1
|
Bohush A, Góral A, Sierant M, Nawrot B, Leśniak W, Filipek A. Sgt1 Regulates α-Synuclein Subcellular Localization and Expression of Parkinson's Disease Related Genes, PINK1 and PARK9. Biomolecules 2021; 11:1675. [PMID: 34827672 PMCID: PMC8615725 DOI: 10.3390/biom11111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
The SGT1 protein is highly expressed in the mammalian brain, particularly in neurons of the hippocampus and cortex, and in Purkinje cells of the cerebellum. There are literature data indicating that the protein may be involved in pathogenesis of neurodegenerative disorders such as Parkinson's disease (PD). In the present work we have found that SGT1 protected cells from the toxicity of rotenone, an agent that evokes behavioral and histopathological symptoms of PD. To gain more insight into the possible mechanism underlying the protective action of SGT1 we looked at α-synuclein subcellular distribution in HEK293 cells with an altered SGT1 level. By immunofluorescent staining we have found that in HEK293 cells overexpressing SGT1 α-synuclein was mainly localized in the cytoplasm while in control cells it was present in the nucleus. Accordingly, when SGT1 expression was silenced, α-synuclein was predominantly present in the nucleus. These results were then confirmed by subcellular fractionation and Western blot analysis. Moreover, we have found that altered level of SGT1 in HEK293 cells influenced the expression of PD related genes, PINK1 and PARK9. Altogether, our results point to SGT1 as an important factor that might be involved in the pathogenesis of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.B.); (A.G.); (W.L.)
| | - Agnieszka Góral
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.B.); (A.G.); (W.L.)
| | - Małgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.S.); (B.N.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.S.); (B.N.)
| | - Wiesława Leśniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.B.); (A.G.); (W.L.)
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.B.); (A.G.); (W.L.)
| |
Collapse
|
2
|
Sasako T, Ohsugi M, Kubota N, Itoh S, Okazaki Y, Terai A, Kubota T, Yamashita S, Nakatsukasa K, Kamura T, Iwayama K, Tokuyama K, Kiyonari H, Furuta Y, Shibahara J, Fukayama M, Enooku K, Okushin K, Tsutsumi T, Tateishi R, Tobe K, Asahara H, Koike K, Kadowaki T, Ueki K. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun 2019; 10:947. [PMID: 30814508 PMCID: PMC6393527 DOI: 10.1038/s41467-019-08591-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Dynamic metabolic changes occur in the liver during the transition between fasting and feeding. Here we show that transient ER stress responses in the liver following feeding terminated by Sdf2l1 are essential for normal glucose and lipid homeostasis. Sdf2l1 regulates ERAD through interaction with a trafficking protein, TMED10. Suppression of Sdf2l1 expression in the liver results in insulin resistance and increases triglyceride content with sustained ER stress. In obese and diabetic mice, Sdf2l1 is downregulated due to decreased levels of nuclear XBP-1s, whereas restoration of Sdf2l1 expression ameliorates glucose intolerance and fatty liver with decreased ER stress. In diabetic patients, insufficient induction of Sdf2l1 correlates with progression of insulin resistance and steatohepatitis. Therefore, failure to build an ER stress response in the liver may be a causal factor in obesity-related diabetes and nonalcoholic steatohepatitis, for which Sdf2l1 could serve as a therapeutic target and sensitive biomarker.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Molecular Sciences on Diabetes, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, 113-865, Japan
| | - Shinsuke Itoh
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Kowa Company Limited, Nagoya, 460-0003, Japan
| | - Yukiko Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Ai Terai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, 162-8636, Japan.,Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, 143-8541, Japan
| | - Satoshi Yamashita
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan.,Graduate School of Natural Sciences, Nagoya City University, Nagoya, 464-8601, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Kaito Iwayama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kumpei Tokuyama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Junji Shibahara
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuya Okushin
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takeya Tsutsumi
- Department of Infectious Disease, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences of Research, The University of Toyama, Toyama, 930-8555, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Tokyo, 213-8507, Japan.
