1
|
Zhang C, Geng X, Zhu L, Xia D, Li X, Sun Y. Br-to-Cl Transformation Guided the Formation of Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39096310 DOI: 10.1021/acs.est.4c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 μg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 μg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xuan Geng
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Lingfeng Zhu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
- Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, PR China
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| |
Collapse
|
2
|
Shi G, Wen L, Zhang S, Cheng J, Chen X, Zhou Y, Xu Z, Xin B. Facile manufacture of high-purity CuSO 4 from waste Cu-containing paint residue using combined processes of H 2SO 4 leaching and extraction stripping. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2974-2985. [PMID: 38096082 PMCID: wst_2023_388 DOI: 10.2166/wst.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Waste copper-containing paint residue (WCPR) represents a typical hazardous waste containing both toxic organic substances and toxic heavy metals, but there are few reports on the recycling of heavy metals. The recovery of Cu from WCPR by H2SO4 leaching-extraction-stripping has the advantages of eco-friendliness, simplicity of operation, and high value-added product. The results show that under the optimal conditions, the leaching rate of Cu in WCPR is 94.31% (18.02 g/L), while the extraction and stripping rates of Cu in the leaching solution are 99.46 and 95.32%, respectively. Due to the high concentration of Cu2+ with fewer impurities in the stripping solution, the stripping solution is heated, evaporated, cooled, and crystallized to successfully produce high-purity dark blue CuSO4 crystal, accomplishing the high-value recycling of Cu in WCPR. In addition, the leach residue of WCPR contains acrylic resin and SiO2, which can be used in cement kilns for incineration, thus realizing the overall recycling and utilization of WCPR.
Collapse
Affiliation(s)
- Gongchu Shi
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China E-mail:
| | - Lingkai Wen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shihao Zhang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Cheng
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaohui Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanyu Zhou
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhikai Xu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baoping Xin
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China
| |
Collapse
|
3
|
Klimczak M, Liu G, Fernandes AR, Kilanowicz A, Falandysz J. An updated global overview of the manufacture and unintentional formation of polychlorinated naphthalenes (PCNs). JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131786. [PMID: 37302193 DOI: 10.1016/j.jhazmat.2023.131786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
This review updates information on the historical manufacture and unintentional production of polychlorinated naphthalenes (PCNs). The direct toxicity of PCNs as a result of occupational human exposure and through contaminated feed in livestock was recognised decades ago, making PCNs a precursor chemical for consideration in occupational medicine and occupational safety. This was confirmed by the listing of PCNs by the Stockholm Convention as a persistent organic pollutant in the environment, food, animals and humans. PCNs were manufactured globally between 1910 ∼ 1980, but reliable data on the volumes produced or national outputs are scarce. A total figure for global production would be useful for the purposes of inventory and control and it is clear that combustion related sources such as waste incineration, industrial metallurgy and use of chlorine are current major sources of PCNs to the environment. The upper bound estimate of total global production has been put at 400,000 metric tons but the amounts (at least, many 10 s of tonnes) that are currently emitted unintentionally every year through industrial combustion processes should also be inventoried along with estimates for emissions from bush and forest fires. This would however require considerable national effort, financing and co-operation from source operators. The historical (1910-1970 s) production and resulting emissions through diffusive/evaporative releases through usage, are still reflected in documented occurrence and patterns of PCNs in human milk in Europe and other locations worldwide. More recently, PCN occurrence in human milk from Chinese provinces has been linked to local unintentional emissions from thermal processes.
Collapse
Affiliation(s)
- Michał Klimczak
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10-100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 12-100049, China.
| | - Awyn R Fernandes
- University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK
| | - Anna Kilanowicz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
4
|
Zhang B, Zhou X, Ren X, Hu X, Ji B. Recent Research on Municipal Sludge as Soil Fertilizer in China: a Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:119. [PMID: 36776548 PMCID: PMC9906581 DOI: 10.1007/s11270-023-06142-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Due to the annual increase in wastewater treatment in most Chinese cities, a major environmental issue has arisen: safe treatment, disposal, and recycling of municipal sludge. Municipal sludge has a high content of carbon and essential nutrients for plant growth; hence, it has gained interest among researchers as a soil fertilizer. This study discusses the potential usage of municipal sludge as soil fertilizer (indicators include nitrogen (N), phosphorus (P), and trace elements) along with its shortcomings and drawbacks (potentially toxic elements (PTEs), organic matter (OM), pathogens, etc.) as well as reviews the latest reports on the role of municipal sludge in land use. The use of municipal sludge as a soil fertilizer is a sustainable management practice and a single application of sludge does not harm the environment. However, repeated use of sludge may result in the accumulation of harmful chemicals and pathogens that can enter the food chain and endanger human health. Therefore, long-term field studies are needed to develop ways to eliminate these adverse effects and make municipal sludge available for agricultural use.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xingxing Zhou
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan, 753000 People’s Republic of China
| | - Xupicheng Ren
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xiaomin Hu
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Borui Ji
- Liaoning Inspection, Examination & Certification Centre, Liaoning Province Product Quality Supervision and Inspection Institute, Shenyang, 110014 People’s Republic of China
- National Quality Supervision & Testing Center of Petroleum Products, Shenyang, 110014 People’s Republic of China
