo evolution-based approach and identified the chikungunya virus E1 glycoprotein residue 80 to play a critical role in viral transmission and pathogenesis. In this study, we address the genetic conservation and function of position 80 and demonstrate that this residue is a key determinant in alphavirus infectivity and dissemination through modulation of viral fusion and cholesterol dependence. In addition, in studying the evolution of position 80, we identified a network of glycoprotein residues, including epidemic determinants, that regulate virus dissemination and infectivity. These studies underscore the importance of taking evolution-based approaches to not only identify key viral determinants driving arbovirus transmission and pathogenesis but also to uncover fundamental aspects of arbovirus biology.
Collapse
Affiliation(s)
- Maria G Noval
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Margarita V Rangel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
27
|
Choudhary S, Malik YS, Tomar S. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach. Front Immunol 2020; 11:1664. [PMID: 32754161 PMCID: PMC7365927 DOI: 10.3389/fimmu.2020.01664] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
The rapidly spreading, highly contagious and pathogenic SARS-coronavirus 2 (SARS-CoV-2) associated Coronavirus Disease 2019 (COVID-19) has been declared as a pandemic by the World Health Organization (WHO). The novel 2019 SARS-CoV-2 enters the host cell by binding of the viral surface spike glycoprotein (S-protein) to cellular angiotensin converting enzyme 2 (ACE2) receptor. The virus specific molecular interaction with the host cell represents a promising therapeutic target for identifying SARS-CoV-2 antiviral drugs. The repurposing of drugs can provide a rapid and potential cure toward exponentially expanding COVID-19. Thereto, high throughput virtual screening approach was used to investigate FDA approved LOPAC library drugs against both the receptor binding domain of spike protein (S-RBD) and ACE2 host cell receptor. Primary screening identified a few promising molecules for both the targets, which were further analyzed in details by their binding energy, binding modes through molecular docking, dynamics and simulations. Evidently, GR 127935 hydrochloride hydrate, GNF-5, RS504393, TNP, and eptifibatide acetate were found binding to virus binding motifs of ACE2 receptor. Additionally, KT203, BMS195614, KT185, RS504393, and GSK1838705A were identified to bind at the receptor binding site on the viral S-protein. These identified molecules may effectively assist in controlling the rapid spread of SARS-CoV-2 by not only potentially inhibiting the virus at entry step but are also hypothesized to act as anti-inflammatory agents, which could impart relief in lung inflammation. Timely identification and determination of an effective drug to combat and tranquilize the COVID-19 global crisis is the utmost need of hour. Further, prompt in vivo testing to validate the anti-SARS-CoV-2 inhibition efficiency by these molecules could save lives is justified.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Yashpal S. Malik
- Division of Biological Standardization, Indian Veterinary Research Institute, Bareilly, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
28
|
Choudhary S, Kumar R, Dalal U, Tomar S, Reddy SN. Green synthesis of nanometal impregnated biomass – antiviral potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110934. [DOI: 10.1016/j.msec.2020.110934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022]
|
29
|
Abstract
Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.
Collapse
|
30
|
Passos GFS, Gomes MGM, de Aquino TM, de Araújo-Júnior JX, de Souza SJM, Cavalcante JPM, dos Santos EC, Bassi ÊJ, da Silva-Júnior EF. Computer-Aided Design, Synthesis, and Antiviral Evaluation of Novel Acrylamides as Potential Inhibitors of E3-E2-E1 Glycoproteins Complex from Chikungunya Virus. Pharmaceuticals (Basel) 2020; 13:E141. [PMID: 32629969 PMCID: PMC7407227 DOI: 10.3390/ph13070141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) causes an infectious disease characterized by inflammation and pain of the musculoskeletal tissues accompanied by swelling in the joints and cartilage damage. Currently, there are no licensed vaccines or chemotherapeutic agents to prevent or treat CHIKV infections. In this context, our research aimed to explore the potential in vitro anti-CHIKV activity of acrylamide derivatives. In silico methods were applied to 132 Michael's acceptors toward the six most important biological targets from CHIKV. Subsequently, the ten most promising acrylamides were selected and synthesized. From the cytotoxicity MTT assay, we verified that LQM330, 334, and 336 demonstrate high cell viability at 40 µM. Moreover, these derivatives exhibited anti-CHIKV activities, highlighting the compound LQM334 which exhibited an inhibition value of 81%. Thus, docking simulations were performed to suggest a potential CHIKV-target for LQM334. It was observed that the LQM334 has a high affinity towards the E3-E2-E1 glycoproteins complex. Moreover, LQM334 reduced the percentage of CHIKV-positive cells from 74.07 to 0.88%, 48h post-treatment on intracellular flow cytometry staining. In conclusion, all virtual simulations corroborated with experimental results, and LQM334 could be used as a promising anti-CHIKV scaffold for designing new drugs in the future.