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| |
Collapse
|
3
|
Senoo K, Yamashiro K, Yamamoto T, Myokai F, Kawamura M, Takashiba S. Expression of optineurin isolated from rat-injured dental pulp and the effects on inflammatory signals in normal rat kidney cells. Odontology 2017; 106:135-144. [DOI: 10.1007/s10266-017-0314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/04/2017] [Indexed: 01/14/2023]
|
4
|
Huang M, Sun R, Wei H, Tian Z. Simultaneous knockdown of multiple ligands of innate receptor NKG2D prevents natural killer cell-mediated fulminant hepatitis in mice. Hepatology 2013; 57:277-88. [PMID: 22806577 DOI: 10.1002/hep.25959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/21/2012] [Indexed: 02/03/2023]
Abstract
UNLABELLED NKG2D activation plays an important role in initiating and maintaining liver inflammation, and blockade of NKG2D recognition becomes a promising approach to alleviate liver inflammation. Treatment by silencing NKG2D ligands on hepatocytes, but not NKG2D on circulating immune cells, is more liver-specific, and simultaneous knockdown of multiple NKG2D ligands on hepatocytes will be more efficient in liver disease intervention. Here, we constructed a single vector that could simultaneously express multiple short hairpin RNAs (shRNAs) against all murine NKG2D ligands including Rae1, Mult1, and H60. After hydrodynamic injection of plasmid containing the three shRNA sequences (shRae1-shMult1-shH60), also called pRNAT-shRMH, we found the expression of all three NKG2D ligands on hepatocytes was downregulated both on messenger RNA and protein levels. Moreover, natural killer (NK) cell-mediated NKG2D-dependent fulminant hepatitis of the mice was alleviated, along with inactivation of hepatic NK cells, by pRNAT-shRMH if compared with its counterpart RNA interference vectors against single or double ligands. The therapeutic efficacy of pRNAT-shRMH was equivalent to that of injecting three monoclonal antibodies against Rae1, Mult1, and H60. For better in vivo application, we constructed a recombinant adenovirus containing pRNAT-shRMH (called Ad-RMH) with efficient hepatotropic infection capacity and observed that Ad-RMH intravenous injection exerted a similar therapeutic efficiency as plasmid pRNAT-shRMH hydrodynamic injection. Noticeably, simultaneous knockdown of multiple human NKG2D ligands (MICA/B, ULBP2, and ULBP3) also significantly attenuated NK cell cytolysis against human NKG2D ligand-positive hepatocyte L-02 cells, suggesting a possible translation into human settings. CONCLUSION Simultaneous knockdown of multiple ligands of NKG2D prevents NK cell-mediated fulminant hepatitis and is a potential therapeutic approach to treat liver diseases.
Collapse
Affiliation(s)
- Mei Huang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | |
Collapse
|
5
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented in this chapter, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
6
|
Sierant M, Kubiak K, Kazmierczak-Baranska J, Warashina M, Kuwabara T, Nawrot B. Evaluation of BACE1 Silencing in Cellular Models. Int J Alzheimers Dis 2009; 2009. [PMID: 20721293 PMCID: PMC2915613 DOI: 10.4061/2009/257403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/01/2009] [Accepted: 06/11/2009] [Indexed: 11/20/2022] Open
Abstract
Beta-secretase (BACE1) is the major enzyme participating in generation of toxic amyloid-beta (Aβ) peptides, identified in amyloid plaques of Alzheimer's disease (AD) brains. Its downregulation results in decreasing secretion of Aβ. Thus, BACE1 silencing by RNAi represents possible strategy for antiamyloid therapy in the treatment of AD. In this study, a series of newly designed sequences of synthetic and vector-encoded siRNAs (pSilencer, pcPURhU6, and lentivirus) were tested against overexpressed and endogenous BACE1 in several cell lines and in adult neural progenitor cells, derived from rat hippocampus. SiRNAs active in human, mouse, and rat cell models were shown to diminish the level of BACE1. In HCN A94 cells, two BACE1-specific siRNAs did not alter the expression of genes of BACE2 and several selected genes involved in neurogenesis (Synapsin I, βIII-Tubulin, Calbidin, NeuroD1, GluR2, CREB, MeCP2, PKR), however, remarkable lowering of SCG10 mRNA, coding protein of stathmin family, important in the development of nervous system, was observed.
Collapse
Affiliation(s)
- Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND RNA interference (RNAi) can be employed as a potent antiviral mechanism. OBJECTIVE To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. METHODS A review of relevant literature. RESULTS/CONCLUSIONS The future of antiviral RNAi therapeutics is very promising. RNAi was discovered only a decade ago, and although we are still in the early days, the first clinical trials are already ongoing.
Collapse
Affiliation(s)
- Ben Berkhout
- Academic Medical Center of the University of Amsterdam, Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Abstract
AbstractSilencing of a target-genes by small interfering RNA (siRNA) has emerged as a powerful new tool not only for basic research but also with potential therapeutic benefits. This paper demonstrates that optimal delivery strategy is crucial for effective target-gene silencing. Using lipofection, under defined conditions, we were able to markedly down-regulate expression of the selected genes involved in rhabdomyosarcoma metastasis: MET, CXCR4, LIFR and PAX3-FKHR.
Collapse
|
9
|
Naumann TA, Tavassoli A, Benkovic SJ. Genetic selection of cyclic peptide Dam methyltransferase inhibitors. Chembiochem 2008; 9:194-7. [PMID: 18085543 DOI: 10.1002/cbic.200700561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Todd A Naumann
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
10
|
Development and application of a stable HeLa cell line capable of site-specific transgenesis using the Cre-lox system: establishment and application of a stable TNFRI knockdown cell line to cytotoxicity assay. Toxicol In Vitro 2008; 22:1077-87. [PMID: 18356016 DOI: 10.1016/j.tiv.2008.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/03/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Mammalian cell models for gene knock-out/knock-in experiments are important for functional analysis of genes and have a potential of useful tool for toxicological studies. However, uncontrolled insertion of transgenes has raised significant concerns over unwanted side effects. To address this issue, we established a stable HeLa55 cell line capable of site-specific transgenesis by means of Cre-mediated cassette exchange at a site on the long arm of human chromosome 9 containing no constitutive transcripts. We applied HeLa55 to transgenesis of the green fluorescent protein (GFP) gene based on recombinase-mediated cassette exchange. The transformants stably expressed GFP transgenes, even after cryopreservation, without compromising physiological properties. We produced an RNA interference (RNAi)-inducible knockdown stable cell line against human tumor necrosis factor (TNF) receptor I, and one cloned stable cell line (TNFRIKD cells) exhibited long-term gene silencing with significant reduction (ca. 85%) and markedly resisted cytotoxicity induced by TNFalpha. Furthermore, xenobiotics were exposed to stable TNFRIKD cells and different cytotoxicity was exhibited based on various toxicological properties. Thus, we showed the feasibility of RNAi-based stable knockdown cells for xenobiotics-induced cytotoxicity, and HeLa55 has wide application for the generation of stable knock-in and knock-down cells mediated by RNAi.
