1
|
Li X, Li T, Zhang P, Li X, Lu L, Sun Y, Zhang B, Allen S, White L, Phillips J, Zhu Z, Yao H, Xu J. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer's disease. Eur J Med Chem 2022; 244:114841. [DOI: 10.1016/j.ejmech.2022.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
2
|
Identification of a Hydrogen-Sulfide-Releasing Isochroman-4-One Hybrid as a Cardioprotective Candidate for the Treatment of Cardiac Hypertrophy. Molecules 2022; 27:molecules27134114. [PMID: 35807360 PMCID: PMC9268299 DOI: 10.3390/molecules27134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiac pathological hypertrophy is associated with undesirable epigenetic changes and causes maladaptive cardiac remodeling and heart failure, leading to high mortality rates. Specific drugs for the treatment of cardiac hypertrophy are still in urgent need. In the present study, a hydrogen-sulfide-releasing hybrid 13-E was designed and synthesized by appending p-hydroxythiobenzamide (TBZ), an H2S-releasing donor, to an analog of our previously discovered cardioprotective natural product XJP, 7,8-dihydroxy-3-methyl-isochromanone-4. This hybrid 13-E exhibited excellent H2S-generating ability and low cellular toxicity. The 13-E protected against cardiomyocyte hypertrophy In Vitro and reduced the induction of Anp and Bnp. More importantly, 13-E could reduce TAC-induced cardiac hypertrophy In Vivo, alleviate cardiac interstitial fibrosis and restore cardiac function. Unbiased transcriptomic analysis showed that 13-E regulated the AMPK signaling pathway and influenced fatty acid metabolic processes, which may be attributed to its cardioprotective activities.
Collapse
|
3
|
Zhao Y, Qian Y, Sun Z, Shen X, Cai Y, Li L, Wang Z. Role of PI3K in the Progression and Regression of Atherosclerosis. Front Pharmacol 2021; 12:632378. [PMID: 33767629 PMCID: PMC7985550 DOI: 10.3389/fphar.2021.632378] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol 3 kinase (PI3K) is a key molecule in the initiation of signal transduction pathways after the binding of extracellular signals to cell surface receptors. An intracellular kinase, PI3K activates multiple intracellular signaling pathways that affect cell growth, proliferation, migration, secretion, differentiation, transcription and translation. Dysregulation of PI3K activity, and as aberrant PI3K signaling, lead to a broad range of human diseases, such as cancer, immune disorders, diabetes, and cardiovascular diseases. A growing number of studies have shown that PI3K and its signaling pathways play key roles in the pathophysiological process of atherosclerosis. Furthermore, drugs targeting PI3K and its related signaling pathways are promising treatments for atherosclerosis. Therefore, we have reviewed how PI3K, an important regulatory factor, mediates the development of atherosclerosis and how targeting PI3K can be used to prevent and treat atherosclerosis.
