1
|
Xiu FR, Zhan L, Qi Y, Wu T, Ju Y. Upcycling of waste disposable medical masks to high value-added gasoline fuel and surfactants products by sub/supercritical water degradation and partial oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134950. [PMID: 38908183 DOI: 10.1016/j.jhazmat.2024.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The amount of waste disposable medical masks (DMMs) and the potential environmental risk increased significantly due to the huge demand of disposable medical surgical masks. In this study, two effective and environmentally friendly processes, supercritical water degradation (SCWD) and subcritical water partial oxidation (SubCWPO), were proposed for the upcycling of DMMs. The optimal conditions for the SCWD process (conversion ratio>98 %) were 410 ℃, 15 min, and 1:5 g/mL. The oil products obtained from the SCWD process were mainly small molecule hydrocarbons (C7-C12) with a content of 86 % and could be recycled as fuel feedstock for gasoline. Alkyl radicals in the SCWD reaction formed double bonds and ring structures through hydrogen capture reactions, β-scission, and dehydrogenation reactions, and aromatic hydrocarbons were formed by olefin cyclization and cycloalkane dehydrogenation. The introduction of an oxidant (H2O2) to the reaction system could significantly reduce the reaction temperature and shorten the reaction time. At 350 ℃, 15 min, 1:20 g/mL, V(H2O2): V (H2O) of 1:1, the conversion ratio of the SubCWPO process was 88 %, which was higher than that of the SCWD process at 400 ℃ (71.49 %). Oil products produced from the SubCWPO process were rich in alcohols and esters, which could be used as raw materials for nonionic surfactant of polyol and fatty acid ester. The abundant hydroxyl radical in the SubCWPO system trapped hydrogen atoms on PP and reacted with the resulting alkyl radical to form alkanols, which was oxidized to form acids. The esterification of acids and alkanols formed high level of esters. The SCWD and SubCWPO processes proposed in this study are believed to be promising strategies for DMMs degradation and the recovery of high value-added hydrocarbons.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Longsheng Zhan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China.
| | - Tianbi Wu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yawei Ju
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| |
Collapse
|
2
|
Xiu FR, Zhou H, Qi Y, Shao W. A novel subcritical water synergistic co-treatment of brominated epoxy resin and copper-based spent catalysts: debromination, phenol production, and copper recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:87-98. [PMID: 38467084 DOI: 10.1016/j.wasman.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
In this study, a high-efficiency co-treatment strategy for brominated epoxy resin (BER) and copper-based spent catalyst (CBSC) was developed by using subcritical water (SubCW) process. Multivalent species of copper released from CBSC could accelerate the electron transfer of the SubCW system and efficiently catalyze radical reactions to promote the debromination and decomposition of BER, and had an effect on the capture and binding of bromine species. Meanwhile, the formation of HBr by the BER debromination resulted in a decrease in the system pH and markedly enhanced the leaching/recovery of Cu from CBSC. The optimal conditions of the SubCW co-treatment process were as follows: reaction temperature of 350 °C, solid-to-liquid ratio of 1:30 g/mL, BER-to-CBSC mass ratio of 10:1 g/g, and reaction time of 60 min. Under the optimal conditions, 97.12 % of the Br could be removed from BER by the SubCW co-treatment process and a high-purity phenol (64.09 %) could be obtained in the oil phase product, and 86.44 % of Cu in the CBSC could be leached and recovered. The introduction of CBSC significantly changed the decomposition path of BER. Compared to the SubCW process without CBSC, bromine-free oils products could be obtained by the co-treatment process of BER and CBSC at low-temperature. This study provided a novel understanding of resource conversion mechanism of BER and CBSC in subcritical water medium via the synergistic effect between the two different waste streams to improve treatment efficiency and synchronously recover high-value products.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China.
| | - Haipeng Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Wenting Shao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| |
Collapse
|
3
|
Yang W, Lee H, Park YK, Lee J. Recovery of non-metallic useable materials from e-waste. CHEMOSPHERE 2024; 352:141435. [PMID: 38346511 DOI: 10.1016/j.chemosphere.2024.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Tremendous amounts of electric and electronic wastes (e-waste) are generated daily, and their indiscriminate disposal may cause serious environmental pollution. The recovery of non-metallic materials from e-waste is a strategy to not only reduce the volume of e-waste but also avoid pollutant emissions produced by indiscriminate disposal of e-waste. Pyrolysis, sub/supercritical water treatment, chemical dissolution, and physical treatment (e.g., ball milling, flotation, and electrostatic separation) are available methods to recover useable non-metallic materials (e.g., resins, fibers, and various kinds of polymers) from e-waste. The e-waste-derived materials can be used to manufacture a large variety of industrial and consumer products. In this regard, this work attempts to compile relevant knowledge on the technologies that derive utilizable materials from different classes of e-waste. Moreover, this work highlights the potential of the e-waste-derived materials for various applications. Current challenges and perspectives on e-waste upcycling to useable materials are also discussed.