Collapse
|
11
|
Ying SY, Chang DC, Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 2007; 38:257-68. [PMID: 17999201 PMCID: PMC7091389 DOI: 10.1007/s12033-007-9013-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-funing of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-403, Los Angeles, CA, 90033, USA.
| | | | | |
Collapse
|
12
|
Wu H, Dinh A, Mo YY. Generation of shRNAs from randomized oligonucleotides. Biol Proced Online 2007; 9:9-17. [PMID: 18213360 PMCID: PMC2211575 DOI: 10.1251/bpo129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 01/16/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022] Open
Abstract
Suppression of gene expression by small interfering RNA (siRNA) has proved to be a gene-specific and cost effective alternative to other gene suppression technologies. Short hairpin RNAs (shRNAs) generated from the vector-based expression are believed to be processed into functional siRNAs in vivo, leading to gene silencing. Since an shRNA library carries a large pool of potential siRNAs, such a library makes it possible to knock down gene expression at the genome wide scale. Although much of research has been focused on generating shRNA libraries from either individually made gene specific sequences or cDNA libraries, there is no report on constructing randomized shRNA libraries, which could provide a good alternative to these existing libraries. We have developed a method of constructing shRNAs from randomized oligonucleotides. Through this method, one can generate a partially or fully randomized shRNA library for various functional analyses. We validated this procedure by constructing a p53-specific shRNA. Western blot revealed that the p53-shRNA successfully suppressed expression of the endogenous p53 in MCF-7 cells. We then made a partially randomized shRNA library. Sequencing of 15 randomly picked cloned confirmed the randomness of the library. Therefore, the library can be used for various functional assays, such as target validation when a suitable screening or selection method is available.
Collapse
Affiliation(s)
- Hailong Wu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794 USA
| | | | | |
Collapse
|
13
|
Kumar LD, Clarke AR. Gene manipulation through the use of small interfering RNA (siRNA): from in vitro to in vivo applications. Adv Drug Deliv Rev 2007; 59:87-100. [PMID: 17434644 DOI: 10.1016/j.addr.2007.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 03/04/2007] [Indexed: 12/19/2022]
Abstract
The conventional approach to investigate genotype-phenotype relationships has been the generation of gene targeted murine strains. However, the emergence of RNAi technologies has opened the possibility of much more rapid (and indeed more cost effective) genetic manipulation in vivo at the level of the transcriptome. Successful application of RNAi in vivo depends on intracellular targeted delivery of siRNA/shRNA molecules for efficient knockdown of the desired gene. In this review, we discuss the rationale and different strategies of using siRNA/shRNA for accomplishing the silencing of targeted genes in a spatial and /or temporally regulated manner. We also summarise the steps involved in extending these approaches to in vivo applications, with a specific focus upon the development of silencing in the mouse.
Collapse
Affiliation(s)
- Lekha Dinesh Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
14
|
Abstract
RNA interference (RNAi) is a naturally occurring cellular defense mechanism against viral infections and transposon invasion. Short double-stranded RNA molecules, so-called small-interfering (si)RNAs, bind their complementary mRNA leading to the mRNA's degradation. During the past few years, RNAi has become a valuable tool for transient as well as stable repression of gene expression rendering the time-consuming production of knockout animals superfluous. In this chapter the usability of the RNAi technology in cancer research will be described, focusing on the application of large-scale screens for identification of new components in cancer-relevant signal pathways (e.g., p53, RAS). The screens are especially helpful in the detection of potential anticancer drug targets or siRNAs with therapeutic potential.
Collapse
Affiliation(s)
- Uta Fuchs
- Dr. von Haunersches Kinderspital, Ludwig Maximilians Universität München, München, Germany
| | | |
Collapse
|
15
|
Hashimoto KI, Sonoda Y, Yamakado M, Funakoshi-Tago M, Yoshida N, Rokudai A, Aizu-Yokota E, Kasahara T. C/EBPalpha inactivation in FAK-overexpressed HL-60 cells impairs cell differentiation. Cell Signal 2006; 18:955-63. [PMID: 16226872 DOI: 10.1016/j.cellsig.2005.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 08/15/2005] [Accepted: 08/18/2005] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as oxidative stress, ionizing radiation and TNF-receptor-induced ligand (TRAIL) compared with vector-transfected (HL-60/Vect) cells. Here, we show that HL-60/FAK cells are highly resistant to all-trans retinoic acid (ATRA)-induced differentiation, whereas original HL-60 or HL-60/Vect cells are sensitive. Treatment with ATRA at 1 muM for 5 days markedly inhibited the proliferation and increased the expression of differentiation markers (CD38, CD11b) in HL-60/Vect cells, but showed no such effect in HL-60/FAK cells. Electrophoretic mobility shift assay (EMSA) using an oligonucleotide for the c/EBP consensus binding sequence showed that c/EBPalpha was activated in ATRA-treated HL-60/Vect cells but not in HL-60/FAK cells, indicating that c/EBPalpha activation by ATRA was impaired in HL-60/FAK cells. In addition, the association of retinoblastoma protein (pRb) and c/EBPalpha after treatment with ATRA was seen in HL-60/Vect cells but not in HL-60/FAK cells. Further, hyperphosphorylation of pRb was observed in HL-60/FAK cells. Finally, the introduction of FAK siRNA into HL-60/FAK cells resulted in the recovery of sensitivity to ATRA-induced differentiation, confirming that the inhibition of HL-60/FAK differentiation resulted from both the induction of pRb hyperphosphorylation and the inhibition of association of pRb and c/EBPalpha.
