1
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
2
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Tamayo SO, Cupitra NI, Narvaez-Sanchez R. Vascular adaptation to cancer beyond angiogenesis: The role of PTEN. Microvasc Res 2023; 147:104492. [PMID: 36709859 DOI: 10.1016/j.mvr.2023.104492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Cancer is a public health problem, and it needs blood vessels to grow. Knowing more about the processes of vascular adaptation to cancer improves our chances of attacking it, since the tumor for its extension needs such adaptation to satisfy its progressive demand for nutrients. The main objective of this review is to present the reader with some fundamental molecular pathways for vascular adaptation to cancer, highlighting within them the regulatory role of homologous tensin and phosphatase protein (PTEN). Hence the review describes vascular adaptation to cancer through somewhat known processes, such as angiogenesis, but emphasizes others that are much less explored, namely the changes in vascular reactivity and remodeling of the vascular wall -intima-media thickness and adjustments in the extracellular matrix- The role of PTEN in physiological and pathological vascular mechanisms in different types of cancer is deepened, as a crucial mediator in vascular adaptation to cancer, and points pending further exploration in cancer vascularization are suggested.
Collapse
Affiliation(s)
- Sofia Ortiz Tamayo
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
4
|
Fang ZQ, Ruan B, Liu JJ, Duan JL, Yue ZS, Song P, Xu H, Ding J, Xu C, Dou GR, Wang L. Notch-triggered maladaptation of liver sinusoidal endothelium aggravates nonalcoholic steatohepatitis through endothelial nitric oxide synthase. Hepatology 2022; 76:742-758. [PMID: 35006626 DOI: 10.1002/hep.32332] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Although NASH can lead to severe clinical consequences, including cirrhosis and hepatocellular carcinoma, no effective treatment is currently available for this disease. Increasing evidence indicates that LSECs play a critical role in NASH pathogenesis; however, the mechanisms involved in LSEC-mediated NASH remain to be fully elucidated. APPROACH AND RESULTS In the current study, we found that LSEC homeostasis was disrupted and LSEC-specific gene profiles were altered in methionine-choline-deficient (MCD) diet-induced NASH mouse models. Importantly, Notch signaling was found to be activated in LSECs of NASH mice. To then investigate the role of endothelial Notch in NASH progression, we generated mouse lines with endothelial-specific Notch intracellular domain (NICD) overexpression or RBP-J knockout to respectively activate or inhibit Notch signaling in endothelial cells. Notably, endothelial-specific overexpression of the NICD accelerated LSEC maladaptation and aggravated NASH, whereas endothelial cell-specific inhibition of Notch signaling restored LSEC homeostasis and improved NASH phenotypes. Furthermore, we demonstrated that endothelial-specific Notch activation exacerbated NASH by inhibiting endothelial nitric oxide synthase (eNOS) transcription, whereas administration of the pharmacological eNOS activator YC-1 alleviated hepatic steatosis and lipid accumulation resulting from Notch activation. Finally, to explore the therapeutic potential of using Notch inhibitors in NASH treatment, we applied two gamma-secretase inhibitors-DAPT and LY3039478-in an MCD diet-induced mouse model of NASH, and found that both inhibitors effectively ameliorated hepatic steatosis, inflammation, and liver fibrosis. CONCLUSIONS Endothelial-specific Notch activation triggered LSEC maladaptation and exacerbated NASH phenotypes in an eNOS-dependent manner. Genetic and pharmacological inhibition of Notch signaling effectively restored LSEC homeostasis and ameliorated NASH progression.
Collapse
Affiliation(s)
- Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Ciccone V, Terzuoli E, Ristori E, Filippelli A, Ziche M, Morbidelli L, Donnini S. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL‑8/Notch signaling cascade. Int J Mol Med 2022; 50:99. [PMID: 35656893 PMCID: PMC9186295 DOI: 10.3892/ijmm.2022.5155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022] Open
Abstract
ALDH1A1 is a cytosolic enzyme upregulated in tumor cells, involved in detoxifying cells from reactive aldehydes and in acquiring resistance to chemotherapeutic drugs. Its expression correlates with poor clinical outcomes in a number of cancers, including melanoma. The present study hypothesized that the increased ALDH1A1 expression and activity upregulated the release of proangiogenic factors from melanoma cells, which regulate angiogenic features in endothelial cells (ECs) through a rearrangement of the Notch pathway. In vivo, when subcutaneously implanted in immunodeficient mice, ALDH1A1 overexpressing melanoma cells displayed a higher microvessel density. In a 3D multicellular system, obtained co‑culturing melanoma cancer cells with stromal cells, including ECs, melanoma ALDH1A1 overexpression induced the recruitment of ECs into the core of the tumorspheres. By using a genes array, overexpression of ALDH1A1 in tumor cells also promoted modulation of Notch cascade gene expression in ECs, suggesting an interaction between tumor cells and ECs mediated by enrichment of angiogenic factors in the tumor microenvironment. To confirm this hypothesis, inactivation of ALDH1A1 by the pharmacological inhibitor CM037 significantly affected the release of angiogenic factors, including IL‑8, from melanoma cells. High levels of ALDH1A1, through the retinoic acid pathway, regulated the activation of NF‑kB‑p65 and IL‑8. Further, in a 2D co‑culture system, the addition of an IL‑8 neutralizing antibody to ECs co‑cultured with melanoma cells forced to express ALDH1A1 dampened endothelial angiogenic features, both at the molecular (in terms of gene and protein expression of mediators of the Notch pathway) and at the functional level (proliferation, scratch assay, tube formation and permeability). In conclusion, these findings demonstrated the existence of a link between melanoma ALDH1A1 expression and EC Notch signaling modification that results in a pro‑angiogenic phenotype. Based on the crucial role of ALDH1A1 in melanoma control of the tumor microenvironment, the enzyme seems a promising target for the development of novel drugs able to interrupt the cross‑talk between cancer (stem) cells and endothelial cells.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Erika Terzuoli
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Emma Ristori
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | | | - Marina Ziche
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena I‑53100, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| |
Collapse
|
6
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
7
|
Gomez AH, Joshi S, Yang Y, Tune JD, Zhao MT, Yang H. Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration. J Cardiovasc Dev Dis 2021; 8:125. [PMID: 34677194 PMCID: PMC8541010 DOI: 10.3390/jcdd8100125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The Notch intercellular signaling pathways play significant roles in cardiovascular development, disease, and regeneration through modulating cardiovascular cell specification, proliferation, differentiation, and morphogenesis. The dysregulation of Notch signaling leads to malfunction and maldevelopment of the cardiovascular system. Currently, most findings on Notch signaling rely on animal models and a few clinical studies, which significantly bottleneck the understanding of Notch signaling-associated human cardiovascular development and disease. Recent advances in the bioengineering systems and human pluripotent stem cell-derived cardiovascular cells pave the way to decipher the role of Notch signaling in cardiovascular-related cells (endothelial cells, cardiomyocytes, smooth muscle cells, fibroblasts, and immune cells), and intercellular crosstalk in the physiological, pathological, and regenerative context of the complex human cardiovascular system. In this review, we first summarize the significant roles of Notch signaling in individual cardiac cell types. We then cover the bioengineering systems of microfluidics, hydrogel, spheroid, and 3D bioprinting, which are currently being used for modeling and studying Notch signaling in the cardiovascular system. At last, we provide insights into ancillary supports of bioengineering systems, varied types of cardiovascular cells, and advanced characterization approaches in further refining Notch signaling in cardiovascular development, disease, and regeneration.
