1
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Rosendal E, Lindqvist R, Chotiwan N, Henriksson J, Överby AK. Transcriptional Response to Tick-Borne Flavivirus Infection in Neurons, Astrocytes and Microglia In Vivo and In Vitro. Viruses 2024; 16:1327. [PMID: 39205301 PMCID: PMC11359927 DOI: 10.3390/v16081327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While primary cells isolated from the host can be used to study the immune response to TBEV, it is still unclear how well these reflect the immune response elicited in vivo. Here, we compared the transcriptional response to TBEV and the less pathogenic tick-borne flavivirus, Langat virus (LGTV), in primary monocultures of neurons, astrocytes and microglia in vitro, with the transcriptional response in vivo captured by single-nuclei RNA sequencing (snRNA-seq) of a whole mouse cortex. We detected similar transcriptional changes induced by both LGTV and TBEV infection in vitro, with the lower response to LGTV likely resulting from slower viral kinetics. Gene set enrichment analysis showed a stronger transcriptional response in vivo than in vitro for astrocytes and microglia, with a limited overlap mainly dominated by interferon signaling. Together, this adds to our understanding of neurotropic flavivirus pathogenesis and the strengths and limitations of available model systems.
Collapse
Affiliation(s)
- Ebba Rosendal
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Nunya Chotiwan
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Icelab, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
3
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Beránková Z, Khanna R, Spěváková M, Langhansová H, Kopecký J, Lieskovská J. Cellular stress is triggered by tick-borne encephalitis virus and limits the virus replication in PMJ2-R mouse macrophage cell line. Ticks Tick Borne Dis 2024; 15:102269. [PMID: 37813002 DOI: 10.1016/j.ttbdis.2023.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Viral infection may represent a stress condition to the host cell. Cells react to it by triggering the defence programme to restore homeostasis and these events may in turn impact the viral replication. The knowledge about tick-borne encephalitis virus (TBEV) infection-associated stress is limited. Here we investigated the interplay between TBEV infection and stress pathways in PMJ2-R mouse macrophage cell line, as macrophages are the target cells in early phases of TBEV infection. First, to determine how stress influences TBEV replication, the effect of stress inducers H2O2 and tunicamycin (TM) was tested. Viral multiplication was decreased in the presence of both stress inducers suggesting that the stress and cellular stress responses restrict the virus replication. Second, we investigated the induction of oxidative stress and endoplasmic reticulum (ER) stress upon TBEV infection. The level of oxidative stress was interrogated by measuring the reactive oxygen species (ROS). ROS were intermittently increased in infected cells at 12 hpi and at 72 hpi. As mitochondrial dysfunction may result in increased ROS level, we evaluated the mitochondrial homeostasis by measuring the mitochondrial membrane potential (MMP) and found that TBEV infection induced the hyperpolarization of MMP. Moreover, a transient increase of gene expression of stress-induced antioxidative enzymes, like p62, Gclm and Hmox1, was detected. Next, we evaluated the ER stress upon TBEV infection by analysing unfolded protein responses (UPR). We found that infection induced gene expression of two general sensors BiP and CHOP and activated the IRE1 pathway of UPR. Finally, since the natural transmission route of TBEV from its tick vector to the host is mediated via tick saliva, the impact of tick saliva from Ixodes ricinus on stress pathways in TBEV-infected cells was tested. We observed only marginal potentiation of UPR pathway. In conclusion, we found that TBEV infection of PMJ2-R cells elicits the changes in redox balance and triggers cellular stress defences, including antioxidant responses and the IRE1 pathway of UPR. Importantly, our results revealed the negative effect of stress-evoked events on TBEV replication and only marginal impact of tick saliva on stress cellular pathways.
Collapse
Affiliation(s)
- Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Ritesh Khanna
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Markéta Spěváková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jan Kopecký
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jaroslava Lieskovská
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Singh A, Ghosh R, Guchhait P. CXCR3 antagonist rescues ER stress and reduces inflammation and JEV infection in mice brain. Cytokine 2023; 172:156380. [PMID: 37812996 DOI: 10.1016/j.cyto.2023.156380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining cellular homeostasis, and synthesis and folding of proteins and lipids. The ER is sensitive to stresses including viral infection that perturb the intracellular energy level and redox state, and accumulating unfolded/misfolded proteins. Viruses including Japanese encephalitis virus (JEV) activates unfolded protein response (UPR) causing ER stress in host immune cells and promotes inflammation and apoptotic cell death. The chemokine receptor CXCR3 has been reported to play important role in the accumulation of inflammatory immune cells and neuronal cell death in several disease conditions. Recently we described the involvement of CXCR3 in regulating inflammation and JEV infection in mice brain. Supplementation with a CXCR3 antagonist AMG487 significantly reduced JEV infection in the mice brain in conjunction with the downregulation of UPR pathway via PERK:eIF2α:CHOP, and decreased mitochondrial ROS generation, inflammation and apoptotic cell death. Alongside, AMG487 treatment improved interferon (IFN)-α/β synthesis in JEV-infected mice brain. Thus, suggesting a potential therapeutic role of CXCR3 antagonist against JEV infection.
