1
|
Li X, Sun Y, Li W, Nie Y, Wang F, Bian R, Wang H, Wang YN, Gong Z, Lu J, Gao W, Lu C. Solidification/stabilization pre-treatment coupled with landfill disposal of heavy metals in MSWI fly ash in China: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135479. [PMID: 39141943 DOI: 10.1016/j.jhazmat.2024.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The growth in municipal solid waste incineration (MSWI) has resulted in a substantial rise in the production of fly ash in China. It is anticipated that during the "14th Five-Year Plan", the accumulated amount of fly ash stocked and disposed of at landfills will surpass 100 million tons. With the development of the economy and the implementation of garbage classification relevant policies, the pollution characteristics of heavy metal change in spatiotemporal distribution. Solidification/stabilization (S/S) pre-treatment coupled with landfill disposal is the mainstream method for fly ash. This study provides a systematic overview and comparison of the current application status and research on the mechanism of S/S technology, and the long-term stability of solidified/stabilized fly ash is a crucial factor in controlling the risks of landfills. Subsequently, it examines the influencing factors and mechanisms associated with heavy metals leaching under different environmental scenarios (meteorological factors, leachate and acid rain erosion, and carbonation, etc.), and concludes that single stabilization technology is difficult to meet long-term landfill requirements. Finally, the limits of heavy metal leaching toxicity evaluation methods and landfilled fly ash supervision were discussed, and relevant suggestions for future development were proposed. This study can provide theoretical instruction and technical support for the risk control of potential environmental risks of heavy metals in solidified/stabilized fly ash from landfills in China.
Collapse
Affiliation(s)
- Xue Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Yanqi Nie
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Fuhao Wang
- Qingdao Solid Waste Disposal Co., Ltd., Qingdao 266300, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Zhaoguo Gong
- Qingdao Solid Waste Disposal Co., Ltd., Qingdao 266300, China
| | - Jing Lu
- Qingdao SUS Renewable Energy Co., Ltd., Qingdao 266113, China
| | - Weijie Gao
- Qingdao Solid Waste Disposal Co., Ltd., Qingdao 266300, China
| | - Chenggang Lu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| |
Collapse
|
2
|
Jamalimoghadam M, Vakili AH, Keskin I, Totonchi A, Bahmyari H. Solidification and utilization of municipal solid waste incineration ashes: Advancements in alkali-activated materials and stabilization techniques, a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122014. [PMID: 39098066 DOI: 10.1016/j.jenvman.2024.122014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Researchers are actively investigating methodologies for the detoxification and utilization of Municipal Solid Waste Incineration Bottom Ash (MSWIBA) and Fly Ash (MSWIFA), given their potential as alkali-activated materials (AAMs) with low energy consumption. Recent studies highlight that AAMs from MSWIFA and MSWIBA demonstrate significant durability in both acidic and alkaline environments. This article provides a comprehensive overview of the processes for producing MSWIFA and MSWIBA, evaluating innovative engineering stabilization techniques such as graphene nano-platelets and lightweight artificial cold-bonded aggregates, along with their respective advantages and limitations. Additionally, this review meticulously incorporates relevant reactions. Recommendations are also presented to guide future research endeavors aimed at refining these methodologies.
Collapse
Affiliation(s)
- Mohammad Jamalimoghadam
- Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran.
| | - Amir Hossein Vakili
- Department of Environmental Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey; Department of Civil Engineering, Faculty of Engineering, Zand Institute of Higher Education, Shiraz, Iran.
| | - Inan Keskin
- Department of Environmental Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey
| | - Arash Totonchi
- Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran
| | | |
Collapse
|
3
|
Valizadeh B, Abdoli MA, Dobaradaran S, Mahmoudkhani R, Asl YA. Risk control of heavy metal in waste incinerator ash by available solidification scenarios in cement production based on waste flow analysis. Sci Rep 2024; 14:6252. [PMID: 38491026 PMCID: PMC10943089 DOI: 10.1038/s41598-024-56551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Incineration is a common method in municipal solid waste management, which has several advantages such as reducing the volume of waste, but with concerns about exhaust gas and ash management. In this study, heavy metals in bottom ash, secondary furnace ash and fly ash of two waste incinerators in Tehran and Nowshahr were analyzed and its control in cement production was investigated. For this purpose, twelve monthly samples of three types of incinerator ash were analyzed. By combining the studied ashes in the raw materials, the quantity of metals in the cement was analyzed. Finally, by investigating four scenarios based on quantitative variations in the routes of municipal solid waste, ash quantity and the related risk caused by its heavy metals were studied. The results showed that the concentration of heavy metals in the three ash samples of the studied incinerators was 19,513-23,972 µg/g and the composition of the metals included Hg (less than 0.01%), Pb (2.93%), Cd (0.59%), Cu (21.51%), Zn (58.7%), As (less than 0.01%), Cr (15.88%), and Ni (0.91%). The best quality of produced cement included 20% ash and 10% zeolite, which was the basis of the next calculations. It was estimated that the reduction of the release of metals into the environment includes 37 gr/day in best scenario equal to 10.6 tons/year. Ash solidification can be considered as a complementary solution in waste incinerator management.
Collapse
Affiliation(s)
- Behzad Valizadeh
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abdoli
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rouhalla Mahmoudkhani
- Department of Environmental Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Wang Q, Peng Y, Chen M, Xu M, Ding J, Yao Q, Lu S. Synthesis of layered double hydroxides from municipal solid waste incineration fly ash for heavy metal adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169482. [PMID: 38135065 DOI: 10.1016/j.scitotenv.2023.169482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The process of urbanization has resulted in a continuous growth of the production of municipal solid waste, consequently leading to the increase of municipal solid waste incineration fly ash (MSWI FA) over time. This has prompted the need for effective disposal and value-added utilization strategies for MSWI FA. In this study, a hydrothermal method was employed to synthesize CaAl layered double hydroxides (LDHs) using MSWI FA as the raw material. The main objective was to investigate how different synthesis parameters affect the crystallinity of the layered bimetallic hydroxides. Subsequently, the synthesized LDHs were characterized using various techniques such as BET, SEM, XRD, FT-IR, and XPS. The results revealed the presence of calcium and aluminum cations in the interlayer region of the synthesized material, with chloride ions, sulfate ions, and acetate ions being the predominant anions. Moreover, the formation of LDHs presents an effective approach for the self-purification of leachates derived from MSWI FA. The LDHs exhibited excellent adsorption capacity for Cd2+ and Cu2+ in wastewater, with maximum values of 730 mg·g-1 and 446 mg·g-1, respectively. The adsorption mechanisms involved isomorphous substitution, complexation, as well as the precipitation of hydroxides or interlayer anions. This method presents a novel approach for effectively utilizing MSWI FA to produce environmentally friendly value-added adsorbents.
