1
|
Duan X, Ru Y, Yang W, Ren J, Hao R, Qin X, Li D, Zheng H. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol 2022; 13:947180. [PMID: 35935977 PMCID: PMC9353306 DOI: 10.3389/fimmu.2022.947180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), which infects domestic pigs or wild boars. It is characterized by short course of disease, high fever and hemorrhagic lesions, with mortality of up to 100% from acute infection. Up to now, the lack of commercial vaccines and effective drugs has seriously threatened the healthy economic development of the global pig industry. ASFV is a double-stranded DNA virus and genome varies between about 170-194 kb, which encodes 150-200 viral proteins, including 68 structural proteins and more than 100 non-structural proteins. In recent years, although the research on structure and function of ASFV-encoded proteins has been deepened, the structure and infection process of ASFV are still not clear. This review summarizes the main process of ASFV infection, replication and functions of related viral proteins to provide scientific basis and theoretical basis for ASFV research and vaccine development.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Haixue Zheng,
| |
Collapse
|
2
|
Paradoxical effects of DNA tumor virus oncogenes on epithelium-derived tumor cell fate during tumor progression and chemotherapy response. Signal Transduct Target Ther 2021; 6:408. [PMID: 34836940 PMCID: PMC8626493 DOI: 10.1038/s41392-021-00787-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) and human papillomavirus (HPV) infection is the risk factors for nasopharyngeal carcinoma and cervical carcinoma, respectively. However, clinical analyses demonstrate that EBV or HPV is associated with improved response of patients, although underlying mechanism remains unclear. Here, we reported that the oncoproteins of DNA viruses, such as LMP1 of EBV and E7 of HPV, inhibit PERK activity in cancer cells via the interaction of the viral oncoproteins with PERK through a conserved motif. Inhibition of PERK led to increased level of reactive oxygen species (ROS) that promoted tumor and enhanced the efficacy of chemotherapy in vivo. Consistently, disruption of viral oncoprotein-PERK interactions attenuated tumor growth and chemotherapy in both cancer cells and tumor-bearing mouse models. Our findings uncovered a paradoxical effect of DNA tumor virus oncoproteins on tumors and highlighted that targeting PERK might be an attractive strategy for the treatment of NPC and cervical carcinoma.
Collapse
|
3
|
Chang S, Wang LHC, Chen BS. Investigating Core Signaling Pathways of Hepatitis B Virus Pathogenesis for Biomarkers Identification and Drug Discovery via Systems Biology and Deep Learning Method. Biomedicines 2020; 8:biomedicines8090320. [PMID: 32878239 PMCID: PMC7555687 DOI: 10.3390/biomedicines8090320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B Virus (HBV) infection is a major cause of morbidity and mortality worldwide. However, poor understanding of its pathogenesis often gives rise to intractable immune escape and prognosis recurrence. Thus, a valid systematic approach based on big data mining and genome-wide RNA-seq data is imperative to further investigate the pathogenetic mechanism and identify biomarkers for drug design. In this study, systems biology method was applied to trim false positives from the host/pathogen genetic and epigenetic interaction network (HPI-GEN) under HBV infection by two-side RNA-seq data. Then, via the principal network projection (PNP) approach and the annotation of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, significant biomarkers related to cellular dysfunctions were identified from the core cross-talk signaling pathways as drug targets. Further, based on the pre-trained deep learning-based drug-target interaction (DTI) model and the validated pharmacological properties from databases, i.e., drug regulation ability, toxicity, and sensitivity, a combination of promising multi-target drugs was designed as a multiple-molecule drug to create more possibility for the treatment of HBV infection. Therefore, with the proposed systems medicine discovery and repositioning procedure, we not only shed light on the etiologic mechanism during HBV infection but also efficiently provided a potential drug combination for therapeutic treatment of Hepatitis B.
Collapse
Affiliation(s)
- Shen Chang
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
4
|
Banerjee A, Kulkarni S, Mukherjee A. Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Front Microbiol 2020; 11:733. [PMID: 32457704 PMCID: PMC7221137 DOI: 10.3389/fmicb.2020.00733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha (α)-herpesviruses (HSV-1 and HSV-2), like other viruses, are obligate intracellular parasites. They hijack the cellular machinery to survive and replicate through evading the defensive responses by the host. The viral genome of herpes simplex viruses (HSVs) contains viral genes, the products of which are destined to exploit the host apparatus for their own existence. Cellular modulations begin from the entry point itself. The two main gateways that the virus has to penetrate are the cell membrane and the nuclear membrane. Changes in the cell membrane are triggered when the glycoproteins of HSV interact with the surface receptors of the host cell, and from here, the components of the cytoskeleton take over. The rearrangement in the cytoskeleton components help the virus to enter as well as transport to the nucleus and back to the cell membrane to spread out to the other cells. The entire carriage process is also mediated by the motor proteins of the kinesin and dynein superfamily and is directed by the viral tegument proteins. Also, the virus captures the cell’s most efficient cargo carrying system, the endoplasmic reticulum (ER)–Golgi vesicular transport machinery for egress to the cell membrane. For these reasons, the host cell has its own checkpoints where the normal functions are halted once a danger is sensed. However, a cell may be prepared for the adversities from an invading virus, and it is simply commendable that the virus has the antidote to these cellular strategies as well. The HSV viral proteins are capable of limiting the use of the transcriptional and translational tools for the cell itself, so that its own transcription and translation pathways remain unhindered. HSV prefers to constrain any self-destruction process of the cell—be it autophagy in the lysosome or apoptosis by the mitochondria, so that it can continue to parasitize the cell for its own survival. This review gives a detailed account of the significance of compartmentalization during HSV pathogenesis. It also highlights the undiscovered areas in the HSV cell biology research which demand attention for devising improved therapeutics against the infection.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Anupam Mukherjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| |
Collapse
|
5
|
