1
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
2
|
Jercălău CE, Andrei CL, Brezeanu LN, Darabont RO, Guberna S, Catană A, Lungu MD, Ceban O, Sinescu CJ. Lymphocyte-to-Red Blood Cell Ratio-The Guide Star of Acute Coronary Syndrome Prognosis. Healthcare (Basel) 2024; 12:1205. [PMID: 38921319 PMCID: PMC11203887 DOI: 10.3390/healthcare12121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Beneath the surface of the acute ST-elevation myocardial infarction (STEMI) iceberg lies a hidden peril, obscured by the well-known cardiovascular risk factors that tip the iceberg. Before delving into the potential time bomb these risk factors represent, it is crucial to recognize the obscured danger lurking under the surface. What secrets does the STEMI iceberg hold? To unveil these mysteries, a closer look at the pathophysiology of STEMI is imperative. Inflammation, the catalyst of the STEMI cascade, sets off a chain reaction within the cardiovascular system. Surprisingly, the intricate interplay between red blood cells (RBC) and lymphocytes remains largely unexplored in previous research. MATERIALS AND METHODS The study encompassed 163 patients diagnosed with STEMI. Utilizing linear and logistic regression, the lymphocyte-to-red blood cell ratio (LRR) was scrutinized as a potential predictive biomarker. RESULTS There was a statistically significant correlation between LRR and the prognosis of STEMI patients. Building upon this discovery, an innovative scoring system was proposed that integrates LRR as a crucial parameter. CONCLUSIONS Uncovering novel predictive markers for both immediate and delayed complications in STEMI is paramount. These markers have the potential to revolutionize treatment strategies by tailoring them to individual risk profiles, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Cosmina Elena Jercălău
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Cătălina Liliana Andrei
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Lavinia Nicoleta Brezeanu
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Roxana Oana Darabont
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Suzana Guberna
- Department of Cardiology, Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania; (S.G.); (M.D.L.)
| | - Andreea Catană
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| | - Maria Diana Lungu
- Department of Cardiology, Emergency Hospital “Bagdasar-Arseni”, 050474 Bucharest, Romania; (S.G.); (M.D.L.)
| | - Octavian Ceban
- Economic Cybernetics and Informatics Department, The Bucharest University of Economic Studies, 010374 Bucharest, Romania;
| | - Crina Julieta Sinescu
- Department of Cardiology, “Bagdasar Arseni” Emergency Hospital, University of Medicine and Pharmacy “Carol Davila”, 011241 Bucharest, Romania; (R.O.D.); (A.C.); (C.J.S.)
| |
Collapse
|
3
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Vos WG, van Os BW, den Toom M, Beckers L, van Roomen CP, van Tiel CM, Mohapatra BC, Band H, Nitz K, Weber C, Atzler D, de Winther MP, Bosmans LA, Lutgens E, Seijkens TT. T cell specific deletion of Casitas B lineage lymphoma-b reduces atherosclerosis, but increases plaque T cell infiltration and systemic T cell activation. Front Immunol 2024; 15:1297893. [PMID: 38504977 PMCID: PMC10949527 DOI: 10.3389/fimmu.2024.1297893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.
Collapse
Affiliation(s)
- Winnie G. Vos
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Bram W. van Os
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P.A.A. van Roomen
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
| | - Bhopal C. Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Parmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Laura A. Bosmans
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Inflammatory Diseases, Amsterdam, Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| | - Tom T.P. Seijkens
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
5
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
6
|
Fan X, Zhang L, La X, Tian J, Israr G, Li A, Wu C, An Y, Li S, Dong X, Li Z. Salvianolic acid A attenuates inflammation-mediated atherosclerosis by suppressing GRP78 secretion of endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116219. [PMID: 36758912 DOI: 10.1016/j.jep.2023.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianolic acid A (SAA) is the main active component of the classic anti-atherosclerotic drug Salvia miltiorrhiza Bunge. Inflammation-induced infiltration of monocyte/macrophages into the vascular wall is the initiating step in atherogenesis, and targeted blocking of this step may provide a promising avenue for the precise treatment of atherosclerosis. However, the effect of salvianolic acid A on macrophages is still unknown. AIM OF THE STUDY To evaluate the effect of SAA on macrophage infiltration and the underlying mechanism of SAA against atherosclerosis. MATERIALS AND METHODS Vascular endothelial cells were stimulated with lipopolysaccharide (LPS) to simulate the inflammatory environment, and its effect on monocyte/macrophages was evaluated. Mass spectrometry was used to identify the proteins that play a key role and further validated them. LncRNA sequencing, western blot analysis, RNA immunoprecipitation, and RNA pulldown were used to elucidate the mechanism of SAA against atherosclerosis. Finally, ApoE-/- mice were fed a high-fat diet to creat an in vivo atherosclerosis model. Secretory GRP78 content, lipid levels, plaque area, macrophage infiltration, and degree of inflammation were assessed by standard assays after 16 weeks of intragastric administration of SAA or biweekly tail vein injections of GRP78 antibody. RESULTS After LPS stimulation, the increased secretion of GRP78 recruits circulating monocyte/macrophages and drives monocyte/macrophage adhesion and invasion into the vascular intima to promote atherosclerosis progression. Interestingly, SAA exerts anti-atherosclerosis effects by inhibiting the secretion of GRP78. Further mechanistic studies indicated that SAA upregulates the expression of lncRNA NR2F2-AS1, which reverses the abnormal localization of the KDEL receptor (KDELR) caused by inflammation. It promotes the homing of GRP78 from the Golgi apparatus to the endoplasmic reticulum rather than secreting outside the cell. CONCLUSION SAA alleviates atherosclerosis by inhibiting GRP78 secretion via the lncRNA NR2F2-AS1-KDELR axis. The findings not only provide a new direction for the precise therapy of atherosclerosis based on secretory GRP78 but also elucidate the pharmacological mechanism of SAA against atherosclerosis, putting the foundation for further development and clinical application of SAA drugs.
Collapse
Affiliation(s)
- Xiaxia Fan
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Ghani Israr
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Yuxuan An
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Songtao Li
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
7
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, Zhang MY, Xiao L, Kang XX. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne) 2023; 14:1085041. [PMID: 36824355 PMCID: PMC9941174 DOI: 10.3389/fendo.2023.1085041] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.
