1
|
Yang K, Wang Z, Wang X, Bi M, Hu S, Li K, Pan X, Wang Y, Ma D, Mo X. Epidemiological investigation and analysis of the infection of porcine circovirus in Xinjiang. Virol J 2024; 21:230. [PMID: 39334389 PMCID: PMC11428415 DOI: 10.1186/s12985-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine circoviruses, particularly porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), significantly impact the global pig industry due to their high prevalence and pathogenicity. Conversely, porcine circovirus type 1 (PCV1) and porcine circovirus type 4 (PCV4) currently have low positivity rates. This study aimed to characterize the distribution and epidemiology of porcine circoviruses in Xinjiang, while also analyzing the genetic diversity and evolution of PCV2 and PCV3, which pose the greatest threats to the industry. In this study, we collected blood and tissue samples from 453 deceased pigs across eight regions in Xinjiang Province from 2022 to 2024. We utilized real-time PCR to detect the presence of PCV1, PCV2, PCV3, and PCV4. The positive rates were 15%, 71%, 25%, and 17%, respectively. Genetic analysis showed 9 PCV2 sequences and 12 PCV3 sequences. The capsid protein of PCV2 showed significant variability. In contrast, the amino acid sequences of capsid in PCV3 were relatively stable. Moreover, we predicted antigenic epitopes for PCV3 capsid using IEDB and ElliPro. The findings from this study provide valuable epidemiological data on PCV coinfection in the Xinjiang region and enhance the understanding of virus diversity nationwide. This research may serve as an important reference for the development of strategies to prevent and control porcine circovirus infections.
Collapse
Affiliation(s)
- Kai Yang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Zunbao Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Xinyu Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Mingfang Bi
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Suhua Hu
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Kaijie Li
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaomei Pan
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Yuan Wang
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Dan Ma
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaobing Mo
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Guo X, Zhao X, Li L, Jiang M, Zhou A, Gao Y, Zheng P, Liu J, Zhao X. Platycodon grandiflorus polysaccharide inhibits the inflammatory response of 3D4/21 cells infected with PCV2. Microb Pathog 2024; 189:106592. [PMID: 38423406 DOI: 10.1016/j.micpath.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Porcine circovirus type 2 (PCV2) infection cause multi-systemic inflammation in pigs. Platycodon grandiflorus polysaccharide (PGPSt) has been reported to have the effects of immune regulation and disease resistance. Nevertheless, the role and mechanism of PGPSt in the inflammatory response of 3D4/21 cells induced by PCV2 infection remain unclear. The present study aims to investigate effects of PGPSt on inflammatory response and its possible underlying mechanisms in vitro models. Cells were treated with PCV2 for 36 h to construct a cell inflammation model. The 3D4/21 cell lines were pretreated with or without PGPSt, and the changes of inflammation-related markers and the signaling pathway were detected by CCK-8, ELISA, qPCR and Western blot. The results showed that PGPSt was non-toxic to cells and protected PCV2-infected cells from inflammatory damage. PGPSt could significantly inhibit the high acetylation of histone H3 (AcH3) and histone H4 (AcH4), down-regulate HAT and up-regulate HDAC activity, and reduce the expression of pro-inflammatory enzymes iNOS and COX-2 proteins levels. Then the levels of IL-1β, IL-6 and TNF-α were significantly inhibited, and the level of IL-10 was promoted. We also observed that PGPSt inhibited the phosphorylation of p65, p38 and Erk1/2, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. In conclusion, PGPSt can reduce the inflammatory response by regulating histone acetylation, reducing the release of inflammatory factors, reducing the expression of pro-inflammatory enzymes, and inhibiting the activation of NF-κB and MAPKs signaling pathways. This suggests that PGPSt had an anti-inflammatory effect on the inflammatory response caused by PCV2 infection, which provided theoretical data support for the research.
Collapse
Affiliation(s)
- Xiaocheng Guo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China; Weifang University of Science and Technology, Weifang, Shandong, 262700, China
| | - Ximan Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Linjue Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Menglin Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Aiqin Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yifan Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Pimiao Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| | - Xiaona Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| |
Collapse
|
3
|
Yang Y, Xu Z, Tao Q, Xu L, Gu S, Huang Y, Liu Z, Zhang Y, Wen J, Lai S, Zhu L. Construction of recombinant pseudorabies virus expressing PCV2 Cap, PCV3 Cap, and IL-4: investigation of their biological characteristics and immunogenicity. Front Immunol 2024; 15:1339387. [PMID: 38571947 PMCID: PMC10987767 DOI: 10.3389/fimmu.2024.1339387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China. Methods In this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice. Results rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators. Conclusion rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Lloren KKS, Lee JH. Live-Attenuated Salmonella-Based Oral Vaccine Candidates Expressing PCV2d Cap and Rep by Novel Expression Plasmids as a Vaccination Strategy for Mucosal and Systemic Immune Responses against PCV2d. Vaccines (Basel) 2023; 11:1777. [PMID: 38140182 PMCID: PMC10748173 DOI: 10.3390/vaccines11121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral vaccines are highly envisaged for veterinary applications due to their convenience and ability to induce protective mucosal immunity as the first line of defense. The present investigation harnessed live-attenuated Salmonella Typhimurium to orally deliver novel expression vector systems containing the Cap and Rep genes from porcine circovirus type 2 (PCV2), a significant swine pathogen. The antigen expression by the vaccine candidates JOL2885 and JOL2886, comprising eukaryotic pJHL204 and pro-eukaryotic expression pJHL270 plasmids, respectively, was confirmed by Western blot and IFA. We evaluated their immunogenicity and protective efficacy through oral vaccination in a mouse model. This approach elicited both mucosal and systemic immunity against PCV2d. Oral administration of the candidates induced PCV2-specific sIgA, serum IgG antibodies, and neutralizing antibodies, resulting in reduced viral loads in the livers and lungs of PCV2d-challenged mice. T-lymphocyte proliferation and flow-cytometry assays confirmed enhanced cellular immune responses after oral inoculation. The synchronized elicitation of both Th1 and Th2 responses was also confirmed by enhanced expression of TNF-α, IFN-γ, IL-4, MHC-I, and MHC-II. Our findings highlight the effectiveness and safety of the constructs with an engineered-attenuated S. Typhimurium, suggesting its potential application as an oral PCV2 vaccine candidate.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
5
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
6
|
D’Annunzio G, Ostanello F, Muscatello LV, Orioles M, Bacci B, Jacumin N, Leotti G, Tommasini N, Alborali GL, Luppi A, Vio D, Mandrioli L, Sarli G. Porcine Lawsonia intracellularis Ileitis in Italy and Its Association with Porcine Circovirus Type 2 (PCV2) Infection. Animals (Basel) 2023; 13:ani13071170. [PMID: 37048426 PMCID: PMC10093578 DOI: 10.3390/ani13071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The objective of this study was to employ a diagnostic algorithm, which involves detecting positive farms by stool PCR followed by PCR and histology/immunohistochemistry on ileum samples, for diagnosing Lawsonia intracellularis proliferative enteritis in Northern Italy. The primary aim was to examine the relationship between the gold standard of L. intracellularis diagnostics, namely histology and immunohistochemistry, and PCR in acute and chronic cases of L. intracellularis enteritides. An additional goal was to investigate the coinfection of L. intracellularis with porcine circovirus type 2 (PCV2). Twenty-eight ileum samples, including four from acute cases and 24 from chronic cases, were collected. PCR yielded positive results in 19 cases (four acute and 15 chronic cases). In comparison, immunohistochemistry was positive in 16 cases (four acute and 12 chronic cases), with an observed agreement of 89%. The findings suggest that performing the two tests in series can increase the specificity of the causal diagnosis. PCR may be used as a screening tool to identify the presence of the microorganism, and only positive cases will be examined by histology and immunohistochemistry to confirm the causative role of L. intracellularis. Co-infection with PCV2 was demonstrate in two out of four acute cases and in two out of 24 chronic cases, providing further evidence to support the hypothesis that when the infection starts with ubiquitous pathogens such as L. intracellularis, it may boost the possibility of PCV2 replication, especially in acute cases. As a result, this may trigger a transition from subclinical to clinical forms of PCV2 disease.