Collapse
Affiliation(s)
- Angello Huerta Gomez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
| | - Sanika Joshi
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
- Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76201, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
| | - Johnathan D. Tune
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43215, USA;
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; (A.H.G.); (S.J.); (Y.Y.)
| |
Collapse
|
8
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania.,Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
9
|
Ren BC, Zhang W, Zhang W, Ma JX, Pei F, Li BY. Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol 2021; 212:105948. [PMID: 34224859 DOI: 10.1016/j.jsbmb.2021.105948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress injury is an important link in the pathogenesis of diabetes, and reducing oxidative stress damage caused by long-term hyperglycemia is an important diabetic treatment strategy. Melatonin has been proved to be a free radical scavenger with strong antioxidant activity, and its protective effect on diabetes and the complications has been confirmed. However, the role and potential mechanism of melatonin in oxidative stress injury of diabetic aorta have not been reported. Besides, Notch signaling pathway plays an important role in vascular growth, differentiation, and apoptosis. We speculated that melatonin could improve oxidative stress injury of diabetic aorta through Notch1/Hes1 signaling pathway. STZ-induced diabetic rats and vascular smooth muscle cells (VSMCs) cultured with high glucose were treated with or without melatonin, melatonin receptor antagonist Luzindole, γ-secretase inhibitor DAPT respectively. We found that melatonin could improve the oxidative stress injury of diabetic aorta and reduce the apoptosis of VSMCs. Interestingly, melatonin could activate Notch1 signaling pathway, play an antioxidant role, and reduce the expression of apoptosis-related proteins. However, these protective effects could be largely eliminated by Luzindole or DAPT. We concluded that the repression of Notch1 signaling pathway would inhibit the repair of oxidative stress injury in diabetes. Melatonin could ameliorate oxidative stress injury and apoptosis of diabetic aorta by activating Notch1/Hes1 signaling pathway.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Wen Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, China.
| | - Wei Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Jian-Xing Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Fei Pei
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Bu-Ying Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| |
Collapse
|
10
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
11
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Zohorsky K, Mequanint K. Designing Biomaterials to Modulate Notch Signaling in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:383-410. [PMID: 33040694 DOI: 10.1089/ten.teb.2020.0182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design of cell-instructive biomaterials for tissue engineering and regenerative medicine is at a crossroads. Although the conventional tissue engineering approach is top-down (cells seeded to macroporous scaffolds and mature to form tissues), bottom-up tissue engineering strategies are becoming appealing. With such developments, we can study cell signaling events, thus enabling functional tissue assembly in physiologic and diseased models. Among many important signaling pathways, the Notch signaling pathway is the most diverse in its influence during tissue morphogenesis and repair following injury. Although Notch signaling is extensively studied in developmental biology and cancer biology, our knowledge of designing biomaterial-based Notch signaling platforms and incorporating Notch signaling components into engineered tissue systems is limited. By incorporating Notch signaling to tissue engineering scaffolds, we can direct cell-specific responses and improve engineered tissue maturation. This review will discuss recent progress in the development of Notch signaling biomaterials as a promising target to control cellular fate decisions, including the influences of ligand identity, biophysical material cues, ligand presentation strategies, and mechanotransduction. Notch signaling is consequently of interest to direct, control, and reprogram cellular behavior on a biomaterial surface. We anticipate that discussions in this article will allow for enhanced knowledge and insight into designing Notch targeted biomaterials for various tissue engineering and cell fate determinations. Impact statement Notch signaling is recognized as an important pathway in tissue engineering and regenerative medicine; however, there is no systematic review on this topic. The comprehensive review and perspectives presented here provide an in-depth discussion on ligand presentation strategies both in 2D and in 3D cell culture environments involving biomaterials/scaffolds. In addition, this review article provides insight into the challenges in designing cell surrogate biomaterials capable of providing Notch signals. To the best of the authors' knowledge, this is the first review relevant to the fields of tissue engineering.