Collapse
Affiliation(s)
- Yunyun Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yaoyao Cai
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Zhang L, Li Y, Ma X, Liu J, Wang X, Zhang L, Li C, Li Y, Yang W. Ginsenoside Rg1-Notoginsenoside R1-Protocatechuic Aldehyde Reduces Atherosclerosis and Attenuates Low-Shear Stress-Induced Vascular Endothelial Cell Dysfunction. Front Pharmacol 2021; 11:588259. [PMID: 33568993 PMCID: PMC7868340 DOI: 10.3389/fphar.2020.588259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background: The Fufang Danshen formula is a clinically important anti-atherosclerotic preparation in traditional Chinese medicine. However, its anti-atherosclerotic effect is not well recognized, and the mechanisms of its combined active ingredients, namely Ginsenoside Rg1-Notoginsenoside R1-Protocatechuic aldehyde (RRP), remain unclear. The purpose of this study was to investigate the anti-atherosclerotic effects and potential mechanism of RRP in ApoE-/- mice and in low-shear stress-injured vascular endothelial cells. Methods: ApoE-/- mice were randomly divided into three groups: model group, rosuvastatin group, and RRP group, with C57BL/6J mice as the control group. Oil-red O, hematoxylin and eosin, Masson, and Movat staining were utilized for the observation of aortic plaque. Changes in the blood lipid indexes were observed with an automatic biochemistry analyzer. ET-1, eNOS, TXA2, and PGI2 levels were analyzed by enzyme-linked immunosorbent assay. In vitro, a fluid shear stress system was used to induce cell injury. Piezo1 expression in HUVECs was silenced using siRNA. Changes in morphology, proliferation, migration, and tube formation activity of cells were observed after RRP treatment. Quantitative Real-Time PCR and western blot analysis were employed to monitor mRNA and protein expression. Results: RRP treatment reduced the atherosclerotic area and lipid levels and improved endothelial function in ApoE-/- mice. RRP significantly repaired cell morphology, reduced excessive cell proliferation, and ameliorated migration and tube formation activity. In addition, RRP affected the FAK-PI3K/Akt signaling pathway. Importantly, Piezo1 silencing abolished the protective effects of RRP. Conclusion: RRP has anti-atherosclerotic effects and antagonizes endothelial cell damage via modulating the FAK-PI3K/Akt signaling pathway. Piezo1 is a possible target of RRP in the treatment of atherosclerosis. Thus, RRP has promising therapeutic potential and broad application prospect for atherosclerosis.
Collapse
Affiliation(s)
- Lei Zhang
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classic Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ma
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiali Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojie Wang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxiao Zhang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classic Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Zhao Z, Kang K, Yue J, Ji X, Qiao H, Fan P, Zheng X. Research progress in biological activities of isochroman derivatives. Eur J Med Chem 2020; 210:113073. [PMID: 33310287 DOI: 10.1016/j.ejmech.2020.113073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Isochromans are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Medicinal chemistry investigators have synthesized drug-like isochroman candidates with multiple medicinal features including central nervous system (CNS), antioxidant, antimicrobial, antihypertensive, antitumor and anti-inflammatory agents. Simultaneously, SAR (Structure-Activity Relationship) analysis has drawn attentions among medicinal chemists, along with a great deal of derivatives have been derived for potential targets. In this article, we thoroughly summarize the biological activities and part of typical SAR for isochroman derivatives reported on existing literatures and patents, wishing to provide an overall retrospect and prospect on the isochroman analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province, 712046, PR China.
| | - Peinan Fan
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, PR China
| |
Collapse
|
6
|
Mahdavi Gorabi A, Banach M, Reiner Ž, Pirro M, Hajighasemi S, Johnston TP, Sahebkar A. The Role of Mesenchymal Stem Cells in Atherosclerosis: Prospects for Therapy via the Modulation of Inflammatory Milieu. J Clin Med 2019; 8:E1413. [PMID: 31500373 PMCID: PMC6780166 DOI: 10.3390/jcm8091413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic, inflammatory disease that mainly affects the arterial intima. The disease is more prevalent in middle-age and older individuals with one or more cardiovascular risk factors, including dyslipidemia, hypertension, diabetes, smoking, obesity, and others. The beginning and development of atherosclerosis has been associated with several immune components, including infiltration of inflammatory cells, monocyte/macrophage-derived foam cells, and inflammatory cytokines and chemokines. Mesenchymal stem cells (MSCs) originate from several tissue sources of the body and have self-renewal and multipotent differentiation characteristics. They also have immunomodulatory and anti-inflammatory properties. Recently, it was shown that MSCs have a regulatory role in plasma lipid levels. In addition, MSCs have shown to have promising potential in terms of treatment strategies for several diseases, including those with an inflammatory component. In this regard, transplantation of MSCs to patients with atherosclerosis has been proposed as a novel strategy in the treatment of this disease. In this review, we summarize the current advancements regarding MSCs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Željko Reiner