Collapse
Affiliation(s)
- Wooyoung Yang
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heesue Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Xiu FR, Bai Q, Qi Y, Lei X, Yang R, Wang S, Wang Y, Wang J, Zhan L, Zhou H, Shao W. An alkali-enhanced subcritical water treatment strategy of short-chain chlorinated paraffins: Dechlorination and hydrocarbons recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166574. [PMID: 37647949 DOI: 10.1016/j.scitotenv.2023.166574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
As persistent organic pollutants, short-chain chlorinated paraffins (SCCPs) have attracted wide attention in the field of environmental health risk and hazardous waste management. Efficient dechlorination of high content of SCCPs in plastic waste is the committed step for its detoxification and safety treatment. In this study, a high-efficiency and low-temperature process for dechlorination and hydrocarbons recovery from typical SCCPs (52#SCCPs) by subcritical water (SubCW) with alkali enhancer was developed. The introduction of alkali enhancer in the SubCW process had significantly enhanced effect on the dechlorination of 52#SCCPs, and the order of the enhanced effect of alkali enhancer for the dechlorination was NaOH > Na2CO3 > NaHCO3 > NH3·H2O > KOH. The dechlorination behaviors of 52#SCCPs in the NaOH-enhanced SubCW process were studied systematically under different conditions including temperature, residence time, alkali concentration, and volume ratio. The results showed that high-efficiency dechlorination (100 %) of 52#SCCPs could be achieved by the NaOH-enhanced SubCW process at low temperature for a short time (250 °C, 5 min). All of the chlorine released from the molecular chain of 52#SCCPs was transferred to the aqueous phase in the form of inorganic chlorine. The continuous HCl elimination reaction was the primary dechlorination mechanism for 52#SCCPs in the NaOH-enhanced SubCW process. After the dechlorination of 52#SCCPs, high value-added hydrocarbons such as 2,4-hexadiyne (31.74 %) could be obtained. The alkali-enhanced SubCW process proposed in this study is believed to be an environmentally friendly and high-efficiency method for dechlorination/detoxification and resource recovery of SCCPs.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Qingyun Bai
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China.
| | - Xinyue Lei
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Ruiqi Yang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Siyi Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yixiao Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Jiali Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Longsheng Zhan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Haipeng Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Wenting Shao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| |
Collapse
|
5
|
Preetam A, Jadhao PR, Naik S, Pant K, Kumar V. Supercritical fluid technology - an eco-friendly approach for resource recovery from e-waste and plastic waste: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
He H, Yang B, Wu D, Gao X, Fei X. Applications of crushing and grinding-based treatments for typical metal-containing solid wastes: Detoxification and resource recovery potentials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120034. [PMID: 36030964 DOI: 10.1016/j.envpol.2022.120034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-containing solid wastes can induce serious environmental pollution if managed improperly, but contain considerable resources. The detoxification and resource recoveries of these wastes are of both environmental and economic significances, being indispensable for circular economy. In the past decades, attempts have been made worldwide to treat these wastes. Crushing and grinding-based treatments have been increasingly applied, the operating apparatus and parameters of which depend on the waste type and treatment purpose. Based on the relevant studies, the applications of crushing and grinding on four major types of solid wastes, namely spent lithium-ion batteries (LIBs) cathode, waste printed circuit boards (WPCBs), incineration bottom ash (IBA), and incineration fly ash (IFA) are here systematically reviewed. These types of solid wastes are generated in increasing amounts, and have the potentials to release various organic and inorganic pollutants. Despite of the widely different texture, composition, and other physicochemical properties of the solid wastes, crushing and grinding have been demonstrated to be universally applicable. For each of the four wastes, the technical route that involving crushing and grinding is described with the advantages highlighted. The crushing and grinding serve either mainstream or auxiliary role in the processing of the solid wastes. This review summarizes and highlights the developments and future directions of crushing and grinding-based treatments.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China
| | - Xiaofeng Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
7
|
Wang R, Zhang L, Zhang C, Wang J, Guan J, Jian Z, Bu Y. Selective extraction of precious metals in the polar aprotic solvent system: Experiment and simulation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:1-12. [PMID: 36029532 DOI: 10.1016/j.wasman.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The traditional hydrometallurgical process is the mainstream technology to recover precious metals from e-waste, which usually adopts strong acid/base and strong oxide with high environmental cost and energy consumption. In the present study, the selective extraction of precious metals was simulated and experimented with DMF as the solvent and Cl- ions provided by CaCl2 and CuCl2 (oxidizing agent). The leaching and precipitation rates of precious metals (Au, Ag, Pd) can reach more than 98% under optimization conditions. Kinetic data shows that the control model of the leaching process on precious metals was determined by linear fitting of the shrinkage model. The complex trace precious metals were extracted selectively using dimethylglyoxime and deionized water as precipitators by the leaching-precipitation-cycle method. Meanwhile, the waste liquid produced by this reaction process could be cyclically utilized. Furthermore, the leaching mechanism of precious metals was proposed. DMF could be complexed with the metals as well as coordination ions (Cl-), which can reduce the redox potentials. Cu(II) could be easily reduced to Cu(I) in the DMF system due to the higher second ionization energy of copper, which is not influenced by the hydration effect, thus shifting the equilibrium to the metal leach side. Oppositely, the addition of water promoted the conversion of Cu(I) to Cu(II) since the higher hydration energy of Cu(II) compensates for the second ionization energy. This research opens up a new path of sustainable development and provides basic theory and practical experience for environmentally friendly recovery of precious metals from e-waste.