Nonstructural Protein σ1s Is Required for Optimal Reovirus Protein Expression. J Virol 2018; 92:JVI.02259-17. [PMID: 29321319 DOI: 10.1128/jvi.02259-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Reovirus nonstructural protein σ1s is required for the establishment of viremia and hematogenous viral dissemination. However, the function of σ1s during the reovirus replication cycle is not known. In this study, we found that σ1s was required for efficient reovirus replication in simian virus 40 (SV40)-immortalized endothelial cells (SVECs), mouse embryonic fibroblasts, human umbilical vein endothelial cells (HUVECs), and T84 human colonic epithelial cells. In each of these cell lines, wild-type reovirus produced substantially higher viral titers than a σ1s-deficient mutant. The σ1s protein was not required for early events in reovirus infection, as evidenced by the fact that no difference in infectivity between the wild-type and σ1s-null viruses was observed. However, the wild-type virus produced markedly higher viral protein levels than the σ1s-deficient strain. The disparity in viral replication did not result from differences in viral transcription or protein stability. We further found that the σ1s protein was dispensable for cell killing and the induction of type I interferon responses. In the absence of σ1s, viral factory (VF) maturation was impaired but sufficient to support low levels of reovirus replication. Together, our results indicate that σ1s is not absolutely essential for viral protein production but rather potentiates reovirus protein expression to facilitate reovirus replication. Our findings suggest that σ1s enables hematogenous reovirus dissemination by promoting efficient viral protein synthesis, and thereby reovirus replication, in cells that are required for reovirus spread to the blood.IMPORTANCE Hematogenous dissemination is a critical step in the pathogenesis of many viruses. For reovirus, nonstructural protein σ1s is required for viral spread via the blood. However, the mechanism by which σ1s promotes reovirus dissemination is unknown. In this study, we identified σ1s as a viral mediator of reovirus protein expression. We found several cultured cell lines in which σ1s is required for efficient reovirus replication. In these cells, wild-type virus produced substantially higher levels of viral protein than a σ1s-deficient mutant. The σ1s protein was not required for viral mRNA transcription or viral protein stability. Since reduced levels of viral protein were synthesized in the absence of σ1s, the maturation of viral factories was impaired, and significantly fewer viral progeny were produced. Taken together, our findings indicate that σ1s is required for optimal reovirus protein production, and thereby viral replication, in cells required for hematogenous reovirus dissemination.
Collapse
|
6
|
eIF4E as a control target for viruses. Viruses 2015; 7:739-50. [PMID: 25690796 PMCID: PMC4353914 DOI: 10.3390/v7020739] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
Translation is a complex process involving diverse cellular proteins, including the translation initiation factor eIF4E, which has been shown to be a protein that is a point for translational regulation. Viruses require components from the host cell to complete their replication cycles. Various studies show how eIF4E and its regulatory cellular proteins are manipulated during viral infections. Interestingly, viral action mechanisms in eIF4E are diverse and have an impact not only on viral protein synthesis, but also on other aspects that are important for the replication cycle, such as the proliferation of infected cells and stimulation of viral reactivation. This review shows how some viruses use eIF4E and its regulatory proteins for their own benefit in order to spread themselves.
Collapse
|
7
|
Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A. Anal Chim Acta 2015; 853:391-401. [PMID: 25467484 DOI: 10.1016/j.aca.2014.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/22/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022]
Abstract
As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a-2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments's structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a-2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS(2) spectra of [M+Na](+) ions for compounds 2a-2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the "dephosphorylation" rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A's backbone with losing a molecule of C3H7PO3 (122 Da). For the "phosphorylation" rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of CH covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C16H20O2 (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation-dephosphorylation of proteins.
Collapse
|
8
|
Echevarría-Zomeño S, Yángüez E, Fernández-Bautista N, Castro-Sanz AB, Ferrando A, Castellano MM. Regulation of Translation Initiation under Biotic and Abiotic Stresses. Int J Mol Sci 2013; 14:4670-83. [PMID: 23443165 PMCID: PMC3634475 DOI: 10.3390/ijms14034670] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/12/2023] Open
Abstract
Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.
Collapse
Affiliation(s)
- Sira Echevarría-Zomeño
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Emilio Yángüez
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Nuria Fernández-Bautista
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Ana B. Castro-Sanz
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas CSIC-Universidad Politécnica de Valencia, Valencia, Spain; E-Mail:
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| |
Collapse
|
9
|
mRNA decay during herpes simplex virus (HSV) infections: mutations that affect translation of an mRNA influence the sites at which it is cleaved by the HSV virion host shutoff (Vhs) protein. J Virol 2012; 87:94-109. [PMID: 23077305 DOI: 10.1128/jvi.01557-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lytic infections, the herpes simplex virus (HSV) virion host shutoff (Vhs) endoribonuclease degrades many host and viral mRNAs. Within infected cells it cuts mRNAs at preferred sites, including some in regions of translation initiation. Vhs binds the translation initiation factors eIF4H, eIF4AI, and eIF4AII, suggesting that its mRNA degradative function is somehow linked to translation. To explore how Vhs is targeted to preferred sites, we examined the in vitro degradation of a target mRNA in rabbit reticulocyte lysates containing in vitro-translated Vhs. Vhs caused rapid degradation of mRNAs beginning with cleavages at sites in the first 250 nucleotides, including a number near the start codon and in the 5' untranslated region. Ligation of the ends to form a circular mRNA inhibited Vhs cleavage at the same sites at which it cuts capped linear molecules. This was not due to an inability to cut any circular RNA, since Vhs cuts circular mRNAs containing an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) at the same sites as linear molecules with the IRES. Cutting linear mRNAs at preferred sites was augmented by the presence of a 5' cap. Moreover, mutations that altered the 5' proximal AUG abolished Vhs cleavage at nearby sites, while mutations that changed sequences surrounding the AUG to improve their match to the Kozak consensus sequence enhanced Vhs cutting near the start codon. The results indicate that mutations in an mRNA that affect its translation affect the sites at which it is cut by Vhs and suggest that Vhs is directed to its preferred cut sites during translation initiation.