Collapse
Affiliation(s)
- Anamika Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
6
|
Das B, Samal S, Hamdi H, Pal A, Biswas A, Behera J, Singh G, Behera CK, Sahoo DP, Pati S. Role of endoplasmic reticulum stress-related unfolded protein response and its implications in dengue virus infection for biomarker development. Life Sci 2023; 329:121982. [PMID: 37517582 DOI: 10.1016/j.lfs.2023.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Dengue virus (DENV) causes debilitating disease in humans, which varies at different rates in host cells, such as monocytes, macrophages, dendritic cells, Langerhans cells, and other cell types. Such heterogeneity in DENV infection in cells could be attributed to a range of factors, including host cell immune response, anti-viral cellular proteins, and virus mediated cellular autophagy. This review delineates an important feature of every cell, the unfolded protein response (UPR) that is attributed to the accumulation of several viral and unfolded/misfolded proteins, such as in DENV infection. UPR is a normal process to counteract endoplasmic reticulum (ER) stress that leads to cell autophagy; though the phenomenon is markedly upregulated during DENV infection. This could be attributed to the uncontrolled activation of the key UPR signaling pathways: inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and activating transcription factor-6 (ATF6), which promote cell autophagy under normal and diseased conditions through the downstream regulation of apoptosis promoting factors such as X-box binding protein (XBP1), GADD34, and ATF-6. Because DENV can modulate these signaling cascades, by promoting dysregulated cell autophagy, the ER stress mediated UPR pathways and the inherent agents could play an important role in delineating the severity of dengue infection with a potential for developing DENV targeted therapeutics.
Collapse
Affiliation(s)
- Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India.
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Hamida Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aditi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Arpita Biswas
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Jyotika Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Gyanraj Singh
- Department of Anatomy, Kalinga Institute of Medical Sciences, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Debee Prasad Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Sanghamitra Pati
- Regional Medical Research Centre-ICMR, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
7
|
Tang WD, Tang HL, Peng HR, Ren RW, Zhao P, Zhao LJ. Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Front Microbiol 2023; 14:1182798. [PMID: 37378295 PMCID: PMC10291047 DOI: 10.3389/fmicb.2023.1182798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) belonging to arboviruses is a major member of zoonotic pathogens. TBEV infection causes severe human encephalitis without specific antiviral drugs. Due to its use of antiviral drug against a wide range of viruses, we investigated antiviral effect of ribavirin against TBEV in susceptible human cell lines A549 and SH-SY5Y. Ribavirin displayed minor cytotoxicity on multiple cell lines. Ribavirin obviously impaired TBEV replication and protected the infected cells from cytopathic effect. Importantly, ribavirin markedly inhibited TBEV propagation, as evidenced by impairment of TBEV production and viral RNA replication. Treatment with ribavirin (co-treatment and post-treatment) led to a dose-dependent reduction in TBEV titers as well as the viral RNA levels. Antiviral protein myxovirus resistance A mRNA expression was significantly up-regulated and signal transducer and activator of transcription 3 was activated in TBEV-infected A549 cells upon the ribavirin treatment. Induction of inflammatory cytokine tumor necrosis factor alpha by TBEV was decreased in A549 cells with the treatment of ribavirin, whereas interleukin 1 beta release appeared to be unaffected. These results suggest that ribavirin might represent a promising safe and effective antiviral drug against TBEV.
Collapse
Affiliation(s)
- Wan-Da Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hao-Ran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Rui-Wen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Shishova A, Dyugay I, Fominykh K, Baryshnikova V, Dereventsova A, Turchenko Y, Slavokhotova AA, Ivin Y, Dmitriev SE, Gmyl A. Enteroviruses Manipulate the Unfolded Protein Response through Multifaceted Deregulation of the Ire1-Xbp1 Pathway. Viruses 2022; 14:v14112486. [PMID: 36366584 PMCID: PMC9699254 DOI: 10.3390/v14112486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Many viruses are known to trigger endoplasmic reticulum (ER) stress in host cells, which in turn can develop a protective unfolded protein response (UPR). Depending on the conditions, the UPR may lead to either cell survival or programmed cell death. One of three UPR branches involves the upregulation of Xbp1 transcription factor caused by the unconventional cytoplasmic splicing of its mRNA. This process is accomplished by the phosphorylated form of the endoribonuclease/protein kinase Ire1/ERN1. Here, we show that the phosphorylation of Ire1 is up-regulated in HeLa cells early in enterovirus infection but down-regulated at later stages. We also find that Ire1 is cleaved in poliovirus- and coxsackievirus-infected HeLa cells 4-6 h after infection. We further show that the Ire1-mediated Xbp1 mRNA splicing is repressed in infected cells in a time-dependent manner. Thus, our results demonstrate the ability of enteroviruses to actively modulate the Ire1-Xbp1 host defensive pathway by inducing phosphorylation and proteolytic cleavage of the ER stress sensor Ire1, as well as down-regulating its splicing activity. Inactivation of Ire1 could be a novel mode of the UPR manipulation employed by viruses to modify the ER stress response in the infected cells.