Collapse
Affiliation(s)
- Ruixue Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China
| | - Lei Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China
| | - Chenglong Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China.
| | - Jingwei Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China
| | - Jie Guan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China
| | - Zhuming Jian
- Yunlong Bocui Precious Metals Technology Co., Ltd., Dali 672711, People's Republic of China
| | - Yutao Bu
- Yunlong Bocui Precious Metals Technology Co., Ltd., Dali 672711, People's Republic of China
| |
Collapse
|
8
|
Liu K, Wang M, Tsang DCW, Liu L, Tan Q, Li J. Facile path for copper recovery from waste printed circuit boards via mechanochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129638. [PMID: 35933860 DOI: 10.1016/j.jhazmat.2022.129638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Recycling copper (Cu0) from waste printed circuit boards (PCBs) is a prevalent challenge. Here, we propose a new pathway and reveal mechanisms for recovering Cu0 from waste PCBs via a mechanochemical approach. The successful application of mechanical force avoids using inorganic acid in the Cu0 recovery process. Our work demonstrates that ferric chloride (FeCl3) was superior to ferric sulfate and ferric nitrate as a solid-phase reagent for Cu0 recovery due to chloride complexation. Under the induction of mechanical force, the Cu0 in the waste PCBs was oxidized by Fe3+ and complexed by Cl¯ to form a meta-stable cuprous chloride, which was susceptible to leaching in an acidic liquid-phase system constructed by hydrolysis of ferric salt. Further mechanism analysis reveals that in the mechanochemical solid-phase reaction, Cu0, metallic impurities, metal oxides, and carbon materials from waste PCBs could also reduce Fe3+ to Fe2+. The optimum conditions for Cu0 recovery from waste PCB powder with FeCl3 as a solid-phase reagent were: rotational speed of 500 rpm, Cu0:Fe3+ molar ratio of 1:20, and reaction time of 120 min, achieving the highest recovery of 99.6 wt%. This study presents a facile path for Cu0 recovery from waste PCBs for resource circulation.
Collapse
Affiliation(s)
- Kang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mengmeng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Environmental Technology and Management, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lili Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyin Tan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Shi SX, Jiang SQ, Nie CC, Li B, Chang HH, Zhu XN. Innovative method for removing bromine in waste printed circuit boards: Ultrafine milling and porous media loaded debromination agent. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chen J, Meng T, Leng E, E J. Review on metal dissolution characteristics and harmful metals recovery from electronic wastes by supercritical water. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127693. [PMID: 34799178 DOI: 10.1016/j.jhazmat.2021.127693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Supercritical water (SCW) technology can be applied as an efficient and environment-friendly method to recover toxic or complex chemical wastes. Separation and chemical reactions under supercritical conditions may be realized by changing the temperature, pressure, and other operating parameters to adjust the physical and chemical properties of water. However, salt deposition and corrosion are often encountered during the treatment of inorganic substances, which will hinder the commercial applications of SCW technology. The solubility of salt in high pressure/temperature water forms the theoretical basis for studying the recovery of metal salts in supercritical water and understanding salt deposition. Therefore, this work systematically and objectively reviews different research methods used to analyze salt solubility in high pressure/temperature water, including the experimental method, prediction theoretical modeling, and computer simulation method; the research status and existing data of this parameter are also analyzed. The purpose of this review is to provide ideas and references for follow-up research by providing a comprehensive overview of salt solubility research methods and the current situation. Suggestions for more efficient metal recovery through technology integration are also provided.
Collapse
Affiliation(s)
- Jingwei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China; Institute of New Energy and Energy-Saving & Emission-Reduction Technology, Hunan University, Changsha 410082, China.
| | - Tian Meng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Erwei Leng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jiaqiang E
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China; Institute of New Energy and Energy-Saving & Emission-Reduction Technology, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Song Z, Xiu FR, Qi Y. Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: Resources transformation and pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127018. [PMID: 34461531 DOI: 10.1016/j.jhazmat.2021.127018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Millions of waste plastic express packaging bags (PEPBs) were generated with the rapid development of the express delivery industry due to the boom of electronic commerce. Waste PEPBs contain polyethylene (PE) material and large number of pollutants such as plasticizers and flame retardants. In this study, two effective and environmental-friendly methods were proposed to produce valuable products and remove pollutants from waste PEPBs by supercritical water degradation (SCWD) and supercritical water partial oxidation (SCWPO) treatments. Both SCWD and SCWPO treatments could effectively obtain valuable products (wax, liquid oil, CaCO3) and remove bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) from waste PEPBs. No obvious difference about the conversion could be found between SCWD and SCWPO treatments. 425 °C, 60 min, solid-to-liquid ratio of 1:20 g/mL, and V(H2O2):V(H2O) ratio of 1:3 mL/mL were the optimal conditions for the conversion of waste PEPBs by SCWD and SCWPO treatments. The maximum conversion could reach 98.13%. The produced wax and liquid oil were easily separated from each other. The produced wax mainly included long-chain olefins or long-chain alkanes, and a small amount of alcohols, ethers and aldehydes. SCWD treatment was favorable for obtaining long-chain alkenes, while SCWPO treatment was favorable for obtaining long-chain alkanes. The main chemical compounds contained in the produced liquid oil were decomposed from DEHP and BPA. DEHP was decomposed to produce 2-ethyl-1-hexanol and acetophenone. BPA was decomposed to produce 4-tert-butylphenol and other alkylated derivatives of benzene and phenol. In comparison with SCWD treatment, DEHP and BPA could be decomposed more thoroughly by SCWPO treatment.
