1
|
Singhal P, Diksha D, Baranwal VK, Singh N, Ghosh A. Evidence of true seed transmissible nature of turnip mosaic virus in mustard species. BMC Genomics 2024; 25:966. [PMID: 39407096 PMCID: PMC11481740 DOI: 10.1186/s12864-024-10866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Mustard is a commercial oilseed crop worldwide infected by a highly infectious turnip mosaic virus (TuMV). In the experimental field at ICAR-IARI, New Delhi, in 2022, a 100% incidence of TuMV infection was observed in brown, black and yellow mustard. A very low aphid population suggested the possibility of seed transmission. Earlier, the virus genome was characterized by high throughput sequencing and it was a recombinant of World-B and Asian-BR isolates. The presence of TuMV in immature seeds was confirmed in eight field-grown genotypes via RT-PCR using CP-specific primers designed from the same genome sequence. TuMV was found to be localized in embryo and cotyledon, indicating its true seed-borne nature. Presence of TuMV was also confirmed by RT-PCR in the grow out plants from seeds of field grown eight infected genotypes and 9 genotypes collected from seed stock, that were grown in an aphid-free growth chamber. Further, out of 24 seedlings of Pusa Gold (seed stock) and Pusa Karishma (seeds from field grown plants), 20 and 17 seedlings were found infected with TuMV, respectively. The internally seed-borne nature of the virus leads to its early establishment at the seedling stage, leading to stunting and leaf-puckering symptoms in the progeny plants. This study is the first evidence of seed embryo infection and seedling transmission of TuMV of all the three species of mustard plants (brown, black and yellow mustard). Seed transmission of TuMV in mustard genotypes have implications for the seed exchange programme of mustard seeds.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Damini Diksha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Naveen Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Escalante C, Sanz-Saez A, Jacobson A, Otulak-Kozieł K, Kozieł E, Balkcom KS, Zhao C, Conner K. Plant virus transmission during seed development and implications to plant defense system. FRONTIERS IN PLANT SCIENCE 2024; 15:1385456. [PMID: 38779063 PMCID: PMC11109449 DOI: 10.3389/fpls.2024.1385456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.
Collapse
Affiliation(s)
- Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Katarzyna Otulak-Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Edmund Kozieł
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kipling S. Balkcom
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Chaoyang Zhao
- The United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Soil Dynamics Lab, Auburn, AL, United States
| | - Kassie Conner
- Alabama Cooperative Extension, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Perea Lopez N, Iturralde Martinez JF, Vosburg C, Rajotte EG, Rosa C, Terrones M. Effective plant virus enrichment using carbon nanotubes and microfluidics. J Virol Methods 2024; 326:114905. [PMID: 38387695 DOI: 10.1016/j.jviromet.2024.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Plant virus detection and identification in crops is a pillar for disease management, import of crop material, production of clean stock plants and basic plant virology studies. In this report, we present a platform for the enrichment and isolation of known or unknown viruses. This platform is based on carbon nanotube arrays inside a microfluidic device that can be a solution for the identification of low titer viruses from plants. Using our microfluidic devices, we achieved enrichment of two economically important viruses, the orthotospovirus, tomato spotted wilt orthotospovirus (TSWV) and the potyvirus, zucchini yellow mosaic virus (ZYMV). The carbon nanotube arrays integrated in these microfluidic devices are capable of trapping viruses discriminated by their size; the virus rich arrays can be then analyzed by common downstream techniques including immunoassays, PCR, HTS and electron microscopy. This procedure offers a simple to operate and portable sample preparation device capable of trapping viruses from raw plant extracts while reducing the host contamination.