| |
Collapse
|
5
|
Cui C, Liu M, Li L, Yan D, Chen C, Wang M, Wang J, Huang Q. Effects of increasing chlorine concentration in feedstock on the emission and distribution characteristic of dioxins in circular fluidized bed boiler. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10202-10212. [PMID: 36071356 DOI: 10.1007/s11356-022-22867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Field studies were conducted to study the emission and distribution characteristics of dioxins by elevating the chlorine concentration in feedstock in a circular fluidized bed boiler. The concentration and total equivalent quantity of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in all flue gas, electrostatic ash, bag filter ash, and bottom ash samples under blank condition (i.e., feedstock was normal coal) and chlorine labeling condition (i.e., feedstock mixed with coal and chlorine-containing labeling agent) were analyzed. Results illustrated that the concentration of PCDD/Fs in all gaseous and ash samples increased with the addition of chlorine in feedstock, with the largest and least increment in dioxin concentration observed in electrostatic ash and flue gas. PCDDs were the predominate congeners in flue gas, accounted for 50.1-60.4% of the total PCDD/F concentration under chlorine labeling and blank conditions, while PCDD/F distribution changed from PCDD- to PCDF-predominate by increasing chlorine content in feedstock under all field test conditions: 46.6-92.9%, 34.0-76.1%, and 47.0-53.1% of PCDFs were distributed in electrostatic ash, bag filter ash, and bottom ash, respectively. Highly chlorinated PCDD/F congeners such as O8CDD/F and 1,2,3,4,6,7,8-H7CDD/F were the primary contributors to dioxin concentration in flue gas and bottom ash samples, whereas low-chlorinated 2,3,7,8-T4CDF and 1,2,3,7,8-P5CDF congeners became critically dominating in electrostatic and bag filter ash.
Collapse
Affiliation(s)
- Changhao Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Meijia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Li Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China.
| | - Chao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Mingwei Wang
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jianyuan Wang
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| |
Collapse
|
6
|
Chen C, Wang H, Liu G, Lin B, Yang L, Jin R, Sun Y, Guo J, Li Y, Yang N, Li A, Li C, Hou S, Xu J, Zheng M. Concentrations, congener patterns, and correlations of unintentional persistent organic pollutants in cement kilns co-processing hazardous waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158793. [PMID: 36113794 DOI: 10.1016/j.scitotenv.2022.158793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Emissions from two typical cement kilns co-processing different kind of hazardous waste were analyzed for 143 congeners of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls, polychlorinated naphthalenes, polybrominated dibenzo-p-dioxins and dibenzofurans, and polybrominated diphenyl ethers. The congener distributions in different process stages were investigated. One of the plants co-processed waste chemical reagents from laboratories. The emission factor (TEQ basis) for the plant was 2.09 ng WHO2005 TEQ/t, with the kiln head and the kiln back end contributing 1.18, 0.91 ng WHO2005 TEQ/t, respectively. The other plant co-processed municipal waste incineration fly ash. The emission factor for the plant was 0.12 ng WHO2005 TEQ/t, with the kiln head and the kiln back end contributing 0.022, and 0.10 ng WHO2005 TEQ/t. These results indicate that co-processing of waste containing reagents from laboratories may lead to higher emission levels than co-processing of other types of waste. The congener patterns of persistent organic pollutants (POPs) in ash samples from the humidifier tower were similar to those in samples from the bag filter at the kiln back end. The correlation coefficients of five pollutants between the humidifier and bag filters samples were generally high, which indicated that conditions in those two stages similarly favored the formation of these POPs. Comparison of the concentrations for different process stages suggested that the main stage for formation of unintentional POPs was the humidifier tower. These results improve our understanding of emission characteristics and could be used for simultaneous control of multiple POPs.
Collapse
Affiliation(s)
- Changzhi Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoyang Wang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Sun
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianping Guo
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
| | - Yinming Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
| | - Nan Yang
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
| | - Aihong Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
| | - Changliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sen Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jia Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
He F, Peng Y, Wang F, Dong Y, Chen K, Lu S. Inhibition of PCDD/Fs in a full-scale hazardous waste incinerator by the quench tower coupled with inhibitors injection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120261. [PMID: 36155219 DOI: 10.1016/j.envpol.2022.120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The control of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the flue gas in hazardous waste incinerators (HWIs) is an intractable problem. To figure out the formation mechanism of PCDD/Fs and reduce the emission, a field study was carried out in a full-scale HWI. Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4 were injected into the quench tower, and the detailed inhibition effect on PCDD/Fs formation by the inhibitors coupled with quench tower was studied. Gas and ash samples were collected to analyze PCDD/Fs. XPS, EDS characterization and Principal component analysis were adopted to further analyze the de novo and precursors synthesis. The PCDD/Fs emissions reduced from 0.135 ng I-TEQ/Nm3 to 0.062 or 0.025 ng I-TEQ/Nm3 after the injection of Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4, respectively. The quench tower was found mainly hindering de novo synthesis by reducing reaction time. CP-route was the dominant formation pathway of PCDD/Fs in quench tower ash. Ca(OH)2 & (NH4)H2PO4 effectively inhibit precursors synthesis and reduce proportions of organic chlorine from 4.11% to 2.86%. CH4N2S & (NH4)H2PO4 show good control effects on both de novo and precursors synthesis by reducing chlorine content and inhibiting metal-catalysts. Sulfur-containing inhibitors can cooperate well with the quench tower to inhibit PCDD/Fs formation and will be effective to reduce dioxins formation in high chlorine flue gas. The results pave the way for further industrial application of inhibition to reduce PCDD/Fs emissions in the HWIs flue gas.