Collapse
Affiliation(s)
- Ken-ichiro Hashimoto
- Department of Biochemistry, Kyoritsu University of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo, 105-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Furumoto Y, Brooks S, Olivera A, Takagi Y, Miyagishi M, Taira K, Casellas R, Beaven MA, Gilfillan AM, Rivera J. Cutting Edge: Lentiviral short hairpin RNA silencing of PTEN in human mast cells reveals constitutive signals that promote cytokine secretion and cell survival. THE JOURNAL OF IMMUNOLOGY 2006; 176:5167-71. [PMID: 16621980 DOI: 10.4049/jimmunol.176.9.5167] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Engagement of the FcepsilonRI expressed on mast cells induces the production of phosphatidylinositol 3, 4, 5-trisphosphate by PI3K, which is essential for the functions of the cells. PTEN (phosphatase and tensin homologue deleted on chromosome ten) directly opposes PI3K by dephosphorylating phosphatidylinositol 3, 4, 5-trisphosphate at the 3' position. In this work we used a lentivirus-mediated short hairpin RNA gene knockdown method to study the role of PTEN in CD34(+) peripheral blood-derived human mast cells. Loss of PTEN caused constitutive phosphorylation of Akt, p38 MAPK, and JNK, as well as cytokine production and enhancement in cell survival, but not degranulation. FcepsilonRI engagement of PTEN-deficient cells augmented signaling downstream of Src kinases and increased calcium flux, degranulation, and further enhanced cytokine production. PTEN-deficient cells, but not control cells, were resistant to inhibition of cytokine production by wortmannin, a PI3K inhibitor. The findings demonstrate that PTEN functions as a key regulator of mast cell homeostasis and FcepsilonRI-responsiveness.
Collapse
Affiliation(s)
- Yasuko Furumoto
- Molecular Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saito F, Yokota H, Sudo Y, Yakabe Y, Takeyama H, Matsunaga T. Application of RNAi inducible TNFRI knockdown cells to the analysis of TNFalpha-induced cytotoxicity. Toxicol In Vitro 2006; 20:1343-53. [PMID: 16829018 DOI: 10.1016/j.tiv.2006.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/16/2006] [Indexed: 01/07/2023]
Abstract
RNA interference (RNAi) has become a popular tool for downregulating in many species including mammalian cells. Therefore, suppression of target genes in mammalian cultured cells using RNAi may represent an ideal alternative to knockout studies for understanding the molecular mechanisms of chemical toxicity. Here, we assessed the potential of RNAi mediated gene knockdown in HeLa and HepG2 cells to cytotoxicity studies. Tumor necrosis factor receptor I (TNFRI) was chosen as a target gene because its signaling has been implicated in xenobiotic-induced toxicity. We optimized the design and performance of a vector-based RNAi experiment and then investigated viability of both HeLa and HepG2 cells exposed to TNFalpha. In addition, we examined gene expression profile of TNFRI knockdown HeLa cells after TNFalpha treatment, and then protein expression levels for several apoptosis-related genes of the cells. In both HeLa and HepG2 cells, TNFalpha exposure resulted in significantly reduced susceptibility of the knockdown cells to the cytotoxicity as compared with those of mock-transfected cells. Furthermore, the gene expression profiling and western blotting revealed that several genes including apoptosis and/or NF-kappaB pathway were downregulated in the knockdown HeLa cells. These results suggest that downregulation of the TNFRI gene in both HeLa and HepG2 cells by RNAi participates in resistance to TNFalpha-induced cytotoxicity. Therefore, this study raises the possibility that RNAi-based gene silencing in mammalian cells may be a valuable tool for elucidating the relationships between phenotypic changes and target gene functions in response to xenobiotic-induced cytotoxicity. Further exposure study using xenobiotics needs to be done to validate the potential utility of RNAi technology.