Collapse
Affiliation(s)
- Nestor Perea Lopez
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA; Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Chad Vosburg
- Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edwin G Rajotte
- Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA; Entomology, The Pennsylvania State University, 501 ASI, University Park, State College, PA, 16802, USA
| | - Cristina Rosa
- Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA; Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA; Research Initiative for Supra Materials, Shinshu University, Nagano 380-8553, Japan.
| |
Collapse
|
4
|
Metwally RA, Taha MA, El-Moaty NMA, Abdelhameed RE. Attenuation of Zucchini mosaic virus disease in cucumber plants by mycorrhizal symbiosis. PLANT CELL REPORTS 2024; 43:54. [PMID: 38315215 PMCID: PMC10844420 DOI: 10.1007/s00299-023-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Taha
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nada M Abd El-Moaty
- Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
7
|
Prajapati MR, Manav A, Singhal P, Sidharthan VK, Sirohi U, Kumar M, Bharti MK, Singh J, Kumar P, Kumar R, Prakash S, Baranwal VK. Complete Genomic RNA Sequence of Tuberose Mild Mosaic Virus and Tuberose Mild Mottle Virus Acquired by High-Throughput Sequencing. Pathogens 2022; 11:pathogens11080861. [PMID: 36014982 PMCID: PMC9412269 DOI: 10.3390/pathogens11080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberose (Polianthes tuberosa) is an ornamental flowering crop of the Amaryllidaceae family. Tuberose mild mosaic virus (TuMMV) and tuberose mild mottle virus (TuMMoV), members of the genus Potyvirus, are ubiquitously distributed in most tuberose growing countries worldwide with low biological incidence. Here, we report the first coding-complete genomic RNA of TuMMV and TuMMoV obtained through high-throughput sequencing (HTS) and further, the presence of both the viruses were confirmed using virus-specific primers in RT-PCR assays. Excluding the poly (A) tail, the coding-complete genomic RNA of TuMMV and TuMMoV was 9485 and 9462 nucleotides (nts) in length, respectively, and contained a single large open reading frame (ORF). Polyprotein encoded by both the viral genomes contained nine putative cleavage sites. BLASTn analysis of TuMMV and TuMMoV genomes showed 72.40–76.80% and 67.95–77% nucleotide sequence similarities, respectively, with the existing potyviral sequences. Phylogenetic analysis based on genome sequences showed that TuMMV and TuMMoV clustered in a distinct clade to other potyviruses. Further studies are required to understand the mechanism of symptom development, distribution, genetic variability, and their possible threat to tuberose production in India.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Aakansha Manav
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Pankhuri Singhal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Venkidusamy K Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad 500100, Telangana, India
| | - Ujjwal Sirohi
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Mahesh Kumar Bharti
- College of Veterinary and Animal Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Jitender Singh
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Ravindra Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Satya Prakash
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
8
|
Martí M, Merwaiss F, Butković A, Daròs JA. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants. Front Bioeng Biotechnol 2022; 10:877363. [PMID: 35433643 PMCID: PMC9008781 DOI: 10.3389/fbioe.2022.877363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses—the largest group of RNA viruses that infect plants—decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.
Collapse
|
9
|
Xie Y, Wu J. Detection of Cucumber green mottle mosaic virus (CGMMV) in Cucurbitaceous Crop Seeds by RT-PCR. Methods Mol Biol 2022; 2400:275-282. [PMID: 34905210 DOI: 10.1007/978-1-0716-1835-6_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant virus infections cause damages to all kinds of crops, and result in enormous economic and yield losses worldwide. Numerous reports indicated that many plant viruses are vertically transmitted through seeds, and cause severe disease symptoms on seedlings that again serve as secondary transmission sources in fields. Therefore, it is necessary to develop efficient methods to detect the seeds infected by viruses. Here, we describe a RT-PCR protocol for detection of Cucumber green mottle mosaic virus (CGMMV), a tobamovirus in cucurbitaceous crop seeds. This method can be easily adapted for diagnosis of other plant viruses such as Tomato brown rugose fruit virus in seeds.