- Department of Internal medicine, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb 1000, Croatia
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 1531534199, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| |
Collapse
|
7
|
Luo Y, Lu S, Ai Q, Zhou P, Qin M, Sun G, Sun X. SIRT1/AMPK and Akt/eNOS signaling pathways are involved in endothelial protection of total aralosides of Aralia elata (Miq) Seem against high-fat diet-induced atherosclerosis in ApoE-/- mice. Phytother Res 2019; 33:768-778. [PMID: 30637828 DOI: 10.1002/ptr.6269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/27/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022]
Abstract
Total aralosides of Aralia elata (Miq) Seem (TASAESs) possess multiple pharmacological activity, such as anti-inflammation, antioxidation, and antiapoptosis. However, there is no literature reporting the antiatherosclerotic effect and mechanism of TASAES so far. The aim of this study was to investigate the antiatherosclerotic effects in high-fat diet-induced ApoE-/- mice and potential mechanism of TASAES in ox-LDL-injured endothelial cells. In vivo assay, our data demonstrated that TASAES significantly reduced the atherosclerotic plaque size and caspase-3 expression level in aortic valve. In vitro, we found that TASAES could increase endothelial cell viability, attenuated mitochondrial membrane potential depolarization, and endothelial cells apoptosis. In addition, we found that TASAES could activate SIRT1/AMPK and Akt/eNOS signaling pathways. Importantly, EX527, SIRT1 siRNA, and LY294002, Akt siRNA, remarkably abolished the antiapoptotic effects of TASAES. In conclusion, this study demonstrated that SIRT1/AMPK and Akt/eNOS signaling pathways are involved in endothelial protection of TASAES against atherosclerotic mice, suggesting that TASAES is a candidate drug for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Qidi Ai
- School of Pharmaceutical Science, Hunan University of Chinese Medicine, Changsha, China
| | - Ping Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Meng Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Piao J, Hong HS, Son Y. Substance P ameliorates tumor necrosis factor-alpha-induced endothelial cell dysfunction by regulating eNOS expression in vitro. Microcirculation 2019; 25:e12443. [PMID: 29412499 DOI: 10.1111/micc.12443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to explore the beneficial effects of SP on NO production and inflammation-induced vascular endothelium cell death. METHODS To mimic the inflammatory environment, TNF-α was treated with HUVECs, and SP was added prior to TNF-α to determine its protective effect. WST-1 assay was performed to detect cell viability. NO level in conditioned medium was measured by Griess Reagent System. The protein level of cleaved caspase-3, eNOS, and phosphorylated Akt was detected by Western blot analysis. RESULTS TNF-α declined endothelial cell viability by downregulating Akt and NO production. TNF-α-induced cell death was reliably restored by NO, confirming the requirement of NO for cell survival. By contrast, pretreatment of SP attenuated TNF-α-induced cellular apoptosis, accompanied by an increase in the phosphorylation of Akt, eNOS expression, and NO production. Blockage of NK-1R, phosphorylated Akt or eNOS by CP-96345, A6730, or L-NAME entirely eliminated the effect of SP. CONCLUSIONS SP can protect the vascular endothelium against inflammation-induced damage through modulation of the Akt/eNOS/NO signaling pathway.
Collapse
Affiliation(s)
- Jiyuan Piao
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| | - Hyun Sook Hong
- East-West Medical Research Institute/Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| |
Collapse
|
9
|
Li W, Shuai W, Xu F, Sun H, Xu S, Yao H, Liu J, Yao H, Zhu Z, Xu J. Discovery of Novel 4-Arylisochromenes as Anticancer Agents Inhibiting Tubulin Polymerization. ACS Med Chem Lett 2018; 9:974-979. [PMID: 30344902 DOI: 10.1021/acsmedchemlett.8b00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
XJP-L (8), a derivative of the natural product (±)-7,8-dihydroxy-3-methylisochroman-4-one isolated from the peel of Musa sapien tum L., was found to exhibit weak inhibitory activity of tubulin polymerization (IC50 = 10.6 μM) in our previous studies. Thus, a series of 4-arylisochromene derivatives were prepared by incorporating the trimethoxyphenyl moiety into 8, among which compound (±)-19b was identified as the most potent compound with IC50 values ranging from 10 to 25 nM against a panel of cancer cell lines. Further mechanism studies demonstrated that (±)-19b disrupted the intracellular microtubule network, caused G2/M phase arrest, induced cell apoptosis, and depolarized mitochondria of K562 cells. Moreover, (±)-19b exhibited potent in vitro antivascular and in vivo antitumor activities. Notably, the R-configured enantiomer of (±)-19b, which was prepared by chiral separation, was slightly more potent than (±)-19b and was much more potent than the S-configured enantiomer in both antiproliferative and antitubulin assays. Our findings suggest that (±)-19b deserves further research as a potential antitubulin agent for the treatment of cancers.
