1
|
Orozco-Cordoba J, Mazas C, Du Pont G, Lamoyi E, Cárdenas G, Fierro NA. Viral Biology and Immune Privilege in the Development of Extrahepatic Manifestations During Hepatitis E Virus Infection. Viral Immunol 2023; 36:627-641. [PMID: 38064537 DOI: 10.1089/vim.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Hepatitis E virus (HEV) exhibits tropism toward hepatocytes and thus affects the liver; however, HEV may also affect other tissues, including the heart, kidneys, intestines, testicles, and central nervous system. To date, the pathophysiological links between HEV infection and extrahepatic manifestations have not yet been established. Considering that HEV infects multiple types of cells, the direct effects of virus replication in peripheral tissues represent a plausible explanation for extrahepatic manifestations. In addition, since the immune response is crucial in the development of the disease, the immune characteristics of affected tissues should be revisited to identify commonalities explaining the effects of the virus. This review summarizes the most recent advances in understanding the virus biology and immune-privileged status of specific tissues as major elements for HEV replication in diverse organs. These discoveries may open avenues to explain the multiple extrahepatic manifestations associated with HEV infection and ultimately to design effective strategies for infection control.
Collapse
Affiliation(s)
- Javier Orozco-Cordoba
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Camila Mazas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gisela Du Pont
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Edmundo Lamoyi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Graciela Cárdenas
- Departamento de Neuroinfectología, Instituto Nacional de Neurología Manuel Velasco Suárez, Mexico City, Mexico
| | - Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
2
|
de Oliveira JM, dos Santos DRL, Pinto MA. Hepatitis E Virus Research in Brazil: Looking Back and Forwards. Viruses 2023; 15:548. [PMID: 36851763 PMCID: PMC9965705 DOI: 10.3390/v15020548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatitis E virus (HEV) has emerged as a public health concern in Brazil. From the first identification and characterization of porcine and human HEV-3 strains in the 2000s, new HEV subtypes have been identified from animal, human, and environmental isolates. As new potential animal reservoirs have emerged, there is a need to compile evidence on the zoonotic dissemination of the virus in animal hosts and the environment. The increasing amount of seroprevalence data on sampled and randomly selected populations must be systematically retrieved, interpreted, and considered under the One Health concept. This review focused on HEV seroprevalence data in distinct animal reservoirs and human populations reported in the last two decades. Furthermore, the expertise with experimental infection models using non-human primates may provide new insights into HEV pathogenesis, prevention, and environmental surveillance.
Collapse
Affiliation(s)
- Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
3
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|
4
|
Interplay between Hepatitis E Virus and Host Cell Pattern Recognition Receptors. Int J Mol Sci 2021; 22:ijms22179259. [PMID: 34502167 PMCID: PMC8431321 DOI: 10.3390/ijms22179259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Hepatitis E virus (HEV) usually causes self-limiting acute hepatitis, but the disease can become chronic in immunocompromised individuals. HEV infection in pregnant women is reported to cause up to 30% mortality, especially in the third trimester. Additionally, extrahepatic manifestations like neuronal and renal diseases and pancreatitis are also reported during the course of HEV infection. The mechanism of HEV pathogenesis remains poorly understood. Innate immunity is the first line of defense triggered within minutes to hours after the first pathogenic insult. Growing evidence based on reverse genetics systems, in vitro cell culture models, and representative studies in animal models including non-human primates, has implicated the role of the host’s innate immune response during HEV infection. HEV persists in presence of interferons (IFNs) plausibly by evading cellular antiviral defense. This review summarizes our current understanding of recognizing HEV-associated molecular patterns by host cell Pattern Recognition Receptors (PRRs) in eliciting innate immune response during HEV infection as well as mechanisms of virus-mediated immune evasion.