Collapse
|
7
|
Assavacheep P, Thanawongnuwech R. Porcine respiratory disease complex: Dynamics of polymicrobial infections and management strategies after the introduction of the African swine fever. Front Vet Sci 2022; 9:1048861. [PMID: 36504860 PMCID: PMC9732666 DOI: 10.3389/fvets.2022.1048861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
A few decades ago, porcine respiratory disease complex (PRDC) exerted a major economic impact on the global swine industry, particularly due to the adoption of intensive farming by the latter during the 1980's. Since then, the emerging of porcine reproductive and respiratory syndrome virus (PRRSV) and of porcine circovirus type 2 (PCV2) as major immunosuppressive viruses led to an interaction with other endemic pathogens (e.g., Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Streptococcus suis, etc.) in swine farms, thereby exacerbating the endemic clinical diseases. We herein, review and discuss various dynamic polymicrobial infections among selected swine pathogens. Traditional biosecurity management strategies through multisite production, parity segregation, batch production, the adoption of all-in all-out production systems, specific vaccination and medication protocols for the prevention and control (or even eradication) of swine diseases are also recommended. After the introduction of the African swine fever (ASF), particularly in Asian countries, new normal management strategies minimizing pig contact by employing automatic feeding systems, artificial intelligence, and robotic farming and reducing the numbers of vaccines are suggested. Re-emergence of existing swine pathogens such as PRRSV or PCV2, or elimination of some pathogens may occur after the ASF-induced depopulation. ASF-associated repopulating strategies are, therefore, essential for the establishment of food security. The "repopulate swine farm" policy and the strict biosecurity management (without the use of ASF vaccines) are, herein, discussed for the sustainable management of small-to-medium pig farms, as these happen to be the most potential sources of an ASF re-occurrence. Finally, the ASF disruption has caused the swine industry to rapidly transform itself. Artificial intelligence and smart farming have gained tremendous attention as promising tools capable of resolving challenges in intensive swine farming and enhancing the farms' productivity and efficiency without compromising the strict biosecurity required during the ongoing ASF era.
Collapse
Affiliation(s)
- Pornchalit Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Pornchalit Assavacheep
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Faculty of Veterinary Science, Center of Emerging and Re-emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand,Roongroje Thanawongnuwech
| |
Collapse
|
8
|
TGF-β from the Porcine Intestinal Cell Line IPEC-J2 Induced by Porcine Circovirus 2 Increases the Frequency of Treg Cells via the Activation of ERK (in CD4 + T Cells) and NF-κB (in IPEC-J2). Viruses 2022; 14:v14112466. [PMID: 36366564 PMCID: PMC9698303 DOI: 10.3390/v14112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Porcine circovirus 2 (PCV2) causes immunosuppression. Piglets infected with PCV2 can develop enteritis. Given that the gut is the largest immune organ, however, the response of the gut's immune system to PCV2 is still unclear. Here, IPEC-J2 cells with different treatments were co-cultured with PBMC or CD4+ T cells (Transwell). Flow cytometry and Western blotting revealed that PCV2-infected IPEC-J2 increased the frequency of CD4+ T cells among piglets' peripheral blood mononuclear cells (PBMCs) and caused CD4+ T cells to undergo a transformation into Foxp3+ regulatory T cells (Treg cells) via activating CD4+ T ERK. Cytokines production and an inhibitor assay showed that the induction of Tregs by PCV2-infected IPEC-J2 was dependent on TGF-β induced by PCV2 in IPEC-J2, which was associated with the activation of NF-κB. Taken together, PCV2-infected IPEC-J2 activated NF-κB to stimulate the synthesis of TGF-β, which enhanced the differentiation of CD4+ T cells into Treg cells through the activation of ERK in CD4+ T cells. This information sheds light on PCV2's function in the intestinal immune system and suggests a potential immunosuppressive mechanism for PCV2 infection.
Collapse
|
9
|
Martín-Valls GE, Li Y, Díaz I, Cano E, Sosa-Portugal S, Mateu E. Diversity of respiratory viruses present in nasal swabs under influenza suspicion in respiratory disease cases of weaned pigs. Front Vet Sci 2022; 9:1014475. [PMID: 36337208 PMCID: PMC9627340 DOI: 10.3389/fvets.2022.1014475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Respiratory diseases in weaned pigs are a common problem, with a complex etiology involving both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs, collected from nurseries (55 cases) under the suspicion of swine influenza A virus (swIAV) and submitted by swine veterinarians for diagnosis. The other ten viruses included in the study were influenza B (IBV) and D (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), Porcine circovirus 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 (PPIV1) and Swine orthopneumovirus (SOV). Twenty-six swIAV-positive cases and twenty-nine cases of swIAV-negative respiratory disease were primarily established. While IBV, IDV, PCV4 and PPIV1 were not found in any of the cases, PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease (p < 0.05). Overall, PCV3, PRRSV, and PCMV were the most frequently detected agents at herd level. Taken individually, virus prevalence was: swIAV, 48.6%; PRCV, 48.0%; PRRSV, 31.6%; SOV, 33.8%; PCMV, 48.3%, PCV2, 36.0%; and PCV3, 33.0%. Moreover, low Ct values (<30) were common for all agents, except PCV2 and PCV3. When the correlation between pathogens was individually examined, the presence of PRRSV was negatively correlated with swIAV and PRCV, while was positively associated to PCMV (p < 0.05). Also, PRCV and SOV were positively correlated between them and negatively with PCMV. Besides, the analysis of suckling pig samples, collected in subclinically infected farrowing units under an influenza monitoring program, showed that circulation of PRCV, PCMV, SOV, and PCV3 started during the early weeks of life. Interestingly, in those subclinically infected units, none of the pathogens was found to be correlated to any other. Overall, our data may contribute to a better understanding of the complex etiology and epidemiology of respiratory diseases in weaners. This is the first report of SOV in Spain and shows, for the first time, the dynamics of this pathogen in swine farms.
Collapse
Affiliation(s)
- Gerard E. Martín-Valls
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Gerard E. Martín-Valls
| | - Yanli Li
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Esmeralda Cano
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Silvana Sosa-Portugal
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
10
|
Liu Z, Kong Z, Chen M, Shang Y. Design of live-attenuated animal vaccines based on pseudorabies virus platform. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00044-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractPseudorabies virus (PRV) is a double-stranded DNA virus with a genome approximating 150 kb in size. PRV contains many non-essential genes that can be replaced with genes encoding heterogenous antigens without affecting viral propagation. With the ability to induce cellular, humoral and mucosal immune responses in the host, PRV is considered to be an ideal and potential live vector for generation of animal vaccines. In this review, we summarize the advances in attenuated recombinant PRVs and design of PRV-based live vaccines as well as the challenge of vaccine application.
Collapse
|
11
|
Five years of porcine circovirus 3: what have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res 2022; 314:198764. [DOI: 10.1016/j.virusres.2022.198764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
|
12
|
Wang Z, Chen J, Zhang QG, Huang K, Ma D, Du Q, Tong D, Huang Y. Porcine circovirus type 2 infection inhibits the activation of type I interferon signaling via capsid protein and host gC1qR. Vet Microbiol 2022; 266:109354. [DOI: 10.1016/j.vetmic.2022.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
|
13
|
In Vitro Analysis of TGF-β Signaling Modulation of Porcine Alveolar Macrophages in Porcine Circovirus Type 2b Infection. Vet Sci 2022; 9:vetsci9030101. [PMID: 35324828 PMCID: PMC8951539 DOI: 10.3390/vetsci9030101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) has been recognized as an immunosuppressive pathogen. However, the crosstalk between this virus and its host cells in related signaling pathways remains poorly understood. In this study, the expression profiles of 84 genes involved in transforming growth factor-beta (TGF-β) signaling pathway were probed in PCV2b-infected primary porcine alveolar macrophages (PAMs) by using an RT2 profiler PCR array system. The protein expression levels of cytokines involved in the TGF-β signaling pathway were determined with a RayBiotech fluorescent Quantibody® porcine cytokine array system. Results showed that 48, 30, and 42 genes were differentially expressed at 1, 24, and 48 h after infection, respectively. A large number of genes analyzed by a co-expression network and implicated in transcriptional regulation and apoptosis were differentially expressed in PCV2b-infected PAMs. Among these genes, TGF-β, interleukin-10, CCAAT/enhancer-binding protein beta (C/EBPB), growth arrest, and DNA-damage-inducible 45 beta (GADD45B), and BCL2 were upregulated. By contrast, SMAD family member 1 (smad1) and smad3 were downregulated. These results suggested that the TGF-β signaling pathway was repressed in PAMs at the early onset of PCV2 infection. The inhibited apoptosis was indicated by the upregulated C/EBPB, GADD45B, and BCL2, and by the downregulated smad1 and smad3, which possibly increased the duration of PCV2 replication-permissive conditions and caused a persistent infection. Our study may provide insights into the underlying antiviral functional changes in the immune system of PCV2-infected pigs.