Collapse
Affiliation(s)
- Jing Zhen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng He
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Xiang Han
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Hui Lv
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xun-Chao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jia-Qi Tian
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Ying Zhang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| | - Xing-Xing Kang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| |
Collapse
|
8
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232415937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
|
9
|
Van Linthout S, Volk HD. Immuno-cardio-oncology: Killing two birds with one stone? Front Immunol 2022; 13:1018772. [PMID: 36466820 PMCID: PMC9714344 DOI: 10.3389/fimmu.2022.1018772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Inflammation and a dysregulated immune system are common denominators of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology addresses the interconnected immunological aspect in both cancer and CVD and the integration of immunotherapies and anti-inflammatory therapies in both distinct disease entities. Building on prominent examples of convergent inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer and CVD/heart failure, the review tackles both the roadblocks and opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in both fields, and discusses the use of advanced therapies e.g. chimeric antigen receptor (CAR) T cells, that can address the raising burden of both cancer and CVD. Finally, it is discussed how inspired by precision medicine in oncology, the use of biomarker-driven patient stratification is needed to better guide anti-inflammatory/immunomodulatory therapeutic interventions in cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Institute of Medical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
10
|
Zieleniewska NA, Kazberuk M, Chlabicz M, Eljaszewicz A, Kamiński K. Trained Immunity as a Trigger for Atherosclerotic Cardiovascular Disease-A Literature Review. J Clin Med 2022; 11:jcm11123369. [PMID: 35743439 PMCID: PMC9224533 DOI: 10.3390/jcm11123369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis remains the leading cause of cardiovascular diseases and represents a primary public health challenge. This chronic state may lead to a number of life-threatening conditions, such as myocardial infarction and stroke. Lipid metabolism alterations and inflammation remain at the forefront of the pathogenesis of atherosclerotic cardiovascular disease, but the overall mechanism is not yet fully understood. Recently, significant effects of trained immunity on atherosclerotic plaque formation and development have been reported. An increased reaction to restimulation with the same stimulator is a hallmark of the trained innate immune response. The impact of trained immunity is a prominent factor in both acute and chronic coronary syndrome, which we outline in this review.
Collapse
Affiliation(s)
- Natalia Anna Zieleniewska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Małgorzata Kazberuk
- Scientific Group of Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Małgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Invasive Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
- Correspondence:
| |
Collapse
|
11
|
Somacal S, Quatrin A, Ruviaro AR, Conte L, da Silva DT, Roehrs M, da Veiga ML, Duarte MM, de Bem AF, Augusti PR, Emanuelli T. Norbixin, a natural dye that improves serum lipid profile in rabbits and prevents LDL oxidation. Food Res Int 2022; 159:111522. [DOI: 10.1016/j.foodres.2022.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023]
|
12
|
Borker PV, Patel SR. Monocyte Activation: The Link between Obstructive Sleep Apnea and Cardiovascular Disease? Am J Respir Crit Care Med 2022; 205:1268-1270. [PMID: 35436168 PMCID: PMC9873123 DOI: 10.1164/rccm.202201-0215ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Priya V. Borker
- Center for Sleep and Cardiovascular Outcomes Research,Division of Pulmonary Allergy and Critical Care MedicineUniversity of PittsburghPittsburgh, Pennsylvania
| | - Sanjay R. Patel
- Center for Sleep and Cardiovascular Outcomes Research,Division of Pulmonary Allergy and Critical Care MedicineUniversity of PittsburghPittsburgh, Pennsylvania
| |
Collapse
|
13
|
Rosales-Antequera C, Viscor G, Araneda OF. Inflammation and Oxidative Stress as Common Mechanisms of Pulmonary, Autonomic and Musculoskeletal Dysfunction after Spinal Cord Injury. BIOLOGY 2022; 11:biology11040550. [PMID: 35453749 PMCID: PMC9032591 DOI: 10.3390/biology11040550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary When a spinal cord injury occurs, the neurons that regulate our voluntary movements, those involved in environment and somatic perception and those that regulate vegetative functions are affected. Once neuronal damage is established, the cells of other tissues are also affected in their functions, altering the interaction between organs and altering the proper functioning of the organism. Multiple studies in animal models, as well as in humans, have recognized as factors involved in organ damage the imbalance between the formation of highly reactive molecules called pro-oxidants and defensive mechanisms called antioxidants. Closely associated with this phenomenon, the inflammatory response is also pathologically activated. In this narrative review, we have analyzed the information involving these pathological processes at the level of the lung, the autonomic nervous system and the skeletal musculature after spinal cord injury. Knowing the abnormal functioning mechanisms that occur after a spinal cord injury not only offers a better understanding of the organic events but also offers future possibilities for therapeutic interventions that may benefit the thousands of patients suffering this pathology. Abstract One of the etiopathogenic factors frequently associated with generalized organ damage after spinal cord injury corresponds to the imbalance of the redox state and inflammation, particularly of the respiratory, autonomic and musculoskeletal systems. Our goal in this review was to gain a better understanding of this phenomenon by reviewing both animal and human studies. At the respiratory level, the presence of tissue damage is notable in situations that require increased ventilation due to lower thoracic distensibility and alveolar inflammation caused by higher levels of leptin as a result of increased fatty tissue. Increased airway reactivity, due to loss of sympathetic innervation, and levels of nitric oxide in exhaled air that are similar to those seen in asthmatic patients have also been reported. In addition, the loss of autonomic control efficiency leads to an uncontrolled release of catecholamines and glucocorticoids that induce immunosuppression, as well as a predisposition to autoimmune reactions. Simultaneously, blood pressure regulation is altered with vascular damage and atherogenesis associated with oxidative damage. At the muscular level, chronically elevated levels of prooxidants and lipoperoxidation associated with myofibrillar atrophy are described, with no reduction or reversibility of this process through antioxidant supplementation.