Collapse
Affiliation(s)
- Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1600 Shimo-Takano, Sugito, Kitakatsushika, Saitama 345-0043, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Vilgelm AE, Chumakov SP, Prassolov VS. RNA interference: Biology and prospects of application in biomedicine and biotechnology. Mol Biol 2006. [DOI: 10.1134/s0026893306030010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gartel AL, Kandel ES. RNA interference in cancer. ACTA ACUST UNITED AC 2006; 23:17-34. [PMID: 16466964 DOI: 10.1016/j.bioeng.2006.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/08/2006] [Accepted: 01/13/2006] [Indexed: 12/19/2022]
Abstract
In the recent years, RNA interference (RNAi) has emerged as a major regulatory mechanism in eukaryotic gene expression. The realization that changes in the levels of microRNAs are directly associated with cancer led to the recognition of a new class of tumor suppressors and oncogenes. Moreover, RNAi has been turned into a potent tool for artificially modulating gene expression through the introduction of short interfering RNAs. A plethora of individual inhibitory RNAs as well as several large collections of these reagents have been generated. The systems for stable and regulated expression of these molecules emerged as well. These tools have helped to delineate the roles of various cellular factors in oncogenesis and tumor suppression and laid the foundation for new approaches in gene discovery. Furthermore, successful inhibition of tumor cell growth by RNAi aimed at oncogenes in vitro and in vivo supports the enthusiasm for potential therapeutic applications of this technique. In this article we review the evidence of microRNA involvement in cancer, the use of short interfering RNAs in forward and reverse genetics of this disease, and as well as both the benefits and limitations of experimental RNAi.
Collapse
Affiliation(s)
- Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|
20
|
Ito M, Miyagishi M, Murata C, Kawasaki H, Baba T, Tachi C, Taira K. Down-Regulation of Endogenous Wt1 Expression by Sry Transgene in the Murine Embryonic Mesonephros-Derived M15 Cell Line. J Reprod Dev 2006; 52:415-27. [PMID: 16571910 DOI: 10.1262/jrd.17094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wt1 is one of numerous candidate genes comprising the hypothetical chain of gene expression essential for male sex differentiation of the bipotential indifferent gonads during embryogenesis. However, the evidence in the literature is ambivalent regarding the position of Wt1 relative to Sry in this scheme; Wt1 might act either upstream or downstream of Sry. In the present study, the effects of Sry expression upon Wt1 were investigated using M15 cells (XX karyotype), which are derived from murine embryonic mesonephros and express endogenous Wt1. In 3 stably-transformed Sry-expressing M15 cell lines, we showed that the expression levels of the mRNAs coding for all 4 isoforms of the WT1 proteins were down-regulated. Similarly, Wnt 4 expression was down-regulated in these cell lines. Silencing of Sry in the transformed cell lines using ribozymes or short hairpin RNAs (shRNAs) resulted in elevated levels of Wt1 and Wnt4 expression. These results strongly indicate that Wt1 might be under the control of Sry during gonadal differentiation in the mouse. In electrophoretic mobility shift assays (EMSA), we demonstrated that the 3.7 kb 5'-upstream DNA stretch of Wt1 containing potential Sry binding sites was capable of forming molecular complexes with nuclear protein(s) from Sry expressing cells but not with those from control non-Sry expressing cells. In summary, our present results support the notion that Wt1 is located downstream of Sry and down-regulated by the sex determining gene. Although the precise biological meaning of the present findings have yet to be clarified, it is possible that Wt1 plays a dual role during gonadal differentiation, i. e., turning on Sry expression on one hand, and being down-regulated by its product, Sry, on the other, possibly forming a type of negative feed-back mechanism. Further work is needed to substantiate this view.
Collapse
Affiliation(s)
- Masanori Ito
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Matsumoto S, Akashi H, Taira K. Screening and determination of gene function using randomized ribozyme and siRNA libraries. Handb Exp Pharmacol 2006:197-221. [PMID: 16594617 DOI: 10.1007/3-540-27262-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rapid progress in the sequencing of the genomes of model organisms, such as the mouse, rat, nematode, fly, and Arabidopsis, as well as the human genome, has provided abundant sequence information, but functions of long stretches of these genomes remain to be determined. RNA-based technologies hold promise as tools that allow us to identify the specific functions of portions of these genomes. In particular, catalytic RNAs, known also as ribozymes, can be engineered for optimization of their activities in the intracellular environment. The introduction of a library of active ribozymes into cells, with subsequent screening for phenotypic changes, can be used for the rapid identification ofa gene function. Ribozyme technology complements another RNA-based tool for the determination of gene function, which is based on libraries of small interfering RNAs (siRNAs).
Collapse
Affiliation(s)
- S Matsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, 113-8656 Tokyo, Japan
| | | | | |
Collapse
|
22
|
Tsuji AB, Sugyo A, Sudo H, Sagara M, Ishikawa A, Ohtsuki M, Kimura T, Ogiu T, Miyagishi M, Taira K, Imai T, Harada YN. Defective repair of radiation-induced DNA damage is complemented by a CHORI-230-65K18 BAC clone on rat chromosome 4. Genomics 2005; 87:236-42. [PMID: 16309880 DOI: 10.1016/j.ygeno.2005.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 08/19/2005] [Accepted: 09/29/2005] [Indexed: 11/20/2022]
Abstract
The Long Evans cinnamon (LEC) rat is highly susceptible to X-irradiation due to defective DNA repair and is thus a model for hepatocellular carcinogenesis. We constructed a bacterial artificial chromosome (BAC) contig of rat chromosome 4 completely covering the region associated with radiation susceptibility. We used transient and stable transfections to demonstrate that defective DNA repair in LEC cells is fully complemented by a 200-kb BAC, CHORI-230-65K18. Further analysis showed that the region associated with radiation susceptibility is located in a 128,543-bp region of 65K18 that includes the known gene Rpn1. However, neither knockdown nor overexpression of Rpn1 indicated that this gene is associated with radiation susceptibility. We also mapped three ESTs (TC523872, TC533727, and CB607546) in the 128,543-bp region, suggesting that 65K18 contains an unknown gene associated with X-ray susceptibility in the LEC rat.