Collapse
|
14
|
Chen J, Wang H, Pei H, Wang J, Wu H, Zhong J, Zhu W, Chen D, Wu S, Tong J, Zhang Y, Zhang J. The Prevalence, Coinfection, and Evolutionary and Molecular Characteristics of Prevalent Goose Circovirus in Guangdong, China. Avian Dis 2021; 65:559-571. [DOI: 10.1637/aviandiseases-d-21-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/21/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - He Wang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Hao Pei
- Department of Anesthesia, National Children's Medical Center, Children‘s Hospital of Fudan University, Shanghai, China, 201102
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Huiji Wu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Jiacheng Zhong
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Wanjun Zhu
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Decheng Chen
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Shiliang Wu
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Jiaxin Tong
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| | - Yishan Zhang
- Wanmuzhou Biotechnology Limited, Foshan, Guangdong, China, 528225
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China, 528225
| |
Collapse
|
15
|
Gerner W, Mair KH, Schmidt S. Local and Systemic T Cell Immunity in Fighting Pig Viral and Bacterial Infections. Annu Rev Anim Biosci 2021; 10:349-372. [PMID: 34724393 DOI: 10.1146/annurev-animal-013120-044226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells are an essential component of the adaptive immune system. Over the last 15 years, a constantly growing toolbox with which to study T cell biology in pigs has allowed detailed investigations on these cells in various viral and bacterial infections. This review provides an overview on porcine CD4, CD8, and γδ T cells and the current knowledge on the differentiation of these cells following antigen encounter. Where available, the responses of these cells to viral infections like porcine reproductive and respiratory syndrome virus, classical swine fever virus, swine influenza A virus, and African swine fever virus are outlined. In addition, knowledge on the porcine T cell response to bacterial infections like Actinobacillus pleuropneumoniae and Salmonella Typhimurium is reviewed. For CD4 T cells, the response to the outlined infections is reflected toward the Th1/Th2/Th17/Tfh/Treg paradigm for functional differentiation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Wilhelm Gerner
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; .,Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Selma Schmidt
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| |
Collapse
|
16
|
Abstract
AbstractPorcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.
Collapse
|
17
|
Mai J, Wang D, Zou Y, Zhang S, Meng C, Wang A, Wang N. High Co-infection Status of Novel Porcine Parvovirus 7 With Porcine Circovirus 3 in Sows That Experienced Reproductive Failure. Front Vet Sci 2021; 8:695553. [PMID: 34395577 PMCID: PMC8358293 DOI: 10.3389/fvets.2021.695553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine parvoviruses (PPVs) and porcine circoviruses (PCVs) infect pigs worldwide, with PPV1–7 and PCV2 infections common in pigs. Although PPV7 was only identified in 2016, co-infection of PPV7 and PCV2 is already common, and PPV7 may stimulate PCV2 replication. PCV3, a novel type of circovirus, is prevalent in pig populations worldwide and considered to cause reproductive disorders and dermatitis nephrotic syndrome. In recent studies, pigs were commonly infected with both PCV3 and PPV7. Our objective was to investigate the co-infections between PPV7 and PCV3 in samples from swine on farms in Hunan, China, and assess the potential impacts of PPV7 on PCV3 viremia. A total of 209 samples, known to be positive (105) or negative (104) for PCV3, were randomly selected from serum samples that were collected from commercial swine herds in seven regions from 2016 to 2018 in our previous studies; these samples were subjected to real-time PCR to detect PPV7. Of these samples, 23% (48/209) were positive for PPV7. Furthermore, the PPV7 positive rate was significantly higher in PCV3 positive serum (31.4%, 33/105) than in PCV3 negative serum (14.4%, 15/104). Another 62 PCV3 positive sow serum samples and 20 PCV3 positive aborted fetuses were selected from 2015 to 2016 in our other previous study. These samples were designated as being from farms with or without long-standing histories of reproductive failure (RF or non-RF), respectively, and they were also subjected to real-time PCR to detect PPV7 and to determine whether PPV7 affected PCV3 viremia. Among the 62 serum samples (39 PCV3 positive RF-serum and 23 PCV3 positive non-RF-serum), 45.1% (28/62) were positive for PPV7 and PCV3, and the PPV7 positive rate was significantly higher in PCV3 positive RF-serum (51.2%, 20/39) than in PCV3 positive non-RF-serum (34.8%, 8/23). In addition, there was a higher positive rate of PPV7 (55%, 11/20) in PCV3 positive aborted fetus samples. In addition, the copy number of PCV3 in PPV7 positive samples was significantly higher than that in PPV7 negative serum samples. Based on these findings, we concluded that PPV7 may stimulate PCV3 replication.
Collapse
Affiliation(s)
- Jinhui Mai
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Dongliang Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yawen Zou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Sujiao Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Chenguang Meng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP), Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Zhang P, Shen H, Liu X, Wang S, Liu Y, Xu Z, Song C. Porcine Circovirus Type 3 Cap Inhibits Type I Interferon Induction Through Interaction With G3BP1. Front Vet Sci 2020; 7:594438. [PMID: 33392287 PMCID: PMC7773638 DOI: 10.3389/fvets.2020.594438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine circovirus 3 (PCV3) infections cause clinical diseases similar to those seen in porcine circovirus 2 (PCV2) infections. It is unclear whether PCV3 infections can also cause immunosuppression like that seen with PCV2. Here, we report that Cap inhibits DNA-induced IFN-β mRNA transcription and IFN promoter activation. Cap was also found to inhibit cyclic GMP-AMP (cGAMP) synthase (cGAS) binding to interferon-stimulating DNA (ISD). Immunoprecipitation and mass spectrometry were used to identify cellular interaction partners of Cap. Cap interacted with G3BP1 and inhibited the interaction between GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1) and cGAS. Furthermore, the destruction of endogenously expressed G3BP1 by siRNA significantly reduced IFN promoter activation, and phosphorylation of tank-binding kinase 1 (TBK1) was induced by ISD. Overexpression of G3BP1 attenuated the inhibition of ISD binding of cGAS by Cap and promoted phosphorylation of TBK1 and IRF3 induced by ISD. Collectively, our results show that the interaction between Cap and G3BP1 prevents cGAS from recognizing DNA, thereby inhibiting the IFN production.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Hanqin Shen
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China.,Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu, China
| | - Xianhui Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Shuangyun Wang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yanling Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Zheng Xu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Changxu Song
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| |
Collapse
|
19
|
Chen Q, Rong J, Li G, Xu B, Wang X, Hu J, Rong M, Li H. Establishment of a Rep' protein antibody detection method to distinguish natural infection with PCV2 from subunit vaccine immunization. J Med Microbiol 2020; 69:1183-1196. [PMID: 32812860 DOI: 10.1099/jmm.0.001230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. PCV2 is a DNA virus that exists widely in pigs and has caused great economic losses to the pig industry worldwide. In the existing commercial PCV2 enzyme-linked immunosorbent assay (ELISA) kits both natural infection with PCV2 and vaccine immunization produce results that are positive for PCV2 Cap antibodies and therefore they cannot diagnose PCV2 infection in immunized pig farms.Aim. To establish a PCV2 non-structural protein antibody detection method that distinguishes between antibodies resulting from natural prior exposure (infection) and those induced by subunit vaccine immunization.Methodology. Based on the non-structural Rep' protein, we established an indirect ELISA (iELISA) using sera from guinea pigs and piglets.Results. The results for iELISA for guinea pig serum showed that animals vaccinated with a whole-virus inactivated PCV2 vaccine had 100 % (10/10) Cap antibody positivity and 100 % (10/10) Rep' antibody positivity. Guinea pigs vaccinated with a recombinant subunit PCV2 vaccine had 100 % (10/10) Cap antibody positivity, while no (0/10) guinea pigs were Rep' antibody-positive. The combined detection results for the Rep' iELISA and a PCV2 Antibody Test kit (Commercial) showed that pigs vaccinated with a whole-virus inactivated PCV2 vaccine or PCV2 SD/2017 had 100 % (5/5) Cap antibody positivity and 100 % (5/5) Rep' antibody positivity. Pigs vaccinated with a recombinant subunit PCV2 vaccine had 100 % (5/5) Cap antibody positivity, while no (0/10) pigs were Rep' antibody-positive.Conclusion. This paper describes an effective iELISA method that can distinguish natural infection with PCV2 (Cap and Rep positive) or inoculation with a whole-virus inactivated vaccine (Cap and Rep positive) from subunit vaccine immunization (Cap-positive, Rep-negative). These comparative assays could be very useful in the control of PCV2 in pig herds.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China.,College of Life Sciences, Yangtze University, JingZhou, HuBei 434025, PR China
| | - Jun Rong
- College of Life Sciences, Yangtze University, JingZhou, HuBei 434025, PR China.,Yebio Bioengineering Co. Ltd Qingdao, QingDao, ShanDong 266114, PR China.,Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China
| | - Guopan Li
- Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China.,College of Life Sciences, Yangtze University, JingZhou, HuBei 434025, PR China
| | - Baojuan Xu
- Yebio Bioengineering Co. Ltd Qingdao, QingDao, ShanDong 266114, PR China
| | - Xi Wang
- Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China.,College of Life Sciences, Yangtze University, JingZhou, HuBei 434025, PR China
| | - Jixiong Hu
- Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China.,College of Life Sciences, Yangtze University, JingZhou, HuBei 434025, PR China
| | - Mingxuan Rong
- Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China.,College of Life Sciences, Yangtze University, JingZhou, HuBei 434025, PR China
| | - Huan Li
- Institute of Biomedicine, Yangtze University, JingZhou, HuBei 434025, PR China
| |
Collapse
|
20
|
Zhang L, Qiu S, Lu M, Huang C, Lv Y. Nuclear transporter karyopherin subunit alpha 3 levels modulate Porcine circovirus type 2 replication in PK-15 cells. Virology 2020; 548:31-38. [PMID: 32838944 DOI: 10.1016/j.virol.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
Entering the nucleus is important for Porcine circovirus type 2 (PCV2) replication. Karyopherins (KPNs) mediate the nuclear import of many cytoplasmic proteins. Our previous study showed that KPNA3 is involved in interferon production during PCV2 infection induced by Poly I:C and ISD (Interferon stimulatory DNA). However, it remains unclear whether PCV2 replication is associated with KPNA3. In the present study, knockdown of KPNA3 promoted the replication of PCV2, whereas overexpression of KPNA3 inhibited PCV2 replication in PK-15 cells. Furthermore, KPNA3 knockdown inhibited IRF3 and reduced the expression of antiviral genes including IFN-β, ISG54, Mx1 and ISG56, while the opposite results were obtained after KPNA3 overexpression. KPNA3 knockdown also promoted p65 nuclear translocation and increased the mRNA expression of IL-10 and IL-1β. These results suggested that KPNA3 facilitates IRF3 entry into the nucleus and the production of an antiviral response, resulting in PCV2 replication inhibition and blockage of NF-κB signal activation.