Collapse
Affiliation(s)
- Yi Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
11
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
12
|
Bao W, Yan T, Deng X, Wuriyanghan H. Synthesis of Full-Length cDNA Infectious Clones of Soybean Mosaic Virus and Functional Identification of a Key Amino Acid in the Silencing Suppressor Hc-Pro. Viruses 2020; 12:E886. [PMID: 32823665 PMCID: PMC7472419 DOI: 10.3390/v12080886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoyi Deng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
13
|
Sandra N, Tripathi A, Dikshit HK, Mandal B, Jain RK. Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts. Virus Res 2020; 280:197903. [PMID: 32105764 DOI: 10.1016/j.virusres.2020.197903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Soybean yellow mottle mosaic virus (SYMMV) is a newly identified member of the genus Gammacarmovirus from grain legumes in India. As the modes of transmission of this virus have not been described, we assessed the possibility of SYMMV to be transmitted through seed collected from field infected mungbean plants and mechanically sap inoculated French bean plants using serological and molecular techniques followed by progeny assays. Direct antigen coated enzyme linked immunosorbent assay (DAC-ELISA) and reverse transcription polymerase chain reaction (RT-PCR) results are inconsistent with field infected mungbean seed tissues to ensure seed transmissibility irrespective of seed number used. Seed from mechanical sap inoculated French bean showed higher absorbance values in DAC-ELISA and amplification corresponding to replicase, movement and coat protein regions of SYMMV genome. The relative accumulation of SYMMV was higher in pod walls, immature seed and stamens and stigma of mechanical sap inoculated French bean. Progeny assays with infected seed revealed the seed transmissibility of SYMMV at the rate of 63.33% in mungbeanand 73.33% in French bean. Mechanical sap inoculation of mungbean progeny seedlings on French bean cv. Pusa Parvati produced characteristic symptoms of SYMMV. The results obtained from this study demonstrate that SYMMV is seed borne in nature and can be transmitted to next generation seedlings. This is the first report of seed transmission of SYMMV in mungbean and French bean.
Collapse
Affiliation(s)
- Nagamani Sandra
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Ankita Tripathi
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - H K Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - R K Jain
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity. Viruses 2019; 11:v11070673. [PMID: 31340474 PMCID: PMC6669615 DOI: 10.3390/v11070673] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.
Collapse
|
15
|
Dey KK, Sugikawa J, Kerr C, Melzer MJ. Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 2018; 55:117-121. [PMID: 30460477 DOI: 10.1007/s11262-018-1616-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/10/2018] [Indexed: 01/27/2023]
Abstract
Air potato (Dioscorea bulbifera) plants being grown at the Florida Department of Agriculture and Consumer Services Division of Plant Industry Biological Control Laboratory II in Alachua County, Florida were observed exhibiting foliar mosaic symptoms characteristic of virus infection. A double-stranded RNA library generated from a symptomatic plant underwent high-throughput sequencing to determine if viral pathogens were present. Sequence data revealed the presence of two viral genomes, one with properties congruent with members of the genus Potyvirus (family Potyviridae), and the other with members of the genus Ampelovirus (family Closteroviridae). Sequence comparisons and phylogenetic placement indicate that both viruses represent novel species. The names "dioscorea mosaic virus" and "air potato virus 1" are proposed for the potyvirus and ampelovirus, respectively.