Collapse
Affiliation(s)
- Anna Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 117418 Moscow, Russia
- Correspondence: (A.S.); (S.E.D.)
| | - Ilya Dyugay
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Ksenia Fominykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Victoria Baryshnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Alena Dereventsova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Yuriy Turchenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Anna A. Slavokhotova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Yury Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (A.S.); (S.E.D.)
| | - Anatoly Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products RAS (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| |
Collapse
|
9
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
10
|
IRE1-Mediated Unfolded Protein Response Promotes the Replication of Tick-Borne Flaviviruses in a Virus and Cell-Type Dependent Manner. Viruses 2021; 13:v13112164. [PMID: 34834970 PMCID: PMC8619205 DOI: 10.3390/v13112164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.
Collapse
|
11
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
12
|
A functional interaction between GRP78 and Zika virus E protein. Sci Rep 2021; 11:393. [PMID: 33432092 PMCID: PMC7801745 DOI: 10.1038/s41598-020-79803-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.
Collapse
|
13
|
Herath V, Gayral M, Miller RK, Verchot J. BIP and the unfolded protein response are important for potyvirus and potexvirus infection. PLANT SIGNALING & BEHAVIOR 2020; 15:1807723. [PMID: 32799639 PMCID: PMC7598082 DOI: 10.1080/15592324.2020.1807723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Plant potexvirus and potyvirus infection can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones, especially the BiP chaperones which contribute to pro-survival functions when plants are subjected to infection. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. Recent data also identified the IRE1-independent UPR pathways led by bZIP28 and bZIP17 contribute to potexvirus and potyvirus infection. These three bZIP pathways recognize cis-regulatory elements in the BiP promoters to enhance gene expression. BiP is part of a negative feedback loop that regulates the activities of the ER stress transducers IRE1, bZIP28, and bZIP17 to block their activation. We discuss a model in which bZIP60 and bZIP17 synergistically induce BiP and other genes restricting Plantago asiatica mosaic virus (PlAMV; a potexvirus) infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding Turnip mosiac virus (TuMV, a potyvirus) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Kandy, Sri Lanka
| | | | - Rita K. Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Kirsch JM, Mlera L, Offerdahl DK, VanSickle M, Bloom ME. Tick-Borne Flaviviruses Depress AKT Activity during Acute Infection by Modulating AKT1/2. Viruses 2020; 12:v12101059. [PMID: 32977414 PMCID: PMC7598186 DOI: 10.3390/v12101059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs.
Collapse
|
15
|
Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020; 21:ijms21103689. [PMID: 32456258 PMCID: PMC7279407 DOI: 10.3390/ijms21103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.
Collapse
Affiliation(s)
- Shanhui Ren
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| |
Collapse
|
16
|
Lewy TG, Offerdahl DK, Grabowski JM, Kellman E, Mlera L, Chiramel A, Bloom ME. PERK-Mediated Unfolded Protein Response Signaling Restricts Replication of the Tick-Borne Flavivirus Langat Virus. Viruses 2020; 12:v12030328. [PMID: 32197325 PMCID: PMC7150897 DOI: 10.3390/v12030328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) maintains protein-folding homeostasis in the endoplasmic reticulum (ER) and has been implicated as both beneficial and detrimental to flavivirus infection. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a sensor of the UPR, is commonly associated with antiviral effects during mosquito-borne flavivirus (MBFV) infection, but its relation to tick-borne flavivirus (TBFV) infection remains largely unexplored. In this study, we identified changes in UPR and autophagic activity during Langat virus (LGTV) infection. LGTV robustly activated UPR and altered autophagic flux. Knockdown of endogenous PERK in human cells resulted in increased LGTV replication, but not that of closely related Powassan virus (POWV). Finally, on examining changes in protein levels of components associated with UPR and autophagy in the absence of PERK, we could show that LGTV-infected cells induced UPR but did not lead to expression of C/EBP homologous protein (CHOP), an important downstream transcription factor of multiple stress pathways. From these data, we hypothesize that LGTV can antagonize other kinases that target eukaryotic initiation factor 2α (eIF2α), but not PERK, implicating PERK as a potential mediator of intrinsic immunity. This effect was not apparent for POWV, a more pathogenic TBFV, suggesting it may be better equipped to mitigate the antiviral effects of PERK.