Collapse
Affiliation(s)
- Lili Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siyu Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingqing Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Canping Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Porcine Circovirus Type 2 Induces Single Immunoglobulin Interleukin-1 Related Receptor (SIGIRR) Downregulation to Promote Interleukin-1β Upregulation in Porcine Alveolar Macrophage. Viruses 2019; 11:v11111021. [PMID: 31684202 PMCID: PMC6893714 DOI: 10.3390/v11111021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
Multisystemic inflammation in pigs affected by porcine circovirus type 2 (PCV2) indicates the disordered expression of inflammatory cytokines. However, the PCV2-induced expression profile of inflammation cytokines and its regulating mechanism remain poorly understood. In this study, inflammatory cytokines and receptors in porcine alveolar macrophages (PAMs) after PCV2 infection were profiled in vitro by an RT2 ProfilerTM PCR array assay. The regulatory mechanism of interleukin-1β (IL-1β) expression was investigated. Results showed that 49 of 84 inflammation cytokines and receptors were differentially expressed (p < 0.05, absolute fold change ≥2) in PAMs at different stages post-PCV2 infection. Moreover, the overexpression of single-immunoglobulin interleukin-1 related receptor (SIGIRR) or the blocking of NF-κB activation by its inhibitor markedly decreased IL-1β secretion. This finding suggested that PCV2-induced overexpression of IL-1β was associated with the downregulation of SIGIRR and the activation of NF-κB. Furthermore, the excessive activity of NF-κB in SIGIRR-knockout PAMs cell line, indicating that SIGIRR negatively regulated IL-1β production by inhibiting the activation of NF-κB. Overall, PCV2-induced downregulation of SIGIRR induction of NF-κB activation is a critical process in enhancing IL-1β production in PAMs. This study may provide insights into the underlying inflammatory response that occurs in pigs following PCV2 infection.
Collapse
|
22
|
Wang L, Zhao D, Sun B, Yu M, Wang Y, Ru Y, Jiang Y, Qiao X, Cui W, Zhou H, Li Y, Xu Y, Tang L. Oral vaccination with the porcine circovirus type 2 (PCV-2) capsid protein expressed by Lactococcus lactis induces a specific immune response against PCV-2 in mice. J Appl Microbiol 2019; 128:74-87. [PMID: 31574195 DOI: 10.1111/jam.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023]
Abstract
AIMS Porcine circovirus type 2 (PCV2) can cause postweaning, multisystemic wasting syndrome in pigs, which leads to enormous losses in the swine industry worldwide. Here, a genetically engineered Lactococcus strain expressing the main protective antigen of PCV2, the Cap protein, was developed to act against PCV2 infection as an oral vaccine. METHODS AND RESULTS Expression of the Cap protein was confirmed via western blot, ELISA and fluorescence microscopy. Over 90% of the recombinant pAMJ399-Cap/MG1363 survived a simulated gastrointestinal transit. It also survived the murine intestinal tract for at least 11 days. Then, the safety and immunogenicity of pAMJ399-Cap/MG1363 in orally immunized mice was evaluated. The levels of the sIgA, IgG and cytokines (IL-4 and IFN-γ) obtained from the mice immunized with pAMJ399-Cap/MG1363 were significantly higher than those in the control groups. CONCLUSIONS pAMJ399-Cap/MG1363 can survive in the gastrointestinal transit and effectively induce mucosal, cellular and humoral immune response against PCV2 infection via oral administration. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the potential of the genetically engineered Lactococcus lactis as a candidate for an oral vaccine against PCV2.
Collapse
Affiliation(s)
- L Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - D Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - B Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - M Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Y Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - X Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - W Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - H Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - L Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
23
|
Salines M, Rose N, Andraud M. Tackling hepatitis E virus spread and persistence on farrow-to-finish pig farms: Insights from a stochastic individual-based multi-pathogen model. Epidemics 2019; 30:100369. [PMID: 31526684 DOI: 10.1016/j.epidem.2019.100369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic agent of which domestic pigs have been recognised as the main reservoir in industrialised countries. The great variability in HEV infection dynamics described on different pig farms may be related to the influence of other pathogens, and in particular viruses affecting pigs' immune response. The objective of this study was to develop a multi-pathogen modelling approach to understand the conditions under which HEV spreads and persists on a farrow-to-finish pig farm taking into account the fact that pigs may be co-infected with an intercurrent pathogen. A stochastic individual-based model was therefore designed that combines a population dynamics model, which enables us to take different batch rearing systems into account, with a multi-pathogen model representing at the same time the dynamics of both HEV and the intercurrent pathogen. Based on experimental and field data, the epidemiological parameters of the HEV model varied according to the pig's immunomodulating virus status. HEV spread and persistence was found to be very difficult to control on a farm with a 20-batch rearing system. Housing sows in smaller groups and eradicating immunomodulating pathogens would dramatically reduce the prevalence of HEV-positive livers at slaughter, which would drop from 3.3% to 1% and 0.2% respectively (p-value < 0.01). It would also decrease the probability of HEV on-farm persistence from 0.6 to 0 and 0.34 respectively (p-value < 0.01) on farms with a 7 batch rearing system. A number of farming practices, such as limiting cross-fostering, reducing the size of weaning pens and vaccinating pigs against immunomodulating viruses, were also shown to be pivotal factors for decreasing HEV spread and persistence.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| | - Nicolas Rose
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| | - Mathieu Andraud
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| |
Collapse
|
24
|
Krüger L, Längin M, Reichart B, Fiebig U, Kristiansen Y, Prinz C, Kessler B, Egerer S, Wolf E, Abicht JM, Denner J. Transmission of Porcine Circovirus 3 (PCV3) by Xenotransplantation of Pig Hearts into Baboons. Viruses 2019; 11:E650. [PMID: 31315245 PMCID: PMC6669873 DOI: 10.3390/v11070650] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/26/2023] Open
Abstract
Porcine circovirus 3 (PCV3) is a newly described member of the virus family Circoviridae. PCV3 is highly distributed among pigs and wild boars worldwide. A sudden introduction of PCV3 was recently observed in a herd of triple genetically modified pigs generated for xenotransplantation. These animals were used as donor pigs for orthotopic heart transplantation into baboons. In four cases, PCV3-positive hearts were transplanted, and transmission of PCV3 to the recipient was observed. PCV3 was found in all organs of the recipient baboons and a higher virus load was found in animals with a longer survival time of the transplant, indicating replication of the virus. This is the first report showing trans-species transmission of PCV3 to baboons by transplantation of a heart from a PCV3-positive donor pig. Sequence analysis showed that PCV3a and PCV3b were present in the infected pigs and were transmitted. Experiments to infect human 293 cells with PCV3 failed.