Collapse
Affiliation(s)
- Atsushi B Tsuji
- RadGenomics Project, Frontier Research Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
RNA interference (RNAi) describes the post-transcriptional silencing of gene expression that occurs in response to the introduction of double-stranded RNA into cells. Application of RNAi in experimental systems has provided a great leap forward in the elucidation of gene function. To facilitate large-scale functional genomics studies using RNAi, several high throughput approaches have been developed based on microarray or microwell assays. Recent establishment of large libraries of RNAi reagents combined with a variety of detection assays further opens the door for genome-wide screens of gene function in mammalian cells.
Collapse
Affiliation(s)
- Dominique Vanhecke
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Fabeckstrasse 60-62, 14195 Berlin, Germany
| | | |
Collapse
|
24
|
Ito M, Kawano K, Miyagishi M, Taira K. Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett 2005; 579:5988-95. [PMID: 16153642 DOI: 10.1016/j.febslet.2005.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/05/2005] [Accepted: 08/11/2005] [Indexed: 12/23/2022]
Abstract
Progress is being made in the development of RNA interference-based (RNAi-based) strategies for the control of gene expression. It has been demonstrated that small interfering RNAs (siRNAs) can silence the expression of target genes in a sequence-specific manner in mammalian cells. Various groups, including our own, have developed systems for vector-mediated specific RNAi. Vector-based siRNA- (or shRNA) expression libraries directed against the entire human genome and siRNA libraries based on chemically synthesized oligonucleotides now allow the rapid identification of functional genes and potential drug targets. Use of such libraries will enhance our understanding of numerous biological phenomena and contribute to the rational design of drugs against heritable, infectious and malignant diseases.
Collapse
Affiliation(s)
- Masanori Ito
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | |
Collapse
|
25
|
Jazag A, Kanai F, Ijichi H, Tateishi K, Ikenoue T, Tanaka Y, Ohta M, Imamura J, Guleng B, Asaoka Y, Kawabe T, Miyagishi M, Taira K, Omata M. Single small-interfering RNA expression vector for silencing multiple transforming growth factor-beta pathway components. Nucleic Acids Res 2005; 33:e131. [PMID: 16113239 PMCID: PMC1188087 DOI: 10.1093/nar/gni130] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although RNA interference (RNAi) is a popular technique, no method for simultaneous silencing of multiple targets by small-hairpin RNA (shRNA)-expressing RNAi vectors has yet been established. Although gene silencing can be achieved by synthetic small-interfering RNA (siRNA) duplexes, the approach is transient and largely dependent on the transfection efficiency of the host cell. We offer a solution: a simple, restriction enzyme-generated stable RNAi technique that can efficiently silence multiple targets with a single RNAi vector and a single selection marker. In this study, we succeeded in simultaneous stable knockdown of transforming growth factor beta (TGF-beta) pathway-related Smads--Smad2, Smad3 and Smad4--at the cellular level. We observed distinct phenotypic changes in TGF-beta-dependent cellular functions such as invasion, wound healing and apoptosis. This method is best suited for an analysis of complex signal transduction pathways in which silencing of a single gene cannot account for the whole process.
Collapse
Affiliation(s)
- Amarsanaa Jazag
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Fumihiko Kanai
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
- Clinical Research Center, University of Tokyo HospitalTokyo 113-8655, Japan
- To whom correspondence should be addressed. Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Tel: +81 3 5800 9747; Fax: +81 3 5800 8775;
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Tsuneo Ikenoue
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Miki Ohta
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Jun Imamura
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Bayasi Guleng
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Yoshinari Asaoka
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Takao Kawabe
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| | - Makoto Miyagishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of TokyoTokyo 113-8656, Japan
- Gene Function Research Center, National Institute of Advanced Industrial Science and TechnologyIbaraki 305-8562, Japan
| | - Kazunari Taira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of TokyoTokyo 113-8656, Japan
- Gene Function Research Center, National Institute of Advanced Industrial Science and TechnologyIbaraki 305-8562, Japan
| | - Masao Omata
- Department of Gastroenterology, Graduate School of Medicine, University of TokyoTokyo 113-8655, Japan
| |
Collapse
|
26
|
Tsuji AB, Sudo H, Sugyo A, Otsuki M, Miyagishi M, Taira K, Imai T, Harada YN. A fast, simple method for screening radiation susceptibility genes by RNA interference. Biochem Biophys Res Commun 2005; 333:1370-7. [PMID: 15979584 DOI: 10.1016/j.bbrc.2005.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 11/15/2022]
Abstract
Radiotherapy can cause unacceptable levels of damage to normal tissues in some cancer patients. To understand the molecular mechanisms underlying radiation-induced physiological responses, and to be able to predict the radiation susceptibility of normal tissues in individual patients, it is important to identify a comprehensive set of genes responsible for radiation susceptibility. We have developed a simple and rapid 96-well screening protocol using cell proliferation assays and RNA interference to identify genes associated with radiation susceptibility. We evaluated the performance of alamarBlue-, BrdU-, and sulforhodamine B-based cell proliferation assays using the 96-well format. Each proliferation assay detected the known radiation susceptibility gene, PRKDC. In a trial screen using 28 shRNA vectors, another known gene, CDKN1A, and one new radiation susceptibility gene, ATP5G3, were identified. Our results indicate that this method may be useful for large-scale screens designed to identify novel radiation susceptibility genes.