Collapse
Affiliation(s)
- Tyler G. Lewy
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
- Correspondence: (J.M.G.); (M.E.B.); Tel.: +1-406-375-9789 (J.M.G.); +1-406-375-9707 (M.E.B.)
| | - Eliza Kellman
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
| | - Abhilash Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA;
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 S. 4th St, Hamilton, MT 59840, USA; (T.G.L.); (D.K.O.); (E.K.); (L.M.)
- Correspondence: (J.M.G.); (M.E.B.); Tel.: +1-406-375-9789 (J.M.G.); +1-406-375-9707 (M.E.B.)
| |
Collapse
|
17
|
Kolpikova EP, Tronco AR, Den Hartigh AB, Jackson KJ, Iwawaki T, Fink SL. IRE1α Promotes Zika Virus Infection via XBP1. Viruses 2020; 12:v12030278. [PMID: 32138181 PMCID: PMC7150863 DOI: 10.3390/v12030278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Zika virus (ZIKV) is an emergent member of the Flaviviridae family which causes severe congenital defects and other major sequelae, but the cellular processes that support ZIKV replication are incompletely understood. Related flaviviruses use the endoplasmic reticulum (ER) as a membranous platform for viral replication and induce ER stress during infection. Our data suggest that ZIKV activates IRE1α, a component of the cellular response to ER stress. IRE1α is an ER-resident transmembrane protein that possesses a cytosolic RNase domain. Upon activation, IRE1α initiates nonconventional cytoplasmic splicing of XBP1 mRNA. Spliced XBP1 encodes a transcription factor, which upregulates ER-related targets. We find that ZIKV infection induces XBP1 mRNA splicing and induction of XBP1 target genes. Small molecule inhibitors of IRE1α, including those specific for the nuclease function, prevent ZIKV-induced cytotoxicity, as does genetic disruption of IRE1α. Optimal ZIKV RNA replication requires both IRE1α and XBP1. Spliced XBP1 has been described to cause ER expansion and remodeling and we find that ER redistribution during ZIKV infection requires IRE1α nuclease activity. Finally, we demonstrate that inducible genetic disruption of IRE1α and XBP1 impairs ZIKV replication in a mouse model of infection. Together, our data indicate that the ER stress response component IRE1α promotes ZIKV infection via XBP1 and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Elena P. Kolpikova
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ana R. Tronco
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Konner J. Jackson
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0265, Japan
| | - Susan L. Fink
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-(206)-598-6131
| |
Collapse
|
18
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
19
|
Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2019; 33:22-37. [PMID: 31687902 PMCID: PMC6978768 DOI: 10.1089/vim.2019.0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Kristina M. Adams Waldorf
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
20
|
Carletti T, Zakaria MK, Faoro V, Reale L, Kazungu Y, Licastro D, Marcello A. Viral priming of cell intrinsic innate antiviral signaling by the unfolded protein response. Nat Commun 2019; 10:3889. [PMID: 31467282 PMCID: PMC6715738 DOI: 10.1038/s41467-019-11663-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The innate response to a pathogen is critical in determining the outcome of the infection. However, the interplay of different cellular responses that are activated following viral infection and their contribution to innate antiviral signalling has not been clearly established. This work shows that flaviviruses, including Dengue, Zika, West Nile and Tick-borne encephalitis viruses, activate the unfolded protein response before transcription of interferon regulatory factor 3 induced genes. Infection in conditions of unfolded protein response priming leads to early activation of innate antiviral responses and cell intrinsic inhibition of viral replication, which is interferon regulatory factor 3 dependent. These results demonstrate that the unfolded protein response is not only a physiological reaction of the cell to viral infection, but also synergizes with pattern recognition sensing to mount a potent antiviral response.