Collapse
|
5
|
Mrzljak A, Jemersic L, Savic V, Balen I, Ilic M, Jurekovic Z, Pavicic-Saric J, Mikulic D, Vilibic-Cavlek T. Hepatitis E Virus in Croatia in the "One-Health" Context. Pathogens 2021; 10:pathogens10060699. [PMID: 34199798 PMCID: PMC8227679 DOI: 10.3390/pathogens10060699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of viral hepatitis globally. The first human case of autochthonous HEV infection in Croatia was reported in 2012, with the undefined zoonotic transmission of HEV genotype 3. This narrative review comprehensively addresses the current knowledge on the HEV epidemiology in humans and animals in Croatia. Published studies showed the presence of HEV antibodies in different population groups, such as chronic patients, healthcare professionals, voluntary blood donors and professionally exposed and pregnant women. The highest seroprevalence in humans was found in patients on hemodialysis in a study conducted in 2018 (27.9%). Apart from humans, different studies have confirmed the infection in pigs, wild boars and a mouse, indicating the interspecies transmission of HEV due to direct or indirect contact or as a foodborne infection. Continued periodical surveys in humans and animals are needed to identify the possible changes in the epidemiology of HEV infections.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence:
| | - Lorena Jemersic
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ivan Balen
- Department of Gastroenterology and Endocrinology, General Hospital “Dr. Josip Bencevic”, 35000 Slavonski Brod, Croatia;
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Zeljka Jurekovic
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia;
| | - Jadranka Pavicic-Saric
- Department of Anestesiology, Reanimatology and Intensive Care, Merkur University Hospital, 10000 Zagreb, Croatia;
| | - Danko Mikulic
- Department of Abdominal and Transplant Surgery, Merkur University Hospital, 10000 Zagreb, Croatia;
| | - Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Alhatlani BY, Aljabr WA, Almarzouqi MS, Alhatlani SM, Alzunaydi RN, Alsaykhan AS, Almaiman SH, Aleid AA, Alsughayir AH, Bishawri YE, Almusallam AA. Seroprevalence of the hepatitis E virus antibodies among blood donors in the Qassim region, Saudi Arabia. Future Virol 2021. [DOI: 10.2217/fvl-2021-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: Hepatitis E virus (HEV) transmission through blood transfusion is a major public health issue worldwide. We aimed to determine the seroprevalence of HEV in blood donors in the Qassim region of Saudi Arabia. Materials & methods: Serum samples (n = 1078) were collected from volunteer blood donors and tested for the presence of anti-HEV IgG and IgM by indirect ELISA. Results: The seroprevalence of anti-HEV IgG among the blood donors was 5.7% overall. Anti-HEV IgG and IgM seropositivity were significantly higher in non-Saudi donors than in Saudi donors (22.1 vs 3 and 7.8 vs 0.2% for anti-HEV IgG and IgM, respectively). Conclusion: The seroprevalence of HEV among blood donors in the Qassim region was lower than previous estimates for other regions of the country and neighboring countries.
Collapse
Affiliation(s)
- Bader Y Alhatlani
- Department of Applied Medical Sciences, Unayzah Community College, Qassim University, Unayzah, Saudi Arabia
| | - Waleed A Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed S Almarzouqi
- Department of Applied Medical Sciences, Unayzah Community College, Qassim University, Unayzah, Saudi Arabia
| | - Sami M Alhatlani
- Department of Medical Laboratory, Blood Donor Unit, King Saud Hospital, Unayzah, Saudi Arabia
| | - Rayan N Alzunaydi
- Department of Medical Laboratory, Blood Donor Unit, King Saud Hospital, Unayzah, Saudi Arabia
| | - Abeer S Alsaykhan
- Department of Medical Laboratory, Blood Donor Unit, King Saud Hospital, Unayzah, Saudi Arabia
| | - Sulaiman H Almaiman
- Department of Medical Laboratory, Blood Donor Unit, King Saud Hospital, Unayzah, Saudi Arabia
| | - Ahmed A Aleid
- Gastroenterology & Department of Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ammar H Alsughayir
- Transfusion Medicine & Department of Hematopathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yara E Bishawri
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman A Almusallam
- Department of Applied Medical Sciences, Unayzah Community College, Qassim University, Unayzah, Saudi Arabia
| |
Collapse
|
7
|