Collapse
Affiliation(s)
- Atsushi B Tsuji
- RadGenomics Project, Frontier Research Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Catalytic RNAs, also known as ribozymes, can be engineered to optimize their activities in the intracellular environment. The introduction of a library of active ribozymes into cells, and the subsequent screening for phenotypic changes, allows the rapid identification of gene function. For the determination of gene function, ribozyme technology complements another RNA-based tool that is based on libraries of small interfering RNAs.
Collapse
Affiliation(s)
- Hideo Akashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
28
|
Jagla B, Aulner N, Kelly PD, Song D, Volchuk A, Zatorski A, Shum D, Mayer T, De Angelis DA, Ouerfelli O, Rutishauser U, Rothman JE. Sequence characteristics of functional siRNAs. RNA (NEW YORK, N.Y.) 2005; 11:864-72. [PMID: 15923373 PMCID: PMC1370771 DOI: 10.1261/rna.7275905] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RNA interference in mammalian cells is actively used to conduct genetic screens, to identify and to validate targets, and to elucidate regulators and modifiers of cellular pathways. To ensure the specificity and efficacy of the active 21mer siRNA molecules, it is pertinent to develop a strategy for their rational design. Here we show that most functional siRNAs have characteristic sequence features. We tested 601 siRNAs targeting one exogenous and three endogenous genes. The efficacy of the siRNAs was determined at the protein level. Using a decision tree algorithm in combination with information analysis, our analyses revealed four sets of rules with a mean knockdown efficacy ranging from 60% to 73%. (To distinguish between percentages used to describe the quality of an siRNA and the percentages used to describe parts of data sets we underlined the former throughout this paper.) The best rule comprises an A/U at positions 10 and 19, a G/C at position 1, and more than three A/Us between positions 13 and 19, in the sense strand of the siRNA sequence. Using these rules, there is a 99.9% chance of designing an effective siRNA in a set of three with more than 50% knockdown efficiency in a biological readout.
Collapse
Affiliation(s)
- Bernd Jagla
- Functional Proteomics Project, Memorial Sloan-Kettering Cance Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Takami T, Terai S, Yokoyama Y, Tanimoto H, Tajima K, Uchida K, Yamasaki T, Sakaida I, Nishina H, Thorgeirsson SS, Okita K. Human homologue of maid is a useful marker protein in hepatocarcinogenesis. Gastroenterology 2005; 128:1369-80. [PMID: 15887118 DOI: 10.1053/j.gastro.2005.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Human homologue of maid (HHM) is a helix-loop-helix (HLH) transcriptional regulatory protein that is involved in the hepatic stem cell development and differentiation. We analyzed the potential involvement of HHM in hepatocarcinogenesis. METHODS We analyzed HHM expression in the choline-deficient L-amino acid defined (CDAA) diet model of rat hepatocarcinogenesis and in human adenomatous hyperplasia (AH) and hepatocellular carcinoma (HCC) biopsy samples. We assessed the effects of HHM on cell proliferation. We screened proteins that bind to HHM protein using a yeast 2-hybrid screen. RESULTS High HHM expression was seen in foci and HCC induced in the rat CDAA diet model. HHM protein was expressed in 23 of 32 AH samples (72%), 19 of 28 well-differentiated HCC samples (68%), and 9 of 18 poorly-moderately differentiated HCC samples (50%). Over-expressed HHM enhanced the S phase. HHM interference RNA significantly inhibited cell proliferation. A yeast 2-hybrid screen identified Jun activation domain-binding protein 1 (Jab1) as a binding partner for HHM. We confirmed HHM and Jab1 binding by immunoprecipitation and immunofluorescent histochemistry. The expression of Jab1 was found in human AH and HCC samples. We found an association between levels of expression of HHM and those of Jab1 in AH and HCC tissues examined (P = .027 by chi2 test). CONCLUSIONS High-level HHM expression was found from the very early stages of hepatocarcinogenesis, suggesting that HHM may be a useful marker protein to detect.
Collapse
Affiliation(s)
- Taro Takami
- Department of Molecular Science and Applied Medicine (Gastroenterology and Hepatology), Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsumoto S, Miyagishi M, Akashi H, Nagai R, Taira K. Analysis of double-stranded RNA-induced apoptosis pathways using interferon-response noninducible small interfering RNA expression vector library. J Biol Chem 2005; 280:25687-96. [PMID: 15845550 DOI: 10.1074/jbc.m412784200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed an original vector library that allowed us to exploit the phenomenon of RNA interference but also allowed us to avoid the confounding effects of the interferon response. In the present work, we used our library of small interfering RNA expression vectors to examine the genes involved in apoptosis that was induced by double-stranded RNA. To our surprise, screening of our library revealed two novel double-stranded RNA-induced apoptotic pathways, a JNK/SAPK-mediated mitochondrial pathway and an ERK2-related pathway, both of which appeared to be independent of the serine-threonine protein kinase-dependent caspase pathway. We also found that MST2 and protein kinase Calpha both activated the pro-apoptotic signal mediated by ERK2. The results of our screening analysis suggested the utility of large scale screenings with libraries of small interfering RNA expression vectors.