Collapse
Affiliation(s)
- Tea Carletti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mohammad Khalid Zakaria
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Valentina Faoro
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Laura Reale
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Yvette Kazungu
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
21
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
22
|
Potokar M, Jorgačevski J, Zorec R. Astrocytes in Flavivirus Infections. Int J Mol Sci 2019; 20:ijms20030691. [PMID: 30736273 PMCID: PMC6386967 DOI: 10.3390/ijms20030691] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Virus infections of the central nervous system (CNS) can manifest in various forms of inflammation, including that of the brain (encephalitis) and spinal cord (myelitis), all of which may have long-lasting deleterious consequences. Although the knowledge of how different viruses affect neural cells is increasing, understanding of the mechanisms by which cells respond to neurotropic viruses remains fragmented. Several virus types have the ability to infect neural tissue, and astrocytes, an abundant and heterogeneous neuroglial cell type and a key element providing CNS homeostasis, are one of the first CNS cell types to get infected. Astrocytes are morphologically closely aligned with neuronal synapses, blood vessels, and ventricle cavities, and thereby have the capacity to functionally interact with neurons and endothelial cells. In this review, we focus on the responses of astrocytes to infection by neurotropic flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV), which have all been confirmed to infect astrocytes and cause multiple CNS defects. Understanding these mechanisms may help design new strategies to better contain and mitigate virus- and astrocyte-dependent neuroinflammation.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
- Celica BIOMEDICAL, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
- Celica BIOMEDICAL, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
- Celica BIOMEDICAL, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Non-Structural Protein 2B of Human Rhinovirus 16 Activates Both PERK and ATF6 Rather Than IRE1 to Trigger ER Stress. Viruses 2019; 11:v11020133. [PMID: 30717233 PMCID: PMC6409610 DOI: 10.3390/v11020133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
To understand the underlying mechanisms of endoplasmic reticulum (ER) stress caused by human rhinovirus (HRV) 16 and non-structural transmembrane protein 2B, the expressions of ER chaperone glucose-regulated protein 78 (GRP78) and three signal transduction pathways, including protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1), were evaluated after HRV16 infection and 2B gene transfection. Our results showed that both HRV16 infection and 2B gene transfection increased the expression of ER chaperone GRP78, and induced phosphorylation of PERK and cleavage of ATF6 in a time-dependent manner. Our data also revealed that the HRV16 2B protein was localized to the ER membrane. However, both HRV16 infection and HRV16 2B gene transfection did not induce ER stress through the IRE1 pathway. Moreover, our results showed that apoptosis occurred in H1-HeLa cells infected with HRV16 or transfected with 2B gene accompanied with increased expression of CHOP and cleaved caspase-3. Taken together, non-structural protein 2B of HRV16 induced an ER stress response through the PERK and ATF6 pathways rather than the IRE1 pathway.
Collapse
|
24
|
Zhao D, Yang J, Han K, Liu Q, Wang H, Liu Y, Huang X, Zhang L, Li Y. The unfolded protein response induced by Tembusu virus infection. BMC Vet Res 2019; 15:34. [PMID: 30670030 PMCID: PMC6343269 DOI: 10.1186/s12917-019-1781-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
Background Tembusu virus (TMUV), classified in the genus Flavivirus, causes reduced egg production and neurological problems in poultry. Flavivirus replication depends on the host endoplasmic reticulum (ER) and induces ER stress that leads to activation of the cellular unfolded protein response (UPR), an important signalling pathway that regulates many biological functions involved in viral pathogenesis and innate immunity. However, the mechanism of TMUV-induced UPR activation remains unclear. Results In this study, we systematically investigated the three UPR pathways in TMUV-infected BHK-21 cells. Our results showed that expression of glucose-related protein 78 (GRP78) and GRP94 was upregulated during the course of TMUV infection. We then demonstrated that TMUV activated the PERK pathway in the early stage of infection, resulting in upregulation of ATF4, GADD34 and CHOP, with CHOP induction leading to caspase-3 activation. We also found the IRE1 pathway to be activated, leading to splicing of X box binding protein 1 (XBP1) mRNA and enhanced expression of p58IPK. Finally, we observed increased expression of ATF6 and activity of ER stress-response elements, suggesting stimulation of the ATF6 pathway. In addition, ATF6 pathway activation correlated with the induction of downstream chaperones calnexin, calreticulin, ERp57 and PDI. UPR activity was also observed by the marked elevation in GRP78 and sXBP1 levels in TMUV-infected DF-1 cells. Conclusions This is the first report that TMUV infection-induced ER stress activates three branches of the UPR, and these results lay the foundation for elucidating the pathogenesis of TMUV and understanding the inherent mechanism of TMUV infection as well as the host response.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Huili Wang
- Institute of Animal Sciences, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, People's Republic of China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
25
|
Ignatieva EV, Igoshin AV, Yudin NS. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol Biol 2017; 17:259. [PMID: 29297316 PMCID: PMC5751789 DOI: 10.1186/s12862-017-1107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. RESULTS Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. CONCLUSIONS A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Alexander V Igoshin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
26
|
Orientia tsutsugamushi Modulates Endoplasmic Reticulum-Associated Degradation To Benefit Its Growth. Infect Immun 2017; 86:IAI.00596-17. [PMID: 29109174 DOI: 10.1128/iai.00596-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/26/2017] [Indexed: 01/11/2023] Open
Abstract
Orientia tsutsugamushi, an obligate intracellular bacterium that is auxotrophic for the aromatic amino acids and histidine, causes scrub typhus, a potentially deadly infection that threatens 1 billion people. O. tsutsugamushi growth is minimal during the first 24 to 48 h of infection but its growth becomes logarithmic thereafter. How the pathogen modulates cellular functions to support its growth is poorly understood. The unfolded protein response (UPR) is a cytoprotective pathway that relieves endoplasmic reticulum (ER) stress by promoting ER-associated degradation (ERAD) of misfolded proteins. Here, we show that O. tsutsugamushi invokes the UPR in the first 48 h and benefits from ER stress in an amino acid-dependent manner. O. tsutsugamushi also impedes ERAD during this time period. By 72 h, ER stress is alleviated and ERAD proceeds unhindered. Sustained inhibition of ERAD using RNA interference results in an O. tsutsugamushi growth defect at 72 h that can be rescued by amino acid supplementation. Thus, O. tsutsugamushi temporally stalls ERAD until ERAD-derived amino acids are needed to support its growth. The O. tsutsugamushi effector Ank4 is linked to this phenomenon. Ank4 interacts with Bat3, a eukaryotic chaperone that is essential for ERAD, and is transiently expressed by O. tsutsugamushi during the infection period when it inhibits ERAD. Ectopically expressed Ank4 blocks ERAD to phenocopy O. tsutsugamushi infection. Our data reveal a novel mechanism by which an obligate intracellular bacterial pathogen modulates ERAD to satisfy its nutritional virulence requirements.