Collapse
|
10
|
Chakrabarti S, Liehl P, Buchon N, Lemaitre B. Infection-Induced Host Translational Blockage Inhibits Immune Responses and Epithelial Renewal in the Drosophila Gut. Cell Host Microbe 2012; 12:60-70. [DOI: 10.1016/j.chom.2012.06.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/09/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
|
11
|
Montero H, Trujillo-Alonso V. Stress granules in the viral replication cycle. Viruses 2011; 3:2328-2338. [PMID: 22163347 PMCID: PMC3230854 DOI: 10.3390/v3112328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 12/17/2022] Open
Abstract
As intracellular parasites, viruses require a host cell in order to replicate. However, they face a series of cellular responses against infection. One of these responses is the activation of the double-stranded RNA (dsRNA)-activated protein kinase R (PKR). PKR phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2α), which in turn results in global protein synthesis inhibition and formation of stress granules (SGs). Recent studies have shown that SGs can interfere with the replicative cycle of certain viruses. This review addresses how viruses have evolved different control strategies at the SG level to ensure an efficient replication cycle during the cellular stress response triggered by the viral infection.
Collapse
Affiliation(s)
- Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190, Xalapa, Veracruz, México
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-22-88-41-89-00 (ext. 13323); Fax: +52-22-88-41-89-35
| | - Vicenta Trujillo-Alonso
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, México
| |
Collapse
|
12
|
Abstract
Reactive oxygen species (ROS) are generated as by-products of many cellular processes and can modulate cellular signaling pathways. However, high ROS levels are toxic; thus, intracellular ROS need to be tightly controlled. Therefore, cells use a group of antioxidant molecules and detoxifying enzymes that remove or detoxify reactive species. We found that the level of the antioxidant glutathione is greatly increased in human cytomegalovirus (HCMV)-infected cells due to activation of glutathione synthetic enzymes. In addition, our data suggest that virus-specific mechanisms are used to induce the expression of target antioxidant and detoxifying enzymes critical for the success of the infection. As a result of this virus-induced anti-ROS environment, key signaling kinases, such as the mammalian target of rapamycin (mTOR) kinase in mTOR complex 1 (mTORC1), are protected from inhibition by exogenous hydrogen peroxide (H(2)O(2)). In this regard, we found that phosphorylation of mTOR kinase at serine 2448 (suggested to be activating) was maintained during infection even under ROS stress conditions that inhibited it in uninfected cells. We also show that AMP-dependent kinase (AMPK)-mediated phosphorylation of serine 792 of raptor, the specificity subunit of mTORC1, increases in infected cells after H(2)O(2) treatment. This phosphorylation is normally inhibitory for mTORC1. However, in infected cells this did not result in inhibition of mTORC1 activity, suggesting that inhibitory effects of raptor phosphorylation are circumvented. Overall, our data suggest that HCMV utilizes virus-specific mechanisms to activate a variety of means to protect the cell and mTORC1 from the effects of ROS.
Collapse
|
13
|
Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J Virol 2011; 85:9369-76. [PMID: 21734039 DOI: 10.1128/jvi.05102-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is present in 2 functionally distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). Active mTORC1 mediates phosphorylation of eIF4E-binding protein (4E-BP) and p70 S6 kinase (S6K), which is important for maintaining translation. During human cytomegalovirus (HCMV) infection, cellular stress responses are activated that normally inhibit mTORC1; however, previous data show that HCMV infection circumvents stress responses and maintains mTOR kinase activity. Amino acid deprivation is a stress response that normally inhibits mTORC1 activity. Amino acids can signal to mTORC1 through the Rag proteins, which promote the colocalization of mTORC1 with its activator Rheb-GTP in a perinuclear region, thereby inducing 4E-BP and S6K phosphorylation. As expected, our results show that amino acid depletion in mock-infected cells caused loss of mTORC1 activity and loss of the perinuclear localization; however, there was no loss of activity or perinuclear localization in HCMV-infected cells where the perinuclear localization of Rheb-GTP and mTOR coincided with the perinuclear assembly compartment (AC). This suggested that HCMV infection bypasses normal Rag-dependent amino acid signaling. This was demonstrated by short hairpin RNA (shRNA) depletion of Rag proteins, which had little effect on mTORC1 activity in infected cells but inhibited activity in mock-infected cells. Our data show that HCMV maintains mTORC1 activity in an amino acid- and Rag-independent manner through the colocalization of mTOR and Rheb-GTP, which occurs in association with the formation of the AC, thus bypassing inhibition that may result from lowered amino acid levels.
Collapse
|
14
|
The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011; 2011:369648. [PMID: 21541224 PMCID: PMC3085340 DOI: 10.1155/2011/369648] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022] Open
Abstract
After entry into animal cells, most viruses hijack essential components involved in gene expression. This is the case of poliovirus, which abrogates cellular translation soon after virus internalization. Abrogation is achieved by cleavage of both eIF4GI and eIF4GII by the viral protease 2A. Apart from the interference of poliovirus with cellular protein synthesis, other gene expression steps such as RNA and protein trafficking between nucleus and cytoplasm are also altered. Poliovirus 2Apro is capable of hydrolyzing components of the nuclear pore, thus preventing an efficient antiviral response by the host cell. Here, we compare in detail poliovirus 2Apro with other viral proteins (from picornaviruses and unrelated families) as regard to their activity on key host factors that control gene expression. It is possible that future analyses to determine the cellular proteins targeted by 2Apro will uncover other cellular functions ablated by poliovirus infection. Further understanding of the cellular proteins hydrolyzed by 2Apro will add further insight into the molecular mechanism by which poliovirus and other viruses interact with the host cell.