Collapse
Affiliation(s)
- Qionghao Wang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Min Chen
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China
| | - Mengxia Xu
- Department of Chemical and Environmental Engineering, and New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jiamin Ding
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China
| | - Qi Yao
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China
| |
Collapse
|
5
|
Chen K, Han S, Meng F, Lin L, Li J, Gao Y, Qin W, Jiang J. Acid controlled washing of municipal solid waste incineration fly ash: Extraction of calcium inhibiting heavy metals and reaction kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168599. [PMID: 37981132 DOI: 10.1016/j.scitotenv.2023.168599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Washing method has attracted much attention in the research of municipal solid waste incineration (MSWI) fly ash treatment and resource utilization. However, the controlled leaching of heavy metals and the extraction of recyclable calcium in the washing process are still blank. Acid controlled washing was conducted with different acids, concentrations, times and temperatures to extract calcium while inhibiting heavy metals. The mechanism was investigated by reaction kinetics calculation and washed fly ash characterization. The high Ca concentration of 37,420 mg/L while the low heavy metal concentrations of around or <1 mg/L were achieved at 25 °C for 60 min under a liquid-solid ratio (L/S) of 3/1 in 1.5 M HCl. The reaction kinetics of acid controlled washing conformed the layer diffusion control. The results of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrum (EDS) analysis indicated that the rate-limiting step was the diffusion of ions through the product layer. Simultaneously, the washing solution enriched in Ca, Na and K and the washed fly ash, which met the standard requirements (HJ 1134-2020) for leach toxicity, both had the potential for further resource utilization.
Collapse
Affiliation(s)
- Kailun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weikai Qin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Deng T, Fisonga M, Ke H, Li L, Wang J, Deng Y. Mixing uniformity effect on leaching behaviour of cement-based solidified contaminated clay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167957. [PMID: 37866593 DOI: 10.1016/j.scitotenv.2023.167957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Mixing uniformity is essential for the quality control of the contaminated clay's solidification. To investigate the effect of the mixing uniformity on the leaching behaviour of the cement-based solidified contaminated clay, this study proposed a quantitative method to characterize the mixing uniformity and investigated the leaching behaviour by the leaching toxicity tests and semi-dynamic leaching tests. X-ray computed tomography (X-CT) was employed to reveal the internal mesoscopic structure. In this case, Pb2+ was selected as a tagged pollutant because of the widespread attention at heavy metal-contaminated sites. The leaching toxicity indicates the significant Pb2+ concentration deviation among the parallel specimens and non-association with the mixing uniformity. However, the Pb2+ cumulative leaching mass and observed diffusion coefficient by the semi-dynamic leaching tests both decrease with the mixing uniformity. X-CT image analysis reveals that the high cement zones wrap the low cement zones with different dimensions in the heterogeneous solidified matrix. Moreover, the specimen pretreatment method in the existing leaching toxicity standards may be inadequate because of the overall encapsulation destruction by the crushing process and representativeness uncertainty when sampling. However, for semi-dynamic leaching, the Pb2+ migration depends on the uniformity, reflecting the continuous distribution of high cement zones.
Collapse
Affiliation(s)
- Tingting Deng
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China
| | - Marsheal Fisonga
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China
| | - Han Ke
- School of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ling Li
- CECEP DADI Environmental Remediation Co., Ltd., Beijing 100085, China
| | - Jianwei Wang
- CECEP DADI Environmental Remediation Co., Ltd., Beijing 100085, China
| | - Yongfeng Deng
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China.
| |
Collapse
|
7
|
Xu Y, Xu L, Yuan J, Luo H, Yin C, Lei Y, Lian G, Ma A, Shu X. Study on dechlorination salt characteristics of pickling sludge by a water-washing process. RSC Adv 2024; 14:266-277. [PMID: 38173580 PMCID: PMC10758833 DOI: 10.1039/d3ra05451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Steel hydrochloric acid pickling sludge (SHPS), containing the heavy metals Fe, Zn, and Ni and a high chloride salt content, is considered a hazardous solid waste. With the gradual reduction of high-grade metal mineral resources such as Fe, Zn and Ni, it is particularly urgent to recycle valuable metals such as Fe, Zn and Ni in solid waste SHPS in order to realize the resource utilization of SHPS and reduce the environmental harm caused by SHPS. In addition, SHPS usually contains different amounts of alkali chloride, which will have a serious adverse impact on the subsequent extraction and smelting process of Fe, Zn and other metals. Therefore, the removal of chloride plays an important role in the resource utilization of valuable metals in SHPS. Thus, in this study, the effects of water washing dechlorination process parameters such as liquid-solid (L/S) ratio, SHPS particle size, washing time and washing frequency on the chloride removal rate were investigated. The best experimental parameters of SHPS washing were obtained. At the same time, the microscopic morphology and crystal phase composition of SHPS before and after washing were explored. The results showed that the optimized conditions were as follows: room temperature, a L/S ratio of 3 : 1, an SHPS particle size of 100 mesh, and 10 min of water washing, repeated two or three times; under these conditions, the removal rate of Cl, Na, Ca, K, Mg, and S reached 96.64-99.68%, 97.38-99.89%, 36.40-60.37%, 49.11-54.82%, 39.18-40.22%, and 36.98-42.13% respectively. The contents of Cl, K, and Na in filter residue (FR) meets the requirements in GB/T 36144-2018 and GB/T 32545-2016. Conversely, the contents of Fe, Zn, Mn and Ni in the FR are enriched, which is more conducive to the subsequent resource utilization of SHPS. The scanning electron microscope (SEM) image shows the particle size of the FR particles is reduced after washing. The X-ray diffractometer (XRD) results proved that the chlorine salt content in the FR after washing was significantly reduced, the diffraction peaks of Al2O3 appeared in the FR, and the diffraction peak intensity of CaCO3, Fe2O3 and SiO2 increased.