Collapse
Affiliation(s)
- Wenlong Li
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wen Shuai
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Feijie Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Honghao Sun
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
10
|
Tu KN, Gao C, Blum SA. An Oxyboration Route to a Single Regioisomer of Borylated Dihydrofurans and Isochromenes. J Org Chem 2018; 83:11204-11217. [DOI: 10.1021/acs.joc.8b01790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kim N. Tu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2025, United States
| | - Chao Gao
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2025, United States
| |
Collapse
|
11
|
Wang Y, Wang J, Li Y, Wang S, Zhu X. Platelet-rich Plasma Protects HUVECs against oX-LDL-induced Injury. Open Med (Wars) 2018; 13:41-52. [PMID: 29607413 PMCID: PMC5874509 DOI: 10.1515/med-2018-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 01/26/2023] Open
Abstract
Platelet-rich plasma (PRP) contains a variety of cytokines, some of which ameliorate oX-LDL (oxidized low-density lipoprotein)-induced endothelial cell (EC) injury. Therefore, we hypothesized that PRP might alleviate oX-LDL-induced injury. METHODOLOGY Human umbilical vein endothelial cells (HUVECs) were divided into four groups: a PPP (platelet-poor plasma) group, an oX-LDL group, an oX-LDL+PRP group and a PRP group. CCK-8 (Cell Counting Kit) assay, Annexin V-FITC/7-AAD and Hochest 33342 staining were performed to assess cell proliferation and apoptosis. Tube formation and cell migration assays were performed to evaluate HUVEC-mediated vasculogenesis and migration. Expression levels of Bcl-2, Bax, caspase-3, cleaved caspase-3, PI3K, Akt, eNOS p-Akt, p-eNOS, IL-6 and IL-1 were detected by western blotting or immunofluorescence. PRINCIPAL FINDINGS PRP promoted HUVEC proliferation in a non-linear pattern, protected HUVECs against oX-LDL-induced apoptosis and attenuated oX-LDL-mediated inhibition of HUVEC migration and vasculogenesis. Additionally, compared to the PPP group, PRP downregulated pro-apoptotic proteins (ratio of Bax/Bcl-2, caspase-3 and cleaved caspase-3) as well as IL-6 and IL-1. Moreover, the PI3K/Akt/eNOS pathway was activated by PRP and inactivated by oX-LDL. CONCLUSIONS It was demonstrated that PRP protected HUVECs against oX-LDL-induced injury and that the PI3K/Akt/eNOS pathway was activated in this process.