El-Mokhtar MA, Sayed IM. Model systems for studying extrahepatic pathogenesis of hepatitis E virus. Current knowledge and future directions. Rev Med Virol 2021; 31:e2218. [PMID: 33475223 DOI: 10.1002/rmv.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Hepatitis E Virus is the most common cause of acute viral hepatitis globally. HEV infection is endemic in developing countries. Also, autochthonous and sporadic cases are reported in developed countries. HEV causes acute and chronic infections. Besides, extrahepatic manifestations including neurological, renal, haematological, acute pancreatitis and complications during pregnancy are associated with HEV infections. The pathogenesis of HEV in the extrahepatic tissues is either due to direct cytopathic effect mediated by the virus replication, or immunological mechanisms caused by an uncontrollable host response. Researchers have used different in vivo and in vitro models to study the pathogenesis of HEV in the extrahepatic tissues and analyse the host immune response against HEV infection. This review highlights the extrahepatic disorders associated with HEV infection. We focused on the in vivo and in vitro models as a tool for elucidating the HEV infection beyond the liver and studying the mechanisms of HEV induced tissue damages.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Pathology, School of Medicine, University of California, San Diego La Jolla, California, USA
| |
Collapse
|
8
|
Sayed IM, El-Mokhtar MA, Mahmoud MAR, Elkhawaga AA, Gaber S, Seddek NH, Abdel-Wahid L, Ashmawy AM, Alkareemy EAR. Clinical Outcomes and Prevalence of Hepatitis E Virus (HEV) Among Non-A-C Hepatitis Patients in Egypt. Infect Drug Resist 2021; 14:59-69. [PMID: 33469320 PMCID: PMC7811453 DOI: 10.2147/idr.s289766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis E virus (HEV) is an emerging infectious agent that causes acute hepatitis in developing and developed countries. Diagnosis of HEV infection has not been routinely done in Egyptian hospitals, and clinicians do not prescribe ribavirin (RBV) for acute hepatitis cases of unknown etiology (AHUE). We aimed to screen patients with AHUE for the presence of HEV markers and to determine the complications associated with HEV infection. Patients and Methods HEV markers (anti-HEV IgM, anti-HEV IgG, and HEV RNA) were assessed in patients with AHUE (n=300) admitted to Assiut University Hospitals. RT-qPCR was used to detect the viral load and sequencing analysis was carried out to determine the genotype of the detected viruses. Phylogenetic tree was constructed to evaluate the genetic relatedness between the isolates. Laboratory parameters and the outcomes of infection were determined. Results Acute HEV infection (AHE) was detected in 30 out of 300 (10%) of AHUE patients. Anti-HEV IgM, HEV RNA, and anti-HEV IgG were reported in 83%, 50%, and 43% of the samples, respectively. HEV RNA load ranged from 5×102 IU/mL to 1.1×104 IU/mL. Sequencing of the isolated viruses revealed that five viruses belong to HEV-1 and one isolate belongs to HEV-3 with high homology to the virus recently isolated from the cow and goat milk in the Egyptian villages. Although previous reports showed that attenuated HEV isolates were circulating in Egypt, four out of 30 patients (13%) developed coagulopathy and hepatic encephalopathy and died due to fulminant hepatic failure (FHF) within 3–6 weeks of hospitalization. Age, malignancy, and a history of pre-existing liver diseases were a risky factor for FHF development. Conclusion AHE is common in Upper Egypt. Older patients with malignancy and/or a history of liver diseases are risky. HEV diagnosis and treatment become pivotal in Egyptian hospitals to reduce the fatality rate and they should start urgently and promptly.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abdel Rahman Mahmoud
- Department of Internal Medicine, Gastroenterology and Hepatology unit, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shereen Gaber
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nermien H Seddek
- Department of Respiratory Care, College of Applied Medical Sciences-Jubail 4030 (CAMSJ), Imam Abdulrahman Bin Faisal University, Al Jubail 35816, Saudi Arabia
| | - Lobna Abdel-Wahid
- Department of Internal Medicine, Gastroenterology and Hepatology unit, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed M Ashmawy
- Department of Internal Medicine, Gastroenterology and Hepatology unit, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Enas Ahmed Reda Alkareemy
- Department of Internal Medicine, Gastroenterology and Hepatology unit, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
9
|
No evidence of HEV genotype 1 infections harming the male reproductive system. Virology 2020; 554:37-41. [PMID: 33360325 DOI: 10.1016/j.virol.2020.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Extrahepatic disorders are recorded with hepatitis E virus (HEV) infection. The impact of HEV infection on the male reproductive system is a query. In this study, we retrospectively analyzed semen from infertile men and prospectively examined the semen from acute hepatitis E patients (AHE) for HEV markers. HEV RNA and HEV Ag were not detectable in the semen of infertile men nor the semen of AHE patients. Although HEV markers were detectable in the urine of patients infected with HEV-1, these markers were absent in their semen. There is no significant difference in the level of reproductive hormones between AHE patients and healthy controls. Semen analysis of AHE patients did not show a notable abnormality and there was no significant difference in the semen quality and sperm characteristics between AHE and healthy controls.