Collapse
Affiliation(s)
- Yane Xu
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Likui Xu
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
| | - Jie Yuan
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Hongchao Luo
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Chaochuang Yin
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Yizhu Lei
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Guoqi Lian
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Aiyuan Ma
- School of Chemistry and Materials Engineering, Liupanshui Normal University Guizhou 553004 PR China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization Liupanshui Guizhou 553004 PR China
| | - Xinqian Shu
- School of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing Beijing 100083 PR China
| |
Collapse
|
8
|
Huang J, Jin Y. Fate of Cl and chlorination mechanism during municipal solid waste incineration fly ash reutilization using thermal treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3320-3342. [PMID: 38100022 DOI: 10.1007/s11356-023-31156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024]
Abstract
Safe and sustainable treatment of municipal solid waste incineration fly ash (MSWI FA) is urgently needed worldwide because of its high heavy metals, dioxin, and chlorine (Cl) contents. Thermal treatment is widely considered as a promising method for treating MSWI FA owing to its high toxic content removal efficiency and resource recovery; however, residual Cl is a concurrent critical problem faced during reutilisation of thermal treatment products. This review summarises the innovative thermal treatment methods of MSWI FA, such as those employed in production of cement, lightweight aggregates, glass slag, and metal alloys. The characteristics of Cl in MSWI FA, removal rate, transformation of water-soluble Cl into water-insoluble Cl, and the effect of different influencing factors such as temperature, composition, superheated steam, and mechanical pressure were analysed. The volatilization and decomposition of NaCl, KCl and CaClOH dominates Cl removal; however, the degradation of organic Cl and heavy metal chlorination volatilization process that generate HCl and heavy metal chlorides, respectively, also contributed to Cl removal. To promote the reutilisation of MSWI FA-based products, the leaching behaviour of residual Cl in products obtained by different thermal treatments was investigated.
Collapse
Affiliation(s)
- Jianli Huang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Wang Y, Li R, Qiao J. Solidification of heavy metals in municipal solid waste incineration washed fly ash by asphalt mixture. CHEMOSPHERE 2023; 343:140281. [PMID: 37758083 DOI: 10.1016/j.chemosphere.2023.140281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Using asphalt mixture to solidify heavy metals in municipal solid waste incineration fly ash can reduce pollution and realize resource utilization. In this study, the physical and chemical properties of washed fly ash were analyzed, and washed fly ash was added to asphalt mixture as filler instead of mineral powder. The study involved analyzing the mechanical attributes of asphalt mixtures containing washed fly ash, along with examining the characteristics of asphalt binder that incorporates the washed fly ash. Subsequently, assess the potential leaching hazards associated with asphalt mixture incorporating washed fly ash. The test results showed that washed fly ash was a Si-Al-Ca system material, which had small particle size, large specific surface area and many pores. It increased the contact area with asphalt, which improved encapsulation of asphalt and aggregates. The optimal dosage of washed fly ash is 2.5%. At this dosage, the mixture attains optimal high-temperature performance, while both low-temperature performance and the characteristics of washed fly ash asphalt binder align with requirements. Asphalt mixture has solidification on heavy metals, with strongest solidification for Zn, followed by Cu, Cr. A prediction model of leaching amount versus time was constructed for Pb, Ba and Ni, which have weak solidified ability. The cumulative leaching amount of the road within 15 years of service life was calculated through the model, and it was obtained that the addition of washed fly ash will not cause pollution to environment. Overall, this study showed that asphalt mixtures can be used for stabilization/solidification of washed fly ash while saving natural mineral, providing a theoretical basis for the resource application of washed fly ash in asphalt road construction.
Collapse
Affiliation(s)
- Yue Wang
- School of Civil and Transportation Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China
| | - Ruiping Li
- Shanxi Provincial Highway Bureau, Yangquan Branch, No.20, Shifan Street, Wucheng Road, Xiaodian District, Yangquan, 045099, China
| | - Jiangang Qiao
- School of Civil and Transportation Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China.
| |
Collapse
|
10
|
Ma X, He T, Da Y, Xu Y, Wan Z. Physical properties, chemical composition, and toxicity leaching of incineration fly ash by multistage water washing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80978-80987. [PMID: 37310603 DOI: 10.1007/s11356-023-28170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Incineration fly ash contains a large amount of chloride, which limits the scope of its resource utilization. Water washing effectively removes chlorides and soluble substances, increasing the ability to dispose of them. The properties of incineration fly ash after multi-level water washing have been studied, providing theoretical guidance for the safe disposal of water-washed ash at all levels. Taking a practical project as an example, this paper analyzed the impact of three-stage countercurrent water washing on the physicochemical properties and toxicity leaching of incineration fly ash with different washing grades by XRD, BET, XRF, SEM, and ICP-MS. The results showed that with the improvement of washing grade, the removal rate of chloride ions was more than 86.96%. However, due to the removal of soluble substances, dioxins enriched from 98 ng-TEQ/kg of raw ash to 359 ng-TEQ/kg of tertiary washed incineration fly ash. Cr, Cu, and Zn also increased from 40.35 mg/L, 356.55 mg/L, and 3290.58 mg/L of raw ash to 136.30 mg/L, 685.75 mg/L, and 5157.88 mg/L, respectively. Pozzolanic activity had increased from 40.56% of the raw ash to 74.12% of the tertiary-washed incineration fly ash. There was no risk of excessive heavy metal leaching, and the dioxin content was lower than the raw ash in the primary washed incineration fly ash. After multi-stage water washing, incineration fly ash accumulated heavy metals, so more attention must be paid to the issue of heavy metal content in the safe disposal process.
Collapse
Affiliation(s)
- Xiaodong Ma
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, Shaanxi, China.
| | - Tingshu He
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, Shaanxi, China
| | - Yongqi Da
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, Shaanxi, China
| | - Yongdong Xu
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, Shaanxi, China
| | - Zhenmin Wan
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, Shaanxi, China
| |
Collapse
|
11
|
Zhang J, Chen T, Li H, Tu S, Zhang L, Hao T, Yan B. Mineral phase transition characteristics and its effects on the stabilization of heavy metals in industrial hazardous wastes incineration (IHWI) fly ash via microwave-assisted hydrothermal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162842. [PMID: 36924959 DOI: 10.1016/j.scitotenv.2023.162842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Toxic heavy metals in industrial hazardous waste incineration (IHWI) fly ash can be effectively stabilized by using microwave-assisted hydrothermal technology. However, few works have focused on the relationship between mineralogical conversion and stability of heavy metals of fly ash during hydrothermal process. This study investigated the effect of mineral phase transition process on the stabilization and migration behavior of heavy metals in IHWI fly ash using coal fly ash as silicon‑aluminum additive. Mineral composition analysis reveals that after microwave-assisted hydrothermal treatment (MAHT) of IHWI fly ash, zeolite-like minerals (e.g., tobermorite, katoite and sodalite), secondary aluminosilicate minerals (e.g., prehnite and anorthite) and other newly-formed minerals (e.g., wollastonite, pectolite and larnite) were found. The leaching concentrations of heavy metals (Cr, Ni, Cu, Zn, Cd and Pb) in IHWI fly ash decrease sharply after MAHT with the most obvious decreases in Cu, Pb and Zn. Spearman correlation analysis show significantly negative correlation between the content of zeolite-like minerals and the leaching concentrations of most heavy metals (e.g., Ni, Cu, Zn, Cd and Pb). These results suggest that the immobilization effects of heavy metals in IHWI fly ash can be effectively enhanced by promoting the formation of zeolite-like minerals during the MAHT. This study is expected to further promote the development of IHWI fly ash harmless treatment technology.