Collapse
Affiliation(s)
- Fengyu He
- Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaqi Peng
- Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Fei Wang
- Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuhang Dong
- Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ken Chen
- Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Han J, Xu C, Jin J, Hu J. PCNs, PCBs, and PCDD/Fs in Soil around a Cement Kiln Co-Processing Municipal Wastes in Northwestern China: Levels, Distribution, and Potential Human Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12860. [PMID: 36232160 PMCID: PMC9566703 DOI: 10.3390/ijerph191912860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
To evaluate the impact of the first cement kiln co-processing municipal wastes in northwest China on the surrounding environment, the concentrations of polychlorinated naphthalenes (PCNs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in 17 soil samples collected around the plant. The concentration ranges of PCNs, PCBs, and PCDD/Fs were 132-1288, 10.8-59.5, and 2.50-5.95 pg/g, and the ranges of toxic equivalents (TEQ) were 1.98-20.8, 2.36-48.0, and 73.2-418 fg/g, respectively. The concentrations of PCNs, PCBs, and PCDD/Fs in this study were generally lower than those in soil around municipal waste incinerators and industrial parks in other areas. An exponential function equation was applied for the relationship between the concentration of the target compounds and the distance from the cement kiln stack, the results showed that PCN and PCB concentrations declined with the increasing of distance from the stack. Furthermore, it was found that the effect of the cement kiln on surrounding soil contaminations with PCNs and PCBs was stronger than that of PCDD/Fs by comparing the PCN, PCB, and PCDD/F homologue profiles in the fly ash sample from the plant and soil samples at different distances. The total carcinogenic risks (CR) of PCNs, PCBs, and PCDD/Fs for children and adults in soil were 1.65 × 10-8-8.93 × 10-8 and 1.70 × 10-8-9.16 × 10-8, respectively, which was less than the risk threshold (CR = 1 × 10-6), and there was no health risk.
Collapse
Affiliation(s)
- Jiali Han
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Chenyang Xu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Jun Jin
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Jicheng Hu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| |
Collapse
|
9
|
Zhang Y, Wang L, Chen L, Ma B, Zhang Y, Ni W, Tsang DCW. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125132. [PMID: 33858099 DOI: 10.1016/j.jhazmat.2021.125132] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is considered as a hazardous waste that requires specific treatment before disposal. The principal treatments encompass thermal treatment, stabilization/solidification, and resource recovery. To maximize environmental, social, and economic benefits, the development of low-carbon and sustainable treatment technologies for MSWI fly ash has attracted extensive interests in recent years. This paper critically reviewed the state-of-the-art treatment technologies and novel resource utilization approaches for the MSWI fly ash. Innovative technologies and future perspectives of MSWI fly ash management were highlighted. Moreover, the latest understanding of immobilization mechanisms and the use of advanced characterization technologies were elaborated to foster future design of treatment technologies and the actualization of sustainable management for MSWI fly ash.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Bin Ma
- Laboratory for Concrete & Construction Chemistry, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Yike Zhang
- State Key Laboratory of Energy Clean Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wen Ni
- School of Civil and Resource Engineering, University of Science and Technology Beijing, 100083, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Yang L, Wang L, Cui C, Liu M, Li L, Yan D. Field-scale study of co-processing dichlorodiphenyltrichloroethane-contaminated soil in a cement kiln. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:133-140. [PMID: 33752154 DOI: 10.1016/j.wasman.2021.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants in soil are not readily degraded in the short term. The utilization of co-processing solid waste in cement kilns has received increasing attention in recent years. Co-processing may be a good way of disposing of dichlorodiphenyltrichloroethane-contaminated soil (CS). The feasibility of co-processing CS pretreated to desorb dichlorodiphenyltrichloroethane, was assessed by performing an industrial-scale trial, focusing on the risks posed by emissions to the environment. Samples of the input and output in cement kiln were collected for determining clinker quality, production operation, pollutant emissions, cement kiln system destruction efficiency, and distribution profiles of persistent organic pollutants unintentionally produced from kiln. The destruction efficiency and destruction removal efficiency both were > 99.99% in cement kiln system at the appropriate CS feeding rate. Emissions of stack gases produced by cement kilns co-processing CS were within the reasonable range set in China. Dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) concentrations and distribution profiles in flue gases and particulate samples from two tests showed PCBs mainly formed at the same sites as PCDD/Fs, indicating they are may formed in a similar way in cement kiln. A comparison with the processing parameters in the clinker, cement kiln dust, and flue gas under baseline and co-processing conditions, manifested that co-processing had no effect on the operation or cement quality of the cement kiln. Thus co-processing CS at a rate of 20 t/h with pretreatment process, is an environmentally sound and highly efficient treatment for CS.
