1
|
Facchi JC, Lima TALD, Oliveira LRD, Costermani HDO, Miranda GDS, de Oliveira JC. Perinatal programming of metabolic diseases: The role of glucocorticoids. Metabolism 2020; 104:154047. [PMID: 31837301 DOI: 10.1016/j.metabol.2019.154047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The worldwide increase in metabolic diseases has urged the scientific community to improve our understanding about the mechanisms underlying its cause and effects. A well supported area of studies had related maternal stress with early programming to the later metabolic diseases. Mechanisms upon origins of metabolic disturbances are not yet fully understood, even though stressful factors rising glucocorticoids have been put out as pivotal trigger by programming metabolic diseases as long-term consequence. Considering energy balance and glucose homeostasis, by producing and/or sensing regulator signals, hypothalamus-pituitary-adrenal axis and endocrine pancreas are directly affected by glucocorticoids excess. We focus on the evidences reporting the role of increased glucocorticoids due to perinatal insults on the physiological systems involved in the metabolic homeostasis and in the target organs such as endocrine pancreas, white adipose tissue and blood vessels. Besides, we review some mechanisms underlining the malprogramming of type 2 diabetes, obesity and hypertension. Studies on this field are currently ongoing and even there is a good understanding regarding the effects of glucocorticoids addressing metabolic diseases, few is known about the relationship between maternal insults rising glucocorticoids to pups' metabolic disturbances, a thorough understanding about that may provide pivotal clinical clues regarding those disorders.
Collapse
Affiliation(s)
- Júlia Cristina Facchi
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Thalyne Aparecida Leite de Lima
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Lucas Ryba de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Hercules de Oliveira Costermani
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Ginislene Dias Souza Miranda
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Júlio Cezar de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil.
| |
Collapse
|
2
|
Changes in the glucocorticoid receptor and Ca²⁺/calreticulin-dependent signalling pathway in the medial prefrontal cortex of rats with post-traumatic stress disorder. J Mol Neurosci 2014; 56:24-34. [PMID: 25407822 DOI: 10.1007/s12031-014-0464-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
Abstract
The glucocorticoid receptor (GR), calreticulin (CRT) and protein kinase C (PKC) have all been implicated in the Ca(2+)-dependent signalling pathway, which plays an important role in the plasticity of the central nervous system, learning and memory. The medial prefrontal cortex (mPFC) is known to be involved in mechanisms of learning and memory. In the present study, single prolonged stress (SPS) was used as an animal model of post-traumatic stress disorder (PTSD). The Morris water maze test was used to detect rats' ability for spatial memory and learning. A fluorescence spectrophotometer was used to measure the concentration of intracellular Ca(2+) in mPFC. Immunohistochemistry, immunofluorescence, western blot and reverse transcription polymerase chain reaction were used to explore changes in GR, CRT and PKC in mPFC of SPS rats. The concentration of Ca(2+) in mPFC was increased in the SPS rats. We found increased intensity of GR and CRT immunoreactivity and increased messenger RNA (mRNA) levels of GR, CRT and PKC in mPFC of the SPS groups, although the degree and time of increase was different among them. The protein levels of cytoplasmic GR, cytoplasmic CRT and cytoplasmic pPKC increased in mPFC of the SPS groups, whereas the protein level of nuclear GR decreased in comparison with the control group. As a conclusion, changed CRT and GR/PKC were involved in the mechanism of SPS-induced dysfunctional mPFC.
Collapse
|
3
|
Xue Q, Patterson AJ, Xiao D, Zhang L. Glucocorticoid modulates angiotensin II receptor expression patterns and protects the heart from ischemia and reperfusion injury. PLoS One 2014; 9:e106827. [PMID: 25265380 PMCID: PMC4180065 DOI: 10.1371/journal.pone.0106827] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid regulates angiotensin II receptor (ATR) expression via activating glucocorticoid receptors and binding to glucocorticoid response elements. The regulation of ATR by glucocorticoids in the context of myocardial injury from ischemia/reperfusion (I/R) is yet to be elucidated. The present study determined the role of ATR in glucocorticoid-induced cardiac protection. Adult male rats were administered once a day i.p. 1 mg/kg/day dexamethasone or dexamethasone plus 10 mg/kg/day RU486 for 5 days. Hearts were then isolated and subjected to I/R injury in a Langendorff preparation. Dexamethasone treatment significantly decreased I/R injury and improved post-ischemic recovery of cardiac function. Dexamethasone increased glucocorticoid receptor binding to glucocorticoid response elements at AT1aR and AT2R promoters, resulting in a significant increase in expression of AT1R protein but a decrease in AT2R expression in the heart. In addition, dexamethasone treatment significantly increased PKCε expression and p-PKCε protein abundance. These dexamethasone-mediated effects were blocked by RU486. More importantly, blockade of AT1R and AT2R with losartan and PD123319 abrogated dexamethasone-induced protection of the heart from I/R injury. The results indicate that glucocorticoid promotes a cardioprotective phenotype associated with the upregulation of AT1R and PKCε and downregulation of AT2R in the heart.