Collapse
Affiliation(s)
- Luise Krüger
- Robert Koch Institute, HIV and other retroviruses, 13353 Berlin, Germany
| | - Matthias Längin
- Department of Anaesthesiology, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Uwe Fiebig
- Robert Koch Institute, HIV and other retroviruses, 13353 Berlin, Germany
| | | | - Carolin Prinz
- Robert Koch Institute, HIV and other retroviruses, 13353 Berlin, Germany
| | - Barbara Kessler
- Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Germany
| | - Stefanie Egerer
- Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Joachim Denner
- Robert Koch Institute, Robert Koch Fellow, 13353 Berlin, Germany.
| |
Collapse
|
25
|
Wang N, Zhang S, Wang D, Li F, Liang L, Li X, Zou Y, Zhan Y, Chen G, Yu W, Deng Z, Tu D, Cui S. Protective humoral immunity in guinea pigs induced by PCV2 virus-like particles displaying the B cell linear epitope ( 228QQITDA 233) of PPV1. Vet Microbiol 2019; 235:86-92. [PMID: 31282383 DOI: 10.1016/j.vetmic.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/18/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
Although PCV2 infections generally cause mild disease in pigs, concurrent co-infections with other pathogens can damage the immune system and cause more severe diseases, collectively termed porcine circovirus associated diseases (PCVAD). Involvement of porcine parvovirus (PPV, a common cause of reproductive failure in naïve dams) in PCVAD caused by PCV2, has been reported. As this co-infection can be difficult to eliminate, there is a critical need to develop an effective vaccine to protect against PPV or synergistic effects of PCV2 and PPV under field conditions. In this study, we designed chimeric PCV2 virus-like particles (cVLPs) displaying a B-cell epitope derived from PPV1 structural protein around the surface of the 2-fold axes of PCV2 VLPs, based on 3D-structure analysis of the PCV2 capsid. The cVLPs were successfully prepared, verified by transmission electron microscopy and chromatography, with robust antibody titers against PCV2 and PPV1 produced in mice and guinea pigs. In addition, in guinea pigs challenged with 106 TCID50 PCV2, cVLPs conferred more effective immune protection (based on viral load) than a commercial PCV2 vaccine. Finally, antibody responses and immune protection against PPV were also evaluated. In guinea pigs vaccinated with cVLPs, although PPV antibodies detected by a hemagglutination inhibition (HI) assay appeared later after vaccination in the PCV2 cVLPs group than in the commercial PPV vaccine group, there were fewer PPV genomic DNA copies in the PCV2 cVLPs group than in a PBS group. In conclusion, guinea pigs vaccinated with cVLPs developed effective protective immunity against PCV2 challenge, with some protective immunity against PPV. This study provided valuable research data to pursue molecular design of chimeric epitopes PCV2 VLPs.
Collapse
Affiliation(s)
- Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Sujiao Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Dongliang Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fuqiang Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, 300381, China
| | - Lin Liang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientifc Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China
| | - Xiuli Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, 300381, China
| | - Yawen Zou
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Zhan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Guanyu Chen
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wanting Yu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhibang Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Di Tu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Shangjin Cui
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientifc Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China.
| |
Collapse
|
26
|
Salines M, Dumarest M, Andraud M, Mahé S, Barnaud E, Cineux M, Eveno E, Eono F, Dorenlor V, Grasland B, Bourry O, Pavio N, Rose N. Natural viral co-infections in pig herds affect hepatitis E virus (HEV) infection dynamics and increase the risk of contaminated livers at slaughter. Transbound Emerg Dis 2019; 66:1930-1945. [PMID: 31067014 DOI: 10.1111/tbed.13224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen, in particular genotype 3 HEV is mainly transmitted to humans through the consumption of contaminated pork products. This study aimed at describing HEV infection patterns in pig farms and at assessing the impact of immunomodulating co-infections namely Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Circovirus Type 2 (PCV2), as well as other individual factors such as piglets' immunity and litters' characteristics on HEV dynamics. A longitudinal follow-up was conducted in three farrow-to-finish farms known to be HEV infected. Overall, 360 piglets were individually monitored from birth to slaughter with regular blood and faecal sampling as well as blood and liver samples collected at slaughterhouse. Virological and serological analyses were performed to detect HEV, PCV2 and PRRSV genome and antibodies. The links between 12 explanatory variables and four outcomes describing HEV dynamics were assessed using cox-proportional hazard models and logistic regression. HEV infection dynamics was found highly variable between farms and in a lower magnitude between batches. HEV positive livers were more likely related to short time-intervals between HEV infection and slaughter time (<40 days, OR = 4.1 [3.7-4.5]). In addition to an influence of piglets' sex and sows' parity, the sequence of co-infections was strongly associated with different HEV dynamics: a PRRSV or PCV2/PRRSV pre- or co-infection was associated with a higher age at HEV shedding (Hazard Ratio = 0.3 [0.2-0.5]), as well as a higher age at HEV seroconversion (HR = 0.5 [0.3-0.9] and HR = 0.4 [0.2-0.7] respectively). A PCV2/PRRSV pre- or co-infection was associated with a longer duration of shedding (HR = 0.5 [0.3-0.8]). Consequently, a PRRSV or PCV2/PRRSV pre- or co-infection was strongly associated with a higher risk of having positive livers at slaughter (OR = 4.1 [1.9-8.9] and OR = 6.5 [3.2-13.2] respectively). In conclusion, co-infections with immunomodulating viruses were found to affect HEV dynamics in the farrow-to-finish pig farms that were followed in this study.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Marine Dumarest
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Mathieu Andraud
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Sophie Mahé
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Elodie Barnaud
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Maelan Cineux
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Eric Eveno
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Florent Eono
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Virginie Dorenlor
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Béatrice Grasland
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Olivier Bourry
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Nicole Pavio
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Nicolas Rose
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| |
Collapse
|
27
|
Porcine Dendritic Cells and Viruses: An Update. Viruses 2019; 11:v11050445. [PMID: 31100880 PMCID: PMC6563313 DOI: 10.3390/v11050445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Several viral infections of swine are responsible for major economic losses and represent a threat to the swine industry worldwide. New tools are needed to prevent and control endemic, emerging, and re-emerging viral diseases. Dendritic cells (DC) play a central role in linking the innate and adaptive arms of the immune system, so knowledge regarding their interaction with pathogens is necessary to understand the mechanisms underlying diseases pathogenesis and protection. In the first part of this review, we provide an update on the heterogeneous cell subsets that comprise the porcine DC family. In the second part of this review, we provide an overview of how three viruses, affecting pork production at a global level, African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine circovirus 2 (PCV2), modulate DC function.
Collapse
|
28
|
Impact of porcine circovirus type 2 (PCV2) infection on hepatitis E virus (HEV) infection and transmission under experimental conditions. Vet Microbiol 2019; 234:1-7. [PMID: 31213264 DOI: 10.1016/j.vetmic.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/21/2022]
Abstract
Hepatitis E virus is a zoonotic pathogen for which pigs have been identified as the main reservoir in industrialised countries. HEV infection dynamics in pig herds and pigs are influenced by several factors, including herd practices and possibly co-infection with immunomodulating viruses. This study therefore investigates the impact of porcine circovirus type 2 (PCV2) on HEV infection and transmission through experimental HEV/PCV2 co-infection of specific-pathogen-free pigs. No statistical difference between HEV-only and HEV/PCV2-infected animals was found for either the infectious period or the quantity of HEV shed in faeces. The HEV latency period was shorter for HEV/PCV2 co-infected pigs than for HEV-only infected pigs (11.6 versus 12.3 days). Its direct transmission rate was three times higher in cases of HEV/PCV2 co-infection than in cases of HEV-only infection (0.12 versus 0.04). On the other hand, the HEV transmission rate through environmental accumulation was lower in cases of HEV/PCV2 co-infection (4.3·10-6 versus 1.5·10-5 g/RNA copies/day for HEV-only infected pigs). The time prior to HEV seroconversion was 1.9 times longer in HEV/PCV2 co-infected pigs (49.4 versus 25.6 days for HEV-only infected pigs). In conclusion, our study shows that PCV2 affects HEV infection and transmission in pigs under experimental conditions.