Collapse
Affiliation(s)
- Liuyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lei Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Changhao Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Meijia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Li Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
11
|
Atmospheric Concentrations and Health Implications of PAHs, PCBs and PCDD/Fs in the Vicinity of a Heavily Industrialized Site in Greece. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Thriassion Plain is considered the most industrialized area in Greece and thus a place where emissions of pollutants are expected to be elevated, leading to the degradation of air quality. Methods: Simultaneous determination of polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) was performed in PM10 samples. SPSS statistical package was employed for statistical analysis and source apportionment purposes. Cancer risk was estimated from total persistent organic pollutants’ (POPs) dataset according to the available literature. Results: POPs concentrations in particulate matter were measured in similar levels compared to other studies in Greece and worldwide, with mean concentrations of ΣPAHs, ΣPCDD/Fs, dioxin like PCBs, and indicator PCBs being 7.07 ng m−3, 479 fg m−3, 1634 fg m−3, and 18.1 pg m−3, respectively. Seasonal variations were observed only for PAHS with higher concentrations during cold period. MDRs, D/F ratios, and principal component analysis (PCA) highlighted combustions as the main source of POPs’ emissions. Estimation of particles’ carcinogenic and mutagenic potential indicates the increased toxicity of PM10 during cold periods, and cancer risk assessment concludes that 3 to 4 people out of 100,000 may suffer from cancer due to POPs’ inhalation. Conclusions: Increased cancer risk for citizens leads to the necessity of chronic POPs’ monitoring in Thriassion Plain, and such strategies have to be a priority for Greek environmental authorities.
Collapse
|
12
|
Wang D, Zhang H, Ren M, Fan Y, Gao Y, Lv ZY, Yu Y, Chen J. Electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran over composite copper and iron chlorides and oxides in combustion flue gas. CHEMOSPHERE 2020; 256:127065. [PMID: 32454353 DOI: 10.1016/j.chemosphere.2020.127065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Dibenzo-p-dioxin (DD) and dibenzofuran (DF) chlorination mediated by Cu and Fe chlorides can make a direct contribution to the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in combustion flue gas. In this study, a kind of composite Cu and Fe chlorides and oxides (CuFe9O9.5Cl10) was prepared by impregnating oxides with HCl solution to imitate the coexistence status of Cu and Fe species in combustion flue gas. Composite CuFe9O9.5Cl10 was active in promoting the electrophilic chlorination of DD/DF at 150-300 °C, with the highest activity at 200 °C. DD/DF chlorination could occur under inert atmosphere, and 5% O2 atmosphere was most favorable for DD/DF chlorination. Electrophilic chlorination of DD/DF primarily favored at 2,3,7,8 positions. Hybridization of Cu and Fe chlorides and oxides not only decreased the starting temperature and activation energy of DD/DF chlorination, but also induced a synergistic effect for accelerating the chlorination of DD/DF. The measured activities of composite CuFe9O9.5Cl10 for promoting the chlorination of DD/DF were near to those of composite Cu chloride and oxide (CuO0.2Cl1.6), whereas 2 orders of magnitude higher than those of composite Fe chloride and oxide (FeO0.3Cl2.4). Comparison of PCDD/F congener distribution patterns indicated that DD/DF chlorination should be a main source of Cl1-3DFs and Cl1-2DDs in combustion flue gases.
Collapse
Affiliation(s)
- Dan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| | - Meihui Ren
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Fan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | | | - Ying Yu
- Dalian Maritime University, Dalian, Liaoning, 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
13
|
Zhong R, Wang C, Zhang Z, Liu Q, Cai Z. PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:110-119. [PMID: 32203898 DOI: 10.1016/j.wasman.2020.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Co-incinerating sewage sludge in municipal solid waste incinerators (MSWIs) is an up-to-date disposal way with great prospects to market. To verify the environmental safety of this disposal method, a field study was conducted in a MSWI which has achieved PCDD/Fs ultra-low emission. PCDD/F phase partitioning characteristics, congener profiles, and the influence of selective catalytic reduction (SCR) were also investigated. PCDD/F emission levels ranged from 0.0031 to 0.0053 ng I-TEQ/Nm3, distinctly lower than the national standard. For tests co-incinerating 5% sludge, PCDD/F emission levels were averagely 32% lower than tests mono-combusting municipal solid waste. The phase partitioning study found that PCDD/Fs enriched in condensed water took a non-negligible proportion of the total concentration in flue gas. The removal efficiency of SCR in tests co-incinerating sludge was averaged at 41.9%. However, in tests without adding sewage sludge, PCDD/F concentrations in flus gas after SCR were increased. It was found that the elevations were mainly attributed to the increase of low-chlorinated PCDF congeners in gas-phase. By inference, memory effect existing in SCR might be responsible for the increase of PCDD/F levels. PCDD to PCDF ratios in most of the sampling points were >1, suggesting that de novo synthesis is not the dominant formation pathway in the studied incinerator. This study verified that co-incinerating sewage sludge in the MSWI would not elevate the emission levels of PCDD/Fs. If all of the yielded municipal waste is incinerated with adding 5% sewage sludge, more than half of sewage sludge can be disposed safely in Shenzhen.