Collapse
Affiliation(s)
- Kathleen Zohorsky
- School of Biomedical Engineering and The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering and The University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Hao Y, Wang X, Zhang F, Wang M, Wang Y, Wang H, Du Y, Wang T, Fu F, Gao Z, Zhang L. Inhibition of notch enhances the anti-atherosclerotic effects of LXR agonists while reducing fatty liver development in ApoE-deficient mice. Toxicol Appl Pharmacol 2020; 406:115211. [PMID: 32853627 DOI: 10.1016/j.taap.2020.115211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023]
Abstract
Liver X receptor (LXR) activation can achieve satisfactory anti-atherosclerotic activity, but can also lead to the development of fatty liver and hypertriglyceridemia. In contrast, Notch inhibition can suppress both atherosclerosis and the hepatic accumulation of lipids. In the present study, we sought to assess whether combining LXR ligand agonists (T317) with Notch receptor inhibitors (DAPT) would lead to enhanced anti-atherosclerotic activity while overcoming the adverse events associated with LXR ligand agonist therapy. The impact of the combined T317 + DAPT therapeutic regimen on atherosclerosis, fatty liver development, and hypertriglyceridemia was assessed using ApoE deficient (ApoE-/-) mice. The results of this analysis suggested that DAPT was able to improve the anti-atherosclerotic activity of T317 without reducing the stability of lesion plaques while simultaneously reducing blood lipids in treated ApoE-/- mice. This combination T317 + DAPT treatment was also linked with a significant upregulation of ABCA1 and the stimulation of reverse cholesterol transport (RCT), as well as with decreases in the levels of intercellular cell adhesion molecule-1 (ICAM-1) and p-p65, and with altered M1/M2 macrophage proportions within atherosclerotic plaques. Importantly, DAPT was also able to reduce T317-mediated lipid accumulation within the liver owing to its ability to reduce SREBP-1 expression while simultaneously increasing that of Pi-AMPKα and PPARα. Together, our results suggest that administering Notch receptor inhibitors to ApoE-/- mice may be an effective means of enhancing the anti-atherosclerotic activity of LXR ligand agonists while simultaneously limiting associated fatty liver and hypertriglyceridemia development in these animals.
Collapse
Affiliation(s)
- Yanfei Hao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xinlin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fenglan Zhang
- Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Meiling Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanfang Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Hao Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China.
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
14
|
McCallinhart PE, Biwer LA, Clark OE, Isakson BE, Lilly B, Trask AJ. Myoendothelial Junctions of Mature Coronary Vessels Express Notch Signaling Proteins. Front Physiol 2020; 11:29. [PMID: 32116749 PMCID: PMC7010921 DOI: 10.3389/fphys.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Myoendothelial junctions (MEJs) within the fenestrae of the internal elastic lamina (IEL) are critical sites that allow for endothelial cell (EC) - vascular smooth muscle cell (VSMC) contact and communication. Vascular Notch signaling is a critical determinant of normal vasculogenesis and remodeling, and it regulates cell phenotype via contact between ECs and VSMCs. To date, no studies have linked Notch signaling to the MEJ despite it requiring cell-cell contact. Furthermore, very little is known about Notch in the adult coronary circulation or the localization of Notch signaling and activity within the mature intact blood vessel. OBJECTIVE We tested the hypothesis that vascular Notch signaling between ECs and VSMCs occurs at MEJs. METHODS AND RESULTS Notch receptor and ligand immunofluorescence was performed in human coronary EC and VSMC co-cultures across transwell inserts (in vitro MEJs) and in the intact mouse coronary circulation. Human coronary VSMC Notch activity induced by human coronary ECs at the in vitro MEJ was assessed using a CBF-luciferase construct. We observed Jagged1, Notch1, Notch2, and Notch3 expression within the in vitro and in vivo MEJs. We also demonstrated a 3-fold induction (p < 0.001) of human coronary VSMC Notch signaling by ECs at the in vitro MEJ, which was completely blocked by the Notch inhibitor, DAPT (p < 0.01). CONCLUSION We demonstrate for the first time in mature blood vessels that Notch receptors and ligands are expressed within and are active at coronary MEJs, demonstrating a previously unrecognized mode of Notch signaling regulation between the endothelium and smooth muscle.
Collapse
Affiliation(s)
- Patricia E. McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lauren A. Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Olivia E. Clark
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brenda Lilly
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Heart Center, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
15
|
Malashicheva A, Kostina A, Kostareva A, Irtyuga O, Gordeev M, Uspensky V. Notch signaling in the pathogenesis of thoracic aortic aneurysms: A bridge between embryonic and adult states. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165631. [PMID: 31816439 DOI: 10.1016/j.bbadis.2019.165631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Aneurysms of the thoracic aorta are a "silent killer" with no evident clinical signs until the fatal outcome. Molecular and genetic bases of thoracic aortic aneurysms mainly include transforming growth factor beta signaling, smooth muscle contractile units and metabolism genes, and extracellular matrix genes. In recent studies, a role of Notch signaling, among other pathways, has emerged in disease pathogenesis. Notch is a highly conserved signaling pathway that regulates the development and differentiation of many types of tissues and influences major cellular processes such as cell proliferation, differentiation and apoptosis. Mutations in several Notch signaling components have been associated with a number of heart defects, demonstrating an essential role of Notch signaling both in cardiovascular system development and its maintenance during postnatal life. This review discusses the role of Notch signaling in the pathogenesis of thoracic aortic aneurysms considering development and maintenance of the aortic root and how developmental regulations by Notch signaling may influence thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Malashicheva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia; Saint Petersburg State University, Department of Embryology, Universitetskaya nab., 7/9, 199034, Saint Petersburg, Russia.
| | - Aleksandra Kostina
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Olga Irtyuga
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Mikhail Gordeev
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Vladimir Uspensky
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| |
Collapse
|
16
|
Shear Stress Promotes Arterial Endothelium-Oriented Differentiation of Mouse-Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:1847098. [PMID: 31827524 PMCID: PMC6881757 DOI: 10.1155/2019/1847098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Establishment of a functional vascular network, which is required in tissue repair and regeneration, needs large-scale production of specific arterial or venous endothelial cells (ECs) from stem cells. Previous in vitro studies by us and others revealed that shear stress induces EC differentiation of bone marrow-derived mesenchymal stem cells and embryonic stem cells. In this study, we focused on the impact of different magnitudes of shear stress on the differentiation of mouse-induced pluripotent stem cells (iPSCs) towards arterial or venous ECs. When iPSCs were exposed to shear stress (5, 10, and 15 dyne/cm2) with 50 ng/mL vascular endothelial growth factor and 10 ng/mL fibroblast growth factor, the expression levels of the general EC markers and the arterial markers increased, and the stress amplitude of 10 dyne/cm2 could be regarded as a proper promoter, whereas the venous and lymphatic markers had little or no expression. Further, shear stress caused cells to align parallel to the direction of the flow, induced cells forming functional tubes, and increased the secretion of nitric oxide. In addition, Notch1 was significantly upregulated, and the Notch ligand Delta-like 4 was activated in response to shear stress, while inhibition of Notch signaling by DAPT remarkably abolished the shear stress-induced arterial epithelium differentiation. Taken together, our results indicate that exposure to appropriate shear stress facilitated the differentiation of mouse iPSCs towards arterial ECs via Notch signaling pathways, which have potential applications for both disease modeling and regenerative medicine.