Collapse
Affiliation(s)
- Zhiqi Song
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| |
Collapse
|
12
|
Wang J, Chen S, Zeng X, Huang J, Liang Q, Shu J, Chen M, Xiao Z, Zhao H, Sun Z. Recovery of high purity copper from waste printed circuit boards of mobile phones by slurry electrolysis with ammonia-ammonium system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Charitopoulou MA, Kalogiannis KG, Lappas AA, Achilias DS. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59190-59213. [PMID: 32638300 DOI: 10.1007/s11356-020-09932-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
The amount of plastics from waste electric and electronic equipment (WEEE) has enormously increased nowadays, due to the rapid expansion and consumption of electronic devices and their short lifespan. This, in combination with their non-biodegradability, led to the need to explore environmentally friendly solutions for their safe disposal. One main obstacle when recycling plastics from WEEE is that they usually comprise harmful additives such as brominated flame retardants (BFRs) that need to be removed before or during their recycling. This paper reviews existing techniques for the recycling of plastics from WEEE and focuses specifically on the advantages, disadvantages, and challenges of pyrolysis as an environmentally friendly method for the production of value-added materials (monomers, hydrocarbons, phenols, etc.). Current technological trends available for the recycling of plastics containing brominated flame retardants are reviewed in an attempt to provide insights for future research on the sustainable management of plastics from WEEE. Emphasis is given on conventional pyrolysis, where a pretreatment step for the debromination of products is applied. This is required since brominated compounds treated at high temperatures may result in the production of harmful to health compounds such as dioxins. All current pretreatment methods (solvent extraction, supercritical fluid technology, etc.) are presented and compared in detail. Co-pyrolysis is also investigated, as it seems to be a very interesting approach, since no catalysts or solvents are used, and at the same time, more plastic wastes can be consumed as feedstock. Furthermore, catalytic pyrolysis along with key parameters, such as the type of the catalyst or pyrolysis temperature, are fully analyzed. Catalysts affect the products' distribution and enhance the removal of bromine from pyrolysis oils. Finally, an emerging technique, that of microwave-assisted pyrolysis, is also highlighted, as it offers many advantages over conventional pyrolysis. Of course, there are some impediments, such as the operational costs or other difficulties as regards the industrial implementation of the mentioned techniques that need to be overcome through future works.
Collapse
Affiliation(s)
- Maria Anna Charitopoulou
- Laboratory of Polymers and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece
| | - Angelos A Lappas
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece
| | - Dimitriοs S Achilias
- Laboratory of Polymers and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
14
|
Liu J, Jiang Q, Wang H, Li J, Zhang W. Catalytic effect and mechanism of in-situ metals on pyrolysis of FR4 printed circuit boards: Insights from kinetics and products. CHEMOSPHERE 2021; 280:130804. [PMID: 33965868 DOI: 10.1016/j.chemosphere.2021.130804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Pyrolysis is a promising method for the recovery of waste printed circuit boards (WPCBs), but few researches have noticed the influence of in-situ metals. This study conducted a series of comparisons between metal-free leftover pieces (LP) and intact boards (IB), including pyrolysis characteristics, volatile emission, kinetics, and thermodynamic parameters. The thermo-gravimetry (TG) analyses indicated that both the samples presented predominant mass loss in narrow temperature intervals, and characteristic pyrolysis temperatures of IB were approximately 15 °C lower than those of LP. Dominant constituents in evolved gases were detected by Fourier-transform infrared spectrometry as CO2, phenol, bromophenol, ethers, ketones, and aldehydes, and metals accelerated the generation of light hydrocarbons and aromatic compounds. The activation energy and thermodynamic parameters were calculated and compared, and the results verified the presence of in-situ metals led to a lower energy barrier and higher reaction extent. Moreover, conversion behaviors of Cu, Fe, Sn, and Pb manifested the formation of metal bromides and implied the reduction of brominated volatiles. The obtained results confirmed the catalytic effect of in-situ metals on PCBs pyrolysis and their bromine fixation abilities. This study contributes to fundamental knowledge that can be used to guide the pyrolysis of WPCBs.
Collapse
Affiliation(s)
- Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Qihao Jiang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Hanlin Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Wenjuan Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
15
|
Chemical Recycling of WEEE Plastics—Production of High Purity Monocyclic Aromatic Chemicals. Processes (Basel) 2021. [DOI: 10.3390/pr9030530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
More than 200 kg real waste electrical and electronic equipment (WEEE) shredder residues from a German dismantling plant were treated at 650 °C in a demonstration scale thermochemical conversion plant. The focus within this work was the generation, purification, and analysis of pyrolysis oil. Subsequent filtration and fractional distillation were combined to yield basic chemicals in high purity. By means of fractional distillation, pure monocyclic aromatic fractions containing benzene, toluene, ethylbenzene, and xylene (BTEX aromatics) as well as styrene and α-methyl styrene were isolated for chemical recycling. Mass balances were determined, and gas chromatography–mass spectrometry (GC-MS) as well as energy dispersive X-ray fluorescence (EDXRF) measurements provided data on the purity and halogen content of each fraction. This work shows that thermochemical conversion and the subsequent refining by fractional distillation is capable of recycling WEEE shredder residues, producing pure BTEX and other monocyclic aromatic fractions. A significant decrease of halogen content (up to 99%) was achieved with the applied methods.
Collapse
|
16
|
Xiu FR, Lu Y, Qi Y. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study. CHEMOSPHERE 2020; 249:126138. [PMID: 32045755 DOI: 10.1016/j.chemosphere.2020.126138] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
In this study, subcritical water-NaOH (CW-NaOH) and subcritical water-C2H5OH (CW-C2H5OH) processes were developed for diethylhexyl phthalate (DEHP) degradation and dechlorination of polyvinyl chloride (PVC) waste. The introduction of NaOH or C2H5OH in subcritical water had a noticeable influence on the mechanism of DEHP degradation and dechlorination. For both CW-NaOH and CW-C2H5OH treatments, the increase in temperature could increase dechlorination efficiency (DE) of PVC. The DE of CW-NaOH is much higher than that of CW-C2H5OH under the same conditions. The DE of CW-NaOH could exceed 95% at 300 °C. Hydroxyl nucleophilic substitution was the main dechlorination mechanism in CW-NaOH, while nucleophilic substitution and direct dehydrochlorination were equally important in CW-C2H5OH. In CW-NaOH treatment, 2-ethyl-1-hexanol, benzaldehyde, and toluene were obtained by hydrolysis and reduction reactions of DEHP. Acetophenone was produced by the further cyclization, dehydrogenation and rearrangement reactions of 2-ethyl-1-hexanol. Transesterification was the main degradation pathway of DEHP in CW-C2H5OH at 300 °C. The cyclization and dehydration of 2-ethyl-1-hexanol resulted in producing a high level of ethyl-cyclohexane and 1-ethyl-cyclohexene in CW-C2H5OH at 350 °C. Furthermore, high concentration of ethyl palmitate and ethyl stearate could be prepared in CW-C2H5OH system by the strong reactivity of C2H5OH with the lubricants in PVC.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China.