Collapse
Affiliation(s)
- Qin Xue
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Andrew J. Patterson
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Aziz MH, Shen H, Maki CG. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε. J Biol Chem 2012; 287:29825-36. [PMID: 22773829 DOI: 10.1074/jbc.m112.393256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.
Collapse
|
5
|
Chen P, Fan Y, Li Y, Sun Z, Bissette G, Zhu MY. Chronic social defeat up-regulates expression of norepinephrine transporter in rat brains. Neurochem Int 2012; 60:9-20. [PMID: 22107703 PMCID: PMC3249494 DOI: 10.1016/j.neuint.2011.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022]
Abstract
Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. However, the molecular link between chronic stress and noradrenergic neurons remains to be elucidated. In the present study adult Fischer 344 rats were subjected to a regimen of chronic social defeat (CSD) for 4weeks. Measurements by in situ hybridization and Western blotting showed that CSD significantly increased mRNA and protein levels of the norepinephrine transporter (NET) in the LC region and NET protein levels in the hippocampus, frontal cortex and amygdala. CSD-induced increases in NET expression were abolished by adrenalectomy or treatment with corticosteroid receptor antagonists, suggesting the involvement of corticosterone and corticosteroid receptors in this upregulation. Furthermore, protein levels of protein kinase A (PKA), protein kinase C (PKC), and phosphorylated cAMP-response element binding (pCREB) protein were significantly reduced in the LC and its terminal regions by the CSD paradigm. Similarly, these reduced protein levels caused by CSD were prevented by adrenalectomy. However, effects of corticosteroid receptor antagonists on CSD-induced down-regulation of PKA, PKC, and pCREB proteins were not consistent. While mifeprestone and spironolactone, either alone or in combination, totally abrogate CSD effects on these protein levels of PKA, PKC and pCREB in the LC and those in the hippocampus, frontal cortex and amygdala, their effects on PKA and PKC in the hippocampus, frontal cortex and amygdala were region-dependent. The present findings indicate a correlation between chronic stress and activation of the noradrenergic system. This correlation and CSD-induced alteration in signal transduction molecules may account for their critical effects on the development of symptoms of major depression.
Collapse
Affiliation(s)
- Ping Chen
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- School of Life Science and Technology, Tongji University, Shanghai China
| | - Yan Fan
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Ying Li
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zhongwen Sun
- Department of Microbiology and Immunology, Suzhou Health College of Vocational Technology, Suzhou, China
| | - Garth Bissette
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meng-Yang Zhu
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
6
|
Dexamethasone decreases neuronal nitric oxide release in mesenteric arteries from hypertensive rats through decreased protein kinase C activation. Clin Sci (Lond) 2009; 117:305-12. [DOI: 10.1042/cs20080178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal NO plays a functional role in many vascular tissues, including MAs (mesenteric arteries). Glucocorticoids alter NO release from endothelium and the CNS (central nervous system), but no results from peripheral innervation have been reported. In the present study we investigated the effects of dexamethasone on EFS (electrical field stimulation)-induced NO release in MAs from WKY (Wistar–Kyoto) rats and SHRs (spontaneously hypertensive rats) and the role of PKC (protein kinase C) in this response. In endothelium-denuded MAs, L-NAME (NG-nitro-L-arginine methyl ester) increased the contractile response to EFS only in segments from SHRs. EFS-induced contraction was reduced by 1 μmol/l dexamethasone in segments from SHRs, but not WKY rats, and this effect was abolished in the presence of dexamethasone. EFS induced a tetrodotoxin-resistant NO release in WKY rat MAs, which remained unchanged by 1 μmol/l dexamethasone. In SHR MAs, dexamethasone decreased basal and EFS-induced neuronal NO release, and this decrease was prevented by the glucocorticoid receptor antagonist mifepristone. Dexamethasone did not affect nNOS [neuronal NOS (NO synthase)] expression in either strain. In SHR MAs, incubation with calphostin C (a non-selective PKC inhibitor), Gö6983 (a classic PKC δ and ζ inhibitor), LY379196 (a PKCβ inhibitor) or PKCζ-PI (PKCζ pseudosubstrate inhibitor) decreased both basal and EFS-induced neuronal NO release. Additionally, PKC activity was reduced by dexamethasone. The PKC inhibitor-induced reduction in NO release was unaffected by dexamethasone. In conclusion, results obtained in the present study indicate that PKC activity positively modulates the neuronal NO release in MAs from SHRs. They also reveal that by PKC inhibition, through activation of glucocorticoid receptors, dexamethasone reduces neuronal NO release in these arteries.