Collapse
Affiliation(s)
- Yang Wang
- First Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Jinsong Wang
- First Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Yonghui Li
- First Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Shenming Wang
- First Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Xiaonan Zhu
- Sun Yat-sen University Zhongshan School of Medicine, GuangZhou, China
| |
Collapse
|
12
|
Xing S, Gu N, Qin J, Cui H, Li Y, Wang K, Tian D, Chen B, Yu G. Construction of 4-Isochromanones through Cu(OTf)2
-Catalysed Sequential C=O and C-O Bond Formation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Nan Gu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Jiajing Qin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Hong Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Yan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Bo Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Guo Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| |
Collapse
|
13
|
Liu M, Chen X, Ma J, Hassan W, Wu H, Ling J, Shang J. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress. Biomed Pharmacother 2017; 95:1789-1798. [PMID: 28962084 DOI: 10.1016/j.biopha.2017.08.092] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
β-Elemene is a major bioactive sesquiterpenoids compound isolated from the essential oils of Curcuma Wenyujin, a Chinese medicinal herb that treats tumor in clinics. However anti-atherosclerotic effects of β-elemene have not been fully investigated in vivo. The objective of this study is to further elucidate the anti-atherosclerotic activities of β-elemene in ApoE-/- mice. Staining techniques and immunohistochemistry were used to validate atherosclerosis. Serum lipids, plasma nitrite and nitrate were analyzed by colorometric methods. ROS and antioxidative enzymes were measured through kits. Proteome profiler array was performed to analyze atherosclerosis-related inflammatory Cytokine. Western blot was used for measuring various proteins expressions. These results revealed that β-elemene inhibited atherosclerotic lesion size and increased stability of plaques in ApoE-/- mice by alleviating levels of vascular oxidative stress and preventing pro-inflammatory cytokine production. In addition β-elemene maintained endothelial function by significantly improving plasma nitrite and nitrate levels and expression of phosphorylation-eNOS in vivo. β-elemene also increased the production of the nitric oxide (NO) in human umbilical vein endothelial cells (HUVECs) and promoted phosphorylation of eNOSser1177 and Akt in vitro. In Conclusive, data revealed that β-elemene attenuated atherosclerosis and enhanced stability of plaques at least partially through its antioxidative and anti-inflammatory features and protected against endothelial dysfunction in ApoE-/- mice.
Collapse
Affiliation(s)
- Meng Liu
- Cancer Prevention and Research Institute, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Xiaotong Chen
- CSPC Yuanda (Dalian) Pharmaceutical Co., Ltd, Dalian 116600, Liaoning, China
| | - Ji Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Waseem Hassan
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jiawei Ling
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| |
Collapse
|
14
|
Chu P, Han G, Ahsan A, Sun Z, Liu S, Zhang Z, Sun B, Song Y, Lin Y, Peng J, Tang Z. Phosphocreatine protects endothelial cells from Methylglyoxal induced oxidative stress and apoptosis via the regulation of PI3K/Akt/eNOS and NF-κB pathway. Vascul Pharmacol 2016; 91:26-35. [PMID: 27590258 DOI: 10.1016/j.vph.2016.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 01/01/2023]
Abstract
Methylglyoxal (MGO), an active metabolite of glucose, can cause cellular injury which has an affinity for the progression of diabetes-associated atherosclerosis. Phosphocreatine (PCr) is a well-known high-energy phosphate compound. However, its protective effects and mechanism in the formation of a diabetes-associated atherosclerosis have not been clarified. In the present study, we investigated whether PCr could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs) and explored the possible mechanisms. Cells were pre-treated with PCr and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were assessed by light microscopy, MTT assay, and Annexin V-FITC respectively. Apoptotic-related proteins were evaluated by Western blotting. Reactive oxygen species (ROS) generation, intracellular calcium and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Our results showed that PCr dose-dependently prevented MGO associated HUVEC cytotoxicity and suppressed MGO activated ROS generation as well as apoptotic biochemical changes such as lactate dehydrogenase, malondialdehyde leakage, loss of MMP, decreased Bcl-2/Bax protein ratio, levels of caspase-3 and 9. In addition, the antiapoptotic effect of PCr enhanced p-Akt/Akt protein ratio, NO synthase (eNOS) activation, NO production and cGMP levels and also was partially suppressed by a PI3K inhibitor (LY294002). Furthermore, PCr also inhibited MGO-induced transcriptional activity of Nuclear factor kappa B (NFκB). In conclusion, our data described that PCr exerts an antiapoptotic effect in HUVECs exposed to oxidative stress by MGO through the mitochondrial pathway and the modulation of PI3K/Akt/eNOS and NF-κB signaling pathway. Thus, it might be a candidate therapeutic agent for diabetic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Chu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Guozhu Han
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Anil Ahsan
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Shumin Liu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zonghui Zhang
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Bin Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Yanlin Song
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Yuan Lin
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Pharmacology Department, Dalian Medical University, Dalian, China.