Collapse
Affiliation(s)
- Cristián Rosales-Antequera
- Physical Medicine and Rehabilitation Unit, Clínica Universidad de los Andes, Santiago 8320000, Chile;
- Integrative Laboratory of Biomechanics and Physiology of Effort, LIBFE, School of Kinesiology, Faculty of Medicine, Universidad de los Andes, Santiago 8320000, Chile
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Oscar F. Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, LIBFE, School of Kinesiology, Faculty of Medicine, Universidad de los Andes, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
14
|
Li L, Chen Y, Shi C. Nintedanib ameliorates oxidized low-density lipoprotein -induced inflammation and cellular senescence in vascular endothelial cells. Bioengineered 2022; 13:6196-6207. [PMID: 35236245 PMCID: PMC8974161 DOI: 10.1080/21655979.2022.2036913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis (AS) is a life-threatening cardiovascular disease and it has been reported that endothelial dysfunction is the initial inducer of AS. Recent reports suggest that inflammation and oxidative stress-induced cell senescence are main inducers of endothelial dysfunction. Nintedanib is an effective inhibitor of multityrosine kinase receptors developed for the treatment of fibrosis, which was recently reported to exert inhibitory effects against inflammation and oxidative stress. The present study plans to study the effect and mechanism of Nintedanib on endothelial dysfunction. We found that in oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), the increased production of total cholesterol (TC), free cholesterol (FC), and pro-inflammatory cytokines were observed, reversed by 10 μM and 25 μM Nintedanib. The elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as the declined activity of glutathione peroxidase (GSH-Px) in ox-LDL-treated HUVECs, were significantly abolished by 10 μM and 25 μM Nintedanib. Increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive staining cells, activated p53/p21 pathway, and promoted cell fraction in the G0/G1 phase were observed in ox-LDL-treated HUVECs, all of which were dramatically reversed by 10 μM and 25 μM Nintedanib. Lastly, the increased expression level of Arginase-II (Arg-II) in HUVECs by ox-LDL was repressed by Nintedanib. The protective effects of Nintedanib on ox-LDL- induced cellular senescence were pronouncedly blocked by the overexpression of Arg-II. Collectively, our data suggest that Nintedanib mitigates ox-LDL-induced inflammation and cellular senescence in vascular endothelial cells by downregulating Arg-II.
Collapse
Affiliation(s)
- Ling Li
- Nursing Department, Wuhan Xinzhou District People's Hospital, Wuhan, China
| | - Yudan Chen
- Department of Surgery, Wuhan Xinzhou District People's Hospital, Wuhan, China
| | - Chang Shi
- Department of Integrated Traditional and Western Medicine, Wuhan Xinzhou District People's Hospital, Wuhan, China
| |
Collapse
|
15
|
Astragali Radix-Coptis Rhizoma Herb Pair Attenuates Atherosclerosis in ApoE-/- Mice by Regulating the M1/M2 and Th1/Th2 Immune Balance and Activating the STAT6 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7421265. [PMID: 35178108 PMCID: PMC8843792 DOI: 10.1155/2022/7421265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Immune imbalance and the inflammatory response are associated with atherosclerosis (AS) progression. Astragali Radix and Coptis Rhizoma (ARCR) are an ancient and classic herb pair that is used in herbal medicines for the treatment of coronary heart disease. We focused on the effects and mechanisms of the ARCR herb pair attenuation of atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. METHODS ApoE-/- mice were fed a high-fat diet for 12 weeks to establish a model of AS. The ApoE-/- mice were randomly divided into a model group, simvastatin group (Simva), Astragali Radix group (AR), Coptis Rhizoma group (CR), Astragali Radix-Coptis Rhizoma group (ARCR), and Astragali Radix-Coptis Rhizoma + signal transducer and activator of transcription factor 6 (STAT6) inhibitor (AS1517499) group (ARCR + AS1517499). C57BL/6 mice were used as controls. Each group was administered the corresponding drugs, and mice in the model and control groups were given the same volume of normal saline once daily for 6 weeks. The body weights of the mice were observed regularly. The effect of the ARCR herb pair on lipid content in peripheral blood was evaluated using blood lipid tests. The levels of serum matrix metalloproteinase-9 (MMP-9), interleukins-12 (IL-12), IL-10, interferon-γ (IFN-γ), and IL-4 were determined to assess inflammation. Oil Red O staining, Sirius Red staining, and immunohistochemistry were used to observe changes in plaque stability. Western blotting was used to assay M1/M2 macrophages, Th1/Th2 cells, and STAT6 signaling pathway protein expression. Flow cytometry and immunofluorescence were used to detect M1/M2 macrophages and Th1/Th2 cells and reflect the immune imbalance. RESULTS The ARCR herb pair significantly reduced blood lipids levels and plaque vulnerability and regulated the levels of inflammatory factors and the number of M1/M2 macrophages and Th1/Th2 cells in ApoE-/- AS mice. It also decreased iNOS and T-bet protein levels and increased the Arg-1 and GATA-3 protein levels. The ARCR herb pair also increased STAT6 phosphorylation. A STAT6 inhibitor attenuated the regulation of M1/M2 and Th1/Th2 markers induced by the ARCR herb pair. CONCLUSION The ARCR herb pair regulates blood lipid metabolism and attenuates atherosclerosis via regulation of M1/M2 and Th1/Th2 immune balance, which is achieved partially by increasing STAT6 phosphorylation. Our study provides new evidence for the possible use of ARCR herb pair in the prevention and treatment of AS.
Collapse
|
16
|
Tan M, Ma J, Yang X, You Q, Guo X, Li Y, Wang R, Han G, Chen Y, Qiu X, Wang X, Zhang L. Quantitative proteomics reveals differential immunoglobulin-associated proteome (IgAP) in patients of acute myocardial infarction and chronic coronary syndromes. J Proteomics 2022; 252:104449. [PMID: 34890869 DOI: 10.1016/j.jprot.2021.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
B cells and immunoglobulins are implicated in the pathogenesis of chronic diseases, including coronary artery disease (CAD). However, it remains elusive how the humoral immunity is incriminated in the disease progression of CAD. Using serum samples of chronic coronary syndrome (CCS) and acute myocardial infarction (AMI), we conducted a quantitative profiling of the proteomic landscape recognized by immunoglobulins, which we term immunoglobulin-associated proteome (IgAP). Intriguingly, CCS and AMI patients displayed distinctive IgAP profiles that enriched proteins in the pathways of blood coagulation regulation and lipoprotein transport, suggesting that CCS-AMI transition involves changes of these pathways that are associated with immunoglobulins. Furthermore, we identified immunoglobulin-bound coagulation factor X (F10) as a potential biomarker and validated it with an independent cohort of CCS, AMI and healthy individuals. Our study indicates that IgAP proteins may serve as novel diagnostic biomarkers for CCS and AMI. SIGNIFICANCE: Our work it demonstrates a clear implication of immunoglobulin-associated proteome (IgAP), the proteomic landscape recognized by immunoglobulins, in the pathogenesis of CAD. In addition, it reports for the first time that immunoglobulin-bound F10 is implicated in CAD.