Collapse
Affiliation(s)
- Rigang Zhong
- Engineering Research Center for Energy and Environment of Chongqing, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; Shenzhen Energy Environment, Co., LTD, Shenzhen 518055, China
| | - Chen Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, China.
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Qingcai Liu
- Engineering Research Center for Energy and Environment of Chongqing, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, China
| |
Collapse
|
14
|
Peng Z, Weber R, Ren Y, Wang J, Sun Y, Wang L. Characterization of PCDD/Fs and heavy metal distribution from municipal solid waste incinerator fly ash sintering process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 103:260-267. [PMID: 31901619 DOI: 10.1016/j.wasman.2019.12.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
A recycling and disposal technology for municipal solid waste incinerator (MSWI) fly ash using high temperature sintering process was evaluated in an industrial scale facility with daily disposal capacity of 100 t/d. The emission, mass balance and distribution characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) as well as heavy metals (HMs) were assessed during two test runs. The PCDD/Fs emission from stack varied in range of 0.019 to 0.025 ng I-TEQ /Nm3, below international standards. The PCDD/Fs in the sintered product was reduced to 0.002-0.008 μg I-TEQ/kg from 2.593 to 2.704 μg I- TEQ/kg of the original MSWI fly ash (Mix-FA). However high concentration of 14.3 μg I-TEQ/kg were found in the secondary fly ash (Sec-FA). Therefore, a large share of PCDD/Fs just desorbed from the ash and the destruction efficiency (DRE) for PCDD/Fs was only 8.9%. The distribution characteristics of investigated HMs were primarily dependent on the evaporative properties. The results of HMs leaching test for the sintered product were considerably below the Chinese legal limits. The HMs leaching toxicity test for Sec-FA indicated which is a hazardous waste presented high risk to the environment. The use of the sintered product as construction material need further assessment on its long term HMs leaching behavior.
Collapse
Affiliation(s)
- Zheng Peng
- International Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China.
| | | | - Yong Ren
- International Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Jianwei Wang
- Tianjin Eman Environmental Technology CO., Ltd., Tianjin 300392, China
| | - Yangzhao Sun
- International Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Lifang Wang
- CSD IDEA (Beijing) Environmental Test & Analysis Co., Ltd., Beijing 100192, China
| |
Collapse
|
15
|
Song S, Zhou X, Guo C, Zhang H, Zeng T, Xie Y, Liu J, Zhu C, Sun X. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109608. [PMID: 31505407 DOI: 10.1016/j.ecoenv.2019.109608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Typical thermal processes are common sources of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs); however, very few reports have investigated their coemission. To clarify the emission characteristics of these DD/Fs, two municipal waste incinerators (MWIs), three hazardous waste incinerators (HWIs), one cement kiln coprocessing municipal waste incinerator (CMWI), one secondary copper smelter (SCu), and one iron and steel sintering smelter (ISS) in China were investigated. In total, 17 congeners of PCDD/Fs, 14 congeners of PBDD/Fs, and 12 congeners of PBCDDs in stack flue gases from these thermal processes were analyzed using a high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) in this study. PCDD/Fs, PBDD/Fs and PBCDD/Fs were detectable in all samples, with total concentrations of 911-5.15 × 103 pg/Nm3 (80.2-414 pg TEQ/Nm3). The concentrations of each DD/F were similar within the same type of facility and varied among different types of facilities. The contributions of PBDD/Fs and PBCDD/Fs to the total concentrations exceeded that of PCDD/Fs in some cases, such as in HWIs and SCu. In general, the ∑Cl4-7 CDFs and ∑Cl7-8 CDDs, 1,2,3,4,6,7,8-HpBDF, and 1-B-2,3,7,8-TeCDD and 2-B-1,3,7,8-TeCDD were the dominant congeners in the PCDD/F, PBDD/F, and PBCDD/F mass concentrations, respectively. Several other congeners present at low mass concentrations, such as 1,2,3,4,7,8-HxBDF, have potential as major contributors to the TEQs due to their high toxic equivalency factors. These results reveal the necessity of synergistically inhibiting the occurrences of PCDD/Fs, PBDD/Fs, and PBCDD/Fs from these sources and provide valuable information for use in the source identification of these pollutants in the environment.