| | - Yongwei Lu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China
| |
Collapse
|
17
|
Xiu FR, Li Y, Qi Y. Efficient low-temperature debromination and high selectivity products recovery from brominated epoxy resin waste by subcritical water-urea treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:171-180. [PMID: 32408100 DOI: 10.1016/j.wasman.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, a subcritical water-urea (SubCW-urea) process was developed for the treatment of brominated epoxy resin powder (BRP) waste. The SubCW-urea process had two significant advantages: efficient low-temperature debromination and highly selective products recovery. The NH3 and CO2 released from urea in the SubCW medium had a prominent enhancement effect on the decomposition and debromination of BRP waste when the SubCW temperature was below 300 °C. The debromination efficiency of SubCW-urea treatment was significantly enhanced in comparison with that of SubCW-NH3 and single SubCW treatments. The debromination efficiency of BRP could reach 38.21%, 85.3%, and 99.92% at 200 °C, 250 °C, and 300 °C, respectively. The debromination rate constant of BRP in SubCW-urea, SubCW-NH3, and single SubCW system was 0.1363, 0.1254, and 0.0146 min-1, respectively. No brominated chemical compound could be detected in the oil phase products when the treatment temperature was higher than 250 °C. The decomposition products of BRP waste could be easily regulated by controlling the treatment temperature of SubCW-urea. 2-bromo-phenol with the purity of 72.5% could be selectively prepared from BRP by SubCW-urea process at 200 °C. The purity of the recovered phenol could reach as high as 81.5% at 250 °C. The selectivity of the products decreased greatly at 300 °C due to the secondary reactions. The SubCW-urea process has an application prospect in the safe treatment of BRP waste with the aim of high-efficiency debromination and high selectivity products recovery at low temperature.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Yifan Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| |
Collapse
|
18
|
Shi W, Ren H, Huang X, Li M, Tang Y, Guo F. Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116477] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Gao X, Liu J, Liu Z, Zhang L, Zuo X, Chen L, Bai X, Bai Q, Wang X, Zhou A. DBU coupled ionic liquid-catalyzed efficient synthesis of quinazolinones from CO 2 and 2-aminobenzonitriles under mild conditions. RSC Adv 2020; 10:12047-12052. [PMID: 35496607 PMCID: PMC9050631 DOI: 10.1039/d0ra00194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 01/30/2023] Open
Abstract
Efficient and green strategy for the chemical conversion and fixation of CO2 is an attractive topic. In this work, we reported an efficient catalytic system of organic base coupled ionic liquids that could catalyse the synthesis of quinazolinones via cyclization of 2-aminobenzonitriles with CO2 under mild conditions (e.g., 60 °C, 0.1 MPa). It was found that 1,8-diazabicyclo[5.4.0]undec-7-ene coupled 1-butyl-3-methylimidazole acetate ionic liquids (DBU/[Bmim][OAc]) displayed excellent performance in catalysing the reactions of CO2 with 2-aminobenzonitriles, and a series of quinazolinones were obtained in high yields at atmospheric pressure. Moreover, the ILs had high stability and reusability, and can be reused at least five times without considerable decrease in catalytic activity. This protocol could also be conducted on a gram scale, and may have promising and practical applications in the production of quinazolinones.
Collapse
Affiliation(s)
- Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Jiao Liu
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Zhaopeng Liu
- School of Chemical Engineering and Technology, China University of Mining and Technology Xuzhou 221000 China
| | - Lei Zhang
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xin Zuo
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Leyuan Chen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xue Bai
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Qingyun Bai
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xinlin Wang
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Anning Zhou
- A School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|
20
|
Xiu FR, Wang Y, Yu X, Li Y, Lu Y, Zhou K, He J, Song Z, Gao X. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134532. [PMID: 31785902 DOI: 10.1016/j.scitotenv.2019.134532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Flexible polyvinyl chloride (f-PVC) contains high content of plasticizers and chlorine. Improper treatment of waste f-PVC can easily lead to resource wasting and bring environmental risks. In this work, a novel strategy for resource recycling and dechlorination of waste f-PVC containing high content of di-(2-ethylhexyl) phthalate (DEHP) was developed by using low-temperature critical aqueous ammonia (LCA) process. The LCA treatment of waste DEHP-rich f-PVC (WDP) was performed at the temperature range of 200-400 °C with the ammonia concentration of 1%-5%. The results indicated that the LCA temperature had a significant effect on the chemical composition of decomposition products. High concentration of 2-ethyl-1-hexanol (86.12%), which is an important chemical feedstock and is derived from the decomposition of DEHP, could be obtained from WDP by the LCA process at 250 °C, and the concentration of 2-ethyl-1-hexanol decreased markedly with increasing the temperature. Benzaldehyde and acetophenone were generated when the temperature increased to 300 °C, and their concentrations increased with the rise of temperature. The increase of the ammonia concentration and the temperature could enhance the dechlorination efficiency of WDP. The dechlorination could reach 98.7% at 300 °C. This result showed that the LCA process was a promising and high-efficiency strategy for the sustainable management of WDP.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, People's Republic of China.