Collapse
Affiliation(s)
- Miaomiao Tan
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Jing Ma
- Department of Cardiology First Medical Center of Chinese PLA General Hospital, Beijing 18 100853, China
| | - Xi Yang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Qi You
- Department of Cardiology First Medical Center of Chinese PLA General Hospital, Beijing 18 100853, China
| | - Xiaoxin Guo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yiuhei Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Rui Wang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Guiyuan Han
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yundai Chen
- Department of Cardiology First Medical Center of Chinese PLA General Hospital, Beijing 18 100853, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Xin Wang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Innate immune cells in the pathophysiology of calcific aortic valve disease: lessons to be learned from atherosclerotic cardiovascular disease? Basic Res Cardiol 2022; 117:28. [PMID: 35581364 PMCID: PMC9114076 DOI: 10.1007/s00395-022-00935-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 01/31/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular disease in the developed world with currently no effective pharmacological treatment available. CAVD results from a complex, multifactorial process, in which valvular inflammation and fibro-calcific remodelling lead to valve thickening and cardiac outflow obstruction. The exact underlying pathophysiology of CAVD is still not fully understood, yet the development of CAVD shows many similarities with the pathophysiology of atherosclerotic cardiovascular disease (ASCVD), such as coronary artery disease. Innate immune cells play a crucial role in ASCVD and might also play a pivotal role in the development of CAVD. This review summarizes the current knowledge on the role of innate immune cells, both in the circulation and in the aortic valve, in the development of CAVD and the similarities and differences with ASCVD. Trained immunity and clonal haematopoiesis of indeterminate potential are proposed as novel immunological mechanisms that possibly contribute to the pathophysiology of CAVD and new possible treatment targets are discussed.
Collapse
|
18
|
El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci 2021; 23:ijms23010077. [PMID: 35008500 PMCID: PMC8744732 DOI: 10.3390/ijms23010077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.
Collapse
|
19
|
Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021; 12:755569. [PMID: 34867370 PMCID: PMC8633109 DOI: 10.3389/fphar.2021.755569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Shumilah AM, Othman AM, Al-Madhagi AK. Accuracy of neutrophil to lymphocyte and monocyte to lymphocyte ratios as new inflammatory markers in acute coronary syndrome. BMC Cardiovasc Disord 2021; 21:422. [PMID: 34493205 PMCID: PMC8424963 DOI: 10.1186/s12872-021-02236-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Background Inflammation plays a key role in the development of atherosclerosis and in the pathogenesis of acute coronary syndrome (ACS). Leukocytes and leukocytes ratios were recognized as inflammatory markers in predicting the presence and severity of ACS. Methods This study aimed to investigate the diagnostic accuracy of neutrophil to lymphocyte ratio (NLR) and monocyte to lymphocyte ratio (MLR) with ACS. One hundred patients admitted to the Cardiac Center who were confirmed to have ACS and 100 healthy controls confirmed not to have ACS were enrolled in this study. ECG and troponin I test were used as gold standards to make sure that the participants with or without ACS. Total white blood cells (WBCs) count, NLR, and MLR values were estimated.
Results Total WBCs, neutrophil, and monocyte counts were significantly higher while lymphocyte counts were significantly lower in ACS patients than in the healthy controls (p < 0.001). NLR and MLR were significantly higher in ACS patients than in the healthy controls (p < 0.001). Among all the studied markers, NLR was found to be the strongest predictive marker of ACS (OR: 3.3, p < 0.001), whereas MLR was non-significant (p > 0.05). A cut-off value of 2.9 of NLR had 90% sensitivity and 88% specificity while 0.375 cut-off value of MLR had 79% sensitivity, 91% specificity for predicting ACS presence. Conclusions NLR is a simple, widely available, and inexpensive inflammatory marker which can be an auxiliary biomarker in the diagnosis of ACS with a cut-off value of 2.9 in our population.
Collapse
Affiliation(s)
- Ahmed Mohammed Shumilah
- Microbiology and Immunology Department, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Arwa Mohammed Othman
- Microbiology and Immunology Department, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Anwar Kasim Al-Madhagi
- Microbiology and Immunology Department, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
21
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
22
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
23
|
Hong J, Park E, Lee J, Lee Y, Rooney BV, Park Y. Exercise training mitigates ER stress and UCP2 deficiency-associated coronary vascular dysfunction in atherosclerosis. Sci Rep 2021; 11:15449. [PMID: 34326395 PMCID: PMC8322067 DOI: 10.1038/s41598-021-94944-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and uncoupling protein-2 (UCP2) activation are opposing modulators of endothelial dysfunction in atherosclerosis. Exercise reduces atherosclerosis plaques and enhances endothelial function. Our aim was to understand how exercise affects ER stress and UCP2 activation, and how that relates to endothelial dysfunction in an atherosclerotic murine model. Wild type (C57BL/6, WT) and apolipoprotein-E-knockout (ApoEtm1Unc, ApoE KO) mice underwent treadmill exercise training (EX) or remained sedentary for 12 weeks. Acetylcholine (ACh)-induced endothelium-dependent vasodilation was determined in the presence of an eNOS inhibitor (L-NAME), UCP2 inhibitor (genipin), and ER stress inducer (tunicamycin). UCP2, ER stress markers and NLRP3 inflammasome signaling were quantified by western blotting. p67phox and superoxide were visualized using immunofluorescence and DHE staining. Nitric oxide (NO) was measured by nitrate/nitrite assay. ACh-induced vasodilation was attenuated in coronary arterioles of ApoE KO mice but improved in ApoE KO-EX mice. Treatment of coronary arterioles with L-NAME, tunicamycin, and genipin significantly attenuated ACh-induced vasodilation in all mice except for ApoE KO mice. Exercise reduced expression of ER stress proteins, TXNIP/NLRP3 inflammasome signaling cascades, and Bax expression in the heart of ApoE KO-EX mice. Further, exercise diminished superoxide production and NADPH oxidase p67phox expression in coronary arterioles while simultaneously increasing UCP2 expression and nitric oxide (NO) production in the heart of ApoE KO-EX mice. Routine exercise alleviates endothelial dysfunction in atherosclerotic coronary arterioles in an eNOS, UCP2, and ER stress signaling specific manner, and resulting in reduced TXNIP/NLRP3 inflammasome activity and oxidative stress.