Collapse
|
29
|
Liu J, Ma C, Zhang X, You J, Dong M, Chen L, Jiang P, Yun S. Molecular detection of Hsp90 inhibitor suppressing PCV2 replication in host cells. Microb Pathog 2019; 132:51-58. [PMID: 31028862 DOI: 10.1016/j.micpath.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause devastating disease manifestations in pig populations with major economic implications. Our previous research found that Hsp90 is required for PCV2 production in PK-15 and 3D4/31 cells. The aim of this study was to evaluate the effect of Hsp90 inhibitor regulating PCV2 replication and to explore its underlying mechanism. In PK-15 and 3D4/31 cells treated with 17-AAG after viral adsorption, replication of PCV2 was attenuated as assessed by quantitating the expression of viral protein. Following NF-κB activation it was observed that 24hpi with PCV2 was significantly inhibited in the presence of 17-AAG. The expression of Hsp90 associated client proteins in PCV2-infected cells were also reduced in the presence of 17-AAG. However, treatment with MG-132 failed to rescue 17-AAG mediated reduction of PCV2 production in host cells. Thus, Hsp90 regulates PCV2 by modulating cellular signaling proteins. These results highlight the importance of cellular proteins during PCV2 infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Chang Ma
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Li Chen
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, No.305 East Zhongshan Road, Nanjing, 210002, PR China.
| |
Collapse
|
30
|
Induction of Porcine Dermatitis and Nephropathy Syndrome in Piglets by Infection with Porcine Circovirus Type 3. J Virol 2019; 93:JVI.02045-18. [PMID: 30487279 DOI: 10.1128/jvi.02045-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging porcine circovirus that has been associated with porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, reproductive failure, cardiac pathologies, and multisystemic inflammation in piglets and sows. Many aspects of PCV3 infection biology and pathogenesis, however, remain unknown. Here, we used a PCV3 virus stock from the rescue of an infectious PCV3 DNA clone to intranasally inoculate 4- and 8-week-old specific-pathogen-free piglets for evaluation of PCV3 pathogenesis. For 4-week-old piglets, typical clinical signs resembling those of PDNS-like disease were observed when piglets were inoculated with PCV3 alone or PCV3 combined with immunostimulation by keyhole limpet hemocyanin, with a mortality of 40% (2/5) for both types of inoculated piglets during a 28-day observation period postinoculation. Both types of inoculated piglets showed similar progressive increases in viral loads in the sera and had seroconverted to PCV3 capsid antibody after inoculation. Pathological lesions and PCV3-specific antigen were detected in various tissues and organs, including the lung, heart, kidney, lymph nodes, spleen, liver, and small intestine, in both types of inoculated piglets. The levels of proinflammatory cytokines and chemokines, including interleukin 1 beta (IL-1β), IL-6, IL-23α, gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and chemokine ligand 5 (CCL5), were significantly upregulated in both groups of inoculated piglets. Eight-week-old piglets also exhibited a similar PDNS-like disease but without death after PCV3 inoculation, as evidenced by pathological lesions and PCV3 antigen in various tissues and organs. These results show for the first time successful reproduction of PDNS-like disease by PCV3 infection and further provide significant information regarding the pathogenesis of PCV3 in piglets.IMPORTANCE Porcine circovirus type 3 (PCV3), an emerging porcine circovirus, is considered the cause of porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs and other systemic diseases in piglets and sows. To evaluate the pathogenesis of PCV3 infection in vivo, we used a PCV3 virus stock from the rescue of an infectious PCV3 DNA clone to intranasally inoculate 4- and 8-week-old specific-pathogen-free piglets and demonstrated successful reproduction of PDNS-like disease in animals that were inoculated with PCV3 alone or PCV3 combined with immunostimulation by keyhole limpet hemocyanin. Both 4- and 8-week-old PCV3-inoculated piglets showed similar increases in viral loads in the sera and had seroconverted to PCV3 capsid antibody. Pathological lesions and PCV3-specific antigen were detected in various tissues and organs, while numerous proinflammatory cytokines and chemokines in the sera were significantly upregulated after PCV3 inoculation. These results will provide significant information regarding the pathogenesis of PCV3 in piglets.
Collapse
|
31
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
32
|
Mudroňová D, Karaffová V, Csank T, Király J, Revajová V, Gancarčíková S, Nemcová R, Pistl J, Vilček Š, Levkut M. Systemic immune response of gnotobiotic mice infected with porcine circovirus type 2 after administration of Lactobacillus reuteri L26 Biocenol™. Benef Microbes 2018; 9:951-961. [PMID: 30232907 DOI: 10.3920/bm2017.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In our previous study we confirmed an antiviral activity of probiotic Lactobacillus reuteri L26 which was mediated by stimulation of local intestinal immunity. The aim of this paper was to evaluate the influence of L. reuteri L26 on the systemic immune response in gnotobiotic mice infected with porcine circovirus type 2 (PCV2). A total of 30 germ-free mice were divided into 3 groups and animals in noninfected and infected control groups (NC and IC; n=10) received sterile de Man-Rogosa-Sharpe broth for 7 days and animals in experimental group L+PCV (n=10) were inoculated with L. reuteri L26. Subsequently, mice in L+PCV and IC groups were infected with PCV2; however, mice in the control group received virus cultivation medium (mock). The results showed an increase of percentage of cytotoxic cells (CD8+ and CD49b+CD8-) and oxidative burst of phagocytes, up-regulation of the gene expression of RANTES, granulocyte-macrophage colony-stimulating factor, interferon-γ and immunoglobulin A in blood above all in the later phase of infection (14 dpi) in L+PCV group accompanied by higher load of PCV2 in the serum. These findings indicate that L. reuteri L26 has a potential to induce systemic immune reaction, but in gnotobiotic mice immune stimulation can increase virus replication.
Collapse
Affiliation(s)
- D Mudroňová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - V Karaffová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - T Csank
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Király
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - V Revajová
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - S Gancarčíková
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - R Nemcová
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - J Pistl
- 2 Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Š Vilček
- 3 Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - M Levkut
- 1 Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| |
Collapse
|
33
|
Dissecting clinical outcome of porcine circovirus type 2 with in vivo derived transcriptomic signatures of host tissue responses. BMC Genomics 2018; 19:831. [PMID: 30458705 PMCID: PMC6247532 DOI: 10.1186/s12864-018-5217-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Background Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause often devastating disease manifestations in pig populations with major economic implications. How PCV2 establishes subclinical persistence and why certain individuals progress to lethal lymphoid depletion remain to be elucidated. Results Here we present PorSignDB, a gene signature database describing in vivo porcine tissue physiology that we generated from a large compendium of in vivo transcriptional profiles and that we subsequently leveraged for deciphering the distinct physiological states underlying PCV2-affected lymph nodes. This systems genomics approach indicated that subclinical PCV2 infections suppress a myeloid leukocyte mediated immune response. However, in contrast an inflammatory myeloid cell activation is promoted in PCV2 patients with clinical manifestations. Functional genomics further uncovered STAT3 as a druggable PCV2 host factor candidate. Moreover, IL-2 supplementation of primary lymphocytes enabled ex vivo study of PCV2 replication in its target cell, the lymphoblast. Conclusion Our systematic dissection of the mechanistic basis of PCV2 reveals that subclinical and clinical PCV2 display two diametrically opposed immunotranscriptomic recalibrations that represent distinct physiological states in vivo, which suggests a paradigm shift in this field. Finally, our PorSignDB signature database is publicly available as a community resource (http://www.vetvirology.ugent.be/PorSignDB/, included in Gene Sets from Community Contributors http://software.broadinstitute.org/gsea/msigdb/contributed_genesets.jsp) and provides systems biologists with a valuable tool for catalyzing studies of human and veterinary disease. Finally, a primary porcine lymphoblast cell culture system paves the way for unraveling the impact of host genetics on PCV2 replication. Electronic supplementary material The online version of this article (10.1186/s12864-018-5217-5) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Huang J, Yang C, Jia R, Wang M, Chen S, Liu M, Zhu D, Zhao X, Yang Q, Wu Y, Zhang L, Yin Z, Jing B, Cheng A. Induction of a protective response in ducks vaccinated with a DNA vaccine encoding engineered duck circovirus Capsid protein. Vet Microbiol 2018; 225:40-47. [DOI: 10.1016/j.vetmic.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
35
|
Correa-Fiz F, Franzo G, Llorens A, Segalés J, Kekarainen T. Porcine circovirus 2 (PCV-2) genetic variability under natural infection scenario reveals a complex network of viral quasispecies. Sci Rep 2018; 8:15469. [PMID: 30341330 PMCID: PMC6195574 DOI: 10.1038/s41598-018-33849-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Porcine circovirus 2 (PCV-2) is a virus characterized by a high evolutionary rate, promoting the potential emergence of different genotypes and strains. Despite the likely relevance in the emergence of new PCV-2 variants, the subtle evolutionary patterns of PCV-2 at the individual-host level or over short transmission chains are still largely unknown. This study aimed to analyze the within-host genetic variability of PCV-2 subpopulations to unravel the forces driving PCV-2 evolution. A longitudinal weekly sampling was conducted on individual animals located in three farms after the first PCV-2 detection. The analysis of polymorphisms evaluated throughout the full PCV-2 genome demonstrated the presence of several single nucleotide polymorphisms (SNPs) especially in the genome region encoding for the capsid gene. The global haplotype reconstruction allowed inferring the virus transmission network over time, suggesting a relevant within-farm circulation. Evidences of co-infection and recombination involving multiple PCV-2 genotypes were found after mixing with pigs originating from other sources. The present study demonstrates the remarkable within-host genetic variability of PCV-2 quasispecies, suggesting the role of the natural selection induced by the host immune response in driving PCV-2 evolution. Moreover, the effect of pig management in multiple genotype coinfections occurrence and recombination likelihood was demonstrated.