Collapse
Affiliation(s)
- Junhao Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shuchen Tu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lijuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Tianyang Hao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
12
|
Wang H, Zhao B, Zhu F, Chen Q, Zhou T, Wang Y. Study on the reduction of chlorine and heavy metals in municipal solid waste incineration fly ash by organic acid and microwave treatment and the variation of environmental risk of heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161929. [PMID: 36736397 DOI: 10.1016/j.scitotenv.2023.161929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash usually needs to undergo dechlorination or heavy metal stabilization pretreatment for further treatment, recycling or disposal. In this paper, the removal effect of chlorine in fly ash by water washing, lactic acid, citric acid and microwave treatment was studied, and XANES was used to analyze chlorine chemical form in fly ash. In addition, the heavy metals in fly ash were also checked. The results indicated that double washing and triple washing could remove 88.0 % and 95.5 % of chlorine from fly ash respectively. The "double water washing + microwave/organic acid" could remove about 96.6 % of chlorine, and 42.9 % and 47.2 % of insoluble chloride respectively. The microwave treatment could maximize the stabilization of heavy metals with a BI value of 39.1 %, 0.11 %, 1.65 %, 15.4 % and 3.98 % for Cd, Cr, Cu, Pb and Zn. The elution of heavy metals by citric acid was obvious. "Double water washing + citric acid" removed 87.0 % of Cd, 17.2 % of Cr, 11.9 % of Cu, 39.6 % of Pb and 43.6 % of Zn, but the environmental risk of Cu and Cr increased about 2-3 % after the treatment. The results of this study provide guidance for the pretreatment of fly ash before resource utilization.
Collapse
Affiliation(s)
- Huan Wang
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| | - Bing Zhao
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| | - Fenfen Zhu
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China.
| | - Qian Chen
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| | - Tiantian Zhou
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| | - Yiyu Wang
- School of Environment & Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| |
Collapse
|
13
|
Chen Z, Li JS, Poon CS, Jiang WH, Ma ZH, Chen X, Lu JX, Dong HX. Physicochemical and pozzolanic properties of municipal solid waste incineration fly ash with different pretreatments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 160:146-155. [PMID: 36827883 DOI: 10.1016/j.wasman.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Swelling caused by gas generated from municipal solid waste incineration fly ash (MSWIFA) when it is mixed with alkali limits its uses. Besides, the leaching of anion salts and heavy metals contained in MSWIFA poses a high risk to environment. This study presents the feasibility of a one-step alkaline washing, one-step thermal quenching and two-step combination of alkaline washing and thermal quenching pretreatment methods in altering the key properties of MSWIFA for promoting its reusability. It was found that apart from H2(gas), NH3(gas) was also generated during the alkaline washing of the MSWIFA. Besides, pretreatments led to the reduction in particle size, the increase in pore volume and specific surface area of the MSWIFA, as well as the removal of chloride and sulfate anions. All the pretreatment methods were effective in reducing leaching of heavy metals to below levels of nonhazardous waste except Cd and Pb with alkaline washing. Furthermore, both the chemical Frattini test and the mechanical activity index test showed improvement in pozzolanic activities of the MSWIFA after the pretreatments. Overall, the combined pretreatment method was most effective in eliminating gas emission, and reducing leaching of metal ions and anions from the ash, while enhancing the pozzolanic activity of the ash.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China.
| | - Chi-Sun Poon
- IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Hao Jiang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Han Ma
- IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Xin Lu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hao-Xin Dong
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
14
|
Qin J, Zhang Y, Yi Y. Water washing and acid washing of gasification fly ash from municipal solid waste: Heavy metal behavior and characterization of residues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121043. [PMID: 36627047 DOI: 10.1016/j.envpol.2023.121043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Gasification fly ash (GFA) is a hazardous solid residue generated in the slagging-gasification of municipal solid waste (MSW). GFA contains higher amounts of heavy metals such as Pb and Zn than incineration fly ash (IFA), which increases the difficulty of heavy metal immobilization but simultaneously makes it a potential feedstock for metal recovery. Water washing and acid washing are conventional and economic methods to treat wastes with high heavy metal and chloride contents. However, the research on the effects of such methods in treating GFA is still blank. Hence, in this study, water washing and acid washing of GFA were investigated in detail. Heavy metal behaviors at different time points during the washing processes were studied in a wide pH range and comprehensive characterizations of washed GFAs were also conducted. The results show that different re-precipitates could be identified in washed GFAs depending on different pH conditions. After water washing for 24 h, more than 60% of Zn in GFA would dissolve and re-precipitate into calcium zincate. It is also revealed that the precipitation effect could in turn influence the pH during the washing process. After acid washing with a low-concentration acid, heavy metal leachabilities were found reduced due to the pH and precipitation effect. High-concentration acid washing could effectively extract Zn and Cd with extraction ratios exceeding 90%. Applying 1.2 M-HCl washing, a short washing period of 15 min could realize a Pb extraction ratio of 81.2%, much higher than 53.2% when extending the washing period to 24 h.
Collapse
Affiliation(s)
- Junde Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaolin Yi
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
15
|
Jiang M, Qian Y, Sun Q. Preparation of controlled low-strength materials from alkali-excited red mud-slag-iron tailings sand and a study of the reaction mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22232-22248. [PMID: 36282375 DOI: 10.1007/s11356-022-23607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
To address the low utilization of fines in iron tailings sand (IOTs), a controlled low-strength material (CLSM) was prepared from a combination of fine IOTs and red mud (RM) slag. The 7-day unconfined compressive strength (7-d UCS), slump and cost were used as evaluation indicators, and 16 sets of tests were designed with the Box-Behnken design (BBD) response surface method. X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) were used to study the microscopic morphology and reaction mechanism of the CLSM samples made with the optimal ratios. The results show that the best matching ratio for the alkali-activated RM-slag-IOTs CLSM was a sand ratio of 0.797, an NaOH dose of 3.667% and a mass concentration of 80.657%, and the 7d-UCS, slump and cost indicators verified the feasibility of applying the CLSM to the base course of pavement. Alkali activation of the CLSM also showed that the RM-slag cementation system produced new substances. Internal calcium-silicate-hydrogel (C-S-H) and calcium-aluminosilicate-hydrogel (C-A-S-H) agglomerates were the main sources of strength, and hydration products were interwoven to form a dense structure with crystals as the framework and gels as fillers.