| | - Yixiao Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Xuan Yu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yifan Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Yongwei Lu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Ke Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Jiahuan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Zhiqi Song
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, People's Republic of China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, People's Republic of China
| |
Collapse
|
21
|
Kumar A, Lingfa P. Acid-activated Sodium Bentonite and Kaolin Clay: Comparative Study by Physicochemical Properties. Comb Chem High Throughput Screen 2020; 23:433-445. [PMID: 32160844 DOI: 10.2174/1386207323666200311114349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE This paper aims to reveal the useful industrial aspects of kandite and montmorillonite group of clays using as a catalyst after acid activation. A comparative study of modified characteristics of clay samples has been explored based on industrial requirements. MATERIALS AND METHODS In this study sodium bentonite and kaolin clay have been focused. The modified characteristics of clay samples are investigated by characterization methods of FT-IR, XRD, SEM/EDAX, TGA and DSC before and after treated with 4M of Hydrochloric acid. Clay samples were refluxed at 105ºC and calcined at 500ºC consecutively for 3 hours at room temperature. RESULTS Maximum crystalline size 104.02 nm has been evaluated for acid-activated sodium bentonite. Alkyl halides compounds have a strong band position for all samples and have more extent on acid activation. The small numbers of manganese particles have been noticed in the acidactivated samples. 14% of decrement and 61.02% of increment of aluminates have been found respectively for acid-activated kaolin and acid-activated sodium bentonite. CONCLUSION The novelty of this study is about sodium bentonite characterization and the results show the prominent behaviour with structural, elemental, morphological, and thermal analysis. Acid-activated kaolin sample has less effect in comparison with acid-activated sodium bentonite. As the removal of the hydroxyl group of compounds has been reported through FT-IR and XRD analysis also some other industries like ceramic and paper industries may have accepted these types of modified minerals for special production with a simple process.
Collapse
Affiliation(s)
- Awinash Kumar
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| | - Pradip Lingfa
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| |
Collapse
|
22
|
Kumar A, Lingfa P. Physico-chemical Characterization of Hydrochloric Acid-treated Kaolin Clay: An Industry Approach as a Potential Catalyst. Comb Chem High Throughput Screen 2020; 23:205-213. [PMID: 32072897 DOI: 10.2174/1386207323666200219123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE This study explains the FT-IR, XRD, XRF, SEM/EDX, TGA, and DSC/DTA characterization of commercially available kaolin clay. The objective of this paper is to explore the prominent utilization of kandites clay and useful chemical aspects for the modification of kaolin clay minerals. MATERIALS AND METHODS The untreated kaolin sample has been procured in this experimental work from AksharChem, Gujrat, India. The kaolin clay was treated with 4M hydrochloric acid. FT-IR, XRD, XRF, SEM/EDX, TGA, and DSC/DTA characterization methods have been used. RESULTS Loss on ignition was found at 10.89%. The fingerprint region of the acid-treated sample has broad and more bending vibrations than untreated samples. The high weight percentage of Ti and CaCO3 were spotted in the scanning electron micrograph by both atomic % and weight %. The FT-IR revealed the functional group of Al-O, A1-OH, and Si-O. CONCLUSION The morphology indicates that the presences of large particles are in the form of agglomerates. It was found that impurity like scandium vanished and manganese traced by the same atomic % 0.01 of zinc which had no presence after acid treatment. Thermogravimetric analysis indicates the sharp increments in heat flow in-between temperatures 0°C to 200°C and consequently increments in between 500°C to 550°C, a suitable range for the pyrolysis. Low amount of alumina and high amount of silica has been found out. TGA and DTA analysis satisfy the waste plastic valorization temperature ranges.
Collapse
Affiliation(s)
- Awinash Kumar
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| | - Pradip Lingfa
- Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology (Deemed to be University, Govt. of India), Nirjuli, Itanagar, Arunachal Pradesh 791109, India
| |
Collapse
|
23
|
Xing M, Li Y, Zhao L, Song X, Fu Z, Du Y, Huang X. Swelling-enhanced catalytic degradation of brominated epoxy resin in waste printed circuit boards by subcritical acetic acid under mild conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:464-473. [PMID: 31743837 DOI: 10.1016/j.wasman.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Waste printed circuit boards (WPCBs) contain a large amount of brominated epoxy resins (BERs), which may cause environmental problems. However, BERs degradation under mild conditions is challenging due to the good thermal and chemical stabilities of BERs. This study proposes a mild and efficient method that uses subcritical acetic acid (220 °C-260 °C, 2.6-3.6 MPa) to decompose BERs. BERs swell quickly at 200 °C and are thoroughly decomposed into bisphenol A and phenol at 220 °C when the acetic acid mass concentration and holding time are fixed at 49.90% and 1 h, respectively. Experimental results show that subcritical acetic acid has excellent swelling and catalytic degradation effects on BERs. The quick swelling of BERs allows the free migration of the catalyst in the epoxy network and thus significantly enhances the catalytic degradation effect. Therefore, BERs can be thoroughly decomposed by subcritical acetic acid under mild conditions. Temperature and acetic acid concentration are the major parameters that control the resin degradation rate. Bromine-free oil phase products are obtained at ≥240 °C. The possible decomposition pathway of BERs in subcritical acetic acid is also investigated. Most of the bromine is transformed into HBr and enriched in the aqueous phase. In conclusion, the proposed mild method could be used as a novel practical and industrial procedure for the degradation and debromination of BERs.