Collapse
Affiliation(s)
- Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Matheus Gabriel Moura Gomes
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Thiago Mendonça de Aquino
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
| | - Stephannie Janaina Maia de Souza
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - João Pedro Monteiro Cavalcante
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Elane Conceição dos Santos
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Brazil; (S.J.M.d.S.); (J.P.M.C.); (E.C.d.S.); (Ê.J.B.)
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió 57072-970, Brazil; (G.F.S.P.); (M.G.M.G.); (J.X.d.A.-J.)
- Center of Analysis and Research in Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió 57072-970, Brazil;
| |
Collapse
|
31
|
Fatma B, Kumar R, Singh VA, Nehul S, Sharma R, Kesari P, Kuhn RJ, Tomar S. Alphavirus capsid protease inhibitors as potential antiviral agents for Chikungunya infection. Antiviral Res 2020; 179:104808. [PMID: 32380148 DOI: 10.1016/j.antiviral.2020.104808] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus and currently, no antiviral drug is available to combat it. Capsid protein (CP) of alphaviruses present at the N-terminus of the structural polyprotein possesses auto-proteolytic activity which is essential for initiating the structural polyprotein processing. We are reporting for the first time antiviral molecules targeting capsid proteolytic activity. Structure-assisted drug-repositioning identified three molecules: P1,P4-Di(adenosine-5') tetraphosphate (AP4), Eptifibatide acetate (EAC) and Paromomycin sulphate (PSU) as potential capsid protease inhibitors. A FRET-based proteolytic assay confirmed anti-proteolytic activity of these molecules. Additionally, in vitro cell-based antiviral studies showed that EAC, AP4, and PSU drastically stifled CHIKV at the post-entry step with a half-maximal effective concentration (EC50) of 4.01 μM, 10.66 μM and 22.91 μM; respectively. Interestingly, the inhibitors had no adverse effect on viral RNA synthesis and treatment of cells with inhibitors diminished levels of CP in virus-infected cells, which confirmed inhibition of capsid auto-proteolytic activity. In conclusion, the discovery of antiviral molecules targeting capsid protease demystifies the alphavirus capsid protease as a potential target for antiviral drug discovery.
Collapse
Affiliation(s)
- Benazir Fatma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vedita Anand Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Rajesh Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Richard J Kuhn
- Department of Biological Sciences, And Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
32
|
Newase P, More A, Patil J, Patil P, Jadhav S, Alagarasu K, Shah P, Parashar D, Cherian SS. Chikungunya phylogeography reveals persistent global transmissions of the Indian Ocean Lineage from India in association with mutational fitness. INFECTION GENETICS AND EVOLUTION 2020; 82:104289. [PMID: 32198074 DOI: 10.1016/j.meegid.2020.104289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/13/2020] [Indexed: 11/25/2022]
Abstract
Since the resurgence of chikungunya virus (CHIKV) in India in 2005, the Indian subcontinent sublineage of the Indian Ocean lineage (IOL) has continued transmission in India and also radiation from India causing additional outbreaks in surrounding countries. This study was undertaken for an in-depth understanding of the evolutionary dynamics of the IOL, the global transmission routes in the Indian context and possible association with mutational fitness. The whole genome sequencing of Indian isolates representing CHIKV outbreaks (2014-2018) from selected States of India was carried out, followed by phylogeography analysis of the IOL using the Bayesian Markov chain Monte Carlo method and selection pressure analysis. Phylogeography analysis of IOL strains revealed indigenous evolution in India at least at three time points, with specific mutations that conferred viral fitness in the Aedes vector species. Further dispersal of the strains from India was noted to neighbouring and distant countries with multiple exportations to Sri Lanka, Bangladesh and China. The study reveals India as an endemic reservoir for CHIKV and persistent global transmissions from India. Though natural selection does not appear to play a major role in establishment of the IOL, sustainable efforts towards vector control can help address the issues.