Collapse
|
10
|
El-Mokhtar MA, Seddik MI, Osman A, Adel S, Abdel Aziz EM, Mandour SA, Mohammed N, Zarzour MA, Abdel-Wahid L, Radwan E, Sayed IM. Hepatitis E Virus Mediates Renal Injury via the Interaction between the Immune Cells and Renal Epithelium. Vaccines (Basel) 2020; 8:E454. [PMID: 32824088 PMCID: PMC7564770 DOI: 10.3390/vaccines8030454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Renal disorders are associated with Hepatitis E virus (HEV) infection. Progression to end-stage renal disease and acute kidney injury are complications associated with HEV infection. The mechanisms by which HEV mediates the glomerular diseases remain unclear. CD10+/CD13+ primary proximal tubular (PT) epithelial cells, isolated from healthy donors, were infected with HEV. Inflammatory markers and kidney injury markers were assessed in the presence or absence of peripheral blood mononuclear cells (PBMCs) isolated from the same donors. HEV replicated efficiently in the PT cells as shown by the increase in HEV load over time and the expression of capsid Ag. In the absence of PBMCs, HEV was not nephrotoxic, with no direct effect on the transcription of chemokines (Cxcl-9, Cxcl-10, and Cxcl-11) nor the kidney injury markers (kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin 18 (lL-18)). While higher inflammatory responses, upregulation of chemokines and kidney injury markers expression, and signs of nephrotoxicity were recorded in HEV-infected PT cells cocultured with PBMCs. Interestingly, a significantly higher level of IFN-γ was released in the PBMCs-PT coculture compared to PT alone during HEV infection. In conclusion: The crosstalk between immune cells and renal epithelium and the signal axes IFN-γ/chemokines and IL-18 could be the immune-mediated mechanisms of HEV-induced renal disorder.
Collapse
Affiliation(s)
- Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mohamed Ismail Seddik
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.I.S.); (A.O.)
| | - Asmaa Osman
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; (M.I.S.); (A.O.)
| | - Sara Adel
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71515, Egypt;
| | - Essam M. Abdel Aziz
- Department of Internal Medicine, Nephrology Division, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 66111, Egypt;
| | - Nasreldin Mohammed
- Department of Urology and Renal Transplantation Centre, Faculty of Medicine, Assiut University Hospital, Assiut 71515, Egypt; (N.M.); (M.A.Z.)
| | - Mohamed A. Zarzour
- Department of Urology and Renal Transplantation Centre, Faculty of Medicine, Assiut University Hospital, Assiut 71515, Egypt; (N.M.); (M.A.Z.)