Collapse
|
17
|
van Engeland NCA, Suarez Rodriguez F, Rivero-Müller A, Ristori T, Duran CL, Stassen OMJA, Antfolk D, Driessen RCH, Ruohonen S, Ruohonen ST, Nuutinen S, Savontaus E, Loerakker S, Bayless KJ, Sjöqvist M, Bouten CVC, Eriksson JE, Sahlgren CM. Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Sci Rep 2019; 9:12415. [PMID: 31455807 PMCID: PMC6712036 DOI: 10.1038/s41598-019-48218-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall.
Collapse
Affiliation(s)
- Nicole C A van Engeland
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands
| | - Freddy Suarez Rodriguez
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Adolfo Rivero-Müller
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Tommaso Ristori
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Camille L Duran
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, Texas, USA
| | - Oscar M J A Stassen
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Rob C H Driessen
- Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands
| | - Saku Ruohonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modelling, University of Turku, Turku, Finland
| | - Salla Nuutinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modelling, University of Turku, Turku, Finland
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, Texas, USA
| | - Marika Sjöqvist
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Carlijn V C Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - John E Eriksson
- Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia M Sahlgren
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland. .,Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands. .,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland. .,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
NOTCH1 signaling induces pathological vascular permeability in diabetic retinopathy. Proc Natl Acad Sci U S A 2019; 116:4538-4547. [PMID: 30787185 DOI: 10.1073/pnas.1814711116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from β-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.
Collapse
|
20
|
Abstract
The effects of diosgenin are discussed with respect to endothelial dysfunction, lipid profile, macrophage foam cell formation, VSMC viability, thrombosis and inflammation during the formation of atherosclerosis.
Collapse
Affiliation(s)
- Fang-Chun Wu
- College of Food and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Jian-Guo Jiang
- College of Food and Bioengineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
21
|
Binesh A, Devaraj SN, Halagowder D. Molecular interaction of NFκB and NICD in monocyte-macrophage differentiation is a target for intervention in atherosclerosis. J Cell Physiol 2018; 234:7040-7050. [PMID: 30478968 DOI: 10.1002/jcp.27458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
The activation of two transcription factors, NFκB and NICD (notch intracellular domain), plays a crucial role in different stages of atherosclerotic disease progression, from early endothelial activation by modified lipids like oxidized low-density lipoprotein (oxyLDL) to the imminent rupture of the atherosclerotic plaque. Inflammatory mediators and the notch pathway proteins were upregulated in atherogenic diet-induced rats and the same was confirmed by the differentiation of monocyte to macrophage on exposure to oxyLDL. The inflammatory transcription factor NFκB and the notch signaling transcription factor NICD were analysed for their molecular interaction in monocyte to macrophage differentiation. Inhibition of NFκB by dexamethasone in monocyte to macrophage differentiation resulted in a concomitant downregulation of NICD, whereas inhibition of NICD by N-(N-[3, 5-difluorophenacetyl])-l-alanyl)-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, did not significantly influence the expression of NFκB, but downregulated macrophage differentiation. These findings revealed that NFκB inhibition using dexamethasone regulated NICD, which turned down macrophage differentiation. Thus, inhibition of both NFκB-NICD is a potential target for intervention in atherosclerosis.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Zoology, Unit of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | - Devaraj Halagowder
- Department of Zoology, Unit of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Baek KI, Ding Y, Chang CC, Chang M, Sevag Packard RR, Hsu JJ, Fei P, Hsiai TK. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:105-115. [PMID: 29752956 PMCID: PMC6226366 DOI: 10.1016/j.pbiomolbio.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Ding
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Megan Chang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| |
Collapse
|
23
|
Duan J, Ruan B, Yan X, Liang L, Song P, Yang Z, Liu Y, Dou K, Han H, Wang L. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 2018; 68:677-690. [PMID: 29420858 PMCID: PMC6099357 DOI: 10.1002/hep.29834] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
UNLABELLED Liver sinusoidal endothelial cells (LSECs) critically regulate liver homeostasis and diseases through angiocrine factors. Notch is critical in endothelial cells (ECs). In the current study, Notch signaling was activated by inducible EC-specific expression of the Notch intracellular domain (NIC). We found that endothelial Notch activation damaged liver homeostasis. Notch activation resulted in decreased fenestration and increased basement membrane, and a gene expression profile with decreased LSEC-associated genes and increased continuous EC-associated genes, suggesting LSEC dedifferentiation. Consistently, endothelial Notch activation enhanced hepatic fibrosis (HF) induced by CCl4 . Notch activation attenuated endothelial nitric oxide synthase (eNOS)/soluble guanylate cyclase (sGC) signaling, and activation of sGC by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) reversed the dedifferentiation phenotype. In addition, Notch activation subverted the hepatocyte-supporting angiocrine profile of LSECs by down-regulating critical hepatocyte mitogens, including Wnt2a, Wnt9b, and hepatocyte growth factor (HGF). This led to compromised hepatocyte proliferation under both quiescent and regenerating conditions. Whereas expression of Wnt2a and Wnt9b was dependent on eNOS-sGC signaling, HGF expression was not rescued by the sGC activator, suggesting heterogeneous mechanisms of LSECs to maintain hepatocyte homeostasis. CONCLUSION Endothelial Notch activation results in LSEC dedifferentiation and accelerated liver fibrogenesis through eNOS-sGC signaling, and alters the angiocrine profile of LSECs to compromise hepatocyte proliferation and liver regeneration (LR). (Hepatology 2018).