Collapse
Affiliation(s)
- Priyanka Newase
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India; Bioinformatics & Data Management Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Ashwini More
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Jayashri Patil
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Poonam Patil
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Santosh Jadhav
- Bioinformatics & Data Management Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Paresh Shah
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India
| | - Sarah S Cherian
- Bioinformatics & Data Management Group, ICMR-National Institute of Virology, Dr. Ambedkar Road, Pune 411001, India.
| |
Collapse
|
33
|
Rabelo VWH, Paixão ICNDP, Abreu PA. Targeting Chikungunya virus by computational approaches: from viral biology to the development of therapeutic strategies. Expert Opin Ther Targets 2020; 24:63-78. [DOI: 10.1080/14728222.2020.1712362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia,Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia,Universidade Federal Fluminense, Niterói, RJ, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia,Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| |
Collapse
|
34
|
|
35
|
Tomar S, Mahajan S, Kumar R. Advances in structure-assisted antiviral discovery for animal viral diseases. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149589 DOI: 10.1016/b978-0-12-816352-8.00019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Abstract
We searched for viral protein sequences that could be important for tissue tropism. To achieve this goal, human pathogenic viruses were classified according to the tissue they infect (e.g., pulmonary), irrespective of whether they were enveloped or non-enveloped RNA or DNA viruses. Next, we developed an amino acid sequence alignment program and identified the conserved amino acid motif, VAIVLGG, in alphaviruses. The VAIVLGG sequence is located on the structural capsid protein of the chikungunya virus, a mosquito-borne arthrogenic member of the alphaviruses. Capsid protein translocation onto the host cell membrane is a required step for virion budding. Our identified VAIVLGG consensus sequence might potentially be used for developing a pan-vaccine effective against alphaviruses.
Collapse
|
37
|
Puranik N, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P. Evaluation of the Antiviral Potential of Halogenated Dihydrorugosaflavonoids and Molecular Modeling with nsP3 Protein of Chikungunya Virus (CHIKV). ACS OMEGA 2019; 4:20335-20345. [PMID: 31815237 PMCID: PMC6893968 DOI: 10.1021/acsomega.9b02900] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Antiviral therapy is crucial for the circumvention of viral epidemics. The unavailability of a specific antiviral drug against the chikungunya virus (CHIKV) disease has created an alarming situation to identify or develop potent chemical molecules for remedial management of CHIKV. In the present investigation, in silico studies of dihydrorugosaflavonoid derivatives (5a-f) with non-structural protein-3 (nsP3) were carried out. nsP3 replication protein has recently been considered as a possible antiviral target in which crucial inhibitors fit into the adenosine-binding pocket of the macrodomain. The 4'-halogenated dihydrorugosaflavonoids displayed intrinsic binding with the nsp3 macrodomain (PDB ID: 3GPO) of CHIKV. Compounds 5c and 5d showed docking scores of -7.54 and -6.86 kcal mol-1, respectively. Various in vitro assays were performed to confirm their (5a-f) antiviral potential against CHIKV. The non-cytotoxic dose was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and was found to be <100 μM. The compounds 5c and 5d showed their inhibitory potential for CHIKV, which was determined through cytopathic effect assay and plaque reduction assay, which show inhibition up to 95 and 92% for 70 μM concentration of the compounds, respectively. The quantitative real-time polymerase chain reaction assay result confirmed the ability of 5c and 5d to reduce the viral RNA level at 70 μM concentration of compounds to nearly 95 and 93% concentration, respectively, in cells with CHIKV infection. Further, the CHIKV-inhibitory capacity of these compounds was corroborated by execution of immunofluorescence assay. The executed work will be meaningful for the future research of studied dihydrorugosaflavonoids against prime antiviral entrants, leading to remedial management to preclude CHIKV infection.