Collapse
|
27
|
Sharma M, Bhattacharyya S, Sharma KB, Chauhan S, Asthana S, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus activates autophagy through XBP1 and ATF6 ER stress sensors in neuronal cells. J Gen Virol 2017; 98:1027-1039. [DOI: 10.1099/jgv.0.000792] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Manish Sharma
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
- Present address: Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kiran Bala Sharma
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Chauhan
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suramya Asthana
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Malik Zainul Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
28
|
Carletti T, Zakaria MK, Marcello A. The host cell response to tick-borne encephalitis virus. Biochem Biophys Res Commun 2017; 492:533-540. [PMID: 28167278 DOI: 10.1016/j.bbrc.2017.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
Tick-borne encephalitis virus is the most prevalent autochthonous arbovirus in Europe and an important travel-associated virus. Complications of the infection could lead to lethal encephalitis in susceptible individuals. However, despite its clinical relevance and expanding geographical distribution, most of our knowledge on its pathogenesis is inferred from studies on other flaviviruses. Molecular details of the host cell response to infection are scarce leading to a poor understanding of the antiviral pathways and viral countermeasures that are critical to determine the outcome of the infection. In this work the relevant literature is reviewed and the key elements of tick-borne encephalitis virus infection of human cells are identified, which requires further investigation.
Collapse
Affiliation(s)
- Tea Carletti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mohammad Khalid Zakaria
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
29
|
Cervantes-Ortiz SL, Zamorano Cuervo N, Grandvaux N. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology. Viruses 2016; 8:v8050124. [PMID: 27187445 PMCID: PMC4885079 DOI: 10.3390/v8050124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis.
Collapse
Affiliation(s)
- Sandra L Cervantes-Ortiz
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Natalia Zamorano Cuervo
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
30
|
Kuzmenko YV, Starodubova ES, Karganova GG, Timofeev AV, Karpov VL. Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits. Mol Biol 2016. [DOI: 10.1134/s0026893316020126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells. Viruses 2016; 8:v8020056. [PMID: 26907328 PMCID: PMC4776210 DOI: 10.3390/v8020056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) infection induces autophagy and apoptosis. These cellular responses could be connected with endoplasmic reticulum (ER) stress. It remains unknown if PCV2 induces ER stress and if autophagy or apoptosis is primary to PCV2 infection or secondary responses following ER stress. Here, we demonstrate that PCV2 triggered unfolded protein response (UPR) in PK-15 cells by activating the PERK/eIF2α pathway without concomitant activation of IRE1 or ATF6. Since ATF4 and CHOP were induced later than PERK/eIF2α, it is clear that persistent PCV2 infection could lead to selective activation of PERK via the PERK-eIF2α-ATF4-CHOP axis. Therefore, PERK activation could be part of the pro-apoptotic signaling via induced expression of CHOP by PCV2. Since PERK inhibition by GSK2606414 or RNA silencing or suppression of eIF2α dephosphorylation by salubrinal limited viral replication, we suppose that PCV2 deploys UPR to enhance its replication. Over-expression of GRP78 or treatment with tauroursodeoxycholic acid could enhance viral capsid expression and/or viral titers, indicating that these chaperones, endogenous or exogenous, could help correct folding of viral proteins. Our findings provide the first evidence that ER stress plays a role in the pathogenesis of PCV2 infection probably as part of autophagic and apoptotic responses.
Collapse
|
32
|
Fu HY, Sanada S, Matsuzaki T, Liao Y, Okuda K, Yamato M, Tsuchida S, Araki R, Asano Y, Asanuma H, Asakura M, French BA, Sakata Y, Kitakaze M, Minamino T. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction. Circ Res 2016; 118:798-809. [PMID: 26838784 DOI: 10.1161/circresaha.115.307604] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. OBJECTIVE We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. METHODS AND RESULTS We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. CONCLUSIONS Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment.