| | - Lobna Abdel-Wahid
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Sayed IM, Hammam ARA, Elfaruk MS, Alsaleem KA, Gaber MA, Ezzat AA, Salama EH, Elkhawaga AA, El-Mokhtar MA. Enhancement of the Molecular and Serological Assessment of Hepatitis E Virus in Milk Samples. Microorganisms 2020; 8:microorganisms8081231. [PMID: 32806687 PMCID: PMC7465259 DOI: 10.3390/microorganisms8081231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) infection is endemic in developing and developed countries. HEV was reported to be excreted in the milk of ruminants, raising the possibility of transmission of HEV infection through the ingestion of contaminated milk. Therefore, the detection of HEV markers in milk samples becomes pivotal. However, milk includes inhibitory components that affect HEV detection assays. Previously it was reported that dilution of milk matrix improves the performance of HEV molecular assay, however, the dilution of milk samples is not the best strategy especially when the contaminated milk sample has a low HEV load. Therefore, the objective of this study is to compare the effect of extraction procedures on the efficiency of HEV RNA detection in undiluted milk samples. In addition, we assessed the effect of the removal of milk components such as fats and casein on the performance of the molecular and serological assays of HEV. Phosphate buffered saline (PBS) and different milk matrices (such as whole milk, skim milk, and milk serum) were inoculated with different HEV inoculums and subjected to two different extraction procedures. Method A includes manual extraction using spin column-based extraction, while method B includes silica-based automated extraction. Method A was more sensitive than method B in the whole milk and skim milk matrices with a LoD95% of 300 IU/mL, and virus recovery yield of 47%. While the sensitivity and performance of method B were significantly improved using the milk serum matrix, with LoD95% of 96 IU/mL. Interestingly, retesting HEV positive milk samples using the high sensitivity assay based on method B extraction and milk serum matrix increased the HEV RNA detection rate to 2-fold. Additionally, the performance of HEV serological assays such as anti-HEV IgG and HEV Ag in the milk samples was improved after the removal of the fat globules from the milk matrix. In conclusion, HEV RNA assay is affected by the components of milk and the extraction procedure. Removal of inhibitory substances, such as fat and casein from the milk sample increased the performance of HEV molecular and serological assays which will be suitable for the low load HEV milk with no further dilutions.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt or (I.M.S.); (A.A.E.)
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ahmed R. A. Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (A.R.A.H.); (M.S.E.); (K.A.A.)
- Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Mohamed Salem Elfaruk
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (A.R.A.H.); (M.S.E.); (K.A.A.)
- Medical Technology College, Nalut University, Nalut 00218, Libya
| | - Khalid A. Alsaleem
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (A.R.A.H.); (M.S.E.); (K.A.A.)
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Marwa A. Gaber
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Amgad A. Ezzat
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt;
| | - Amal A. Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt or (I.M.S.); (A.A.E.)
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt or (I.M.S.); (A.A.E.)
- Correspondence:
| |
Collapse
|
12
|
Lhomme S, Migueres M, Abravanel F, Marion O, Kamar N, Izopet J. Hepatitis E Virus: How It Escapes Host Innate Immunity. Vaccines (Basel) 2020; 8:E422. [PMID: 32731452 PMCID: PMC7564545 DOI: 10.3390/vaccines8030422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is a leading cause of viral hepatitis in the world. It is usually responsible for acute hepatitis, but can lead to a chronic infection in immunocompromised patients. The host's innate immune response is the first line of defense against a virus infection; there is growing evidence that HEV RNA is recognized by toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), leading to interferon (IFN) production. The IFNs activate interferon-stimulated genes (ISGs) to limit HEV replication and spread. HEV has developed strategies to counteract this antiviral response, by limiting IFN induction and signaling. This review summarizes the advances in our knowledge of intracellular pathogen recognition, interferon and inflammatory response, and the role of virus protein in immune evasion.
Collapse
Affiliation(s)
- Sébastien Lhomme
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Marion Migueres
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Florence Abravanel
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Olivier Marion
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Nassim Kamar
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Jacques Izopet
- National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (M.M.); (F.A.); (J.I.)
- INSERM UMR1043, CNRS UMR5282, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France; (O.M.); (N.K.)