Collapse
Affiliation(s)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| |
Collapse
|
36
|
Dvorak CM, Puvanendiran S, Murtaugh MP. Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways. Virus Res 2018; 253:38-47. [DOI: 10.1016/j.virusres.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
|
37
|
Utilization of phage display to identify antigenic regions in the PCV2 capsid protein for the evaluation of serological responses in mice and pigs. Arch Virol 2018; 163:1877-1887. [PMID: 29589172 DOI: 10.1007/s00705-018-3816-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
Porcine circovirus 2 (PCV2) is associated with a series of swine diseases. There is a great interest in improving our understanding of the immunology of PCV2, especially the properties of the viral capsid protein Cap-PCV2 and how they relate to the immunogenicity of the virus and the subsequent development of vaccines. Phage display screening has been widely used to study binding affinities for target proteins. The aim of this study was to use phage display screening to identify antigenic peptides in the PCV2 capsid protein. After the selection of peptides, five of them presented similarity to sequences found in cap-PCV2, and four peptides were synthesized and used for immunization in mice: 51-CTFGYTIKRTVT-62 (PS14), 127-CDNFVTKATALTY-138 (PS34), 164-CKPVLDSTIDY-173 (PC12), and 79-CFLPPGGGSNT-88 (PF1). Inoculation with the PC12 peptide led to the highest production of antibodies. Furthermore, we used the PC12 peptide as an antigen to examine the humoral response of swine serum by ELISA. The sensitivity and specificity of this assay was 88.9% and 92.85%, respectively. Altogether, characterization of immunogenic epitopes in the capsid protein of PCV2 may contribute to the improvement of vaccines and diagnostics.
Collapse
|
38
|
Yang N, Li J, Yang Q, Qiao J, Cui D, Liu F, Li H, Zhou S. Reduced antigen presentation capability and modified inflammatory/immunosuppressive cytokine expression of induced monocyte-derived dendritic cells from peripheral blood of piglets infected with porcine circovirus type 2. Arch Virol 2018; 163:1231-1239. [DOI: 10.1007/s00705-018-3735-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/06/2018] [Indexed: 12/01/2022]
|
39
|
Tian D, Sooryanarain H, Matzinger SR, Gauger PC, Karuppannan AK, Elankumaran S, Opriessnig T, Meng XJ. Protective efficacy of a virus-vectored multi-component vaccine against porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and swine influenza virus. J Gen Virol 2017; 98:3026-3036. [DOI: 10.1099/jgv.0.000964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shannon R. Matzinger
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Phil C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Anbu K. Karuppannan
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Subbiah Elankumaran
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanja Opriessnig
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, UK
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
40
|
Wang ZJ, Xu CM, Song ZB, Wang M, Liu QY, Jiang P, Li YF, Bai J, Wang XW. Vimentin modulates infectious porcine circovirus type 2 in PK-15 cells. Virus Res 2017; 243:110-118. [PMID: 29079448 PMCID: PMC7114564 DOI: 10.1016/j.virusres.2017.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the pathogen that causes postweaning multisystemic wasting syndrome, which leads to significant economic losses for swine farms worldwide. However, the infection mechanism of PCV2 is not completely understood yet. Vimentin is a part of the cytoskeleton network and plays an important role in several virus infections. It is not clear whether vimentin has a role in PCV2 infection nor how it affects PCV2 infection. In this study, the function of vimentin in PK-15 cells infected with PCV2 has been elucidated. We found that vimentin had a restrictive effect on the replication of PCV2 in PK-15 cells. Overexpression of vimentin by transferred pCAGGS-vimentin and down-regulation by the respective scrambled small interfering RNA showed that vimentin restricted the replication and virion production of PCV2. A special interaction between vimentin and PCV2 Cap protein was observed using laser confocal microscopy and immunoprecipitation assay. Moreover, overexpression of vimentin could decrease NF-κB activity and increase PCV2-induced caspase-3 activity in PK-15 cells. These data suggest that vimentin is involved in the replication of PCV2 and has a restrictive effect on it, which is helpful in the study of the replication mechanism of PCV2.
Collapse
Affiliation(s)
- Zhi-Jian Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang-Meng Xu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong-Bao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mi Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Yu Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Feng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian-Wei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Afghah Z, Webb B, Meng XJ, Ramamoorthy S. Ten years of PCV2 vaccines and vaccination: Is eradication a possibility? Vet Microbiol 2017; 206:21-28. [DOI: 10.1016/j.vetmic.2016.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
|
42
|
Ahlberg V, Hjertner B, Wallgren P, Hellman S, Lövgren Bengtsson K, Fossum C. Innate immune responses induced by the saponin adjuvant Matrix-M in specific pathogen free pigs. Vet Res 2017; 48:30. [PMID: 28532492 PMCID: PMC5441066 DOI: 10.1186/s13567-017-0437-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 12/05/2022] Open
Abstract
Saponin-based adjuvants have been widely used to enhance humoral and cellular immune responses in many species, but their mode of action is not fully understood. A characterization of the porcine transcriptional response to Matrix-M was performed in vitro using lymphocytes, monocytes or monocyte-derived dendritic cells (MoDCs) and in vivo. The effect of Matrix-M was also evaluated in specific pathogen free (SPF) pigs exposed to conventionally reared pigs. The pro-inflammatory cytokine genes IL1B and CXCL8 were up-regulated in monocytes and lymphocytes after Matrix-M exposure. Matrix-M also induced IL12B, IL17A and IFNG in lymphocytes and IFN-α gene expression in MoDCs. Several genes were indicated as up-regulated by Matrix-M in blood 18 h after injection, of which the genes for IFN-α and TLR2 could be statistically confirmed. Respiratory disease developed in all SPF pigs mixed with conventional pigs within 1–3 days. Two out of four SPF pigs injected with saline prior to contact exposure displayed systemic symptoms that was not recorded for the four pigs administered Matrix-M. Granulocyte counts, serum amyloid A levels and transcription of IL18 and TLR2 coincided with disease progression in the pigs. These results support further evaluation of Matrix-M as a possible enhancer of innate immune responses during critical moments in pig management.
Collapse
Affiliation(s)
- Viktor Ahlberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Per Wallgren
- National Veterinary Institute, SVA, Uppsala, Sweden
| | - Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | | | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden.
| |
Collapse
|
43
|
Wang N, Zhang Y, Lei X, Yu W, Zhan Y, Wang D, Zhang J, Wang A, Xiao L, Jiang P, Yang Y. Optimized conditions for preserving stability and integrity of porcine circovirus type2 virus-like particles during long-term storage. J Virol Methods 2017; 243:146-150. [PMID: 28131868 DOI: 10.1016/j.jviromet.2017.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022]
Abstract
Although porcine circovirus type 2 (PCV2) virus-like particles (VLPs) have been successfully harvested from various protein expression systems, conditions to promote their stability and integrity during long-term storage have not been well defined since only the intact VLPs, instead of the monomeric capsid protein (Cap), can induce neutralizing antibodies in pigs in previous studies. In this study, freshly prepared PCV2 VLPs were stored in several media (various concentrations of NaCl, sorbitol, sucrose and trehalose) at three temperatures (4°C, -20°C and -80°C) and their stability and integration were evaluated after 7 month. Addition of 15% trehalose in storage buffer promoted long-term preservation of PCV2 VLPs. In contrast, storage buffer with 5% osmolytes (sucrose, trehalose and sorbitol) did not confer stabilization for long-term storage. These refined storage conditions for stabilization of PCV2 VLPs should enhance their use in vaccines.
Collapse
Affiliation(s)
- Naidong Wang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yan Zhang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinnuo Lei
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wanting Yu
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yang Zhan
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dongliang Wang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiaxin Zhang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Aibing Wang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lehui Xiao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Yang
- Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
44
|
Polyinosinic-polycytidylic acid inhibits the differentiation of mouse preadipocytes through pattern recognition receptor-mediated secretion of tumor necrosis factor-α. Immunol Cell Biol 2016; 94:875-885. [PMID: 27311810 DOI: 10.1038/icb.2016.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Viral infections can disturb the functions of adipose tissues and thus result in metabolic diseases. Polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of viral double-stranded RNA, induces innate antiviral responses by mimicking viral infection through the activation of pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Poly(I:C) also inhibits the differentiation of mouse preadipocytes but the mechanism underlying this process remains unclear. In this study, poly(I:C) inhibited preadipocyte differentiation in a dose-dependent manner, but not in a time-dependent manner. Endogenously transfected poly(I:C) severely impaired the adipogenesis of preadipocytes compared with exogenously added poly(I:C). Low concentration of tumor necrosis factor-α (TNF-α) could effectively inhibit the preadipocyte differentiation. The effect of exogenously added poly(I:C) on inhibition of differentiation was significantly diminished in the preadipocytes of TLR3 knockout mice. By contrast, endogenously transfected poly(I:C) still inhibited the differentiation of TLR3-deficient preadipocytes. Hence, MDA5/RIG-I signaling was involved in the poly(I:C)-induced inhibition of preadipocyte differentiation. The effect of poly(I:C) stimulation, either through endogenous transfection or exogenous addition, on inhibition of differentiation was significantly diminished in the preadipocytes of TNF-α knockout mice. These results confirmed the evidence that poly(I:C) inhibited the differentiation of mouse preadipocytes through PRR-mediated secretion of TNF-α.