Collapse
Affiliation(s)
- Juan‐Li Duan
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina,Department of Clinical Aerospace Medicine, School of Aerospace MedicineFourth Military Medical UniversityXi'anChina
| | - Xian‐Chun Yan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Zi‐Yan Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina
| | - Ke‐Feng Dou
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| | - Hua Han
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina,State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi'anChina,Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
24
|
van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. LAB ON A CHIP 2018; 18:1607-1620. [PMID: 29756630 PMCID: PMC5972738 DOI: 10.1039/c8lc00286j] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 05/24/2023]
Abstract
Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of interacting ECs and VSMCs under hemodynamic conditions and presents a novel approach to systematically study the biological and mechanical components of the intimal-medial vascular unit.
Collapse
Affiliation(s)
- Nicole C. A. van Engeland
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
| | - Andreas M. A. O. Pollet
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Jaap M. J. den Toonder
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| | - Oscar M. J. A. Stassen
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
| | - Cecilia M. Sahlgren
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| |
Collapse
|
25
|
Baek KI, Packard RRS, Hsu JJ, Saffari A, Ma Z, Luu AP, Pietersen A, Yen H, Ren B, Ding Y, Sioutas C, Li R, Hsiai TK. Ultrafine Particle Exposure Reveals the Importance of FOXO1/Notch Activation Complex for Vascular Regeneration. Antioxid Redox Signal 2018; 28:1209-1223. [PMID: 29037123 PMCID: PMC5912723 DOI: 10.1089/ars.2017.7166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Redox active ultrafine particles (UFP, d < 0.2 μm) promote vascular oxidative stress and atherosclerosis. Notch signaling is intimately involved in vascular homeostasis, in which forkhead box O1 (FOXO1) acts as a co-activator of the Notch activation complex. We elucidated the importance of FOXO1/Notch transcriptional activation complex to restore vascular regeneration after UFP exposure. RESULTS In a zebrafish model of tail injury and repair, transgenic Tg(fli1:GFP) embryos developed vascular regeneration at 3 days post amputation (dpa), whereas UFP exposure impaired regeneration (p < 0.05, n = 20 for control, n = 28 for UFP). UFP dose dependently reduced Notch reporter activity and Notch signaling-related genes (Dll4, JAG1, JAG2, Notch1b, Hey2, Hes1; p < 0.05, n = 3). In the transgenic Tg(tp1:GFP; flk1:mCherry) embryos, UFP attenuated endothelial Notch activity at the amputation site (p < 0.05 vs. wild type [WT], n = 20). A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) inhibitor or dominant negative (DN)-Notch1b messenger RNA (mRNA) disrupted the vascular network, whereas notch intracellular cytoplasmic domain (NICD) mRNA restored the vascular network (p < 0.05 vs. WT, n = 20). UFP reduced FOXO1 expression, but not Master-mind like 1 (MAML1) or NICD (p < 0.05, n = 3). Immunoprecipitation and immunofluorescence demonstrated that UFP attenuated FOXO1-mediated NICD pull-down and FOXO1/NICD co-localization, respectively (p < 0.05, n = 3). Although FOXO1 morpholino oligonucleotides (MOs) attenuated Notch activity, FOXO1 mRNA reversed UFP-mediated reduction in Notch activity to restore vascular regeneration and blood flow (p < 0.05 vs. WT, n = 5). Innovation and Conclusion: Our findings indicate the importance of the FOXO1/Notch activation complex to restore vascular regeneration after exposure to the redox active UFP. Antioxid. Redox Signal. 28, 1209-1223.
Collapse
Affiliation(s)
- Kyung In Baek
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - René R Sevag Packard
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Jeffrey J Hsu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Arian Saffari
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Zhao Ma
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Anh Phuong Luu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Andrew Pietersen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Hilary Yen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Bin Ren
- 4 Division of Hematology and Oncology, Medical College of Wisconsin , Milwaukee, Wisconsin.,5 Blood Research Institute , Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Yichen Ding
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Constantinos Sioutas
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Rongsong Li
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Tzung K Hsiai
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California.,2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California.,6 Research Services, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles , California
| |
Collapse
|
26
|
Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie 2018; 148:63-71. [DOI: 10.1016/j.biochi.2018.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023]
|
27
|
Kamińska A, Pardyak L, Marek S, Górowska-Wójtowicz E, Kotula-Balak M, Bilińska B, Hejmej A. Bisphenol A and dibutyl phthalate affect the expression of juxtacrine signaling factors in rat testis. CHEMOSPHERE 2018; 199:182-190. [PMID: 29438945 DOI: 10.1016/j.chemosphere.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The study was designed to examine the effects of model plastic derived compounds, bisphenol A (BPA) and dibutyl phthalate (DBP), on juxtacrine communication in adult rat testis, by evaluating the expression of Notch pathway components. Testicular explant were exposed in vitro to BPA (5 × 10-6 M, 2.5 × 10-5 M, 5 × 10-5 M) or DBP (10-6 M, 10-5 M, 10-4 M) for 24 h. To determine the expression of Notch1, Dll4, Hey1, Hes1 and Hey5 real-time RT-PCR was used. Protein levels and localization of NOTCH1 receptor, its ligand DLL4 as well as HEY1, HES1 and HEY5 factors were detected by western blot analysis and immunohistochemistry, respectively. Upregulation of Notch1, Dll4 and Hey1 at the mRNA and protein level was demonstrated in testis explants after BPA and DBP treatment (p < 0.05; p < 0.01; p < 0.001). Hes5 expression decreased after BPA (p < 0.05; p < 0.01; p < 0.001), whereas Hes1 expression was not altered by either BPA or DBP. Tested chemicals altered immunoexpression of activated NOTCH1, DLL4, HEY1 and HES5 both in seminiferous epithelium and interstitial tissue, exerting differential effects on particular cell types. In conclusion, BPA and DBP affect Notch signaling pathway in rat testis, which indicates that juxtacrine communication is a potential target for the action of plastic derived compounds in male gonad.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Górowska-Wójtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
28
|
Mechanosensitivity of Jagged-Notch signaling can induce a switch-type behavior in vascular homeostasis. Proc Natl Acad Sci U S A 2018; 115:E3682-E3691. [PMID: 29610298 PMCID: PMC5910818 DOI: 10.1073/pnas.1715277115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hemodynamic forces and Notch signaling are both known as key regulators of arterial remodeling and homeostasis. However, how these two factors integrate in vascular morphogenesis and homeostasis is unclear. Here, we combined experiments and modeling to evaluate the impact of the integration of mechanics and Notch signaling on vascular homeostasis. Vascular smooth muscle cells (VSMCs) were cyclically stretched on flexible membranes, as quantified via video tracking, demonstrating that the expression of Jagged1, Notch3, and target genes was down-regulated with strain. The data were incorporated in a computational framework of Notch signaling in the vascular wall, where the mechanical load was defined by the vascular geometry and blood pressure. Upon increasing wall thickness, the model predicted a switch-type behavior of the Notch signaling state with a steep transition of synthetic toward contractile VSMCs at a certain transition thickness. These thicknesses varied per investigated arterial location and were in good agreement with human anatomical data, thereby suggesting that the Notch response to hemodynamics plays an important role in the establishment of vascular homeostasis.