Collapse
Affiliation(s)
- Kishore K Dey
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, 32608, USA
| | - Jaylinn Sugikawa
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Christopher Kerr
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, 32608, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
16
|
Aliota MT, Dudley DM, Newman CM, Weger-Lucarelli J, Stewart LM, Koenig MR, Breitbach ME, Weiler AM, Semler MR, Barry GL, Zarbock KR, Haj AK, Moriarty RV, Mohns MS, Mohr EL, Venturi V, Schultz-Darken N, Peterson E, Newton W, Schotzko ML, Simmons HA, Mejia A, Hayes JM, Capuano S, Davenport MP, Friedrich TC, Ebel GD, O’Connor SL, O’Connor DH. Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. PLoS Pathog 2018; 14:e1006964. [PMID: 29590202 PMCID: PMC5891079 DOI: 10.1371/journal.ppat.1006964] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/09/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a “synthetic swarm” whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics. Understanding the complex dynamics of Zika virus (ZIKV) infection during pregnancy and during transmission to and from vertebrate host and mosquito vector is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and reservoir establishment. We sought to develop a virus model system for use in nonhuman primates and mosquitoes that allows for the genetic discrimination of molecularly cloned viruses. This “synthetic swarm” of viruses incorporates a molecular barcode that allows for tracking and monitoring individual viral lineages during infection. Here we infected rhesus macaques with this virus to study the dynamics of ZIKV infection in nonhuman primates as well as during mosquito infection/transmission. We found that the proportions of individual barcoded viruses remained relatively stable during acute infection in pregnant and nonpregnant animals. However, in a pregnant animal, the complexity of the virus population declined precipitously 8 days following infection, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Weger-Lucarelli
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Koenig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie R. Zarbock
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amelia K. Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Peterson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wendy Newton
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michele L. Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory D. Ebel
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DHO); (SLO)
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DHO); (SLO)
| |
Collapse
|
17
|
Genetic bottlenecks in intraspecies virus transmission. Curr Opin Virol 2017; 28:20-25. [PMID: 29107838 DOI: 10.1016/j.coviro.2017.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Ultimately, viral evolution is a consequence of mutations that arise within and spread between infected hosts. The transmission bottleneck determines how much of the viral diversity generated in one host passes to another during transmission. It therefore plays a vital role in linking within-host processes to larger evolutionary trends. Although many studies suggest that transmission severely restricts the amount of genetic diversity that passes between individuals, there are important exceptions to this rule. In many cases, the factors that determine the size of the transmission bottleneck are only beginning to be understood. Here, we review how transmission bottlenecks are measured, how they arise, and their consequences for viral evolution.
Collapse
|
18
|
Kang M, Seo JK, Choi H, Choi HS, Kim KH. Establishment of a Simple and Rapid Gene Delivery System for Cucurbits by Using Engineered of Zucchini yellow mosaic virus. THE PLANT PATHOLOGY JOURNAL 2016; 32:70-6. [PMID: 26889118 PMCID: PMC4755678 DOI: 10.5423/ppj.nt.08.2015.0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 05/06/2023]
Abstract
The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.
Collapse
Affiliation(s)
- Minji Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Wanju 565-852,
Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Wanju 565-852,
Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
- Corresponding author. Phone) +82-2-880-4677, FAX) +82-2-873-2317, E-mail)
| |
Collapse
|
19
|
Simmons HE, Prendeville HR, Dunham JP, Ferrari MJ, Earnest JD, Pilson D, Munkvold GP, Holmes EC, Stephenson AG. Transgenic Virus Resistance in Crop-Wild Cucurbita pepo Does Not Prevent Vertical Transmission of Zucchini yellow mosaic virus. PLANT DISEASE 2015; 99:1616-1621. [PMID: 30695961 DOI: 10.1094/pdis-10-14-1062-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic squash cultivar with wild C. pepo, and determined whether seed-to-seedling transmission of ZYMV was possible in seeds harvested from transgenic backcrossed C. pepo. We then compared these transmission rates to those of non-transgenic (backcrossed and wild) C. pepo. The overall seed-to-seedling transmission rate in ZYMV was similar to those found in previous studies (1.37%), with no significant difference between transgenic backcrossed (2.48%) and non-transgenic (1.03%) backcrossed and wild squash. Fewer transgenic backcrossed plants had symptom development (7%) in comparison with all non-transgenic plants (26%) and may be instrumental in preventing yield reduction due to ZYMV. Our study shows that ZYMV is seed transmitted in transgenic backcrossed squash, which may affect the spread of ZYMV via the movement of ZYMV-infected seeds. Deep genome sequencing of the seed-transmitted viral populations revealed that 23% of the variants found in this study were present in other vertically transmitted ZYMV populations, suggesting that these variants may be necessary for seed transmission or are distributed geographically via seeds.