Collapse
Affiliation(s)
- Junyoung Hong
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Eunkyung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Jonghae Lee
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA
| | - Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, 77807, USA
| | - Bridgette V Rooney
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA.,Geocontrol Systems Inc, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Yoonjung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, 3875 Holman St, Houston, TX, 77204-6015, USA.
| |
Collapse
|
24
|
Tam J, Thankam F, Agrawal DK, Radwan MM. Critical Role of LOX-1-PCSK9 Axis in the Pathogenesis of Atheroma Formation and Its Instability. Heart Lung Circ 2021; 30:1456-1466. [PMID: 34092505 DOI: 10.1016/j.hlc.2021.05.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is a major contributor to annual deaths globally. Atherosclerosis is a prominent risk factor for CVD. Although significant developments have been recently made in the prevention and treatment, the molecular pathology of atherosclerosis remains unknown. Interestingly, the recent discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) introduced a new avenue to explore the molecular pathogenesis and novel management strategies for atherosclerosis. Initial research focussed on the PCSK9-mediated degradation of low density lipoprotein receptor (LDLR) and subsequent activation of pro-inflammatory pathways by oxidised low density lipoprotein (ox-LDL). Recently, PCSK9 and lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) were shown to positively amplify each other pro-inflammatory activity and gene expression in endothelial cells, macrophages and vascular smooth muscle cells. In this literature review, we provide insight into the reciprocal relationship between PCSK9 and LOX-1 in the pathogenesis of atheroma formation and plaque instability in atherosclerosis. Further understanding of the LOX-1-PCSK9 axis possesses tremendous translational potential to design novel management approaches for atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Mohamed M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
25
|
Bai J, Liu J, Fu Z, Feng Y, Wang B, Wu W, Zhang R. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging (Albany NY) 2021; 13:14159-14169. [PMID: 34015766 PMCID: PMC8202876 DOI: 10.18632/aging.203031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Atherosclerosis correlates with ischemic cardio-cerebrovascular diseases such as coronary heart disease. Long non-coding RNAs (lncRNAs) can promote atherosclerosis. We investigated the role of the lncRNA AK136714 in atherosclerosis. Compared with the healthy group, lncRNA AK136714 expression was elevated in the plaque and plasma of the atherosclerosis patients in a GEO dataset. AK136714 silencing inhibited atherosclerosis formation in ApoE-/- mice. AK136714 silencing also protected the endothelial barrier and inhibited endothelial cell inflammation. In vitro assays showed that knockdown of AK136714 suppressed the inflammatory response and apoptosis in human umbilical vein endothelial cells (HUVECs). Moreover, AK136714 was found to bind directly to HuR to increase the mRNA stability of TNF-α, IL-1β and IL-6 mRNAs. In addition, AK136714 promoted the transcription of Bim. This study expands our understanding of the role of lncRNA AK136714 in atherosclerosis and provides potential drug targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Bai
- Department of Geriatrics, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Jianxia Liu
- Department of Nursing, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Zexian Fu
- Department of Scientific Research and Education, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Yuanyuan Feng
- Department of Stomatology, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Bing Wang
- Department of Dynamic electrocardiogram, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Wenjuan Wu
- Department of Breast, The Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Ruiying Zhang
- Department of Geriatrics, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| |
Collapse
|
26
|
Poznyak AV, Bezsonov EE, Eid AH, Popkova TV, Nedosugova LV, Starodubova AV, Orekhov AN. ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. Int J Mol Sci 2021; 22:ijms22094691. [PMID: 33946649 PMCID: PMC8124184 DOI: 10.3390/ijms22094691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
27
|
Detering L, Abdilla A, Luehmann HP, Williams JW, Huang LH, Sultan D, Elvington A, Heo GS, Woodard PK, Gropler RJ, Randolph GJ, Hawker CJ, Liu Y. CC Chemokine Receptor 5 Targeted Nanoparticles Imaging the Progression and Regression of Atherosclerosis Using Positron Emission Tomography/Computed Tomography. Mol Pharm 2021; 18:1386-1396. [PMID: 33591187 PMCID: PMC8737066 DOI: 10.1021/acs.molpharmaceut.0c01183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chemokines and chemokine receptors play an important role in the initiation and progression of atherosclerosis by mediating the trafficking of inflammatory cells. Chemokine receptor 5 (CCR5) has major implications in promoting the development of plaques to advanced stage and related vulnerability. CCR5 antagonist has demonstrated the effective inhibition of atherosclerotic progression in mice, making it a potential biomarker for atherosclerosis management. To accurately determine CCR5 in vivo, we synthesized CCR5 targeted Comb nanoparticles through a modular design and construction strategy with control over the physiochemical properties and functionalization of CCR5 targeting peptide d-Ala-peptide T-amide (DAPTA-Comb). In vivo pharmacokinetic evaluation through 64Cu radiolabeling showed extended blood circulation of 64Cu-DAPTA-Combs conjugated with 10%, 25%, and 40% DAPTA. The different organ distribution profiles of the three nanoparticles demonstrated the effect of DAPTA on not only physicochemical properties but also targeting efficiency. In vivo positron emission tomography/computed tomography (PET/CT) imaging in an apolipoprotein E knockout mouse atherosclerosis model (ApoE-/-) showed that the three 64Cu-DAPTA-Combs could sensitively and specifically detect CCR5 along the progression of atherosclerotic lesions. In an ApoE-encoding adenoviral vector (AAV) induced plaque regression ApoE-/- mouse model, decreased monocyte recruitment, CD68+ macrophages, CCR5 expression, and plaque size were all associated with reduced PET signals, which not only further confirmed the targeting efficiency of 64Cu-DAPTA-Combs but also highlighted the potential of these targeted nanoparticles for atherosclerosis imaging. Moreover, the up-regulation of CCR5 and colocalization with CD68+ macrophages in the necrotic core of ex vivo human plaque specimens warrant further investigation for atherosclerosis prognosis.
Collapse
Affiliation(s)
- Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Allison Abdilla
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Hannah P Luehmann
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Jesse W Williams
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, United States
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, United States
| | - Craig J Hawker
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110, United States
| |
Collapse
|
28
|
Hong LZ, Xue Q, Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J Inflamm Res 2021; 14:379-392. [PMID: 33628042 PMCID: PMC7897977 DOI: 10.2147/jir.s294809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have linked a dysregulated inflammatory setting to the pathogenesis of atherosclerosis, which is a form of chronic vascular inflammation. Various inflammatory biomarkers have been associated with inflammation and are recognized as potential tools to monitor the progression of atherosclerosis. A well-studied inflammatory marker in the context of cardiovascular diseases is C-reactive protein (CRP) or, more accurately, highly sensitive-CRP (hs-CRP), which has been established as an inflammatory biomarker for atherosclerotic events. In addition, a growing body of investigations has attempted to disclose the potential of inflammatory cytokines, enzymes, and genetic polymorphisms related to innate and adaptive immunity as biomarkers for predicting the development of atherosclerosis. In this review article, we clarify both traditional and novel inflammatory biomarkers related to components of the innate and adaptive immune system that may mirror the progression or phases of atherosclerotic inflammation/lesions. Furthermore, the contribution of the inflammatory biomarkers in developing potential therapeutics against atherosclerotic treatment will be discussed.