Collapse
|
7
|
Hadoke PWF, Iqbal J, Walker BR. Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol 2009; 156:689-712. [PMID: 19239478 DOI: 10.1111/j.1476-5381.2008.00047.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The therapeutic potential for manipulation of glucocorticoid metabolism in cardiovascular disease was revolutionized by the recognition that access of glucocorticoids to their receptors is regulated in a tissue-specific manner by the isozymes of 11beta-hydroxysteroid dehydrogenase. Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 have been shown recently to ameliorate cardiovascular risk factors and inhibit the development of atherosclerosis. This article addresses the possibility that inhibition of 11beta-hydroxsteroid dehydrogenase type 1 activity in cells of the cardiovascular system contributes to this beneficial action. The link between glucocorticoids and cardiovascular disease is complex as glucocorticoid excess is linked with increased cardiovascular events but glucocorticoid administration can reduce atherogenesis and restenosis in animal models. There is considerable evidence that glucocorticoids can interact directly with cells of the cardiovascular system to alter their function and structure and the inflammatory response to injury. These actions may be regulated by glucocorticoid and/or mineralocorticoid receptors but are also dependent on the 11beta-hydroxysteroid dehydrogenases which may be expressed in cardiac, vascular (endothelial, smooth muscle) and inflammatory (macrophages, neutrophils) cells. The activity of 11beta-hydroxysteroid dehydrogenases in these cells is dependent upon differentiation state, the action of pro-inflammaotory cytokines and the influence of endogenous inhibitors (oxysterols, bile acids). Further investigations are required to clarify the link between glucocorticoid excess and cardiovascular events and to determine the mechanism through which glucocorticoid treatment inhibits atherosclerosis/restenosis. This will provide greater insights into the potential benefit of selective 11beta-hydroxysteroid dehydrogenase inhibitors in treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Patrick W F Hadoke
- Centre for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| | | | | |
Collapse
|
8
|
Dovio A, Allasino B, Palmas E, Ventura M, Pia A, Saba L, Aroasio E, Terzolo M, Angeli A. Increased osteoprotegerin levels in Cushing's syndrome are associated with an adverse cardiovascular risk profile. J Clin Endocrinol Metab 2007; 92:1803-8. [PMID: 17327380 DOI: 10.1210/jc.2006-2283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with Cushing's syndrome (CS) have a mortality rate four times higher than age- and sex-matched subjects, mainly due to cardiovascular events. Serum osteoprotegerin (OPG) levels are increased in patients with cardiovascular disease and/or excess bone resorption. OBJECTIVE The aim of the study was to assess serum OPG and soluble receptor activator of nuclear factor-kappaB ligand (sRANKL) levels in CS and their possible relationship with coronary risk profile. DESIGN AND SETTING We conducted a cross-sectional study at a tertiary referral center. PATIENTS We studied 48 adult patients with CS and 48 age- and sex-matched controls. Twenty-six patients had pituitary-dependent CS; five patients had CS caused by ectopic ACTH secretion; and 17 patients had adrenal-dependent CS, accounted for by cortisol-secreting adenoma (n = 9), ACTH-independent macronodular bilateral adrenal hyperplasia (n = 4), or World Health Organization stage II cortisol-secreting carcinoma (n = 4). Patients underwent assessment of the absolute coronary risk and measurement of bone mineral density by dual-energy x-ray absorptiometry. Serum OPG and total sRANKL were measured by ELISA. RESULTS Serum OPG (but not sRANKL) levels were significantly higher in CS patients than in controls (P < 0.01). In patients, serum OPG showed a positive correlation with age (r = 0.36; P = 0.01). OPG levels were higher in patients with the metabolic syndrome [median, 1262 (range, 199-2306) pg/ml vs. 867 (412-2479) pg/ml; P = 0.03], and showed a positive correlation with the absolute coronary risk (r = 0.36; P = 0.01). Serum OPG levels were higher in patients with pituitary-dependent CS in comparison with adrenal-dependent CS. CONCLUSIONS In patients with CS, serum OPG levels are increased and appear to be associated with coronary risk.