Collapse
Affiliation(s)
- H E Simmons
- Seed Science Center, Iowa State University, Ames, IA 50011; and Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - H R Prendeville
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588; and Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - J P Dunham
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90033
| | - M J Ferrari
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - J D Earnest
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - D Pilson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588
| | - G P Munkvold
- Seed Science Center, Iowa State University, Ames, IA 50011
| | - E C Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802; and Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School, The University of Sydney, NSW 2006, Australia
| | - A G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
20
|
Genetic Variability of Bovine Viral Diarrhea Virus and Evidence for a Possible Genetic Bottleneck during Vertical Transmission in Persistently Infected Cattle. PLoS One 2015; 10:e0131972. [PMID: 26132819 PMCID: PMC4488595 DOI: 10.1371/journal.pone.0131972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV), a Pestivirus in the family Flaviviridae, is an economically important pathogen of cattle worldwide. The primary propagators of the virus are immunotolerant persistently infected (PI) cattle, which shed large quantities of virus throughout life. Despite the absence of an acquired immunity against BVDV in these PI cattle there are strong indications of viral variability that are of clinical and epidemiological importance. In this study the variability of E2 and NS5B sequences in multiple body compartments of PI cattle were characterized using clonal sequencing. Phylogenetic analyses revealed that BVDV exists as a quasispecies within PI cattle. Viral variants were clustered by tissue compartment significantly more often than expected by chance alone with the central nervous system appearing to be a particularly important viral reservoir. We also found strong indications for a genetic bottleneck during vertical transmission from PI animals to their offspring. These quasispecies analyses within PI cattle exemplify the role of the PI host in viral propagation and highlight the complex dynamics of BVDV pathogenesis, transmission and evolution.
Collapse
|
21
|
Nováková S, Flores-Ramírez G, Glasa M, Danchenko M, Fiala R, Skultety L. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. FRONTIERS IN PLANT SCIENCE 2015; 6:263. [PMID: 25972878 PMCID: PMC4411989 DOI: 10.3389/fpls.2015.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis.
Collapse
Affiliation(s)
| | | | - Miroslav Glasa
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Roderik Fiala
- Institute of Botany, Slovak Academy of SciencesBratislava, Slovakia
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of Czech RepublicPrague, Czech Republic
| |
Collapse
|
22
|
Seabloom EW, Borer ET, Gross K, Kendig AE, Lacroix C, Mitchell CE, Mordecai EA, Power AG. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol Lett 2015; 18:401-15. [PMID: 25728488 DOI: 10.1111/ele.12418] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/20/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
24
|
Dunham JP, Simmons HE, Holmes EC, Stephenson AG. Analysis of viral (zucchini yellow mosaic virus) genetic diversity during systemic movement through a Cucurbita pepo vine. Virus Res 2014; 191:172-179. [PMID: 25107623 PMCID: PMC4176823 DOI: 10.1016/j.virusres.2014.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023]
Abstract
Determining the extent and structure of intra-host genetic diversity and the magnitude and impact of population bottlenecks is central to understanding the mechanisms of viral evolution. To determine the nature of viral evolution following systemic movement through a plant, we performed deep sequencing of 23 leaves that grew sequentially along a single Cucurbita pepo vine that was infected with zucchini yellow mosaic virus (ZYMV), and on a leaf that grew in on a side branch. Strikingly, of 112 genetic (i.e. sub-consensus) variants observed in the data set as a whole, only 22 were found in multiple leaves. Similarly, only three of the 13 variants present in the inoculating population were found in the subsequent leaves on the vine. Hence, it appears that systemic movement is characterized by sequential population bottlenecks, although not sufficient to reduce the population to a single virion as multiple variants were consistently transmitted between leaves. In addition, the number of variants within a leaf increases as a function of distance from the inoculated (source) leaf, suggesting that the circulating sap may serve as a continual source of virus. Notably, multiple mutational variants were observed in the cylindrical inclusion (CI) protein (known to be involved in both cell-to-cell and systemic movement of the virus) that were present in multiple (19/24) leaf samples. These mutations resulted in a conformational change, suggesting that they might confer a selective advantage in systemic movement within the vine. Overall, these data reveal that bottlenecks occur during systemic movement, that variants circulate in the phloem sap throughout the infection process, and that important conformational changes in CI protein may arise during individual infections.