| |
Collapse
|
15
|
Wang C, Wu Z, Wang J, Liu J, Yao H, Lin A, Xu J. An efficient synthesis of 4-isochromanones via Parham-type cyclization with Weinreb amide. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Design, synthesis, biological evaluation and docking study of 4-isochromanone hybrids bearing N-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2015; 25:5212-6. [PMID: 26454504 DOI: 10.1016/j.bmcl.2015.09.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/23/2022]
Abstract
A series of novel 4-isochromanone hybrids bearing N-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors have been designed and synthesized. The screening results showed that most of the compounds exhibited potent anti-AChE activity in the range of nM concentrations. The 1-(4-fluorobenzyl) substituted derivative 9d exhibited the most potent anti-AChE activity with IC50 value of 8.9 nM and high AChE/BuChE selectivity (SI>230). Kinetic and molecular modeling studies suggested that compound 9d was mixed-type inhibitor, binding simultaneously to CAS and PAS of AChE. Besides, the preliminary structure-activity relationships were discussed.
Collapse
|
17
|
Song H, Han IY, Kim Y, Kim YH, Choi IW, Seo SK, Jung SY, Park S, Kang MS. The NADPH oxidase inhibitor DPI can abolish hypoxia-induced apoptosis of human kidney proximal tubular epithelial cells through Bcl2 up-regulation via ERK activation without ROS reduction. Life Sci 2015; 126:69-75. [PMID: 25744050 DOI: 10.1016/j.lfs.2015.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 12/29/2022]
Abstract
AIMS Ischemia/reperfusion injury (IRI), resulting from hypoxic damage within a graft, is the leading cause of cell death and graft rejection. In this study, we investigated whether a HIF-1α inhibitor or various antioxidants were able to prevent ischemic injury in a cellular model in which experimental hypoxia was induced using CoCl2. MAIN METHODS The ischemic injury induced in HK-2 cells by CoCl2 was validated by increased reactive oxygen species (ROS) production, reduced cell viability, and increased apoptosis at different times and doses. The preventative effects of various anti-oxidants on ischemic injury were evaluated using ROS levels, cell viability, and apoptosis. The MAPK phosphorylation status and Bcl2/Bax expression levels were evaluated after treatment with various antioxidants. KEY FINDINGS The increase in ROS induced by hypoxia was significantly inhibited by NAC and CAPE, but not by any other treatment. The reduction in cell viability induced by CoCl2 was significantly inhibited by NAC and DPI, but not by any other treatment. The apoptosis induced by CoCl2 was also significantly inhibited by NAC and DPI, but not by any other treatment. Moreover, NAC and DPI prevented CoCl2-induced apoptosis in HK-2 cells in a dose- and time-dependent manner. Treatment of CoCl2 and HK-2 cells treated with DPI, but not NAC, significantly induced ERK activation and Bcl2 expression. NAC and DPI treatment prevented the apoptosis of cells cultured under hypoxic conditions. SIGNIFICANCE Our results suggest that DPI should be investigated further as a novel protective agent that prevents kidney ischemia.
Collapse
Affiliation(s)
- Hyunkeun Song
- Departmentof Microbiology and Immunology, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea
| | - Il-Yong Han
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea
| | - Yeonye Kim
- Departmentof Microbiology and Immunology, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea
| | - Young Hwan Kim
- Department of Plastic & Reconstructive Surgery, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea
| | - Il-Whan Choi
- Departmentof Microbiology and Immunology, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea
| | - Su-Kil Seo
- Departmentof Microbiology and Immunology, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea
| | - So Young Jung
- Department of Dermatology, College of Medicine, INJE University, Haeundaero 875, HaeundaeGu, Busan 612-896, Republic of Korea
| | - SaeGwang Park
- Departmentof Microbiology and Immunology, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea.
| | - Mi Seon Kang
- Department of Pathology, College of Medicine, INJE University, Bockjiro 75, BusanjinGu, Busan 614-735, Republic of Korea.