Collapse
|
15
|
The herpes simplex virus 1 vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner. J Virol 2011; 85:5363-73. [PMID: 21430045 DOI: 10.1128/jvi.00115-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shutoff protein (vhs) degrades viral and cellular mRNAs. Here, we demonstrate for the first time that vhs also boosts translation of viral true late mRNAs in a cell type-dependent manner and that this effect determines the viral growth phenotype in the respective cell type. Our study was prompted by the detection of stress granules, indicators of stalled translation initiation, in cells infected with vhs mutants but not in wild-type-virus-infected cells. Accumulation of true late-gene products gC and US11 was strongly reduced in the absence of vhs in HeLa cells and several other restrictive cell lines but not in Vero and other permissive cells and was independent of phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Polysome analysis showed that gC and US11 transcripts were poorly translated in vhs-null-virus-infected HeLa cells, while translation of a cellular mRNA was not affected. Interestingly, hippuristanol, an eIF4A inhibitor, produced a similar phenotype in HeLa cells infected with wild-type HSV-1, while Vero cells were much more resistant to the inhibitor. These results suggest that translation of true late-gene transcripts is particularly sensitive to conditions of limited access to translation factors and that vhs is able either to prevent the limiting conditions or to facilitate translation initiation under these conditions. The varied permissivity of cell lines to vhs-null infection may stem from differences in the resilience of the translation machinery or the ability to control the accumulation of mRNAs.
Collapse
|
16
|
The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection. J Virol 2011; 85:3930-9. [PMID: 21307192 DOI: 10.1128/jvi.01913-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase occurs in mTOR complex 1 (mTORC1) and complex 2 (mTORC2), primarily differing by the substrate specificity factors raptor (in mTORC1) and rictor (in mTORC2). Both complexes are activated during human cytomegalovirus (HCMV) infection. mTORC1 phosphorylates eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) and p70S6 kinase (S6K) in uninfected cells, and this activity is lost upon raptor depletion. In infected cells, 4E-BP1 and S6K phosphorylation is maintained when raptor or rictor is depleted, suggesting that either mTOR complex can phosphorylate 4E-BP1 and S6K. Studies using the mTOR inhibitor Torin1 show that phosphorylation of 4E-BP1 and S6K in infected cells depends on mTOR kinase. The total levels of 4E-BP1 and viral proteins representative of all temporal classes were lowered by Torin1 treatment and by raptor, but not rictor, depletion, suggesting that mTORC1 is involved in the production of all classes of HCMV proteins. We also show that Torin1 inhibition of mTOR kinase is rapid and most deleterious at early times of infection. While Torin1 treatment from the beginning of infection significantly inhibited translation of viral proteins, its addition at later time points had far less effect. Thus, with respect to mTOR's role in translational control, HCMV depends on it early in infection but can bypass it at later times of infection. Depletion of 4E-BP1 by use of short hairpin RNAs (shRNAs) did not rescue HCMV growth in Torin1-treated human fibroblasts as it has been shown to in murine cytomegalovirus (MCMV)-infected 4E-BP1(-/-) mouse embryo fibroblasts (MEFs), suggesting that during HCMV infection mTOR kinase has additional roles other than phosphorylating and inactivating 4E-BP1. Overall, our data suggest a dynamic relationship between HCMV and mTOR kinase which changes during the course of infection.
Collapse
|
17
|
Kim H, White CD, Sacks DB. IQGAP1 in microbial pathogenesis: Targeting the actin cytoskeleton. FEBS Lett 2011; 585:723-9. [PMID: 21295032 DOI: 10.1016/j.febslet.2011.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/18/2022]
Abstract
Microbial pathogens cause widespread morbidity and mortality. Central to the pathogens' virulence is manipulation of the host cell's cytoskeleton, which facilitates microbial invasion, multiplication, and avoidance of the innate immune response. IQGAP1 is a ubiquitously expressed scaffold protein that integrates diverse signaling cascades. Research has shown that IQGAP1 binds to and modulates the activity of multiple proteins that participate in bacterial invasion. Here, we review data that support a role for IQGAP1 in infectious disease via its ability to regulate the actin cytoskeleton. In addition, we explore other mechanisms by which IQGAP1 may be exploited by microbial pathogens.
Collapse
Affiliation(s)
- Hugh Kim
- Department of Translational Medicine, Brigham and Women's Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
18
|
Noncytotoxic inhibition of viral infection through eIF4F-independent suppression of translation by 4EGi-1. J Virol 2010; 85:853-64. [PMID: 21068241 DOI: 10.1128/jvi.01873-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic initiation factor eIF4F recruits ribosomes to capped mRNAs while eIF2 mediates start codon recognition to initiate protein synthesis. Increasing interest in targeting translation to suppress tumor growth has led to the development of new classes of inhibitors, including 4EGi-1, which disrupts eIF4F complexes. However, the full effects of this inhibitor and its potential uses in the treatment of other disease states remain unclear. Here, we show that overall rates of protein synthesis in primary human cells were affected only modestly by eIF4F disruption using the mTOR inhibitor Torin1, yet were highly sensitive to 4EGi-1. Translational suppression occurred even at concentrations of 4EGi-1 that were below those required to significantly alter eIF4F levels but were instead found to increase the association of ribosomal complexes containing inactive eIF2α. Although highly stable in culture, the effects of 4EGi-1 on both cellular protein synthesis and ribosome association were readily reversible upon inhibitor removal. In addition, despite potently inhibiting translation, prolonged exposure to 4EGi-1 had only modest effects on cell morphology and protein abundance without affecting viability or stress tolerance to any significant degree, although differential effects on heat shock protein (hsp) expression highlighted distinct 4EGi-1-sensitive modes of hsp induction. In contrast, 4EGi-1 potently suppressed poxvirus replication as well as both reactivation and lytic phases of herpesvirus infection. These findings identify a novel way in which 4EGi-1 affects the host cell's protein synthesis machinery and demonstrate its potential as a noncytotoxic inhibitor of diverse forms of viral infection.