Collapse
Affiliation(s)
- Sahohime Matsumoto
- Department of Chemistry and Biotechnology, School of Engineering, the University of Tokyo, Hongo, Tokyo 113-8656
| | | | | | | | | |
Collapse
|
31
|
Gilmore IR, Fox SP, Hollins AJ, Sohail M, Akhtar S. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target 2005; 12:315-40. [PMID: 15545082 DOI: 10.1080/10611860400006257] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that effects post-transcriptional gene silencing in eukaryotic systems. Small interfering RNA (siRNA) molecules are the key intermediaries in this process which when exogenously administered can inhibit or "silence" the expression of any given target gene. Thus, siRNA molecules hold great promise as biological tools and as potential therapeutic agents for targeted inhibition of disease-causing genes. However, key challenges to the effective and widespread use of these polyanionic, macromolecular duplexes of RNA are their appropriate design and efficient delivery to cells in vitro and in vivo. This review highlights the current strategies used in the design of effective siRNA molecules and also summarises the main strategies being considered for the exogenous delivery of siRNA for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ian R Gilmore
- Centre for Genome-based Therapeutics, The Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | |
Collapse
|
32
|
Wolkowicz R, Jager GC, Nolan GP. A random peptide library fused to CCR5 for selection of mimetopes expressed on the mammalian cell surface via retroviral vectors. J Biol Chem 2005; 280:15195-201. [PMID: 15657029 DOI: 10.1074/jbc.m500254200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A random peptide library was expressed on the surface of a mammalian cell by applying retroviral vectors. The random sequence was fused to the CCR5 chemokine receptor, which served as a scaffold to present the library at the cell surface. We used this library to isolate an epitope mimetope in a proof of principle system. This approach can become a tool for rapid creation of peptidic expression domains in a eukaryotic environment. Applications include the creation of decoys for receptors in cell-cell interactions, screening for molecules that drive ligand expression on target cells in two-cell interaction screens, among other utilities.
Collapse
Affiliation(s)
- Roland Wolkowicz
- Department of Microbiology and Immunology, Baxter Laboratory in Genetic Pharmacology, School of Medicine, Stanford University, Stanford, California 94305-5175, USA
| | | | | |
Collapse
|
33
|
Sano M, Kato Y, Akashi H, Miyagishi M, Taira K. Novel Methods for Expressing RNA Interference in Human Cells. Methods Enzymol 2005; 392:97-112. [PMID: 15644177 DOI: 10.1016/s0076-6879(04)92006-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
RNA interference (RNAi) is a conserved process in which a double-stranded RNA (dsRNA) induces sequence-specific gene silencing. Recent developments in the use of the 21-nt small interfering RNA (siRNA) have allowed the specific degradation of mRNA without induction of nonspecific effects in mammalian cells. RNAi provides a method for knocking down genes of interest and a powerful tool for studies on gene functions in various organisms. Although many vector-based siRNA expression systems have been developed for production of siRNAs in mammalian cells, many technical issues for an effective production of siRNAs still need to be resolved. In this chapter, we describe methods for construction of genetically stable and highly active siRNA expression systems and also mention some strategies to overcome serious technical problems.
Collapse
Affiliation(s)
- Masayuki Sano
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Science City, Japan
| | | | | | | | | |
Collapse
|
34
|
Sano M, Kato Y, Taira K. Functional gene-discovery systems based on libraries of hammerhead and hairpin ribozymes and short hairpin RNAs. MOLECULAR BIOSYSTEMS 2005; 1:27-35. [PMID: 16880960 DOI: 10.1039/b503235k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abundant information about the nucleotide sequence of the human genome has become readily available and it is now necessary to develop methods for the identification of genes that are involved in important cellular, developmental and disease-related processes. Identification methods based on the activities of hammerhead and hairpin ribozymes and of short hairpin RNAs (shRNAs), whose target specificities are coupled with loss-of-function phenotypes, have received increasing attention as possible tools for the rapid identification of key genes involved in such processes. We describe here recent advances that have been made with libraries of ribozymes and shRNAs and compare the advantages of the different types of library. The use of such libraries has already revealed new details of several important physiological phenomena.
Collapse
Affiliation(s)
- Masayuki Sano
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Science City, Japan
| | | | | |
Collapse
|
35
|
Abstract
RNA interference (RNAi) is a double-stranded RNA (dsRNA)-triggered mechanism for suppressing gene expression, which is conserved in evolution and has emerged as a powerful tool to study gene function. Rotaviruses, the leading cause of severe diarrhea in young children, are formed by three concentric layers of protein, and a genome composed of 11 segments of dsRNA. Here, we show that the RNAi machinery can be triggered to silence rotavirus gene expression by sequence-specific short interfering RNAs (siRNAs). RNAi is also useful for the study of the virus-cell interactions, through the silencing of cellular genes that are potentially important for the replication of the virus. Interestingly, while the translation of mRNAs is readily stopped by the RNAi machinery, the viral transcripts involved in virus genome replication do not seem to be susceptible to RNAi. Since gene silencing by RNAi is very efficient and specific, this system could become a novel therapeutic approach for rotavirus and other virus infections, once efficient methods for in vivo delivery of siRNAs are developed. Although the use of RNAi as an antiviral therapeutic tool remains to be demonstrated, there is no doubt that this technology will influence drastically the way postgenomic virus research is conducted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
36
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|