Collapse
Affiliation(s)
- Mingyang Jiang
- School of Architecture and Transportation, Liaoning University of Technology, Fuxin, 123000, Liaoning, China.
| | - Yafeng Qian
- School of Architecture and Transportation, Liaoning University of Technology, Fuxin, 123000, Liaoning, China
| | - Qi Sun
- School of Architecture and Transportation, Liaoning University of Technology, Fuxin, 123000, Liaoning, China
| |
Collapse
|
16
|
Wei X, Xie F, Dong C, Wang P, Xu J, Yan F, Zhang Z. Safe disposal of hazardous waste incineration fly ash: Stabilization/solidification of heavy metals and removal of soluble salts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116246. [PMID: 36162320 DOI: 10.1016/j.jenvman.2022.116246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Hazardous waste incineration fly ash (HFA) is considered a hazardous waste owing to the high associated concentrations of heavy metals and soluble salts. Hence, cost effective methods are urgently needed to properly dispose HFA. In this study, geopolymers were prepared by alkali-activation technology to stabilize and solidify heavy metals in HFA. In addition, the effects of three different aluminosilicates (metakaolin, fly ash, and glass powder) on the heavy metal immobilization efficiency were investigated. Because the soluble salt content of HFA is too high for their direct placement in flexible landfill sites and water washing can lead to heavy metal leaching, water-washing experiments were conducted after alkali-activation treatment to remove soluble salts. The results suggest that the concentrations of heavy metals leached from geopolymers can satisfy the Chinese Standard limits (GB18598-2019) when the addition of aluminosilicates exceeds 20 wt%. More than 77% of Cl- and >64% of SO42- in geopolymers could be removed via water-washing treatment. The Zn leaching concentration was maintained below approximately 0.52 ppm. After alkali-activation treatment, the water-washing process could efficiently remove soluble salts while inhibiting heavy metal leaching. Sodium-aluminosilicate-hydrate (N-A-S-H) gel, a product of the geopolymerization process in this study, was demonstrated to act as a protective shell that inhibited heavy metal leaching. Hence, HFA-based geopolymers are considered suitable for disposal in flexible landfills.
Collapse
Affiliation(s)
- Xuankun Wei
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China; College of Engineering, Peking University, Beijing 100871, PR China
| | - Feng Xie
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Chunling Dong
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Pengju Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Jiyun Xu
- China Everbright Greentech LTD, Hong Kong, PR China
| | - Feng Yan
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China.
| |
Collapse
|
17
|
Lu N, Ran X, Pan Z, Korayem AH. Use of Municipal Solid Waste Incineration Fly Ash in Geopolymer Masonry Mortar Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238689. [PMID: 36500185 PMCID: PMC9735869 DOI: 10.3390/ma15238689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The feasibility of partially replacing pulverized fly ash (PFA) with municipal solid waste incineration fly ash (MSWIFA) to produce ambient-cured geopolymers was investigated. The influence of mixture design parameters on the compressive strength of geopolymer paste was studied. The investigated parameters included MSWIFA dosage, the ratio of sodium silicate to sodium hydroxide (SS/SH), the ratio of liquid to solid (L/S) alkaline activator, and the ratio of SH molar. A water immersion method was selected as a pretreatment process for MSWIFA, leading to effectively maintaining the volume stability of the MSWIFA/PFA geopolymer. The mixture of 30% treated MSWIFA and 70% PFA with 12 M SS, 0.5 L/S ratio, and 3.0 SS/SH ratio produced the highest three-day compressive strength (4.9 MPa). Based on the optimal paste mixture, category four masonry mortars (according to JGJT98-2011) were prepared to replace various ratios of natural sand with fine recycling glasses. Up to a 30% replacement ratio, the properties of the mortars complied with the limits established by JGJT98-2011. The twenty-eight-day leaching rate of mortars containing 30% MSWIFA was lower than the limits proposed by GB5085.3-2007. Microstructural analysis indicated that the main reaction product was a combination of calcium silicate hydrate gel and aluminosilicate gel.
Collapse
Affiliation(s)
- Ning Lu
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xin Ran
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Zhu Pan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300130, China
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2747, Australia
| | | |
Collapse
|
18
|
He H, Yang B, Wu D, Gao X, Fei X. Applications of crushing and grinding-based treatments for typical metal-containing solid wastes: Detoxification and resource recovery potentials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120034. [PMID: 36030964 DOI: 10.1016/j.envpol.2022.120034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-containing solid wastes can induce serious environmental pollution if managed improperly, but contain considerable resources. The detoxification and resource recoveries of these wastes are of both environmental and economic significances, being indispensable for circular economy. In the past decades, attempts have been made worldwide to treat these wastes. Crushing and grinding-based treatments have been increasingly applied, the operating apparatus and parameters of which depend on the waste type and treatment purpose. Based on the relevant studies, the applications of crushing and grinding on four major types of solid wastes, namely spent lithium-ion batteries (LIBs) cathode, waste printed circuit boards (WPCBs), incineration bottom ash (IBA), and incineration fly ash (IFA) are here systematically reviewed. These types of solid wastes are generated in increasing amounts, and have the potentials to release various organic and inorganic pollutants. Despite of the widely different texture, composition, and other physicochemical properties of the solid wastes, crushing and grinding have been demonstrated to be universally applicable. For each of the four wastes, the technical route that involving crushing and grinding is described with the advantages highlighted. The crushing and grinding serve either mainstream or auxiliary role in the processing of the solid wastes. This review summarizes and highlights the developments and future directions of crushing and grinding-based treatments.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China
| | - Xiaofeng Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
19
|
Villarruel-Moore A, Reinhart D, Sohn Y. Incinerator ash characterization - Implications for elevated temperature landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:72-80. [PMID: 36055177 DOI: 10.1016/j.wasman.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of temperatures in municipal solid waste (MSW) landfills in excess of 55 °C is a problem that has gained much attention in the solid waste industry, both domestically and globally. Facilities which frequently experience such temperatures are termed Elevated Temperature Landfills (ETLFs). Ash, both MSW incinerator ash (MSWIA) and coal combustion ash (CCA), when co-disposed with unburned MSW, can provide constituents which are able to partake in abiotic exothermic reactions that may develop or sustain elevated temperatures. These reactions include hydration and carbonation, as well as the oxidation and corrosion of metals commonly found in ash. In this study, sixteen ash samples from across the U.S. were characterized by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy (SEM/XEDS) to identify complex mineral and glassy phases enriched in calcium, silicon, aluminum, and iron. The high-temperature incineration of MSW and coal feedstocks, along with weathering processes impacting these ashes, yield a heterogenous material capable of generating appreciable heat given the right conditions. Additionally, a simple model was developed and, using ash compositions obtained via XEDS, a value termed relative heat potential (RHP) was estimated for each sample. Results show that CCAs may be expected to generate roughly 15 % more heat than MSWIAs when deposited in landfills due to their greater aluminum content.