Collapse
|
29
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 661] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
30
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Aquila G, Pannella M, Pannuti A, Miele L, Ferrari R, Rizzo P. Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis. J Biol Chem 2017; 292:18178-18191. [PMID: 28893903 DOI: 10.1074/jbc.m117.790121] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Unlike age-matched men, premenopausal women benefit from cardiovascular protection. Estrogens protect against apoptosis of endothelial cells (ECs), one of the hallmarks of endothelial dysfunction leading to cardiovascular disorders, but the underlying molecular mechanisms remain poorly understood. The inflammatory cytokine TNFα causes EC apoptosis while dysregulating the Notch pathway, a major contributor to EC survival. We have previously reported that 17β-estradiol (E2) treatment activates Notch signaling in ECs. Here, we sought to assess whether in TNFα-induced inflammation Notch is involved in E2-mediated protection of the endothelium. We treated human umbilical vein endothelial cells (HUVECs) with E2, TNFα, or both and found that E2 counteracts TNFα-induced apoptosis. When Notch1 was inhibited, this E2-mediated protection was not observed, whereas ectopic overexpression of Notch1 diminished TNFα-induced apoptosis. Moreover, TNFα reduced the levels of active Notch1 protein, which were partially restored by E2 treatment. Moreover, siRNA-mediated knockdown of estrogen receptor β (ERβ), but not ERα, abolished the effect of E2 on apoptosis. Additionally, the E2-mediated regulation of the levels of active Notch1 was abrogated after silencing ERβ. In summary, our results indicate that E2 requires active Notch1 through a mechanism involving ERβ to protect the endothelium in TNFα-induced inflammation. These findings could be relevant for assessing the efficacy and applicability of menopausal hormone treatment, because they may indicate that in women with impaired Notch signaling, hormone therapy might not effectively protect the endothelium.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- the Department of Chemistry "G. Ciamician" and Interdepartmental Centre for Industrial Research in Energy and Environment (CIRI EA), University of Bologna, 40126 Bologna, Italy.,the National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | | | - Micaela Pannella
- the Interdepartmental Center for Industrial Research and Life Sciences (CIRI-SDV), Foundation IRET, University of Bologna, 40064 Ozzano Emilia (BO), Italy
| | - Antonio Pannuti
- the Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana 70112
| | - Lucio Miele
- the Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana 70112
| | - Roberto Ferrari
- From the Departments of Medical Sciences and.,the Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, 48033 Cotignola, Italy, and.,the Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Rizzo
- the Maria Cecilia Hospital, GVM Care and Research, E.S. Health Science Foundation, 48033 Cotignola, Italy, and .,the Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.,Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
31
|
Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med 2017; 40:587-606. [PMID: 28731148 PMCID: PMC5547940 DOI: 10.3892/ijmm.2017.3071] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Canonical WNT signaling through Frizzled and LRP5/6 receptors is transduced to the WNT/β-catenin and WNT/stabilization of proteins (STOP) signaling cascades to regulate cell fate and proliferation, whereas non-canonical WNT signaling through Frizzled or ROR receptors is transduced to the WNT/planar cell polarity (PCP), WNT/G protein-coupled receptor (GPCR) and WNT/receptor tyrosine kinase (RTK) signaling cascades to regulate cytoskeletal dynamics and directional cell movement. WNT/β-catenin signaling cascade crosstalks with RTK/SRK and GPCR-cAMP-PKA signaling cascades to regulate β-catenin phosphorylation and β-catenin-dependent transcription. Germline mutations in WNT signaling molecules cause hereditary colorectal cancer, bone diseases, exudative vitreoretinopathy, intellectual disability syndrome and PCP-related diseases. APC or CTNNB1 mutations in colorectal, endometrial and prostate cancers activate the WNT/β-catenin signaling cascade. RNF43, ZNRF3, RSPO2 or RSPO3 alterations in breast, colorectal, gastric, pancreatic and other cancers activate the WNT/β-catenin, WNT/STOP and other WNT signaling cascades. ROR1 upregulation in B-cell leukemia and solid tumors and ROR2 upregulation in melanoma induce invasion, metastasis and therapeutic resistance through Rho-ROCK, Rac-JNK, PI3K-AKT and YAP signaling activation. WNT signaling in cancer, stromal and immune cells dynamically orchestrate immune evasion and antitumor immunity in a cell context-dependent manner. Porcupine (PORCN), RSPO3, WNT2B, FZD5, FZD10, ROR1, tankyrase and β-catenin are targets of anti-WNT signaling therapy, and ETC-159, LGK974, OMP-18R5 (vantictumab), OMP-54F28 (ipafricept), OMP-131R10 (rosmantuzumab), PRI-724 and UC-961 (cirmtuzumab) are in clinical trials for cancer patients. Different classes of anti-WNT signaling therapeutics are necessary for the treatment of APC/CTNNB1-, RNF43/ZNRF3/RSPO2/RSPO3- and ROR1-types of human cancers. By contrast, Dickkopf-related protein 1 (DKK1), SOST and glycogen synthase kinase 3β (GSK3β) are targets of pro-WNT signaling therapy, and anti-DKK1 (BHQ880 and DKN-01) and anti-SOST (blosozumab, BPS804 and romosozumab) monoclonal antibodies are being tested in clinical trials for cancer patients and osteoporotic post-menopausal women. WNT-targeting therapeutics have also been applied as reagents for in vitro stem-cell processing in the field of regenerative medicine.