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| |
Collapse
|
13
|
Replication of Hepatitis E Virus (HEV) in Primary Human-Derived Monocytes and Macrophages In Vitro. Vaccines (Basel) 2020; 8:vaccines8020239. [PMID: 32455708 PMCID: PMC7349946 DOI: 10.3390/vaccines8020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
HEV is the most causative agent of acute viral hepatitis globally. HEV causes acute, chronic, and extrahepatic manifestations. Chronic HEV infection develops in immunocompromised patients such as organ transplant patients, HIV-infected patients, and leukemic patients. The source of chronic HEV infection is not known. Also, the source of extrahepatic manifestations associated with HEV infection is still unclear. Hepatotropic viruses such as HCV and HBV replicate in peripheral blood mononuclear cells (PBMCs) and these cells become a source of chronic reactivation of the infections in allograft organ transplant patients. Herein, we reported that PBMCs and bone marrow-derived macrophages (BMDMs), isolated from healthy donors (n = 3), are susceptible to HEV in vitro. Human monocytes (HMOs), human macrophages (HMACs), and human BMDMs were challenged with HEV-1 and HEV-3 viruses. HEV RNA was measured by qPCR, the marker of the intermediate replicative form (ds-RNA) was assessed by immunofluorescence, and HEV capsid protein was assessed by flow cytometry and ELISA. HEV infection was successfully established in primary HMOs, HMACs, and human BMDMs, but not in the corresponding cells of murine origin. Intermediate replicative form (ds RNA) was detected in HMOs and HMACs challenged with HEV. The HEV load was increased over time, and the HEV capsid protein was detected intracellularly in the HEV-infected cells and accumulated extracellularly over time, confirming that HEV completes the life cycle inside these cells. The HEV particles produced from the infected BMDMs were infectious to naive HMOs in vitro. The HEV viral load was comparable in HEV-1- and HEV-3-infected cells, but HEV-1 induced more inflammatory responses. In conclusion, HMOs, HMACs, and human BMDMs are permissive to HEV infection and these cells could be the source of chronic and recurrent infection, especially in immunocompromised patients. Replication of HEV in human BMDMs could be related to hematological disorders associated with extrahepatic manifestations.
Collapse
|
14
|
El-Mokhtar MA, Othman ER, Khashbah MY, Ismael A, Ghaliony MAA, Seddik MI, Sayed IM. Evidence of the Extrahepatic Replication of Hepatitis E Virus in Human Endometrial Stromal Cells. Pathogens 2020; 9:pathogens9040295. [PMID: 32316431 PMCID: PMC7238207 DOI: 10.3390/pathogens9040295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. The tropism of HEV is not restricted to the liver, and the virus replicates in other organs. Not all the extrahepatic targets for HEV are identified. Herein, we found that non-decidualized primary human endometrial stromal cells (PHESCs), which are precursors for the decidua and placenta, are susceptible to HEV infection. PHESCs, isolated from healthy non-pregnant women (n = 5), were challenged with stool-derived HEV-1 and HEV-3. HEV RNA was measured by qPCR, and HEV capsid protein was assessed by flow cytometry, immunofluorescence (IF), and ELISA. HEV infection was successfully established in PHESCs. Intracellular and extracellular HEV RNA loads were increased over time, indicating efficient replication in vitro. In addition, HEV capsid protein was detected intracellularly in the HEV-infected PHESCs and accumulated extracellularly over time, confirming the viral assembly and release from the infected cells. HEV-1 replicated more efficiently in PHESCs than HEV-3 and induced more inflammatory responses. Ribavirin (RBV) treatment abolished the replication of HEV in PHESCs. In conclusion, PHESCs are permissive to HEV infection and these cells could be an endogenous source of HEV infection during pregnancy and mediate HEV vertical transmission.
Collapse
Affiliation(s)
- Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt;
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
| | - Essam R. Othman
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
- Department of Obstetrics and Gynecology, Assiut University, 71515 Assiut, Egypt
- Department of Reproductive Medicine, Academic Endometriosis Center, Amsterdam University Medical Center, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Maha Y. Khashbah
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
- Department of Obstetrics and Gynecology, Assiut University, 71515 Assiut, Egypt
| | - Ali Ismael
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt;
| | - Mohamed AA Ghaliony
- Department of Tropical Medicine and Gastroenterology Department, Assiut University, 71515 Assiut, Egypt;
| | - Mohamed Ismail Seddik
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt;
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt;
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
- Department of Pathology, School of Medicine, University of California, San Diego, CA 92093, USA
- Correspondence: or
| |
Collapse
|