Collapse
Affiliation(s)
- Angel Villarruel-Moore
- Civil, Environmental, and Construction Engineering Dept., University of Central Florida, 12800 Pegasus Dr., Suite #211, Orlando, FL, United States.
| | - Debra Reinhart
- Civil, Environmental, and Construction Engineering Dept., University of Central Florida, Orlando, FL, United States.
| | - Yongho Sohn
- Dept. of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
20
|
Chen W, Wang Y, Sun Y, Fang G, Li Y. Release of soluble ions and heavy metal during fly ash washing by deionized water and sodium carbonate solution. CHEMOSPHERE 2022; 307:135860. [PMID: 35944671 DOI: 10.1016/j.chemosphere.2022.135860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Two municipal solid waste incineration fly ashes were selected for washing by deionized water and Na2CO3 solution for comparison. Results showed that the benefits of washing were two folds: (1) Washing was able to reduce the contents of Cl- and SO42- while increased the contents of CaO, SiO2, Al2O3 etc.; (2) Washing by Na2CO3 solution showed increased stability of heavy metals (Cr, Ni, Cd, Cu, Zn and Pb) and fly ash was safe for later reuse. Release of Cl- was high at more than 90% regardless of washing solution. SO42- and Ca2+ removal was highly dependent on the dissolution and precipitation equilibriums. Na2CO3 washing promoted the formation of CaCO3. Thus SO42- was washed off instead of precipitating as CaSO4 and retained in fly ash solid. SO42- removal was raised to more than 80% by Na2CO3 washing as compared with about 30% by deionized water. At the same time, Ca removal by Na2CO3 dropped to 1-2%. In addition, the basicity of fly ash was important as high basicity helped SO42- removal. Overall, washing by Na2CO3 appears to be a promising option for fly ash treatment.
Collapse
Affiliation(s)
- Weifang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China.
| | - Yegui Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China
| | - Yimo Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China
| | - Guilin Fang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China
| | - Yonglun Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China
| |
Collapse
|
21
|
Zhao B, Hu X, Lu J. Analysis and discussion on formation and control of dioxins generated from municipal solid waste incineration process. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1063-1082. [PMID: 35816420 DOI: 10.1080/10962247.2022.2100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Dioxins are a kind of persistent organic pollutants (POPs) with extremely toxic. Municipal solid waste incineration (MSWI) process has become one of the most dominant discharge sources of dioxins. A comprehensive discussion about dioxin formation mechanisms was reviewed in this paper, and the mechanisms of high-temperature gas-phase reaction and "de novo" synthesis were systematically illustrated in the form of diagrams. What's more, the effects of various influencing factors on the formation of PCDD/Fs were briefly analyzed in the form of a table. We believed that temperature, catalyst, chlorine source, carbon source, oxygen concentration and moisture were necessary factors for PCDD/Fs formation. Control technologies of dioxins in MSWI process were summarized subsequently from three stages: pre-combustion, in-combustion and post-combustion, and a device for synergistic removal of dioxins based on multi-field force coupling and technical routes for controlling dioxin emissions were proposed, so as to provide mechanisms and methods for effectively reducing the emission concentration of dioxins. An introduction was also conducted of dioxin control technologies in municipal solid waste incineration fly ash (MSWI-FA) in this paper, and their mechanisms, advantages, disadvantages and technical maturity were illustrated in the form of diagrams, which can provide theory and reference for in-depth research of follow-up scholars and industrial application of dioxin control technologies. Finally, current research hotspots, challenges and future research directions were proposed.Implications: In this paper, the main research contents and achievements are as follows: With the emphasis placed on the formation mechanism of dioxins and effects of various influencing factors on the formation of PCDD/Fs. The control technology of dioxins in MSWI process is summarized subsequently from three stages: pre-combustion, in-combustion and post-combustion.A device for synergistic removal of dioxins based on multi-field force coupling and technical routes for controlling dioxin emissions are proposed.A systematic review is conducted of the research progress on control technologies of dioxins in MSWI fly ash in the most recent years.The mechanisms, advantages, disadvantages and technical maturity of PCDD/Fs degradation technologies in MSWI fly ash are illustrated in the form of diagrams.Current research hotspots, challenges and future research directions are proposed.
Collapse
Affiliation(s)
- Bowen Zhao
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
| | - Xiude Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, China
| | - Jianyi Lu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
| |
Collapse
|
22
|
Zhang J, Mao Y, Wang W, Wang X, Li J, Jin Y, Pang D. A new co-processing mode of organic anaerobic fermentation liquid and municipal solid waste incineration fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:70-80. [PMID: 35930842 DOI: 10.1016/j.wasman.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
A new co-processing mode of waste liquid from anaerobic fermentation of organic wastes and municipal solid waste incineration fly ash (MSWI-FA) dechlorination is reported in this paper. Taking acetic acid, the most common organic acid in anaerobic fermentation systems, as the representative of anaerobic fermentation organic acids, the improvement of the dechlorination effect and the mechanism of washing MSWI-FA with low concentrations of organic acid lotion were explored. The chlorine content of MSWI-FA was reduced to 0.82% after the optimal process washing pretreatment. Three anaerobic fermentation waste liquids (AFWLs) were used to verify that the chlorine content of MSWI-FA could be reduced to less than 1%, and the dechlorination effect of brewery wastewater, which reduced the chlorine content of MSWI-FA to 0.91%, was the best at this. The influence of the washing process on MSWI-FA pyrolysis was reflected in the whole process. The release of chloride decreased and the weight loss was mainly due to the release of CO2. The melting point of MSWI-FA, washed by the optimal process, was reduced by nearly 30 ℃, and only 0.06% chlorine remained after calcination at 1100 ℃, which was extremely beneficial in reducing the release of trace elements in MSWI-FA during heat treatment, and for the preparation of cement raw meal.