Collapse
Affiliation(s)
- Hai Ying Fu
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Shoji Sanada
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Takashi Matsuzaki
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Yulin Liao
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Keiji Okuda
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Masaki Yamato
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Shota Tsuchida
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Ryo Araki
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Yoshihiro Asano
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Hiroshi Asanuma
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Masanori Asakura
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Brent A French
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Yasushi Sakata
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Masafumi Kitakaze
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.)
| | - Tetsuo Minamino
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (H.Y.F., S.S., T.M., K.O., M.Y., S.T., R.A., Y.A., Y.S., T.M.); Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (Y.L.); Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kyoto, Japan (H.A.); Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (B.A.F.).
| |
Collapse
|
33
|
Lew QJ, Chu KL, Chia YL, Soo B, Ho JP, Ng CH, Kwok HS, Chiang CM, Chang Y, Chao SH. GCN5 inhibits XBP-1S-mediated transcription by antagonizing PCAF action. Oncotarget 2016; 6:271-87. [PMID: 25426559 PMCID: PMC4381594 DOI: 10.18632/oncotarget.2773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/15/2014] [Indexed: 01/12/2023] Open
Abstract
Cellular unfolded protein response (UPR) is induced when endoplasmic reticulum (ER) is under stress. XBP-1S, the active isoform of X-box binding protein 1 (XBP-1), is a key regulator of UPR. Previously, we showed that a histone acetyltransferase (HAT), p300/CBP-associated factor (PCAF), binds to XBP-1S and functions as an activator of XBP-1S. Here, we identify general control nonderepressible 5 (GCN5), a HAT with 73% identity to PCAF, as a novel XBP-1S regulator. Both PCAF and GCN5 bind to the same domain of XBP-1S. Surprisingly, GCN5 potently blocks the XBP-1S-mediated transcription, including cellular UPR genes and latent membrane protein 1 of Epstein-Barr virus. Unlike PCAF, GCN5 acetylates XBP-1S and enhances nuclear retention and protein stability of XBP-1S. However, such GCN5-mediated acetylation of XBP-1S shows no effects on XBP-1S activity. In addition, the HAT activity of GCN5 is not required for repression of XBP-1S target genes. We further demonstrate that GCN5 inhibits XBP-1S-mediated transcription by disrupting the PCAF-XBP-1S interaction and preventing the recruitment of XBP-1S to its target genes. Taken together, our results represent the first work demonstrating that GCN5 and PCAF exhibit different functions and antagonistically regulate the XBP-1S-mediated transcription.
Collapse
Affiliation(s)
- Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kai Ling Chu
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yi Ling Chia
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Benjamin Soo
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jia Pei Ho
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chew Har Ng
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Si Kwok
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Harry Hines Boulevard, Dallas, TX, USA
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore. Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
34
|
Simmons CP, McPherson K, Van Vinh Chau N, Hoai Tam DT, Young P, Mackenzie J, Wills B. Recent advances in dengue pathogenesis and clinical management. Vaccine 2015; 33:7061-8. [PMID: 26458808 DOI: 10.1016/j.vaccine.2015.09.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
This review describes and commentates on recent advances in the understanding of dengue pathogenesis and immunity, plus clinical research on vaccines and therapeutics. We expand specifically on the role of the dermis in dengue virus infection, the contribution of cellular and humoral immune responses to pathogenesis and immunity, NS1 and mechanisms of virus immune evasion. Additionally we review a series of therapeutic intervention trials for dengue, as well as recent clinical research aimed at improving clinical diagnosis, risk prediction and disease classification.
Collapse
Affiliation(s)
- Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet street, District 5, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Kirsty McPherson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nguyen Van Vinh Chau
- Hospital for Tropical Diseases, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Viet Nam
| | - D T Hoai Tam
- University of Medicine and Pharmacy, 217 Hong Bang, District 5, Ho Chi Minh City, Viet Nam
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Jason Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet street, District 5, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res 2014; 194:110-23. [PMID: 25304691 PMCID: PMC7114476 DOI: 10.1016/j.virusres.2014.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/11/2022]
Abstract
Coronavirus replication is structurally and functionally associated with the endoplasmic reticulum (ER), a major site of protein synthesis, folding, modification and sorting in the eukaryotic cells. Disturbance of ER homeostasis may occur under various physiological or pathological conditions. In response to the ER stress, signaling pathways of the unfolded protein response (UPR) are activated. UPR is mediated by three ER transmembrane sensors, namely the PKR-like ER protein kinase (PERK), the inositol-requiring protein 1 (IRE1) and the activating transcriptional factor 6 (ATF6). UPR facilitates adaptation to ER stress by reversible translation attenuation, enhancement of ER protein folding capacity and activation of ER-associated degradation (ERAD). In cells under prolonged and irremediable ER stress, UPR can also trigger apoptotic cell death. Accumulating evidence has shown that coronavirus infection causes ER stress and induces UPR in the infected cells. UPR is closely associated with a number of major signaling pathways, including autophagy, apoptosis, the mitogen-activated protein (MAP) kinase pathways, innate immunity and pro-inflammatory response. Therefore, studies on the UPR are pivotal in elucidating the complicated issue of coronavirus-host interaction. In this paper, we present the up-to-date knowledge on coronavirus-induced UPR and discuss its potential involvement in regulation of innate immunity and apoptosis.