Collapse
Affiliation(s)
- Mingfei Xing
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China.
| | - Yu Li
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Lei Zhao
- Zhengzhou Quality and Technical Supervision and Inspection Center, Zhengzhou 450006, Henan, China
| | - Xiaoyan Song
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Zegang Fu
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Yajie Du
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Xingyu Huang
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
24
|
Surface-Bound Humic Acid Increased Propranolol Sorption on Fe 3O 4/Attapulgite Magnetic Nanoparticles. NANOMATERIALS 2020; 10:nano10020205. [PMID: 31991558 PMCID: PMC7074867 DOI: 10.3390/nano10020205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
This study explored the feasibility of utilizing a novel sorbent humic acid (HA) coated Fe3O4/attapulgite (MATP) magnetic nanoparticles (HMATP) for the sorption of propranolol from aqueous solutions. MATP and bare Fe3O4 nanoparticles were also synthesized under similar preparation conditions. The FTIR, Zeta potential, XRD, VSM, TEM, and TGA analyses were conducted to characterize the sorbent materials. The effects of pH, sorbent dosage, ionic strength, HA in the aqueous solution, contact time and initial sorbate concentration on sorption of propranolol were investigated using batch sorption experiments. The results suggested that the sorption capacity of HMATP showed little change from pH 4 to 10. Na+ and Ca2+ slightly inhibited the sorption of propranolol on HMATP. While HA in solution enhanced both MATP and HMATP, which indicated that HMATP can resist HA interference in water. Further, the less leaching amounts of Fe and HA suggested a good stability of HMATP. In all conditions, sorption capacity of propranolol on HMATP was obviously higher than that on MATP, which indicated that surface-coated HA played an important role in the propranolol sorption process. Electrostatic interaction, cation exchange, hydrogen bonding, and π–π electron donor acceptor interactions were considered as the sorption mechanisms.
Collapse
|
25
|
Zhou G, Zhang H, Yang W, Wu Z, Liu W, Yang C. Bioleaching assisted foam fractionation for recovery of gold from the printed circuit boards of discarded cellphone. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:200-209. [PMID: 31622865 DOI: 10.1016/j.wasman.2019.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 05/20/2023]
Abstract
Present work was focused on recovering gold (Au) from the printed circuit boards (PCBs) of discarded cellphone by bioleaching assisted continuous foam fractionation. First, the cyanide-producing strains of Pseudomonas putida and Bacillus megaterium were co-cultured in order to supply a high cyanide concentration in the nutrient solution for mobilizing Au from waste PCBs (WPCBs). Bioleaching conditions were optimized by using response surface methodology. Under the suitable bioleaching conditions of pH of 10.0, pulp density of 5 g/L and leaching time of 34 h, the Au mobilization percentage was 83.59%. The leaching liquor with an Au concentration of 1.34 mg/L could be used as the feeding solution of continuous foam fractionation after removing solid particles and cell biomass. In order to strengthen foam drainage, a novel internal component of foam fractionation column was developed. Under the suitable operation conditions of CTAB concentration of 0.2 g/L, volumetric air flow rate of 100 mL/min and feed flow rate of 10 mL/min, the enrichment ratio and recovery percentage of Au were 43.62 and 87.46%, respectively. This study is expected to provide an effective strategy to recover Au from WPCBs, and to supplement the depleting natural resources.
Collapse
Affiliation(s)
- Gang Zhou
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin 300130, China
| | - Huixin Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin 300130, China
| | - Wei Yang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin 300130, China
| | - Zhaoliang Wu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin 300130, China
| | - Wei Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin 300130, China.
| | - Chunyan Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
26
|
Xiu FR, Yu X, Qi Y, Li Y, Lu Y, Wang Y, He J, Zhou K, Song Z, Gao X. A novel management strategy for removal and degradation of polybrominated diphenyl ethers (PBDEs) in waste printed circuit boards. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:191-198. [PMID: 31541924 DOI: 10.1016/j.wasman.2019.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Waste printed circuit boards (PCBs) contain a high level of brominated flame retardants (BFRs), among which polybrominated biphenyl ethers (PBDEs) are the most widely used additive BFRs. PBDEs are considered to be a type of persistent organic pollutants (POPs). The efficient removal/degradation of PBDEs in waste PCBs is an urgent problem in electronic waste treatment, but the degradation of PBDEs is a great challenge due to their extreme stability and persistence in nature. In this study, a novel management strategy was developed for removal and degradation of PBDEs in waste PCBs by using a simple subcritical methanol (SubCM) process. The results showed that reaction temperature, residence time, solid-to-liquid ratio, and additive NaOH are key factors influencing the removal of PBDEs from waste PCBs. Under optimal conditions (200 °C, 60 min, 1:20 g/mL), the removal efficiency of ∑8PBDEs from waste PCBs could reach 91.3% and 98.8% for the proposed process of SubCM and SubCM + NaOH, respectively. When the temperature is below 200 °C, highly brominated PBDEs congeners in waste PCBs were degraded into 2,'3,4',6-Tetrabromodiphenyl ether (BDE71) and 2,4,4'-Tribromodiphenyl ether (BDE28) after SubCM treatment. 4-Bromophenyl ether (BDE4) and diphenyl ether were generated by the further debromination of BDE71 and BDE28 with the increase of treatment temperature. The debromination temperature of PBDEs congeners in SubCM could be markedly lowered by adding 4 g/L of NaOH. The complete debromination of PBDEs congeners in waste PCBs could be achieved at 300 °C and 250 °C for the developed process of SubCM and SubCM + NaOH, respectively.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Xuan Yu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| | - Yifan Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yongwei Lu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yixiao Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiahuan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Ke Zhou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhiqi Song
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China
| |
Collapse
|
27
|