Collapse
|
19
|
Leach NR, Roller RJ. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology 2010; 406:127-37. [PMID: 20674954 DOI: 10.1016/j.virol.2010.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/23/2010] [Accepted: 07/01/2010] [Indexed: 12/25/2022]
Abstract
The nuclear lamina is thought to be a steric barrier to the herpesvirus capsid. Disruption of the lamina accompanied by phosphorylation of lamina proteins is a conserved feature of herpesvirus infection. In HSV-1-infected cells, protein kinase C (PKC) alpha and delta isoforms are recruited to the nuclear membrane and PKC delta has been implicated in phosphorylation of emerin and lamin B. We tested two critical hypotheses about the mechanism and significance of lamina disruption. First, we show that chemical inhibition of all PKC isoforms reduced viral growth five-fold and inhibited capsid egress from the nucleus. However, specific inhibition of either conventional PKCs or PKC delta does not inhibit viral growth. Second, we show hyperphosphorylation of emerin by viral and cellular kinases is required for its disassociation from the lamina. These data support hypothesis that phosphorylation of lamina components mediates lamina disruption during HSV nuclear egress.
Collapse
Affiliation(s)
- Natalie R Leach
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
20
|
Abstract
Human cytomegalovirus (HCMV) infection has been shown to activate the mTORC1 signaling pathway. However, the phosphorylation of mTORC1 targets is differentially sensitive to the mTORC1 inhibitor rapamycin, and the drug inhibits HCMV replication to a modest extent. Using Torin1, a newly developed inhibitor that targets the catalytic site of mTOR kinase, we show that HCMV replication requires both rapamycin-sensitive and rapamycin-resistant mTOR activity. The treatment of infected cells with Torin1 inhibits the phosphorylation of rapamycin-sensitive and rapamycin-resistant mTOR targets and markedly blocks the production of virus progeny. The blockade of mTOR signaling with Torin1, but not rapamycin, disrupts the assembly of the eIF4F complex and increases the association of the translational repressor 4EBP1 to the 7-methylguanosine cap-binding complex. Torin1 does not affect HCMV entry and only modestly reduces the accumulation of the immediate-early and early viral proteins that were tested despite the disruption of the eIF4F complex. In contrast, Torin1 significantly decreases the accumulation of viral DNA and the pUL99 viral late protein. Similar mTOR signaling events were observed during murine cytomegalovirus (MCMV) infection, and we utilized murine fibroblasts containing several different mutations to dissect the mechanism by which Torin1 inhibits MCMV replication. This approach demonstrated that mTORC2 and the Akt1 and Akt2 kinases are not required for the Torin1-mediated inhibition of cytomegalovirus replication. The inhibition of MCMV replication by Torin1 was rescued in cells lacking 4EBP1, demonstrating that the inactivation of 4EBP1 by mTORC1 is critical for cytomegalovirus replication. Finally, we show that Torin1 inhibits the replication of representative members of the alpha-, beta-, and gammaherpesvirus families, demonstrating the potential of mTOR kinase inhibitors as broad-spectrum antiviral agents.
Collapse
|
21
|
Roberts LO, Jopling CL, Jackson RJ, Willis AE. Viral strategies to subvert the mammalian translation machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:313-67. [PMID: 20374746 PMCID: PMC7102724 DOI: 10.1016/s1877-1173(09)90009-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viruses do not carry their own protein biosynthesis machinery and the translation of viral proteins therefore requires that the virus usurps the machinery of the host cell. To allow optimal translation of viral proteins at the expense of cellular proteins, virus families have evolved a variety of methods to repress the host translation machinery, while allowing effective viral protein synthesis. Many viruses use noncanonical mechanisms that permit translation of their own RNAs under these conditions. Viruses have also developed mechanisms to evade host innate immune responses that would repress translation under conditions of viral infection, in particular PKR activation in response to double-stranded RNA (dsRNA). Importantly, the study of viral translation mechanisms has enormously enhanced our understanding of many aspects of the cellular protein biosynthesis pathway and its components. A number of unusual mechanisms of translation initiation that were first discovered in viruses have since been observed in cellular mRNAs, and it has become apparent that a diverse range of translation mechanisms operates in eukaryotes, allowing subtle regulation of this essential process.
Collapse
Affiliation(s)
- Lisa O Roberts
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | | |
Collapse
|
22
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
23
|
The endoplasmic reticulum chaperone BiP/GRP78 is important in the structure and function of the human cytomegalovirus assembly compartment. J Virol 2009; 83:11421-8. [PMID: 19741001 DOI: 10.1128/jvi.00762-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that the endoplasmic reticulum (ER) chaperone BiP functions in human cytomegalovirus (HCMV) assembly and egress. Here, we show that BiP localizes in two cytoplasmic structures in infected cells. Antibodies to the extreme C terminus, which includes BiP's KDEL ER localization sequence, detect BiP in regions of condensed ER near the periphery of the cell. Antibodies to the full length, N terminus, or larger portion of the C terminus detect BiP in the assembly compartment. This inability of C-terminal antibodies to detect BiP in the assembly compartment suggests that BiP's KDEL sequence is occluded in the assembly compartment. Depletion of BiP causes the condensed ER and assembly compartments to dissociate, indicating that BiP is important for their integrity. BiP and pp28 are in association in the assembly compartment, since antibodies that detect BiP in the assembly compartment coimmunoprecipitate pp28 and vice versa. In addition, BiP and pp28 copurify with other assembly compartment components on sucrose gradients. BiP also coimmunoprecipitates TRS1. Previous data show that cells infected with a TRS1-deficient virus have cytoplasmic and assembly compartment defects like those seen when BiP is depleted. We show that a fraction of TRS1 purifies with the assembly compartment. These findings suggest that BiP and TRS1 share a function in assembly compartment maintenance. In summary, BiP is diverted from the ER to associate with pp28 and TRS1, contributing to the integrity and function of the assembly compartment.