Collapse
Affiliation(s)
- Andrea Dovio
- Medicina Interna I, Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Reg. Gonzole 10, 10043 Orbassano-Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bavaresco L, Bernardi A, Braganhol E, Wink MR, Battastini AMO. Dexamethasone inhibits proliferation and stimulates ecto-5'-nucleotidase/CD73 activity in C6 rat glioma cell line. J Neurooncol 2007; 84:1-8. [PMID: 17453149 DOI: 10.1007/s11060-007-9342-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/24/2007] [Indexed: 12/25/2022]
Abstract
Malignant gliomas are the most common and devastating primary tumors of the adult central nervous system. Dexamethasone, a synthetic glucocorticoid, is commonly co-administered to control edema in the management of brain tumors during chemotherapy and radiotherapy. In the present study, the effect of dexamethasone on proliferation and ectonucleotidase activities in rat C6 glioma cell line was investigated. Dexamethasone concentrations ranging from 0.001 to 10 microM induced a time- and concentration-dependent inhibition of C6 rat glioma cell proliferation after 24, 48 and 72-h treatment. The tetrazolium reduction assay (MTT) indicated a reduction of in cell viability (44 +/- 7.6%) after 48-h treatment with 1 microM dexamethasone. Pretreatment with 10 microM of RU38486, an antagonist of glucocorticoid receptors, abolished the effect of 1 microM dexamethasone by 78 +/- 9.8% after 48 h of treatment, indicating that this action is mediated via the glucocorticoid receptor. Members of the E-NTPDase family and ecto-5'-nucleotidase/CD73 can modulate extracellular ATP degradation and adenosine formation, both of which have been described as proliferation factors. Treatment of C6 glioma cells for 48 h with 1 microM dexamethasone increased in 38 +/- 8.09% the AMP hydrolysis and in 3.7-fold the ecto-5'-nucleotidase/CD73 expression, suggesting an increase in adenosine formation and, therefore, a possible modulatory role in the elicitation of cell death responses. In addition, pretreatment with 5 microM GF 109203X, a protein kinase C (PKC) inhibitor, abolished the effect of dexamethasone on cell proliferation and on ecto-5'-NT activity, suggesting that dexamethasone could exert this action via PKC. The alterations in the catabolism of extracellular purines induced by dexamethasone treatment in glioma C6 cells could be related to its pharmacological effects.
Collapse
Affiliation(s)
- Luci Bavaresco
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
10
|
Tharp DL, Wamhoff BR, Turk JR, Bowles DK. Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 2006; 291:H2493-503. [PMID: 16798818 DOI: 10.1152/ajpheart.01254.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A hallmark of smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and restenosis is suppression of SMC differentiation marker genes, proliferation, and migration. Blockade of intermediate-conductance Ca(2+)-activated K(+) channels (IKCa1) has been shown to inhibit restenosis after carotid balloon injury in the rat; however, whether IKCa1 plays a role in SMC phenotypic modulation is unknown. Our objective was to determine the role of IKCa1 channels in regulating coronary SMC phenotypic modulation and migration. In cultured porcine coronary SMCs, platelet-derived growth factor-BB (PDGF-BB) increased TRAM-34 (a specific IKCa1 inhibitor)-sensitive K(+) current 20-fold; increased IKCa1 promoter histone acetylation and c-jun binding; increased IKCa1 mRNA approximately 4-fold; and potently decreased expression of the smooth muscle differentiation marker genes smooth muscle myosin heavy chain (SMMHC), smooth muscle alpha-actin (SMalphaA), and smoothelin-B, as well as myocardin. Importantly, TRAM-34 completely blocked PDGF-BB-induced suppression of SMMHC, SMalphaA, smoothelin-B, and myocardin and inhibited PDGF-BB-stimulated migration by approximately 50%. Similar to TRAM-34, knockdown of endogenous IKCa1 with siRNA also prevented the PDGF-BB-induced increase in IKCa1 and decrease in SMMHC mRNA. In coronary arteries from high fat/high cholesterol-fed swine demonstrating signs of early atherosclerosis, IKCa1 expression was 22-fold higher and SMMHC, smoothelin-B, and myocardin expression significantly reduced in proliferating vs. nonproliferating medial cells. Our findings demonstrate that functional upregulation of IKCa1 is required for PDGF-BB-induced coronary SMC phenotypic modulation and migration and support a similar role for IKCa1 in coronary SMC during early coronary atherosclerosis.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Becaplermin