Collapse
Affiliation(s)
- Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Chenqi Guo
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yidong Xie
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Jinsong Liu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Chaofei Zhu
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing, 100029, China
| | - Xingrong Sun
- South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| |
Collapse
|
16
|
Yang L, Zheng M, Zhao Y, Yang Y, Li C, Liu G. Unintentional persistent organic pollutants in cement kilns co-processing solid wastes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109373. [PMID: 31255869 DOI: 10.1016/j.ecoenv.2019.109373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Co-processing solid waste in cement kilns has become increasingly widespread in recent years. Persistent organic pollutants (POPs) can be unintentionally produced and emitted from cement kilns, especially kilns in which solid waste is co-processed. Unintentionally produced POP formation and emission by cement kilns co-processing solid waste therefore need to be studied in detail to allow the potential risks posed by cement kiln co-processing techniques to be assessed. Many field studies and laboratory simulation experiments have been performed to investigate the formation and release of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). However, the formations, characteristics and emission factors of various emerging unintentionally produced POPs have not been comprehensively reviewed. Here, emissions of well-known unintentionally produced POPs (PCDD/Fs and polychlorinated biphenyls) and emerging unintentionally produced dioxin-like POPs (polybrominated dibenzo-p-dioxins and dibenzofurans, polychlorinated naphthalenes, and chlorinated and brominated polycyclic aromatic hydrocarbons) in cement kilns co-processing solid waste are reviewed, focusing on formations and influencing factors of those unintentional POPs. Data from field studies indicated that the main stages in which POPs are unintentionally produced in cement kilns co-processing solid waste are the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter. The raw material composition, chlorine and bromine contents, and temperature are the most important factors affecting POP formation. The homolog distributions and congener profiles of POPs formed unintentionally in cement kilns were compared, and it was found that larger amounts of less-chlorinated homologs than more-chlorinated homologs are emitted. Emission factors for various unintentionally produced POPs for cement kilns co-processing solid waste were summarized, and could be useful for compiling global emission inventories for pollutants covered by the Stockholm Convention. This comprehensive review improves our understanding of unintentional production and emissions of POPs by cement kilns co-processing solid waste.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minghui Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Yang L, Wang S, Peng X, Zheng M, Yang Y, Xiao K, Liu G. Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:107-115. [PMID: 30739845 DOI: 10.1016/j.scitotenv.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Clarifying the occurrences of organic chemicals in fly ash produced during industrial thermal processes is important for improving our understanding of the formation mechanisms of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs), halogenated PAHs, dioxins, and other unintentional persistent organic pollutants. We developed a highly sensitive gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap/MS) method and applied it to screening of organic pollutants in fly ash samples from multiple industrial thermal processes. The GC-Orbitrap/MS method could detect and quantify organic pollutants at part per billion (ppb) levels. In total, 96 organic chemicals, including alkanes, benzene derivatives, phenols, polycyclic aromatic hydrocarbons, and biphenyl derivatives were identified in the fly ash samples. Several organic chemicals with chlorine or bromine substituents were abundant in secondary copper smelter fly ash, and these might act as precursors for formation of dioxins, brominated dioxins, and other dioxin-like compounds. Several chlorinated and brominated PAH compounds were also found in the secondary copper smelter fly ash. PAHs were dominant chemicals in the secondary aluminum smelter fly ash samples, and were present in much higher concentrations than in the samples from other industries. This indicates that there are different chemical formation pathways in different industries. Possible formation pathways of PAHs and dioxins were investigated and deduced in this study. These results improve our understanding of the formation mechanisms of toxic unintentional persistent organic pollutants and could be useful for reducing their source emissions.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Wang
- Thermo Fisher Scientific, Shanghai 200136, China
| | - Xing Peng
- Thermo Fisher Scientific, Shanghai 200136, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Yang L, Zhao Y, Shi M, Zheng M, Xu Y, Li C, Yang Y, Qin L, Liu G. Brominated dioxins and furans in a cement kiln co-processing municipal solid waste. J Environ Sci (China) 2019; 79:339-345. [PMID: 30784457 DOI: 10.1016/j.jes.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
A field study and theoretical calculations were performed to clarify the levels, profiles, and distributions of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in a cement kiln co-processing solid waste, with a focus on the PBDF formation mechanism. The raw materials contributed greatly to input of PBDD/Fs into the cement kiln. The PBDD/F concentrations in the raw materials were much higher than those in particle samples from different process stages in the cement kiln. The PBDD/F concentrations in the clinkers were 1.40% of the concentrations in the raw materials, which indicated that the high destruction efficiencies for PBDD/Fs by cement kiln. PBDD/F distribution patterns in particle samples collected from different process stages indicated the cement kiln backend was a major site for PBDD/F formation. PBDFs with high levels of halogenation, such as heptabrominated furans (HpBDF), were the dominant contributors to the total PBDD/F concentrations and accounted for 42%-73% of the total PBDD/F concentrations in the particle samples. Our results showed that co-processing of municipal solid waste in a cement kiln may influence the congener profile of PBDD/Fs, especially for the higher halogenated PBDD fraction. In addition, there were significant correlations between the decabromodiphenyl ether and heptabrominated furan concentrations, which is an indicator of transformation from polybrominated diphenyl ethers to PBDD/Fs. Theoretical calculations were performed and demonstrated that elimination of HBr and Br2 from polybrominated diphenyl ethers were the dominant formation pathways for PBDD/Fs. These pathways differed from that for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs).