Collapse
Affiliation(s)
- Ling-Zhi Hong
- Emergency Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, 311700, Zhejiang Province, People’s Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| |
Collapse
|
29
|
Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J Cardiovasc Transl Res 2021; 14:647-660. [PMID: 33420681 DOI: 10.1007/s12265-020-10091-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.
Collapse
|
30
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Vinciguerra M, Romiti S, Fattouch K, De Bellis A, Greco E. Atherosclerosis as Pathogenetic Substrate for Sars-Cov2 Cytokine Storm. J Clin Med 2020; 9:E2095. [PMID: 32635302 PMCID: PMC7408959 DOI: 10.3390/jcm9072095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) outbreak is a public health emergency affecting different regions around the world. The lungs are often damaged due to the presence of Sars-CoV-2 binding receptor ACE2 on epithelial alveolar cells. Severity of infection varies from complete absence of symptomatology to more aggressive symptoms, characterized by sudden acute respiratory distress syndrome (ARDS), multiorgan failure, and sepsis, requiring treatment in intensive care unit (ICU). It is not still clear why the immune system is not able to efficiently suppress viral replication in a small percentage of patients. It has been documented as pathological conditions affecting the cardiovascular system, strongly associated to atherosclerotic progression, such as heart failure (HF), coronary heart disease (CHD), hypertension (HTN) and diabetes mellitus (DM), could serve as predictive factors for severity and susceptibility during Sars-CoV-2 infection. Atherosclerotic progression, as a chronic inflammation process, is characterized by immune system dysregulation leading to pro-inflammatory patterns, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1β. Reviewing immune system and inflammation profiles in atherosclerosis and laboratory results reported in severe COVID-19 infections, we hypothesized a pathogenetic correlation. Atherosclerosis may be an ideal pathogenetic substrate for high viral replication ability, leading to adverse outcomes, as reported in patients with cardiovascular factors. The level of atherosclerotic progression may affect a different degree of severe infection; in a vicious circle, feeding itself, Sars-CoV-2 may exacerbate atherosclerotic evolution due to excessive and aberrant plasmatic concentration of cytokines.
Collapse
Affiliation(s)
- Mattia Vinciguerra
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| | - Silvia Romiti
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| | - Khalil Fattouch
- Department of Cardiovascular Surgery, GVM Care and Research, Maria Eleonora Hospital, 90135 Palermo, Italy
| | - Antonio De Bellis
- Department of Cardiology and Cardiac Surgery, Casa di Cura “S. Michele”, Maddaloni, 81024 Caserta, Italy;
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| |
Collapse
|
32
|
Diaz-Ricart M, Torramade-Moix S, Pascual G, Palomo M, Moreno-Castaño AB, Martinez-Sanchez J, Vera M, Cases A, Escolar G. Endothelial Damage, Inflammation and Immunity in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12060361. [PMID: 32492843 PMCID: PMC7354562 DOI: 10.3390/toxins12060361] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) patients have an accelerated atherosclerosis, increased risk of thrombotic-ischemic complications, and excessive mortality rates when compared with the general population. There is also evidence of an endothelial damage in which the proinflammatory state, the enhanced oxidative stress, or the accumulation of toxins due to their reduced renal clearance in uremia play a role. Further, there is evidence that uremic endothelial cells are both involved in and victims of the activation of the innate immunity. Uremic endothelial cells produce danger associated molecular patterns (DAMPS), which by binding to specific pattern recognition receptors expressed in multiple cells, including endothelial cells, induce the expression of adhesion molecules, the production of proinflammatory cytokines and an enhanced production of reactive oxygen species in endothelial cells, which constitute a link between immunity and inflammation. The connection between endothelial damage, inflammation and defective immunity in uremia will be reviewed here.
Collapse
Affiliation(s)
- Maribel Diaz-Ricart
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Correspondence:
| | - Sergi Torramade-Moix
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
| | | | - Marta Palomo
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, 08036 Barcelona, Spain
| | - Ana Belen Moreno-Castaño
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, 08036 Barcelona, Spain
| | - Manel Vera
- Nephrology Department. Hospital Clinic, 08036 Barcelona, Spain; (M.V.); (A.C.)
| | - Aleix Cases
- Nephrology Department. Hospital Clinic, 08036 Barcelona, Spain; (M.V.); (A.C.)
| | - Gines Escolar
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
| |
Collapse
|
33
|
Hajsl M, Hlavackova A, Broulikova K, Sramek M, Maly M, Dyr JE, Suttnar J. Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease. Metabolites 2020; 10:metabo10050208. [PMID: 32438592 PMCID: PMC7281607 DOI: 10.3390/metabo10050208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of major vascular events, myocardial infarction, and ischemic stroke. Tryptophan (TRP) catabolism was recognized as an important player in inflammation and immune response having together with oxidative stress (OS) significant effects on each phase of atherosclerosis. The aim of the study is to analyze the relationship of plasma levels of TRP metabolites, inflammation, and OS in patients with neurovascular diseases (acute ischemic stroke (AIS), significant carotid artery stenosis (SCAS)) and in healthy controls. Blood samples were collected from 43 patients (25 with SCAS, 18 with AIS) and from 25 healthy controls. The concentrations of twelve TRP metabolites, riboflavin, neopterin (NEO, marker of inflammation), and malondialdehyde (MDA, marker of OS) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Concentrations of seven TRP metabolites (TRP, kynurenine (KYN), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), anthranilic acid (AA), melatonin (MEL), tryptamine (TA)), NEO, and MDA were significantly different in the studied groups. Significantly lower concentrations of TRP, KYN, 3-HAA, MEL, TA, and higher MDA concentrations were found in AIS compared to SCAS patients. MDA concentration was higher in both AIS and SCAS group (p < 0.001, p = 0.004, respectively) compared to controls, NEO concentration was enhanced (p < 0.003) in AIS. MDA did not directly correlate with TRP metabolites in the study groups, except for 1) a negative correlation with kynurenine acid and 2) the activity of kynurenine aminotransferase in AIS patients (r = -0.552, p = 0.018; r = -0.504, p = 0.033, respectively). In summary, TRP metabolism is clearly more deregulated in AIS compared to SCAS patients; the effect of TRP metabolites on OS should be further elucidated.