- Biomarkers
- Cell Culture Techniques
- Cell Differentiation
- Cell Division
- Cell Movement
- Cells, Cultured
- Coronary Vessels/cytology
- Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
- Intermediate-Conductance Calcium-Activated Potassium Channels/physiology
- Models, Biological
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Myosin Heavy Chains/genetics
- Phenotype
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- Pyrazoles/pharmacology
- RNA, Messenger/metabolism
- Swine
- Swine, Miniature
- Tunica Media/cytology
- Up-Regulation
Collapse
Affiliation(s)
- D L Tharp
- E102 Veterinary Medicine Bldg., Univ. of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
11
|
Morand EF, Leech M, Bernhagen J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov 2006; 5:399-410. [PMID: 16628200 DOI: 10.1038/nrd2029] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is well established as a key cytokine in immuno-inflammatory diseases such as rheumatoid arthritis. Inflammation is now also recognized as having a crucial role in atherosclerosis, and recent evidence indicates that MIF could also be important in this disease. Here, we review the role of MIF in rheumatoid arthritis and atherosclerosis, discuss the ways in which MIF and its relationship with glucocorticoids could link these diseases, and consider the potential of MIF as a new therapeutic target for small-molecule and antibody-based anti-cytokine drugs.
Collapse
Affiliation(s)
- Eric F Morand
- Centre for Inflammatory Diseases, Monash Institute for Medical Research, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
12
|
Maddali KK, Korzick DH, Tharp DL, Bowles DK. PKCδ Mediates Testosterone-induced Increases in Coronary Smooth Muscle Cav1.2. J Biol Chem 2005; 280:43024-9. [PMID: 16243844 DOI: 10.1074/jbc.m509147200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sex hormones have emerged as important modulators of cardiovascular physiology and pathophysiology. Our previous studies demonstrated that testosterone increases expression and activity of L-type, voltage-gated calcium channels (Cav1.2) in coronary arteries of males. The purpose of the present study was to determine whether testosterone (T) alters coronary protein kinase C delta (PKCdelta) expression and whether PKCdelta plays a role in coronary Cav1.2 expression. For in vitro studies, porcine right coronary arteries (RCA) and post-confluent (passages 3-6) 5-day, serum-restricted coronary smooth muscle cell cultures (CSMC) were incubated in the presence and absence of T or dihydrotestosterone (10 and 100 nm) for 18 h at 37 degrees C in a humidified chamber. For sex and endogenous testosterone-dependent effects, RCA were obtained from intact males, castrated males, castrated males with T replacement, and intact females. In vitro T and dihydrotestosterone caused an approximately 2-3-fold increase in PKCdelta protein levels, approximately 1.5-2-fold increase in PKCdelta kinase activity, and localization of PKCdelta toward the plasma membrane and nuclear envelope. PKCdelta protein levels were higher in coronary arteries of intact males compared with intact females. Elimination of endogenous testosterone by castration reduced RCA PKCdelta protein levels, an effect partially (approximately 45%) reversed by exogenous T (castrated males with T replacement). In CSMC, PKC inhibition with either the general PKC inhibitor, cheylerythrine, or the putative PKCdelta inhibitor, rottlerin, completely inhibited the T-mediated increase in coronary Cav1.2 protein levels. Conversely, Go6976, a conventional PKC isoform inhibitor, failed to inhibit T-induced increases in coronary Cav1.2 protein levels. PKCdelta short interference RNA completely blocked T-induced increases in Cav1.2 protein levels in CSMC. These results demonstrate for the first time that 1) endogenous T is a primary modulator of coronary PKCdelta protein and activity in males and 2) T increases Cav1.2 protein expression in a PKCdelta-dependent manner.
Collapse
Affiliation(s)
- Kamala K Maddali
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, National Center for Gender Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|