Collapse
Affiliation(s)
- Ninad
V. Puranik
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Ruchi Rani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vedita Anand Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hemalata M. Puntambekar
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pratibha Srivastava
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune 411004, Maharashtra, India
- Savitribai
Phule Pune University, Ganeshkhind, Pune 411007, India
| |
Collapse
|
38
|
Chikungunya virus populations experience diversity- dependent attenuation and purifying intra-vector selection in Californian Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007853. [PMID: 31751338 PMCID: PMC6894883 DOI: 10.1371/journal.pntd.0007853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/05/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (Togaviridae, Alphavirus; CHIKV) is a mosquito-borne global health threat that has been transmitted transiently in the southeastern United States. A primary CHIKV mosquito vector, Aedes aegypti, was recently established in the populous state of California, but the vector competence of Californian mosquitoes is unknown. Explosive CHIKV epidemics since 2004 have been associated with the acquisition of mosquito-adaptive mutations that enhance transmission by Ae. aegypti or Ae. albopictus. As a highly mutable RNA virus, CHIKV has the potential for extensive and rapid genetic diversification in vertebrate hosts and mosquito vectors. We previously demonstrated that expansion of CHIKV diversity in cell culture allows for greater adaptability to novel selection pressures, and that CHIKV fidelity variants are able to diversify more than wildtype (WT) CHIKV in mice. The evolution of intra-vector CHIKV populations and the correlation between CHIKV population diversity and infectivity and transmissibility in mosquitoes has not yet been studied. Here, we address these gaps in knowledge via experimental infection of Ae. aegypti from California with WT and fidelity variant CHIKV. We show that Ae. aegypti from California are highly competent vectors for CHIKV. We also report that CHIKV fidelity variants diversify more than WT in mosquitoes and exhibit attenuated infectivity at the level of the midgut. Furthermore, we demonstrate that intra-vector populations of CHIKV are subjected to purifying selection in mosquito bodies, and sequences of non-coding CHIKV regions are highly conserved. These findings will inform public health risk assessment for CHIKV in California and improve our understanding of constraints to CHIKV evolution in mosquitoes. Chikungunya virus (CHIKV) is transmitted by Aedes aegypti mosquitoes and has caused explosive epidemics in Asia and the Americas since 2004. During mosquito infection, the CHIKV genome replicates with a high mutation rate to produce virus populations with high genetic diversity that facilitate virus evolution. With this study, we address three gaps in knowledge: 1) are Ae. aegypti mosquitoes from Los Angeles, California, capable of transmitting CHIKV, 2) what effect does increased CHIKV population diversity have on virus infection and transmission by mosquitoes, and 3) are there constraints to CHIKV evolution in mosquitoes? We use oral infection of Ae. aegypti mosquitoes originating from Los Angeles, California to demonstrate high laboratory transmission competence of CHIKV. We also show that oral infection of mosquitoes with CHIKV variants that produce more diverse populations are less able to infect mosquitoes than wildtype CHIKV populations. Lastly, our study provides evidence of genome-wide and regional constraints to CHIKV evolution within Ae. aegypti mosquitoes. Our results will inform public health risk assessments for potential CHIKV introduction in southern California and advance our understanding of the role of mosquitoes in CHIKV evolution.