Liu F, Wan B, Wang F, Chen W. Effect of thermal shock process on the microstructure and peel resistance of single-sided copper clad laminates used in waste printed circuit boards. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1490-1502. [PMID: 31566485 DOI: 10.1080/10962247.2019.1674751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Efficient pre-processing is essential to the mechanical recovery of waste printed circuit boards (WPCBs). In this work, a thermal shock pretreatment was utilized to damage the interface between metals and nonmetals of single-sided copper clad laminates (SSCCLs), which are usually employed as the base material of printed circuit boards (PCBs). The effects of three thermal shock treatment parameters-i.e., peak temperature, holding time, and thermal shock cycle times-on the adhesion strength of SSCCLs were evaluated by orthogonal experiments. Microstructures and peel resistance of SSCCLs before and after thermal shock were characterized by scanning electron microscopy (SEM) and 90° peel test, respectively. Our results showed that the impact of three major factors that influence liberation efficiency was in the sequence of peak temperature > shock cycle times > holding time. Furthermore, the optimal thermal shock level could be achieved when the peak temperature was 300°C with the soaking time of 30 min and three cycle times. In the meantime, the corresponding peel strength of the SSCCLs (0.065 N/mm) was sharply decreased by 94% in comparison with those without thermal shock treatment. The manual dismantling experimental data verified the good feasibility of the optimal thermal shock process, suggesting that the copper foil could be readily dismantled from the substrate by hand after pretreatment, with a successful separation rate of 100% and a peeling efficiency of ~ 30 seconds per piece. Therefore, the optimal thermal shock process could notably improve liberation of metals and nonmetals, which would be helpful for efficient recycling of WPCBs.Implications: The interface between copper foil and laminate dielectric in a PCB can be weakened significantly via efficient thermal shock method. Thus, a good liberation could be achieved after thermal shock. In this work, a manual peeling of copper foil from the SSCCL substrates was achieved efficiently after optimal thermal shock pretreatment, confirming the feasibility of a shorter process of metal recovery from scrap SSCCLs without pulverization. The results will be useful for the pretreatment of recovery of the WPCBs.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Department of Electromechanical Engineering, Guangdong University of Science and Technology, Dongguan, Guangdong, People's Republic of China
| | - Bingbing Wan
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, People's Republic of China
| | - Fazhan Wang
- Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Weiping Chen
- Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
28
|
A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Zhu XN, Nie CC, Zhang H, Lyu XJ, Qiu J, Li L. Recovery of metals in waste printed circuit boards by flotation technology with soap collector prepared by waste oil through saponification. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:21-26. [PMID: 31079733 DOI: 10.1016/j.wasman.2019.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Recycling metal from waste printed circuit boards (WPCBs) through green flotation technology has been concerned in this paper. For the sake of environmentally friendly of flotation process, a renewable collector was prepared from waste oil by saponification reaction. The collector composition was analyzed by GC-MS, and results show that the main compositions are n-Hexadecanoic acid, oleic acid and octadecanoic acid. XRD and XRF results show that copper is the main valuable element for recovery. Effects of collector dosage and pH on flotation behavior were analyzed. In addition, the feasibility of improving copper recovery by multiple sorting test processes was also verified. Flotation results show that the concentrate yield and metal recovery decreases with the increase of collector dosage, accompanied by the increase of copper grade. When the dosage of collector is 3 kg/t, concentrate with 22% yield, 66% copper grade, and 47% copper recovery is obtained. Furthermore, concentrate yield and metal recovery rate first decrease and then increase with the increase of pH, while copper content first increase and then decrease. The suitable pH of the separation process is neutral environment (pH = 6-8). The study provides an alternative process for the recovery of metals in WPCBs.
Collapse
Affiliation(s)
- Xiang-Nan Zhu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Chun-Chen Nie
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Hao Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xian-Jun Lyu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jun Qiu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Lin Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| |
Collapse
|
30
|
Lu L, Kumagai S, Kameda T, Luo L, Yoshioka T. Degradation of PVC waste into a flexible polymer by chemical modification using DINP moieties. RSC Adv 2019; 9:28870-28875. [PMID: 35529626 PMCID: PMC9071209 DOI: 10.1039/c9ra05081g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/27/2019] [Indexed: 11/21/2022] Open
Abstract
We propose a chemical modification method to produce flexible PVC with DINP moieties.
Collapse
Affiliation(s)
- Lihui Lu
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Shogo Kumagai
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Tomohito Kameda
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| | - Ligang Luo
- College of Life Science
- Shanghai Normal University
- Shanghai 200234
- China
| | - Toshiaki Yoshioka
- Graduate School of Environmental Studies
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
31
|
Hou C, Xie J, Yang H, Chen S, Liu H. Preparation of Cu2O@TiOF2/TiO2and its photocatalytic degradation of tetracycline hydrochloride wastewater. RSC Adv 2019; 9:37911-37918. [PMID: 35541816 PMCID: PMC9075813 DOI: 10.1039/c9ra07999h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/07/2019] [Indexed: 12/07/2022] Open
Abstract
Cu2O@TiOF2/TiO2composites with large surfaces were prepared by a hydrothermal method and exhibited excellent activity under simulated solar light, showing high efficiency for tetracycline hydrochloride photocatalytic degradation, and reusability.
Collapse
Affiliation(s)
- Chentao Hou
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- People's Republic of China
| | - Jianqiong Xie
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- People's Republic of China
| | - Haolan Yang
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- People's Republic of China
| | - Shumin Chen
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- People's Republic of China
| | - Hualin Liu
- College of Geology and Environment
- Xi'an University of Science and Technology
- Xi'an 710054
- People's Republic of China
| |
Collapse
|