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miwei Shi
- Hebei Engineering Research Center for Geographic Information Application, Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050051, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Hu J, Wu J, Xu C, Zha X, Hua Y, Yang L, Jin J. Preliminary investigation of polychlorinated dibenzo-p-dioxin and dibenzofuran, polychlorinated naphthalene, and dioxin-like polychlorinated biphenyl concentrations in ambient air in an industrial park at the northeastern edge of the Tibet-Qinghai Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:935-942. [PMID: 30144761 DOI: 10.1016/j.scitotenv.2018.08.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Ambient air samples collected in an industrial park at the northeastern edge of the Tibet-Qinghai Plateau (China) were analyzed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated naphthalenes (PCNs), and dioxin-like (dl) polychlorinated biphenyls (PCBs). The PCDD/F, PCN, and dl-PCB concentrations were 1.18-2.18, 21.9-75.1, and 0.49-0.90 pg/m3, respectively. The concentrations of these compounds were clearly higher than that observed at a remote site and were comparable with those found in ambient air in industrial areas in other locations. A principal component analysis indicated that emissions from local industrial sites (a secondary aluminum smelter, a cement kiln, and a lead-zinc smelter) at which thermal processes are performed were the sources of PCDD/Fs to the air. The combustion-related PCN congener profiles suggested that industrial thermal processes strongly affect PCN concentrations in ambient air at the industrial park. The results clearly indicated that the industrial park is a source of environmental PCDD/Fs and PCNs at the northeastern edge of the Tibet-Qinghai Plateau.
Collapse
Affiliation(s)
- Jicheng Hu
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, MinZu University of China, Beijing 100081, China.
| | - Jing Wu
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China
| | - Chenyang Xu
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China
| | - Xiaoshuo Zha
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China
| | - Ying Hua
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China
| | - Liwen Yang
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China
| | - Jun Jin
- College of Life and Environmental Science, MinZu University of China, Beijing 100081, China; Beijing Engineering Research Center of Food Environment and Public Health, MinZu University of China, Beijing 100081, China
| |
Collapse
|
20
|
Xiao H, Ru Y, Peng Z, Yan D, Li L, Karstensen KH, Wang N, Huang Q. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln. CHEMOSPHERE 2018; 210:779-788. [PMID: 30036826 DOI: 10.1016/j.chemosphere.2018.07.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
During a three-day industrial trial, municipal solid waste incineration fly ash (FA) was co-processed in a cement kiln after water-washing pretreatment for waste-to-resource conversion. All inputs and outputs were sampled to obtain the dioxin fingerprints. During washing, the relative contents of polychlorinated dibenzo-p-dioxins and dibenzofurans in FA, washed FA and sludge were basically the same and only a simple physical migration resulted. During drying, only physical processes resulted, which included volatilization and migration. Minimal dioxins residue remained in the clinker, cement kiln dust and flue gas, and the dioxins degraded completely. Through co-processing, the dioxins degraded obviously. The main compounds synthesized include 1,2,3,4,7,8-hepta-chlorodibenzo-p-dioxin, 2,3,7,8-tetra- chlorodibenzofuran and octa-chlorodibenzofuran. A comparison of dioxins fingerprints in the clinker, cement kiln dust and flue gas under baseline and co-processing conditions showed that co-processing had no effect on the cement kiln production. The baseline sample also contained a certain amount of dioxins, possibly because of the 'memory effect' and heterogeneous formations. The dioxins concentrations in the clinker and FA were far lower than the national standards. Thus, no environmental risk results during co-processing.
Collapse
Affiliation(s)
- Haiping Xiao
- North China Electric Power University, Beijing 102206, China
| | - Yu Ru
- North China Electric Power University, Beijing 102206, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zheng Peng
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China
| | - Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Li Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kåre Helge Karstensen
- Foundation for Scientific and Industrial Research (SINTEF), PO Box 124, N-0314 Oslo, Norway
| | - Ning Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
21
|
Wang C, Yang Z, Zhang Y, Zhang Z, Cai Z. PAHs and heavy metals in the surrounding soil of a cement plant Co-Processing hazardous waste. CHEMOSPHERE 2018; 210:247-256. [PMID: 30005346 DOI: 10.1016/j.chemosphere.2018.06.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 05/28/2023]
Abstract
The Chinese government is encouraging domestic cement producers to move from traditional coal power sources to the co-processing of waste as the primary energy source for the industry. In this study, 32 samples collected from the soil surrounding a cement plant in Beijing were analyzed for the presence of 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) and 12 heavy metals. Ten samples were selected for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) analysis. The pollution distribution patterns, sources, and potential risks to human health and the environment were investigated and evaluated. The highest concentrations of PCDD/Fs occurred 1200 m downwind from the cement plant. The levels of ∑16 PAHs ranged from 130.6 to 1134.3 μg kg-1 in the sampled soils. Source identification analysis suggested that the cement plant was the most likely source of PAH contamination. The concentrations of most of the heavy metals detected in the sampled soils were close to background levels, except for the levels of cadmium (Cd) and mercury (Hg), which were, on average, two times and six times higher than background values, respectively. The co-incineration of sludge, coal, and hazardous waste in the cement plant is a major contributing cause for the high levels of Hg in the surrounding soil. Risk assessment models, both the incremental lifetime cancer risks (ILCRs) for PAHs and the potential ecological risk index (RI) for heavy metals, indicate potential risks to the population and the environment surrounding the cement plant.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China; School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology of China, Shenzhen, 518055, PR China
| | - Zhenzhou Yang
- Management and Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China
| | - Zuotai Zhang
- School of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology of China, Shenzhen, 518055, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, PR China.