Collapse
|
39
|
Rodriguez AK, Muñoz AL, Segura NA, Rangel HR, Bello F. Molecular characteristics and replication mechanism of dengue, zika and chikungunya arboviruses, and their treatments with natural extracts from plants: An updated review. EXCLI JOURNAL 2019; 18:988-1006. [PMID: 31762724 PMCID: PMC6868920 DOI: 10.17179/excli2019-1825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Viruses transmitted by arthropods (arboviruses) are the etiological agents of several human diseases with worldwide distribution; including dengue (DENV), zika (ZIKV), yellow fever (YFV), and chikungunya (CHIKV) viruses. These viruses are especially important in tropical and subtropical regions; where, ZIKV and CHIKV are involved in epidemics worldwide, while the DENV remains as the biggest problem in public health. Factors, such as, environmental conditions promote the distribution of vectors, deficiencies in health services, and lack of effective vaccines, guarantee the presence of these vector-borne diseases. Treatment against these viral diseases is only palliative since available therapies formulated lack to demonstrate specific antiviral activity and vaccine candidates fail to demonstrate enough effectiveness. The use of natural products, as therapeutic tools, is an ancestral practice in different cultures. According to WHO 80 % of the population of some countries from Africa and Asia depend on the use of traditional medicines to deal with some diseases. Molecular characteristics of these viruses are important in determining its cellular pathogenesis, emergence, and dispersion mechanisms, as well as for the development of new antivirals and vaccines to control strategies. In this review, we summarize the current knowledge of the molecular structure and replication mechanisms of selected arboviruses, as well as their mechanism of entry into host cells, and a brief overview about the potential targets accessed to inhibit these viruses in vitro and a summary about their treatment with natural extracts from plants.
Collapse
Affiliation(s)
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá, 110231, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Héctor Rafael Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas, 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá, 110131, Colombia
| |
Collapse
|
40
|
Malik A, Dalal V, Ankri S, Tomar S. Structural insights into
Entamoeba histolytica
arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. FEBS J 2019; 286:4135-4155. [DOI: 10.1111/febs.14960] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Anjali Malik
- Department of Biotechnology Indian Institute of Technology Roorkee India
| | - Vikram Dalal
- Department of Biotechnology Indian Institute of Technology Roorkee India
| | - Serge Ankri
- Department of Molecular Microbiology Bruce Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Shailly Tomar
- Department of Biotechnology Indian Institute of Technology Roorkee India
| |
Collapse
|
41
|
Pérez-Pérez MJ, Delang L, Ng LFP, Priego EM. Chikungunya virus drug discovery: still a long way to go? Expert Opin Drug Discov 2019; 14:855-866. [DOI: 10.1080/17460441.2019.1629413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
42
|
Assessment of Immunogenicity and Neutralisation Efficacy of Viral-Vectored Vaccines Against Chikungunya Virus. Viruses 2019; 11:v11040322. [PMID: 30987160 PMCID: PMC6521086 DOI: 10.3390/v11040322] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Chikungunya virus (CHIKV) has caused extensive outbreaks in several countries within the Americas, Asia, Oceanic/Pacific Islands, and Europe. In humans, CHIKV infections cause a debilitating disease with acute febrile illness and long-term polyarthralgia. Acute and chronic symptoms impose a major economic burden to health systems and contribute to poverty in affected countries. An efficacious vaccine would be an important step towards decreasing the disease burden caused by CHIKV infection. Despite no licensed vaccine is yet available for CHIKV, there is strong evidence of effective asymptomatic viral clearance due to neutralising antibodies against the viral structural proteins. We have designed viral-vectored vaccines to express the structural proteins of CHIKV, using the replication-deficient chimpanzee adenoviral platform, ChAdOx1. Expression of the CHIKV antigens results in the formation of chikungunya virus-like particles. Our vaccines induce high frequencies of anti-chikungunya specific T-cell responses as well as high titres of anti-CHIKV E2 antibodies with high capacity for in vitro neutralisation. Our results indicate the potential for further clinical development of the ChAdOx1 vaccine platform in CHIKV vaccinology.
Collapse
|
43
|
Kaur R, Mudgal R, Narwal M, Tomar S. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res 2018; 256:209-218. [PMID: 29958924 DOI: 10.1016/j.virusres.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m7GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m7GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m7G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m7GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m7GMP-nsP1 complex by utilizing anti-m7G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg2+) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC50 values were estimated to be 2.69 μM, 5.72 μM and 1.18 mM, respectively.
Collapse
Affiliation(s)
- Ramanjit Kaur
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajat Mudgal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Manju Narwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
44
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|