Collapse
Affiliation(s)
- Martin Hajsl
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50002 Hradec Kralove, Czech Republic
| | - Alzbeta Hlavackova
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
| | - Karolina Broulikova
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50002 Hradec Kralove, Czech Republic
| | - Martin Sramek
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic;
| | - Martin Maly
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
| | - Jan E. Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
| | - Jiri Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
- Correspondence:
| |
Collapse
|
34
|
Liberale L, Carbone F, Montecucco F, Sahebkar A. Statins reduce vascular inflammation in atherogenesis: A review of underlying molecular mechanisms. Int J Biochem Cell Biol 2020; 122:105735. [PMID: 32126319 DOI: 10.1016/j.biocel.2020.105735] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023]
Abstract
Chronic inflammation enhances the detrimental role of dyslipidaemia during atherogenesis. Statins are among the most effective anti-atherosclerotic medications, being able to impact on both cardiovascular morbidity and mortality. Although these molecules have been first described as lipid-lowering medications, several lines of evidence suggest additional benefits through their "pleiotropic" anti-atherosclerotic activities. Specifically, statins can modulate vascular atherosclerotic inflammation by directly improving functions of endothelial cells, vascular smooth muscle cells, platelets, and immune cells. Here, we discuss basic and clinical evidence to provide an update on the molecular mechanisms underlying the protective anti-inflammatory role of statins in atherogenesis.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Abstract
Cystic fibrosis (CF) is an autosomal-recessive multi-organ disease characterized by airways obstruction, recurrent infections, and systemic inflammation. Vasculitis is a severe complication of CF that affects 2-3% of CF patients and is generally associated with poor prognosis. Various pathogenic mechanisms may be involved in the development of CF-related vasculitis. Bacterial colonization leads to persistent activation of neutrophilic granulocytes, inflammation and damage, contributing to the production of antineutrophil cytoplasmic autoantibodies (ANCAs). The presence of ANCA may on the other hand predispose to bacterial colonization and infection, likely entertaining a vicious circle amplifying inflammation and damage. As a result, in CF-associated vasculitis, ongoing inflammation, immune cell activation, the presence of pathogens, and the use of numerous medications may lead to immune complex formation and deposition, subsequently causing leukocytoclastic vasculitis. Published individual case reports and small case series suggest that patients with CF-associated vasculitis require immune modulating treatment, including non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, hydroxychloroquine, and/or disease-modifying anti-rheumatic drugs (DMARDs). As immunosuppression increases the risk of infection and/or malignancy, which are both already increased in people with CF, possible alternative medications may involve the blockade of individual cytokine or inflammatory pathways, or the use of novel CFTR modulators. This review summarizes molecular alterations involved in CF-associated vasculitis, clinical presentation, and complications, as well as currently available and future treatment options.
Collapse
Affiliation(s)
- Francesca Sposito
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Paul S McNamara
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
36
|
Van Linthout S, Tschöpe C. The Quest for Antiinflammatory and Immunomodulatory Strategies in Heart Failure. Clin Pharmacol Ther 2019; 106:1198-1208. [PMID: 31544235 DOI: 10.1002/cpt.1637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Intensive research over the last 3 decades has unequivocally demonstrated the relevance of inflammation in heart failure (HF). Despite our current and ever increasing knowledge about inflammation, the clinical success of antiinflammatory and immunomodulatory therapies in HF is still limited. This review outlines the complexity and diversity of inflammation, its reciprocal interaction with HF, and addresses future perspectives, calling for immunomodulatory therapies that are specific for factors that activate the immune system without the risk of nonspecific immune suppression.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
37
|
FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation. Vascul Pharmacol 2019; 121:106579. [DOI: 10.1016/j.vph.2019.106579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
|
38
|
Colmorten KB, Nexoe AB, Sorensen GL. The Dual Role of Surfactant Protein-D in Vascular Inflammation and Development of Cardiovascular Disease. Front Immunol 2019; 10:2264. [PMID: 31616435 PMCID: PMC6763600 DOI: 10.3389/fimmu.2019.02264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease (CVD) is responsible for 31% of all global deaths. Atherosclerosis is the major cause of cardiovascular disease and is a chronic inflammatory disorder in the arteries. Atherosclerosis is characterized by the accumulation of cholesterol, extracellular matrix, and immune cells in the vascular wall. Recently, the collectin surfactant protein-D (SP-D), an important regulator of the pulmonary immune response, was found to be expressed in the vasculature. Several in vitro studies have examined the role of SP-D in the vascular inflammation leading to atherosclerosis. These studies show that SP-D plays a dual role in the development of atherosclerosis. In general, SP-D shows anti-inflammatory properties, and dampens local inflammation in the vessel, as well as systemic inflammation. However, SP-D can also exert a pro-inflammatory role, as it stimulates C-C chemokine receptor 2 inflammatory blood monocytes to secrete tumor necrosis-factor α and increases secretion of interferon-γ from natural killer cells. In vivo studies examining the role of SP-D in the development of atherosclerosis agree that SP-D plays a proatherogenic role, with SP-D knockout mice having smaller atherosclerotic plaque areas, which might be caused by a decreased systemic inflammation. Clinical studies examining the association between SP-D and cardiovascular disease have reported a positive association between circulatory SP-D level, carotid intima-media thickness, and coronary artery calcification. Other studies have found that circulatory SP-D is correlated with increased risk of both total and cardiovascular disease mortality. Both in vitro, in vivo, and clinical studies examining the relationship between SP-D and CVDs will be discussed in this review.