| |
Collapse
|
18
|
Hwang JS, Eun SY, Ham SA, Yoo T, Lee WJ, Paek KS, Do JT, Lim DS, Seo HG. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int J Biochem Cell Biol 2015; 62:54-61. [PMID: 25732738 DOI: 10.1016/j.biocel.2015.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - So Young Eun
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Sun Ah Ham
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Taesik Yoo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Won Jin Lee
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-400, Republic of Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
19
|
Guo H, Cao J, Li J, Yang X, Jiang J, Feng J, Li S, Zhang J, Chen B. Lymphocytes from intermittent hypoxia-exposed rats increase the apoptotic signals in endothelial cells via oxidative and inflammatory injury in vitro. Sleep Breath 2015; 19:969-76. [DOI: 10.1007/s11325-015-1128-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/01/2015] [Accepted: 01/22/2015] [Indexed: 01/09/2023]
|
20
|
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of "kindling radicals," which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. RECENT ADVANCES There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. CRITICAL ISSUES NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. FUTURE DIRECTIONS Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice.
Collapse
Affiliation(s)
- Anna Konior
- 1 Department of Internal Medicine, Jagiellonian University School of Medicine , Cracow, Poland
| | | | | | | |
Collapse
|
21
|
Wang C, Wei G, Yang X, Yao H, Jiang J, Liu J, Shen M, Wu X, Xu J. First total synthesis of antihypertensive natural products S-(+)-XJP and R-(−)-XJP. Org Biomol Chem 2014; 12:7338-44. [DOI: 10.1039/c4ob01470g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first total synthesis of S-(+)-XJP and R-(−)-XJP has been achieved via intramolecular Heck reaction. A latent functionality strategy was implemented to circumvent the racemization in this endeavor.
Collapse
Affiliation(s)
- Chaolei Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Medicinal Chemistry
- China Pharmaceutical University
| | - Guoxiang Wei
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Medicinal Chemistry
- China Pharmaceutical University
| | - Xue Yang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Medicinal Chemistry
- China Pharmaceutical University
| | - Hequan Yao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Medicinal Chemistry
- China Pharmaceutical University
| | - Jieyun Jiang
- Department of Microbiology
- Immunology and Molecular Genetics
- University of Kentucky College of Medicine
- Lexington, USA
| | - Jie Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Organic Chemistry
- China Pharmaceutical University
| | - Mingqin Shen
- Jiangsu Provincial Institute of Traditional Chinese Medicine
- Nanjing 210028, PR China
| | - Xiaoming Wu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Medicinal Chemistry
- China Pharmaceutical University
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009, PR China
- Department of Medicinal Chemistry
- China Pharmaceutical University
| |
Collapse
|
22
|
Synthesis and β-adrenergic blocking activity of oxime ether hybrids derived from a natural isochroman-4-one. Chin J Nat Med 2013; 11:538-45. [PMID: 24359781 DOI: 10.1016/s1875-5364(13)60098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 11/20/2022]
Abstract
AIM In a search for new cardiovascular drug candidates, a series of novel oxime ethers derived from a natural isochroman-4-one were synthesized. METHOD Compounds 3 and 6, derived from the natural antihypertensive compound 7, 8-dihydroxy-3-methyl-isochroman-4-one (XJP), were designed and synthesized. Subsequently, a series of novel isochroman-4-one oxime ether hybrids were prepared by hybridizing various N-substituted isopropanolamine functionalities to isochroman-4-one oxime. Furthermore, β1-adrenergic blocking activities of the synthesized compounds were assayed using the isolated rat left atria. RESULTS Twenty target compounds were obtained, and the preliminary structure-activity relationships were deduced. The most promising compound Ic exhibited β1-adrenoceptor blocking activity (inhibition: 52.2%) at 10(-7) mol·L(-1), which was superior to that of propranolol (inhibition: 49.7%). CONCLUSION The results suggested that natural product XJP/isopropanolamine moiety hybrids may provide a promising approach for the discovery of novel cardiovascular drug candidates.
Collapse
|