Collapse
|
45
|
Effect of high and low levels of maternally derived antibodies on porcine circovirus type 2 (PCV2) infection dynamics and production parameters in PCV2 vaccinated pigs under field conditions. Vaccine 2016; 34:3044-3050. [DOI: 10.1016/j.vaccine.2016.04.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
|
46
|
Li Y, Liu H, Wang P, Wang L, Sun Y, Liu G, Zhang P, Kang L, Jiang S, Jiang Y. RNA-Seq Analysis Reveals Genes Underlying Different Disease Responses to Porcine Circovirus Type 2 in Pigs. PLoS One 2016; 11:e0155502. [PMID: 27171165 PMCID: PMC4865221 DOI: 10.1371/journal.pone.0155502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/30/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2), an economically important pathogen, causes postweaning multisystemic wasting syndrome (PMWS) and other syndrome diseases collectively known as porcine circovirus-associated disease (PCVAD). Previous studies revealed breed-dependent differences in porcine susceptibility to PCV2; however, the genetic mechanism underlying different resistance to PCV2 infection remains largely unknown. In this study, we found that Yorkshire × Landrace (YL) pigs exhibited serious clinical features typifying PCV2 disease, while the Laiwu (a Chinese indigenous pig breed, LW) pigs showed little clinical symptoms of the disease during PCV2 infection. At 35 days post infection (dpi), the PCV2 DNA copy in YL pigs was significantly higher than that in LW pigs (P < 0.05). The serum level of IL-4, IL-6, IL-8, IL-12 and TGF-β1 in LW pigs and TNF-α in YL pigs increased significantly at the early infected stages, respectively; while that of IL-10 and IFN-γ in YL pigs was greatly increased at 35 dpi. RNA-seq analysis revealed that, at 35 dpi, 83 genes were up-regulated and 86 genes were down-regulated in the lung tissues of LW pigs, while in YL pigs, the numbers were 187 and 18, respectively. In LW pigs, the differentially expressed genes (DEGs) were mainly involved in complement and coagulation cascades, metabolism of xenobiotics by cytochrome P450, RIG-I-like receptor signaling and B cell receptor signaling pathways. Four up-regulated genes (TFPI, SERPNC1, SERPNA1, and SERPNA5) that are enriched in complement and coagulation cascades pathway were identified in the PCV2-infected LW pigs, among which the mRNA expression of SERPNA1, as well as three genes including TGF-β1, TGF-β2 and VEGF that are regulated by SERPNA1 was significantly increased (P < 0.05). We speculate that higher expression of SERPNA1 may effectively suppress excessive inflammation reaction and reduce the pathological degree of lung tissue in PCV2-infected pigs. Collectively, our findings indicate that the susceptibility to PCV2 infection depends on a genetic difference between LW and YL pigs, and SERPNA1 likely plays an important role in the resistance of LW pigs to PCV2 infection.
Collapse
Affiliation(s)
- Yanping Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hao Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Pengfei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Liyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Gen Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Ping Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
47
|
Chen M, Han J, Zhang Y, Duan D, Zhang S. Porcine circovirus type 2 induces type I interferon production via MyD88-IKKα-IRFs signaling rather than NF-κB in porcine alveolar macrophages in vitro. Res Vet Sci 2015; 104:188-94. [PMID: 26850559 DOI: 10.1016/j.rvsc.2015.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023]
Abstract
Type I interferon (IFN-I) plays important roles in host antiviral responses. The interferon regulatory factor (IRF) and NF-κB transcription factors are thought to be important in the processes of viral secretion and triggering of interferon production. Recently, studies have shown that porcine circovirus type 2 (PCV2) can induce IFN-I production in vivo and in vitro, but the mechanisms underlying the production of PAMs infected with PCV2 remains unknown. Treatment of these cells with BAY11-7082, an inhibitor of NF-κB activation, allowed us to study the secretion of IFN-α and IFN-β in PAMs infected with PCV2. We found that IFN-α expression was induced following virus infection of PAMs. Notably, even after inhibitor treatment of PAMs infected with PCV2, secretion of IFN-α was significantly higher (P<0.05) compared with the PCV2 infection alone group. Our findings suggest that NF-κB plays a minor role in PCV2-induced type I interferon responses. To further characterize the signaling pathway that drives IFN-I expression in PAMs in response to PCV2, we used siRNA to silence the expression of Myeloid differentiation factor 88 (MyD88) and study the role of MyD88-IKKα-IRF signaling in IFN-I production in PAMs induced by PCV2. Our findings show that PCV2 induced IFN-α mRNA transcription, which is associated with the activities of MyD88, IRF7, and IRF3. Thus, PCV2 can induce IFN-I transcription via the MyD88-IKKα-IRF signaling axis.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Junyuan Han
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yaqun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Dianning Duan
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
48
|
Richmond O, Cecere T, Erdogan E, Meng X, Piñeyro P, Subramaniam S, Todd S, LeRoith T. PD-L1 expression is increased in monocyte derived dendritic cells in response to porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus infections. Vet Immunol Immunopathol 2015; 168:24-9. [DOI: 10.1016/j.vetimm.2015.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
|
49
|
Richmond O, Cecere T, Erdogan E, Meng X, Piñeyro P, Subramaniam S, Todd S, LeRoith T. The PD-L1/CD86 ratio is increased in dendritic cells co-infected with porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus, and the PD-L1/PD-1 axis is associated with anergy, apoptosis, and the induction of regulatory T-cells in porcine lymphocytes. Vet Microbiol 2015; 180:223-9. [DOI: 10.1016/j.vetmic.2015.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 02/04/2023]
|
50
|
de Castro AMMG, Cruz TF, Yamada KB, Gerber PF, Gabardo MP, Araújo JP, Guedes RMC, Mori CK, Oliveira CP, Santos SS, Richtzenhain LJ. Preliminary evidence of age-dependent clinical signs associated with porcine circovirus 2b in experimentally infected CH3/Rockefeller mice. Res Vet Sci 2015; 103:70-2. [PMID: 26679798 DOI: 10.1016/j.rvsc.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/12/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Mice and rats are susceptible to porcine circovirus 2b (PCV2) infection under field and experimental conditions. However, whether PCV2 induces disease in rodents remains a matter of debate. The objectives of the present study were to determine whether PCV2-induced disease in mice is age-dependent and whether intranasally inoculated animals are able to infect animals they come into contact with. Twenty-five CH3/Rockefeller mice were divided into six groups and intranasally inoculated with 25μL of either PCV2b or PBS on days 0, 3 and 6. One group remained untreated. Two age groups were tested: 3-week-old mice and 6-week-old mice. The administration of three PCV2 intranasal inoculations at intervals of three days was able to induce infection and support virus transmission in susceptible mice, regardless of the age at inoculation. The clinical signs associated with PCV2 infection were more severe in younger mice, and PCV2-DNA load was higher in their faeces. In conclusion, PCV2 induced disease in mice.
Collapse
Affiliation(s)
- Alessandra M M G de Castro
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP Brazil; Complexo Educacional Faculdades Metropolitana Unidas, Veterinária, Rua Ministro Nelson Hungria, 541, Real Parque, Morumbi, São Paulo, SP, Brazil.
| | - Taís F Cruz
- Departamento de Imunologia e Microbiologia, Instituto de Biociência, Universidade Estadual Paulista "Julio de Mesquita Filho", Campus de Botucatu, Botucatu, SP, 18618-970, Brazil; Biotechnology Institute - IBTEC - Sao Paulo State University - UNESP - Campus de Botucatu, SP
| | - Katarina B Yamada
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP Brazil
| | - Priscilla F Gerber
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Michelle P Gabardo
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - João P Araújo
- Departamento de Imunologia e Microbiologia, Instituto de Biociência, Universidade Estadual Paulista "Julio de Mesquita Filho", Campus de Botucatu, Botucatu, SP, 18618-970, Brazil; Biotechnology Institute - IBTEC - Sao Paulo State University - UNESP - Campus de Botucatu, SP
| | - Roberto M C Guedes
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Cinthia K Mori
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP Brazil
| | - Camila P Oliveira
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP Brazil
| | - Sueli S Santos
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP Brazil
| | - Leonardo J Richtzenhain
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508 270, São Paulo, SP Brazil
| |
Collapse
|