Collapse
Affiliation(s)
- Kimmie B Colmorten
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Anders Bathum Nexoe
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Wu Y, Zhang F, Li X, Hou W, Zhang S, Feng Y, Lu R, Ding Y, Sun L. Systematic analysis of lncRNA expression profiles and atherosclerosis-associated lncRNA-mRNA network revealing functional lncRNAs in carotid atherosclerotic rabbit models. Funct Integr Genomics 2019; 20:103-115. [PMID: 31392586 DOI: 10.1007/s10142-019-00705-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a multifactorial and chronic immune inflammatory disorder, is the main cause of multiple cardiovascular diseases. Researchers recently reported that lncRNAs may exert important functions in the progression of atherosclerosis (AS). Some studies found that lncRNAs can act as ceRNAs to communicate with each other by the competition of common miRNA response elements. However, lncRNA-associated ceRNA network in terms of atherosclerosis is limited. In present study, we pioneered to construct and systematically analyze the lncRNA-mRNA network and reveal its potential roles in carotid atherosclerotic rabbit models. Atherosclerosis was induced in rabbits (n = 3) carotid arteries via a high-fat diet and balloon injury, while age-matched rabbits (n = 3) were treated with normal chow as controls. RNA-seq analysis was conducted on rabbits carotid arteries (n = 6) with or without plaque formation. Based on the ceRNA mechanism, a ternary interaction network including lncRNA, mRNA, and miRNA was generated and an AS-related lncRNA-mRNA network (ASLMN) was extracted. Furthermore, we analyzed the properties of ASLMN and discovered that six lncRNAs (MSTRG.10603.16, 5258.4, 12799.3, 5352.1, 12022.1, and 12250.4) were highly related to AS through topological analysis. GO and KEGG enrichment analysis indicated that lncRNA MSTRG.5258.4 may downregulate inducible co-stimulator to perform a downregulated role in AS through T cell receptor signaling pathway and downregulate THBS1 to conduct a upregulated function in AS through ECM-receptor interaction pathway. Finally, our results elucidated the important function of lncRNAs in the origination and progression of AS. We provided an ASLMN of atherosclerosis development in carotid arteries of rabbits and probable targets which may lay the foundation for future research of clinical applications.
Collapse
Affiliation(s)
- Yingnan Wu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenying Hou
- Department of Ultrasound, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Shuang Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Feng
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ding
- Department of Bioinformatics, Harbin Medical University, Harbin, China
| | - Litao Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
40
|
Song J, Yang S, Yin R, Xiao Q, Ma A, Pan X. MicroRNA-181a regulates the activation of the NLRP3 inflammatory pathway by targeting MEK1 in THP-1 macrophages stimulated by ox-LDL. J Cell Biochem 2019; 120:13640-13650. [PMID: 30938884 DOI: 10.1002/jcb.28637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is characterized by the deposition of lipids in the vascular wall and the formation of foam cells. Macrophages play a critical role in the development of this chronic inflammation. An increasing amount of research shows that microRNAs affect many steps of inflammation. The goal of our study was to investigate the regulatory effect of miR-181a on the NLRP3 inflammasome pathway and explore its possible mechanism. Compared with the control group, the expression of miR-181a was downregulated in the carotid tissue of AS group mice, while the expression of MEK1 and NLRP3-related proteins was upregulated significantly. In vitro, when THP-1 macrophages were stimulated with oxidized low-density lipoprotein (ox-LDL), the expression of miR-181a was decreased, the MEK/ERK/NF-κB inflammatory pathways were activated and the expression of NLRP3 inflammasome-related proteins was upregulated. Exogenous overexpression of miR-181a downregulated the activation of the MEK/ERK/NF-κB pathway and decreased the expression of NLRP3 inflammasome-related proteins (such as NLRP3, caspase-1, interleukin-18 [IL-18], IL-1β, etc). Exogenous miR-181a knockdown showed the opposite results to those of overexpression group. A luciferase reporter assay proved that miR-181a inhibited the expression of MEK1 by binding to its 3'-untranslated region. When we knocked down miR-181a and then treated cells with U0126 before ox-LDL stimulation, we found that U0126 reversed the increased activation of the MEK/ERK/NF-κB pathway and upregulation of NLRP3 inflammasome-related proteins (NLRP3, caspase-1, IL-18, IL-1β) that resulted from miR-181a knockdown. Our study suggests that miR-181a regulates the activation of the NLRP3 inflammatory pathway by altering the activity of the MEK/ERK/NF-κB pathway via targeting of MEK1.
Collapse
Affiliation(s)
- Jinyang Song
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
41
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
42
|
Sun SL, Liu LM. Urotensin II: an inflammatory cytokine. J Endocrinol 2019; 240:JOE-18-0505.R2. [PMID: 30601760 DOI: 10.1530/joe-18-0505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a polypeptide molecule with neurohormone-like activity. It has been confirmed that UII is widely distributed in numerous organs of different animal species from fish to mammals, including humans. The UII receptor is orphan G-protein coupled receptor 14, also known as UT. The tissue distribution of UII and UT is highly consistent, and their expression may be regulated by autocrine and paracrine mechanisms. In the body, UII has many physiological and pathophysiological activities, such as vasoconstrictor and vasodilatory actions, cell proliferation, pro-fibrosis, neuroendocrine activity, insulin resistance, and carcinogenic and inflammatory effects, which have been recognized only in recent years. In fact, UII is involved in the process of inflammatory injury and plays a key role in the onset and development of inflammatory diseases. In this paper, we will review the roles UII plays in inflammatory diseases.
Collapse
Affiliation(s)
- Sui-Lin Sun
- S Sun, Department of Infection, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China, Nanchang, China
| | - Liang-Ming Liu
- L Liu, Department of Infection, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| |
Collapse
|
43
|
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol 2018; 40:17-35. [DOI: 10.1016/j.smim.2018.09.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
44
|
Lu L, Qin Y, Chen C, Guo X. Beneficial Effects Exerted by Paeonol in the Management of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1098617. [PMID: 30524649 PMCID: PMC6247470 DOI: 10.1155/2018/1098617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Atherosclerosis, a chronic luminal stenosis disorder occurred in large and medium arteries, is the principle pathological basis of cardiovascular diseases with the highest morbidity and mortality worldwide. In oriental countries, traditional Chinese medicine Cortex Moutan has been widely used for the treatment of atherosclerosis-related illnesses for thousands of years. Paeonol, a bioactive monomer extracted from Cortex Moutan, is an important pharmacological component responsible for the antiatherosclerotic effects. Numerous lines of findings have established that paeonol offers beneficial roles against the initiation and progression of atherosclerotic lesions through inhibiting proatherogenic processes, such as endothelium damage, chronic inflammation, disturbance of lipid metabolism, uncontrolled oxidative stress, excessive growth, and mobilization of vascular smooth muscle cells as well as abnormality of platelet activation. Investigations identifying the atheroprotective effects of paeonol present substantial evidence for potential clinical application of paeonol as a therapeutic agent in atherosclerosis management. In this review, we summarize the antiatherosclerotic actions by which paeonol suppresses atherogenesis and provide newly insights into its atheroprotective mechanisms and the future clinical practice.
Collapse
Affiliation(s)
- Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|