Collapse
Affiliation(s)
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
32
|
Tian DY, Jin XR, Zeng X, Wang Y. Notch Signaling in Endothelial Cells: Is It the Therapeutic Target for Vascular Neointimal Hyperplasia? Int J Mol Sci 2017; 18:ijms18081615. [PMID: 28757591 PMCID: PMC5578007 DOI: 10.3390/ijms18081615] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Blood vessels respond to injury through a healing process that includes neointimal hyperplasia. The vascular endothelium is a monolayer of cells that separates the outer vascular wall from the inner circulating blood. The disruption and exposure of endothelial cells (ECs) to subintimal components initiate the neointimal formation. ECs not only act as a highly selective barrier to prevent early pathological changes of neointimal hyperplasia, but also synthesize and release molecules to maintain vascular homeostasis. After vascular injury, ECs exhibit varied responses, including proliferation, regeneration, apoptosis, phenotypic switching, interacting with other cells by direct contact or secreted molecules and the change of barrier function. This brief review presents the functional role of the evolutionarily-conserved Notch pathway in neointimal hyperplasia, notably by regulating endothelial cell functions (proliferation, regeneration, apoptosis, differentiation, cell-cell interaction). Understanding endothelial cell biology should help us define methods to prompt cell proliferation, prevent cell apoptosis and dysfunction, block neointimal hyperplasia and vessel narrowing.
Collapse
Affiliation(s)
- Ding-Yuan Tian
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China.
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Xu-Rui Jin
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China.
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Xi Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| | - Yun Wang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
33
|
Ignatieva E, Kostina D, Irtyuga O, Uspensky V, Golovkin A, Gavriliuk N, Moiseeva O, Kostareva A, Malashicheva A. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol 2017; 8:536. [PMID: 28790933 PMCID: PMC5524772 DOI: 10.3389/fphys.2017.00536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms.
Collapse
Affiliation(s)
- Elena Ignatieva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Daria Kostina
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Department of Medical Physics, Peter the Great Saint-Petersburg Polytechnic UniversitySaint Petersburg, Russia
| | - Olga Irtyuga
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Vladimir Uspensky
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Alexey Golovkin
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Natalia Gavriliuk
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Olga Moiseeva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia
| | - Anna Kostareva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Molecular Cardiology, Almazov Federal Medical Research CentreSaint Petersburg, Russia.,Laboratory of Bioinformatics and Genomics, Institute of Translational Medicine, ITMO UniversitySaint Petersburg, Russia.,Faculty of Biology, Saint-Petersburg State UniversitySaint Petersburg, Russia
| |
Collapse
|
34
|
Mao YZ, Jiang L. Effects of Notch signalling pathway on the relationship between vascular endothelial dysfunction and endothelial stromal transformation in atherosclerosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017. [PMID: 28622044 DOI: 10.1080/21691401.2017.1337030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
At present, with the improvement of living standards and population aging, the incidence of cardiovascular and cerebrovascular disease is on the rise and has been a serious threat to human health. Statistics show that the current death caused by cardiovascular and cerebrovascular disease has become the first cause of death has been increasing year by year. Therefore, studies on coronary heart disease and atherosclerosis (AS) have become a hot topic in clinical and basic research. In this study, the question of the effect of Notch signalling pathway on the relationship between endothelial dysfunction and endothelial stromal transformation in AS was studied in depth. Based on our results, we drew conclusions as follows. First, the Notch signalling pathway was activated in the atherosclerotic model; secondly, the Notch signalling pathway was demonstrated to enhance AS by promoting vascular endothelial dysfunction; thirdly, it was demonstrated that the Notch signalling pathway was mediated by promoting endothelial and to enhance AS; finally, we confirmed the endothelial function through the Notch signalling pathway to affect the transformation of endothelial stroma to achieve synergistic AS effect. The results of this study have a good guiding significance for the important role of Notch signalling in AS and indicate the ability to influence endothelial function and endothelial stromal transformation by intervening Notch signalling pathway and can affect the relationship between them, and thus eventually achieve the treatment of AS.