Collapse
Affiliation(s)
- To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
36
|
Abstract
The mammalian genome has evolved to encode a battery of mechanisms, to mitigate a progression in the life cycle of an invasive viral pathogen. Although apparently disadvantaged by their dependence on the host biosynthetic processes, an immensely faster rate of evolution provides viruses with an edge in this conflict. In this review, I have discussed the potential anti-virus activity of inositol-requiring enzyme 1 (IRE1), a well characterized effector of the cellular homeostatic response to an overloading of the endoplasmic reticulum (ER) protein-folding capacity. IRE1, an ER-membrane-resident ribonuclease (RNase), upon activation catalyses regulated cleavage of select protein-coding and non-coding host RNAs, using an RNase domain which is homologous to that of the known anti-viral effector RNaseL. The latter operates as part of the Oligoadenylate synthetase OAS/RNaseL system of anti-viral defense mechanism. Protein-coding RNA substrates are differentially treated by the IRE1 RNase to either augment, through cytoplasmic splicing of an intron in the Xbp1 transcript, or suppress gene expression. This referred suppression of gene expression is mediated through degradative cleavage of a select cohort of cellular RNA transcripts, initiating the regulated IRE1-dependent decay (RIDD) pathway. The review first discusses the anti-viral mechanism of the OAS/RNaseL system and evasion tactics employed by different viruses. This is followed by a review of the RIDD pathway and its potential effect on the stability of viral RNAs. I conclude with a comparison of the enzymatic activity of the two RNases followed by deliberations on the physiological consequences of their activation.
Collapse
Affiliation(s)
- Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute Gurgaon, India
| |
Collapse
|
37
|
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5:296. [PMID: 24987391 PMCID: PMC4060729 DOI: 10.3389/fmicb.2014.00296] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022] Open
Abstract
The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.
Collapse
Affiliation(s)
- To S Fung
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Ding X Liu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
38
|
Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martín-Acebes MA. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol 2014; 5:266. [PMID: 24917859 PMCID: PMC4042264 DOI: 10.3389/fmicb.2014.00266] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal, and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus, or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR), which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR, and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Teresa Merino-Ramos
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Miguel A Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain ; Departamento de Virología y Microbiología, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
39
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
40
|
Wang Y, Li JR, Sun MX, Ni B, Huan C, Huang L, Li C, Fan HJ, Ren XF, Mao X. Triggering unfolded protein response by 2-Deoxy-D-glucose inhibits porcine epidemic diarrhea virus propagation. Antiviral Res 2014; 106:33-41. [PMID: 24681123 PMCID: PMC7113873 DOI: 10.1016/j.antiviral.2014.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/05/2014] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is cyto-protective machinery elicited towards an influx of large amount of protein synthesis in the endoplasmic reticulum (ER). Extensive studies suggest that the UPR can also be activated during virus infection. In the present studies, we first evaluated if porcine epidemic diarrhea virus (PEDV) infection activated the UPR pathways. Electron microscopy analysis demonstrated the morphology changes of ER post-PEDV infection. Western blot and real-time PCR identified the differences of UPR genes in response to PEDV infection. The results suggested that PEDV infection induced UPR in Vero cells. Meanwhile, we silenced the expression of PKR-like ER kinase (PERK) by shRNA, we found that the knockdown of PERK increased virus loads in the cells, which was consistent with the result on 4-phenylbutyrate (4-PBA) treatment. We next determined whether 2-Deoxy-d-glucose (2-DG), an ER stress inducer, possessed antiviral activity against PEDV infection. Plaque formation assay, RT-PCR and Western blot analysis suggested that 2-DG might inhibit virus infection by affecting viral protein translation during the early stage of virus infection. Interestingly, we also found that 2-DG treatment could affect virus assembly, which is similar to previous studies on influenza virus. All these results support the therapeutic potential of using 2-DG or glucose/mannose analogs to induce the UPR to block virus replication.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Jia-rong Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Ming-xia Sun
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Bo Ni
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Changchao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Li Huang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Hong-jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiao-feng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, Xiangfang District, 150030, China.
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|