Collapse
|
24
|
Castelló A, Quintas A, Sánchez EG, Sabina P, Nogal M, Carrasco L, Revilla Y. Regulation of host translational machinery by African swine fever virus. PLoS Pathog 2009; 5:e1000562. [PMID: 19714237 PMCID: PMC2727446 DOI: 10.1371/journal.ppat.1000562] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/31/2009] [Indexed: 11/25/2022] Open
Abstract
African swine fever virus (ASFV), like other complex DNA viruses, deploys a variety of strategies to evade the host's defence systems, such as inflammatory and immune responses and cell death. Here, we analyse the modifications in the translational machinery induced by ASFV. During ASFV infection, eIF4G and eIF4E are phosphorylated (Ser1108 and Ser209, respectively), whereas 4E-BP1 is hyperphosphorylated at early times post infection and hypophosphorylated after 18 h. Indeed, a potent increase in eIF4F assembly is observed in ASFV-infected cells, which is prevented by rapamycin treatment. Phosphorylation of eIF4E, eIF4GI and 4E-BP1 is important to enhance viral protein production, but is not essential for ASFV infection as observed in rapamycin- or CGP57380-treated cells. Nevertheless, eIF4F components are indispensable for ASFV protein synthesis and virus spread, since eIF4E or eIF4G depletion in COS-7 or Vero cells strongly prevents accumulation of viral proteins and decreases virus titre. In addition, eIF4F is not only activated but also redistributed within the viral factories at early times of infection, while eIF4G and eIF4E are surrounding these areas at late times. In fact, other components of translational machinery such as eIF2α, eIF3b, eIF4E, eEF2 and ribosomal P protein are enriched in areas surrounding ASFV factories. Notably, the mitochondrial network is polarized in ASFV-infected cells co-localizing with ribosomes. Thus, translation and ATP synthesis seem to be coupled and compartmentalized at the periphery of viral factories. At later times after ASFV infection, polyadenylated mRNAs disappear from the cytoplasm of Vero cells, except within the viral factories. The distribution of these pools of mRNAs is similar to the localization of viral late mRNAs. Therefore, degradation of cellular polyadenylated mRNAs and recruitment of the translation machinery to viral factories may contribute to the inhibition of host protein synthesis, facilitating ASFV protein production in infected cells. African Swine Fever Virus (ASFV) is a large DNA virus that infects different species of swine, causing an acute, highly contagious and often fatal disease. Infection by ASFV is characterized by the absence of a neutralizing immune response, which has so far hampered the development of a conventional vaccine. While a number of reports have been concerned with ASFV genes and mechanisms regulating programmed cell death and immune evasion, nothing is known so far regarding how ASFV replicates in the infected cells. As intracellular parasites, viruses are highly dependent on host translation machinery for synthesizing their own proteins. We have observed that the cellular protein synthesis is strongly inhibited during ASFV infection, while viral proteins are efficiently produced. Furthermore, we here describe the processes by which ASFV activates and redistributes the cellular machinery to synthesize its own proteins. It has been reported that ASFV replicates within discrete cytoplasmic areas known as factories. In this regard, we have identified the presence of important cellular factors involved in the control of protein synthesis, located close to viral factories, together with ribosomes and the mitochondrial network, which represents a sophisticated mechanism of viral control.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Quintas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena G. Sánchez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Prado Sabina
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marisa Nogal
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Abstract
Viruses are dependent upon the host cell protein synthesis machinery, thus they have developed a range of strategies to manipulate host translation to favour viral protein synthesis. Consequently, the study of viral translation has been a powerful tool for illuminating many aspects of cellular translational control. Although much work to date has focused on translational regulation by RNA viruses, DNA viruses have also evolved complex mechanisms to regulate protein synthesis. Here we summarize work on a large family of DNA viruses, the Herpesviridae, which have evolved mechanisms to sustain efficient cap-dependent translation and to regulate the translation of specific viral mRNAs.
Collapse
|
26
|
Phosphorylation of yellow fever virus NS5 alters methyltransferase activity. Virology 2008; 380:276-84. [PMID: 18757072 DOI: 10.1016/j.virol.2008.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/09/2008] [Accepted: 07/15/2008] [Indexed: 12/31/2022]
Abstract
Serine/threonine phosphorylation of the nonstructural protein 5 (NS5) is conserved feature of flaviviruses, but the kinase(s) responsible and function(s) remain unknown. Mass spectrometry was used to characterize phosphorylated residues of yellow fever virus (YFV) NS5 expressed in mammalian cells. Multiple different phosphopeptides were detected. Mutational and additional mass spectrometry data implicated serine 56 (S56), a conserved residue near the active site in the NS5 methyltransferase domain, as one of the phosphorylation sites. Methyltransferase activity is required to form a methylated RNA cap structure and for translation of the YFV polyprotein. We show the 2'-O methylation reaction requires the hydroxyl side chain of S56, and replacement with a negative charge inhibits enzymatic activity. Furthermore mutational alteration of S56, S56A or S56D, prevents amplification in a viral replicon system. Collectively our data suggest phosphorylation of NS5 S56 may act to shut down capping in the viral life cycle.