Collapse
Affiliation(s)
- Yong-Zhong Mao
- a Department of Pediatric Surgery Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ling Jiang
- b Department of Geriatrics , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
35
|
Sachdeva J, Mahajan A, Cheng J, Baeten JT, Lilly B, Kuivaniemi H, Hans CP. Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 2017; 12:e0178538. [PMID: 28562688 PMCID: PMC5451061 DOI: 10.1371/journal.pone.0178538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Infiltration of macrophages and apoptosis of vascular smooth muscle cells (VSMCs) promote the development of abdominal aortic aneurysm (AAA). Previously, we demonstrated that global Notch1 deficiency prevents the formation of AAA in a mouse model. Herein, we sought to explore the cell-specific roles of Notch1 in AAA development. Methods and results Cell-specific Notch1 haploinsufficient mice, generated on Apoe-/- background using Cre-lox technology, were infused with angiotensin II (1000 ng/min/kg) for 28 days. Notch1 haploinsufficiency in myeloid cells (n = 9) prevented the formation of AAA attributed to decreased inflammation. Haploinsufficiency of Notch1 in SMCs (n = 14) per se did not prevent AAA formation, but histoarchitectural traits of AAA including elastin degradation and aortic remodeling, were minimal in SMC-Notch1+/-;Apoe-/- mice compared to Apoe-/- mice (n = 33). Increased immunostaining of the contractile SMC-phenotype markers and concomitant decreased expression of synthetic SMC-phenotype markers were observed in the aortae of SMC-Notch1+/-;Apoe-/- mice. Expression of connective tissue growth factor (CTGF), a matrix-associated protein that modulates the synthetic VSMC phenotype, increased in the abdominal aorta of Apoe-/- mice and in the adventitial region of the abdominal aorta in human AAA. Notch1 haploinsufficiency decreased the expression of Ctgf in the aorta and in vitro cell culture system. In vitro studies on SMCs using the Notch1 intracellular domain (NICD) plasmid, dominant negative mastermind-like (dnMAML), or specific siRNA suggest that Notch1, not Notch3, directly modulates the expression of CTGF. Conclusions Our data suggest that lack of Notch1 in SMCs limits dilation of the abdominal aorta by maintaining contractile SMC-phenotype and preventing matrix-remodeling.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Coculture Techniques
- Connective Tissue Growth Factor/metabolism
- Haploinsufficiency
- Matrix Metalloproteinases/biosynthesis
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
| | - Advitiya Mahajan
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jeeyun Cheng
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jeremy T. Baeten
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Chetan P. Hans
- Ohio State University, Columbus, Ohio, United States of America
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ma L, Chung WK. The role of genetics in pulmonary arterial hypertension. J Pathol 2016; 241:273-280. [PMID: 27770446 DOI: 10.1002/path.4833] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Group 1 pulmonary hypertension or pulmonary arterial hypertension (PAH) is a rare disease characterized by proliferation and occlusion of small pulmonary arterioles, leading to progressive elevation of pulmonary artery pressure and pulmonary vascular resistance, and right ventricular failure. Historically, it has been associated with a high mortality rate, although, over the last decade, treatment has improved survival. PAH includes idiopathic PAH (IPAH), heritable PAH (HPAH), and PAH associated with certain medical conditions. The aetiology of PAH is heterogeneous, and genetics play an important role in some cases. Mutations in BMPR2, encoding bone morphogenetic protein receptor 2, a member of the transforming growth factor-β superfamily of receptors, have been identified in 70% of cases of HPAH, and in 10-40% of cases of IPAH. Other genetic causes of PAH include mutations in the genes encoding activin receptor-like type 1, endoglin, SMAD9, caveolin 1, and potassium two-pore-domain channel subfamily K member 3. Mutations in the gene encoding T-box 4 have been identified in 10-30% of paediatric PAH patients, but rarely in adults with PAH. PAH in children is much more heterogeneous than in adults, and can be associated with several genetic syndromes, congenital heart disease, pulmonary disease, and vascular disease. In addition to rare mutations as a monogenic cause of HPAH, common variants in the gene encoding cerebellin 2 increase the risk of PAH by approximately two-fold. A PAH panel of genes is available for clinical testing, and should be considered for use in clinical management, especially for patients with a family history of PAH. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Notch signaling is an evolutionary conserved pathway critical for cardiovascular development and angiogenesis. More recently, the contribution of Notch signaling to the homeostasis of the adult vasculature has emerged as an important novel paradigm, but much remains to be understood. RECENT FINDINGS Recent findings shed light on the impact of Notch in vascular and immune responses to microenvironmental signals as well as on the onset of atherosclerosis. In the past year, studies in human and mice explored the role of Notch in the maintenance of a nonactivated endothelium. Novel pieces of evidence suggest that this pathway is sensitive to environmental factors, including inflammatory mediators and diet-derived by-products. SUMMARY An emerging theme is the ability of Notch to respond to changes in the microenvironment, including glucose and lipid metabolites. In turn, alterations in Notch enable an important link between metabolism and transcriptional changes, thus this receptor appears to function as a metabolic sensor with direct implications to gene expression.
Collapse
Affiliation(s)
- Anaïs Briot
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Team 1, Toulouse, France
| | - Anne Bouloumié
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Team 1, Toulouse, France
| | - M. Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
38
|
Baeten JT, Lilly B. Notch Signaling in Vascular Smooth Muscle Cells. ADVANCES IN PHARMACOLOGY 2016; 78:351-382. [PMID: 28212801 DOI: 10.1016/bs.apha.2016.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.
Collapse
Affiliation(s)
- J T Baeten
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - B Lilly
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
39
|
Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 2016; 38:3-15. [PMID: 27245147 PMCID: PMC4899036 DOI: 10.3892/ijmm.2016.2620] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
40
|
Briot A, Civelek M, Seki A, Hoi K, Mack JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, Vakili L, Fogelman AM, Fishbein MC, Lusis AJ, Tontonoz P, Navab M, Berliner JA, Iruela-Arispe ML. Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med 2015; 212:2147-63. [PMID: 26552708 PMCID: PMC4647265 DOI: 10.1084/jem.20150603] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
Briot et al. show that inflammatory lipids deriving from a high-fat diet suppress NOTCH1 expression and signaling in adult arterial endothelium and propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of atherosclerosis. Although much progress has been made in identifying the mechanisms that trigger endothelial activation and inflammatory cell recruitment during atherosclerosis, less is known about the intrinsic pathways that counteract these events. Here we identified NOTCH1 as an antagonist of endothelial cell (EC) activation. NOTCH1 was constitutively expressed by adult arterial endothelium, but levels were significantly reduced by high-fat diet. Furthermore, treatment of human aortic ECs (HAECs) with inflammatory lipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [Ox-PAPC]) and proinflammatory cytokines (TNF and IL1β) decreased Notch1 expression and signaling in vitro through a mechanism that requires STAT3 activation. Reduction of NOTCH1 in HAECs by siRNA, in the absence of inflammatory lipids or cytokines, increased inflammatory molecules and binding of monocytes. Conversely, some of the effects mediated by Ox-PAPC were reversed by increased NOTCH1 signaling, suggesting a link between lipid-mediated inflammation and Notch1. Interestingly, reduction of NOTCH1 by Ox-PAPC in HAECs was associated with a genetic variant previously correlated to high-density lipoprotein in a human genome-wide association study. Finally, endothelial Notch1 heterozygous mice showed higher diet-induced atherosclerosis. Based on these findings, we propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of vascular inflammation and initiation of atherosclerosis.
Collapse
Affiliation(s)
- Anaïs Briot
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mete Civelek
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Atsuko Seki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Karen Hoi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Julia J Mack
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Jingjing Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ladan Vakili
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alan M Fogelman
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Howard Hughes Medical Institute, Los Angeles, CA 90095
| | - Mohamad Navab
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Judith A Berliner
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|