Collapse
Affiliation(s)
- J P Dunham
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - H E Simmons
- Seed Science Center, Iowa State University, Ames, IA 50011, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - E C Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Marie Bashir Institute for Emerging Diseases & Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - A G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Cong Y, Ren X. Coronavirus entry and release in polarized epithelial cells: a review. Rev Med Virol 2014; 24:308-15. [PMID: 24737708 PMCID: PMC7169134 DOI: 10.1002/rmv.1792] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/03/2022]
Abstract
Most coronaviruses cause respiratory or intestinal infections in their animal or human host. Hence, their interaction with polarized epithelial cells plays a critical role in the onset and outcome of infection. In this paper, we review the knowledge regarding the entry and release of coronaviruses, with particular emphasis on the severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses. As these viruses approach the epithelial surfaces from the apical side, it is not surprising that coronavirus cell receptors are exposed primarily on the apical domain of polarized epithelial cells. With respect to release, all possibilities appear to occur. Thus, most coronaviruses exit through the apical surface, several through the basolateral one, although the Middle East respiratory syndrome coronavirus appears to use both sides. These observations help us understand the local or systematic spread of the infection within its host as well as the spread of the virus within the host population. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yingying Cong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | | |
Collapse
|
26
|
Fabre F, Moury B, Johansen EI, Simon V, Jacquemond M, Senoussi R. Narrow bottlenecks affect Pea seedborne mosaic virus populations during vertical seed transmission but not during leaf colonization. PLoS Pathog 2014; 10:e1003833. [PMID: 24415934 PMCID: PMC3887104 DOI: 10.1371/journal.ppat.1003833] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Populations having high Ne adapt faster, as selection acts more intensely, than populations having low Ne, where random effects of genetic drift dominate. Estimating Ne for various steps of plant virus life cycle has been the focus of several studies in the last decade, but no estimates are available for the vertical transmission of plant viruses, although virus seed transmission is economically significant in at least 18% of plant viruses in at least one plant species. Here we study the co-dynamics of two variants of Pea seedborne mosaic virus (PSbMV) colonizing leaves of pea plants (Pisum sativum L.) during the whole flowering period, and their subsequent transmission to plant progeny through seeds. Whereas classical estimators of Ne could be used for leaf infection at the systemic level, as virus variants were equally competitive, dedicated stochastic models were needed to estimate Ne during vertical transmission. Very little genetic drift was observed during the infection of apical leaves, with Ne values ranging from 59 to 216. In contrast, a very drastic genetic drift was observed during vertical transmission, with an average number of infectious virus particles contributing to the infection of a seedling from an infected mother plant close to one. A simple model of vertical transmission, assuming a cumulative action of virus infectious particles and a virus density threshold required for vertical transmission to occur fitted the experimental data very satisfactorily. This study reveals that vertically-transmitted viruses endure bottlenecks as narrow as those imposed by horizontal transmission. These bottlenecks are likely to slow down virus adaptation and could decrease virus fitness and virulence.
Collapse
Affiliation(s)
- Frédéric Fabre
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | - Elisabeth Ida Johansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Frederiksberg C, Denmark
| | - Vincent Simon
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | | - Rachid Senoussi
- INRA, UR546 Biostatistique et Processus Spatiaux, Domaine Saint-Paul, Site Agroparc, Avignon, France
| |
Collapse
|