Collapse
|
27
|
Wang F, Bi X, Chen LM, Hew CL. ORF018R, a highly abundant virion protein from Singapore grouper iridovirus, is involved in serine/threonine phosphorylation and virion assembly. J Gen Virol 2008; 89:1169-1178. [PMID: 18420794 DOI: 10.1099/vir.0.83639-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iridovirus is an important pathogen causing serious diseases among wild, cultured and ornamental fish. Previous studies have shown that Singapore grouper iridovirus (SGIV) contains 162 open reading frames (ORFs) from which 51 viral proteins have been confirmed by proteomics studies. ORF018R, which is conserved among vertebrate iridoviruses, is an abundant virion protein identified from SGIV. Here, immunofluorescence staining showed that ORF018R occurred at high abundance throughout SGIV-infected cells. The function of ORF018R was explored using antisense morpholino oligonucleotides (asMOs). Knockdown of ORF018R expression resulted in a reduction in the expression of viral late genes, distortion of viral particle assembly and inhibition of SGIV infection in grouper embryonic cells. Western blotting with phosphoserine-specific antibody indicated that serine phosphorylation was significantly enhanced for proteins of molecular masss 17-32 kDa by SDS-PAGE when ORF018R expression was eliminated. These proteins were analysed further by two-dimensional gel electrophoresis, and numerous protein spots were found to shift to a lower pI and higher molecular mass as a result of the loss of ORF018R function. Five proteins with enhanced phosphorylation were identified by matrix-assisted laser desorption/ionization time-of-flight (TOF)-TOF mass spectrometry, including three viral proteins: ORF049L (dUTPase), ORF075R and ORF086R, and two host proteins: subunit 12 of eukaryotic translation factor 3 and natural killer enhancing factor. These findings suggest that ORF018R is involved in serine/threonine phosphorylation in SGIV-infected late-stage cells and plays an important role in expression of viral late genes and virion assembly.
Collapse
Affiliation(s)
- Fan Wang
- Department of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, 117543, Singapore
| | - Xuezhi Bi
- Department of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, 117543, Singapore
| | - Li Ming Chen
- Department of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, 117543, Singapore
| | - Choy-Leong Hew
- Department of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, 117543, Singapore
| |
Collapse
|
28
|
Kolot M, Gorovits R, Silberstein N, Fichtman B, Yagil E. Phosphorylation of the integrase protein of coliphage HK022. Virology 2008; 375:383-90. [DOI: 10.1016/j.virol.2008.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
29
|
Buchkovich NJ, Maguire TG, Yu Y, Paton AW, Paton JC, Alwine JC. Human cytomegalovirus specifically controls the levels of the endoplasmic reticulum chaperone BiP/GRP78, which is required for virion assembly. J Virol 2008; 82:31-9. [PMID: 17942541 PMCID: PMC2224369 DOI: 10.1128/jvi.01881-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 09/20/2007] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) chaperone BiP/GRP78 regulates ER function and the unfolded protein response (UPR). Human cytomegalovirus infection of human fibroblasts induces the UPR but modifies it to benefit viral replication. BiP/GRP78 protein levels are tightly regulated during infection, rising after 36 h postinfection (hpi), peaking at 60 hpi, and decreasing thereafter. To determine the effects of this regulation on viral replication, BiP/GRP78 was depleted using the SubAB subtilase cytotoxin, which rapidly and specifically cleaves BiP/GRP78. Toxin treatment of infected cells for 12-h periods beginning at 36, 48, 60, and 84 hpi caused complete loss of BiP but had little effect on viral protein synthesis. However, progeny virion formation was significantly inhibited, suggesting that BiP/GRP78 is important for virion formation. Electron microscopic analysis showed that infected cells were resistant to the toxin and showed none of the cytotoxic effects seen in uninfected cells. However, all viral activity in the cytoplasm ceased, with nucleocapsids remaining in the nucleus or concentrated in the cytoplasmic space just outside of the outer nuclear membrane. These data suggest that one effect of the controlled expression of BiP/GRP78 in infected cells is to aid in cytoplasmic virion assembly and egress.
Collapse
Affiliation(s)
- Nicholas J Buchkovich
- Department of Cancer Biology, 314 Biomedical Research Building, 421 Curie Blvd., School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Human cytomegalovirus (HCMV) induces cellular stress responses during infection due to nutrient depletion, energy depletion, hypoxia and synthetic stress, e.g., endoplasmic reticulum (ER) stress. Cellular stress responses initiate processes that allow the cell to survive the stress; some of these may be beneficial to HCMV replication while others are not. Several studies show that HCMV manipulates stress response signaling in order to maintain beneficial effects while inhibiting detrimental effects. The inhibition of translation is the most common effect of stress responses that would be detrimental to HCMV infection. This chapter will focus on the mechanisms by which cap-dependent translation is maintained during HCMV infection through alterations of the phosphatidylinositol-3' kinase (PI3K)-Akt-tuberous sclerosis complex (TSC)-mammalian target of rapamycin (mTOR) signaling pathway. The emerging picture is that HCMV affects this pathway in multiple ways, thus ensuring that cap-dependent translation is maintained despite the induction of stress responses that would normally inhibit it. Such dramatic alterations of this pathway lead to questions of what other beneficial effects the virus might gain from these changes and how these changes may contribute to HCMV pathogenesis.
Collapse
|
31
|
Sanz MA, Castelló A, Carrasco L. Viral translation is coupled to transcription in Sindbis virus-infected cells. J Virol 2007; 81:7061-8. [PMID: 17442713 PMCID: PMC1933293 DOI: 10.1128/jvi.02529-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the late phase of Sindbis virus infection, the viral subgenomic mRNA is translated efficiently in BHK cells, whereas host protein synthesis is inhibited. However, transfection of in vitro-generated Sindbis virus subgenomic mRNA leads to efficient translation in uninfected BHK cells, whereas it is a poor substrate in infected cells. Therefore, the structure of the subgenomic mRNA itself is not sufficient to confer its translatability in infected cells. In this regard, translation of the subgenomic mRNA requires synthesis from the viral transcription machinery. The lack of translation of transfected viral mRNAs in infected cells is not due to their degradation nor is it a consequence of competition between viral transcripts and transfected mRNAs, because a replicon that cannot produce subgenomic mRNA also interferes with exogenous mRNA translation. Interestingly, subgenomic mRNA is translated more efficiently when it is transfected into uninfected cells than when it is transcribed from a transfected replicon. Finally, a similar behavior was observed for other RNA viruses, such as vesicular stomatitis virus and encephalomyocarditis virus. These findings support the notion that translation is coupled to transcription in cells infected with different animal viruses.