Collapse
Affiliation(s)
- Jiazheng Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanpeng Mao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xujiang Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jingwei Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yang Jin
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Dongjie Pang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
23
|
Yan M, Jiang J, Zheng R, Yu C, Zhou Z, Hantoko D. Experimental study on the washing characteristics of fly ash from municipal solid waste incineration. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1212-1219. [PMID: 34967247 DOI: 10.1177/0734242x211068253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The disposal of fly ash with high salt content has become an important bottleneck for the further application of municipal solid waste incineration (MSWI). In this study, the soluble salt content and composition of fly ash from different MSWI were analysed. The composition of fly ash was affected by incinerator type and flue gas cleaning system, especially the type of deacidification solvent. The soluble salt content in fly ash from MSW grate incinerator can be over 35.16%. Most of the soluble salt was calcium salt and chloride salt. The effect of washing parameters including liquid/solid (L/S) ratio and washing time on salt removal from fly ash were studied. Raw fly ash contained high chlorine (Cl) with the maximum of 19.83% and it can be significantly reduced by washing. Double-washing and secondary-washing had better performance than single-washing on salt removal. The secondary-washing did not only save water, but also reduced the energy cost during evaporation for crystallising soluble salt. Based on the analysis of variance (ANOVA), L/S ratio was the most principal factor for salt and Cl removal of fly ash by washing.
Collapse
Affiliation(s)
- Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiahao Jiang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Rendong Zheng
- Hangzhou Linjiang Environmental Energy Co. Ltd., Hangzhou, China
| | - Caimeng Yu
- Zhejiang Zheneng Xingyuan Energy Saving Technology Co. Ltd, Hangzhou, China
| | - Zhihao Zhou
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Dwi Hantoko
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
- Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
24
|
Wei Y, Liu S, Yao R, Chen S, Gao J, Shimaoka T. Removal of harmful components from MSWI fly ash as a pretreatment approach to enhance waste recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:110-121. [PMID: 35810727 DOI: 10.1016/j.wasman.2022.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash contains many harmful components that may limit its potential for recycling. An effective pretreatment is therefore required before any recycling can be implemented. In this study, the effects of four pretreatment methods (water washing, CO2-aided washing, CO32--aided washing, and CO2 and CO32--aided washing) on the extraction behavior of chloride, sulfate, and heavy metals were evaluated. Water washing was found to be effective for the extraction of all easily and moderately soluble Cl-bearing salts, achieving Cl extraction ratios of 88%, 90%, and 96% for ash from Chongqing (CQ), Qingdao (QD), and Tianjin (TJ), respectively. Injection of CO2 during washing facilitated decomposition of the hardly soluble Cl-bearing salts, increasing the Cl extraction efficiency by 6% for CQ ash and 9% for QD ash. However, for the TJ ash that contained few insoluble Cl-bearing minerals, CO2 injection decreased the Cl extraction rate. The addition of CO32- had a negative influence on Cl extraction for all ashes, but it slightly promoted sulfate extraction. Despite the high Cl removal rate, only 23-37% of the sulfate and 0.1-12% of heavy metals were removed. Overall, water-based pretreatment, especially CO2-aided washing, significantly altered the physical, chemical, and mineralogical characteristics of the fly ash, making it more suitable for recycling. Consequently, the blending ratio of the fly ash for cement clinker manufacture increased from 0.2 to 0.3% in the raw ash to 3.5-5.5% in the treated ash, enabling the extensive use of ash materials.
Collapse
Affiliation(s)
- Yunmei Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Sijie Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Ruixuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shuang Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Junmin Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Takayuki Shimaoka
- Department of Urban and Environmental Engineering, School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
25
|
Kim HM, Choi TY, Park MJ, Jeong DW. Heavy metal removal using an advanced removal method to obtain recyclable paper incineration ash. Sci Rep 2022; 12:12800. [PMID: 35896703 PMCID: PMC9329337 DOI: 10.1038/s41598-022-16486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Various agents, including ethylenediaminetetraacetic acid, oxalic acid, citric acid, and HCl, were applied to remove heavy metals from raw paper incineration ash and render the ash recyclable. Among these prepared agent solutions, ethylenediaminetetraacetic acid showed the highest efficiency for Pb removal, while oxalic acid showed the highest efficiencies for Cu, Cd, and As removal. Additionally, three modes of an advanced removal method, which involved the use of both ethylenediaminetetraacetic acid and oxalic acid, were considered for use at the end of the rendering process. Among these three modes of the advanced removal method, that which involved the simultaneous use of ethylenediaminetetraacetic acid and oxalic acid, i.e., a mixture of both solutions, showed the best heavy metal removal efficiencies. In detail, 11.9% of Cd, 10% of Hg, 28.42% of As, 31.29% of Cu, and 49.19% of Pb were removed when this method was used. Furthermore, the application of these three modes of the advanced removal method resulted in a decrease in the amounts of heavy metals eluted and brought about an increase in the CaO content of the treated incineration ash, while decreasing its Cl content. These combined results enhanced the solidification effect of the treated incineration ash. Thus, it was confirmed that the advanced removal method is a promising strategy by which recyclable paper incineration ash can be obtained.
Collapse
Affiliation(s)
- Hak-Min Kim
- Industrial Technology Research Center, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Tae-Yeol Choi
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Min-Ju Park
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Dae-Woon Jeong
- Department of Smart Environmental Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea. .,Department of Environmental & Energy Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, Gyeongnam, 51140, Republic of Korea.
| |
Collapse
|
26
|
MSWI Fly Ash Multiple Washing: Kinetics of Dissolution in Water, as Function of Time, Temperature and Dilution. MINERALS 2022. [DOI: 10.3390/min12060742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Municipal solid waste incineration fly ash (FA) can represent a sustainable supply of supplementary material to the construction industries if it is pre-treated to remove hazardous substances such as chloride, sulfate, and heavy metals. In this paper, the phenomenology associated with a water washing multi-cycle treatment of FA is investigated, focusing attention upon the mineral dissolution process. The efficacy of the treatment is assessed by leaching tests, according to the European Standard, and discussed in light of the occurring mineral phases. The water-to-solid (L/S) ratio is a crucial parameter, along with the number of washing cycles, for removing halite and sylvite, whereas quartz, calcite, anhydrite, and an amorphous phase remain in the solid residue. The sequential extraction method and dissolution kinetics modelling provide further elements to interpret leaching processes, and suggest that dissolution takes place through a two-step mechanism. Altogether, multi-step washing with L/S = 5 is effective in reducing contaminants under the legal limits for non-hazardous waste disposal, while the legal limits for non-reactive or reusable material cannot be completely reached, owing to sulfate and some heavy metals which still leached out from the residue.