| |
Collapse
|
22
|
Yan D, Peng Z, Yu L, Sun Y, Yong R, Helge Karstensen K. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:106-116. [PMID: 29573924 DOI: 10.1016/j.wasman.2018.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
A disposal method for fly ash from a municipal solid waste incinerator (MSWI-FA) that involved a water washing pretreatment and co-processing in a cement kiln was tested. The mass flows of toxic heavy metals (HMs), including volatile HM (Hg), semi-volatile HMs (Pb, Cd, Tl, and As), and low-volatility HMs, and polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran (PCDD/Fs) in the input, intermediate, and output materials were characterized. The flue gas Hg concentrations from tests 0, 1, and 2, fed with 0, 3.1, and 1.7 t/h of dried-washed FA (DWFA), were 28.60, 61.95, and 35.40 μg N m-3, respectively. Co-processing of DWFA did not significantly affect the metal concentration in clinker as most of the major input metals, with the exception of Cd, Pb, and Sb (which came from DWFA), were from raw materials and coal. Co-processing of DWFA did not influence on the release of PCDD/Fs; baseline and co-processing values ranged from 0.022 to 0.039 ng-TEQ/N m3, and from 0.01 to 0.031 ng-TEQ/N m3, respectively. The total destruction efficiency for PCDD/Fs in MSWI fly was 82.6%. This technology seems to be an environmentally sound option for the disposal of MSWI-FA.
Collapse
Affiliation(s)
- Dahai Yan
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zheng Peng
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China.
| | - Lifeng Yu
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China
| | - Yangzhao Sun
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China
| | - Ren Yong
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China
| | - Kåre Helge Karstensen
- Foundation for Scientific and Industrial Research (SINTEF), P.O. Box 124, N-0314 Oslo, Norway
| |
Collapse
|
23
|
Eke J, Onwudili JA, Bridgwater AV. Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:81-90. [PMID: 28927872 DOI: 10.1016/j.wasman.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Energy from Waste (EfW) technologies such as fluidized bed fast pyrolysis, are beneficial for both energy generation and waste management. Such technologies, however face significant challenges due to the heterogeneous nature, particularly the high ash contents of some municipal solid waste types e.g. trommel fines. A study of the physical/mechanical and thermal characteristics of these complex wastes is important for two main reasons; (a) to inform the design and operation of pyrolysis systems to handle the characteristics of such waste; (b) to control/modify the characteristics of the waste to fit with existing EFW technologies via appropriate feedstock preparation methods. In this study, the preparation and detailed characterisation of a sample of biogenic-rich trommel fines has been carried out with a view to making the feedstock suitable for fast pyrolysis based on an existing fluidized bed reactor. Results indicate that control of feed particle size was very important to prevent problems of dust entrainment in the fluidizing gas as well as to prevent feeder hardware problems caused by large stones and aggregates. After physical separation and size reduction, nearly 70wt% of the trommel fines was obtained within the size range suitable for energy recovery using the existing fast pyrolysis system. This pyrolyzable fraction could account for about 83% of the energy content of the 'as received' trommel fines sample. Therefore there was no significant differences in the thermochemical properties of the raw and pre-treated feedstocks, indicating that suitably prepared trommel fines samples can be used for energy recovery, with significant reduction in mass and volume of the original waste. Consequently, this can lead to more than 90% reduction in the present costs of disposal of trommel fines in landfills. In addition, the recovered plastics and textile materials could be used as refuse derived fuel.
Collapse
Affiliation(s)
- Joseph Eke
- European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Jude A Onwudili
- European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Anthony V Bridgwater
- European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
24
|
Fudala-Ksiazek S, Pierpaoli M, Luczkiewicz A. Fate and significance of phthalates and bisphenol A in liquid by-products generated during municipal solid waste mechanical-biological pre-treatment and disposal. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 64:28-38. [PMID: 28372851 DOI: 10.1016/j.wasman.2017.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 05/22/2023]
Abstract
Samples of liquid by-products generated by municipal solid waste plants (MSWPs) were tested for the presence of phthalates (PAEs) and bisphenol A (BPA). The results indicated that the wastewater generated during mechanical (sorting unit - SU) and biological (composting unit - CU) pre-treatment (MBT) of residual (mixed) solid waste is a significant source of these compounds. The concentrations of PAEs (up to 32222μg/L) and BPA (up to 1795μg/L) in the SU and CU wastewaters were generally higher than those in landfill leachates tested in this and other studies. To date, MBT wastewaters have been poorly studied and are usually overlooked. However, in this study, despite their relatively small quantities, they constituted an important load of ammonia (up to 1610mg/L) and organic matter (COD up to 52980mg/L). Thus, to apply an effective treatment, it is critical to monitor the current quality and quantity of all liquid by-products generated at MSWPs and to prioritize the (micro)pollutants of concern.
Collapse
Affiliation(s)
- Sylwia Fudala-Ksiazek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Mattia Pierpaoli
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Aneta Luczkiewicz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|