Collapse
Affiliation(s)
- Miguel A Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
32
|
Mulvey M, Arias C, Mohr I. Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J Virol 2007; 81:3377-90. [PMID: 17229688 PMCID: PMC1866074 DOI: 10.1128/jvi.02191-06] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the efforts of viruses to dominate and control critical cellular pathways, viruses generate considerable intracellular stress within their hosts. In particular, the capacity of resident endoplasmic reticulum (ER) chaperones to properly process the acute increase in client protein load is significantly challenged. Such alterations typically induce the unfolded protein response, one component of which acts through IRE1 to restore ER homeostasis by expanding the folding capabilities, whereas the other arm activates the eIF-2alpha (alpha subunit of eukaryotic initiation factor 2) kinase PERK to transiently arrest production of new polypeptide clientele. Viruses, such as herpes simplex virus type 1 (HSV-1), however, go to great lengths to prevent the inhibition of translation resulting from eIF-2alpha phosphorylation. Here, we establish that PERK, but not IRE1, resists activation by acute ER stress in HSV-1-infected cells. This requires the ER luminal domain of PERK, which associates with the viral glycoprotein gB. Strikingly, gB regulates viral protein accumulation in a PERK-dependent manner. This is the first description of a virus-encoded PERK-specific effector and defines a new strategy by which viruses are able to maintain ER homeostasis.
Collapse
Affiliation(s)
- Matthew Mulvey
- Department of Microbiology, NYU School of Medicine, MSB214, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
33
|
Mulvey M, Arias C, Mohr I. Resistance of mRNA translation to acute endoplasmic reticulum stress-inducing agents in herpes simplex virus type 1-infected cells requires multiple virus-encoded functions. J Virol 2006; 80:7354-63. [PMID: 16840316 PMCID: PMC1563692 DOI: 10.1128/jvi.00479-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.
Collapse
Affiliation(s)
- Matthew Mulvey
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
34
|
Halford WP, Weisend C, Grace J, Soboleski M, Carr DJJ, Balliet JW, Imai Y, Margolis TP, Gebhardt BM. ICP0 antagonizes Stat 1-dependent repression of herpes simplex virus: implications for the regulation of viral latency. Virol J 2006; 3:44. [PMID: 16764725 PMCID: PMC1557838 DOI: 10.1186/1743-422x-3-44] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/09/2006] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The herpes simplex virus type 1 (HSV-1) ICP0 protein is an E3 ubiquitin ligase, which is encoded within the HSV-1 latency-associated locus. When ICP0 is not synthesized, the HSV-1 genome is acutely susceptible to cellular repression. Reciprocally, when ICP0 is synthesized, viral replication is efficiently initiated from virions or latent HSV-1 genomes. The current study was initiated to determine if ICP0's putative role as a viral interferon (IFN) antagonist may be relevant to the process by which ICP0 influences the balance between productive replication versus cellular repression of HSV-1. RESULTS Wild-type (ICP0+) strains of HSV-1 produced lethal infections in scid or rag2-/- mice. The replication of ICP0- null viruses was rapidly repressed by the innate host response of scid or rag2-/- mice, and the infected animals remained healthy for months. In contrast, rag2-/- mice that lacked the IFN-alpha/beta receptor (rag2-/- ifnar-/-) or Stat 1 (rag2-/- stat1-/-) failed to repress ICP0- viral replication, resulting in uncontrolled viral spread and death. Thus, the replication of ICP0- viruses is potently repressed in vivo by an innate immune response that is dependent on the IFN-alpha/beta receptor and the downstream transcription factor, Stat 1. CONCLUSION ICP0's function as a viral IFN antagonist is necessary in vivo to prevent an innate, Stat 1-dependent host response from rapidly repressing productive HSV-1 replication. This antagonistic relationship between ICP0 and the host IFN response may be relevant in regulating whether the HSV-1 genome is expressed, or silenced, in virus-infected cells in vivo. These results may also be clinically relevant. IFN-sensitive ICP0- viruses are avirulent, establish long-term latent infections, and induce an adaptive immune response that is highly protective against lethal challenge with HSV-1. Therefore, ICP0- viruses appear to possess the desired safety and efficacy profile of a live vaccine against herpetic disease.
Collapse
Affiliation(s)
- William P Halford
- Dept of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA
| | - Carla Weisend
- Dept of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA
| | - Jennifer Grace
- Dept of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA
| | - Mark Soboleski
- Dept of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA
| | - Daniel JJ Carr
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John W Balliet
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yumi Imai
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Todd P Margolis
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Bryan M Gebhardt
- Dept of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
35
|
Abstract
Recruitment of the 40S ribosome to the 5' end of a eukaryotic mRNA requires assembly of translation initiation factors eIF4E, the cap-binding protein, together with eIF4A and eIF4G into a complex termed eIF4F. While the translational repressor 4E-BP1 regulates binding of eIF4E to eIF4G, the forces required to construct an eIF4F complex remain unidentified. Here, we establish that the herpes simplex virus-1 (HSV-1) ICP6 polypeptide associates with eIF4G to promote eIF4F complex assembly. Strikingly, release of eIF4E from the 4E-BP1 repressor is insufficient to drive complex formation, suggesting that ICP6 is an eIF4F-assembly chaperone. This is the first example of a translation initiation factor-associated protein that promotes active complex assembly and defines a new, controllable step in the initiation of translation. Homology of the N-terminal, eIF4G-binding segment of ICP6 with cellular chaperones suggest that factors capable of interacting with eIF4G and promoting eIF4F complex assembly may play important roles in a variety of processes where translation complexes need to be remodeled or assembled on populations of newly synthesized or derepressed mRNAs, including development, differentiation, and the response to a broad spectrum of environmental cues.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|