Collapse
|
27
|
Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates. MATERIALS 2022; 15:ma15114029. [PMID: 35683327 PMCID: PMC9181976 DOI: 10.3390/ma15114029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly ash (MSWI-FA) and its employment, after a washing pre-treatment, as the main component in artificially manufactured aggregates containing cement and ground granulated blast furnace slag (GGBFS) in different percentages. The produced aggregates were used to produce lightweight concrete (LWC) containing both artificial aggregates only and artificial aggregates mixed with a relatively small percentage of recycled polyethylene terephthalate (PET) in the sand form. Thereby, the possibility of producing concrete with good mechanical properties and enhanced thermal properties was investigated through effective PET reuse with beneficial impacts on the thermal insulation of structures. Based on the obtained results, the samples containing artificial aggregates had lower compressive strength (up to 30%) but better thermal performance (up to 25%) with respect to the reference sample made from natural aggregates. Moreover, substituting 10% of recycled aggregates with PET led to a greater reduction in resistance while improving the thermal conductivity. This type of concrete could improve the economic and environmental aspects by incorporating industrial wastes—mainly fly ash—thereby lowering the use of cement, which would lead to a reduction in CO2 emissions.
Collapse
|
28
|
Zhang Z, Wang Y, Zhang Y, Shen B, Ma J, Liu L. Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:285-293. [PMID: 35427900 DOI: 10.1016/j.wasman.2022.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The environmental risk of heavy metals in hazardous municipal solid waste incineration fly ash (FA) is one of the most important concerns for its safely treating and disposing. This study investigated the stabilization behavior of heavy metals in FA using coal fly ash (CFA) as an additive via hydrothermal treatment. The effects of water washing pre-treatment and FA/CFA ratio on leaching behavior, speciation evolution, and risk assessment of heavy metals were studied. The results showed that 96.6-98.0 % of Cl can be effectively removed by water washing pre-treatment and hydrothermal treatment. Most heavy metals (Cr, Cu, Ni, Pb and Zn) (>91.5 %) were stabilized in the hydrothermal product, rather than transferred to liquid phase. Tobermorite can be synthesized by adjusting Ca/Si ratio with the addition of CFA. The heavy metals were transferred into more stable residue fractions with increasing CFA addition, which resulted in the significant reduction of leaching concentrations and risk assessment code (RAC) of heavy metals. Among, the product with 30% CFA exhibited the most superior performance with the lowest leaching concentrations of heavy metals and RAC was at no risk level (<1). In addition, the economic performance of hydrothermal treatment exhibited a potential advantage by comparing with FA-to-cement, FA-to-glass slags and FA-to-chelating agent & cement solidification/stabilization. Therefore, the hydrothermal treatment coupled with water washing pre-treatment would be a promising method for the detoxification of FA, as well as synergistic treatment of FA and CFA.
Collapse
Affiliation(s)
- Zhikun Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Yanli Wang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuqi Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China.
| | - Jiao Ma
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, PR China
| | - Lina Liu
- College of Environmental Science and Engineering, MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
29
|
Qin J, Zhang Y, Yi Y, Fang M. Carbonation treatment of gasification fly ash from municipal solid waste using sodium carbonate and sodium bicarbonate solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118906. [PMID: 35091018 DOI: 10.1016/j.envpol.2022.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In recent years, slagging-gasification technology has received increasing attention in treating municipal solid waste (MSW). Compared with conventional incineration, the higher temperature in the slagging-gasification process optimizes its residue composition, and gasification fly ash (GFA) is the only unreused solid residue. Although GFA is a potential civil engineering material, its high content of heavy metals, chlorides, and sulfates hinders its practical use. Moreover, although carbonation has proven to immobilize heavy metals in incineration fly ash, the conventional gas carbonation method cannot remove chlorides and sulfates. In this study, sodium bicarbonate (NaHCO3) treatment was studied to treat GFA for the first time, and sodium carbonate (Na2CO3) was used for comparison. Different concentrations of NaHCO3 and Na2CO3 solutions were used to treat the GFA, and comprehensive tests were conducted on the treated samples. The results indicated that NaHCO3 treatment was effective in immobilizing Pb, Zn, Cu, and Ni in GFA, while Na2CO3 treatment could not effectively immobilize Pb and Zn. Both NaHCO3 and Na2CO3 promoted the removal of chlorides and sulfates in GFA. The wastewater from the NaHCO3 treatment contained fewer heavy metals compared with those from water washing or Na2CO3 treatment, benefitting its treatment or reuse.
Collapse
Affiliation(s)
- Junde Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 639798, Singapore
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaolin Yi
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
30
|
Kim H, Purev O, Cho K, Choi N, Lee J, Yoon S. Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO 2 Capture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042306. [PMID: 35206488 PMCID: PMC8872468 DOI: 10.3390/ijerph19042306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023]
Abstract
This study investigated the effects of washing equipment for inorganic salts, such as NaCl, KCl, and CaClOH, to decontaminate municipal solid waste incineration fly ash (MSW-IFA). Based on the feature of hydrodynamic cavitation, the device developed in this study (referred to as a ‘washing ejector’) utilizes the cavitation bubbles. A washing ejector was analyzed under a range of conditions, employing as little water as possible. In hydrodynamic cavitation, the increase in fluid pressure with increasing static pressure is mainly attributed to the increase in particle–bubble collisions via the cavitation flow. The results revealed that the fluid pressure influenced the removal of inorganic salts during cavitation in water. This is because during the washing process from the collapse of cavitation bubbles, the release is achieved through the dissolution of inorganic salts weakly bound to the surface. After treatment by a washing ejector, the removal of soluble salts elements such as Cl, Na, and K was reduced by approximately 90%. Removing the inorganic salts in the IFA altered the characteristics of the Ca-related phase, and amorphous CaCO3 was formed as the cavitation flow reacted with CO2 in the ambient air. Furthermore, the washing effluent produced by washing IFA was found to be beneficial for CO2 capture. The washing effluent was enriched with dissolved Ca from the IFA, and the initial pH was the most favorable condition for the formation of CaCO3; thus, the effluent was sufficient for use as a CO2 sequestration medium and substitute for the reuse of water. Overall, the process presented herein could be effective for removing soluble salts from IFA, and this process is conducive to utilizing IFA as a resource.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Korea; (H.K.); (O.P.)
| | - Oyunbileg Purev
- Department of Energy and Resource Engineering, Chosun University, Gwangju 61452, Korea; (H.K.); (O.P.)
| | - Kanghee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Correspondence:
| | - Nagchoul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | | | | |
Collapse
|
31
|
Zhao C, Lin S, Zhao Y, Lin K, Tian L, Xie M, Zhou T. Comprehensive understanding the transition behaviors and mechanisms of chlorine and metal ions in municipal solid waste incineration fly ash during thermal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150731. [PMID: 34634350 DOI: 10.1016/j.scitotenv.2021.150731] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Municipal solid waste incineration fly ash is classified as the hazardous waste because of its high levels of heavy metals alkali chlorides, and polychlorinated dibenzo-p-dioxins. Thermal treatment is widely used for fly ash treatment because of its advantages of reduction and harmless. The transformation behaviors of chlorine and metal ions during the thermal treatment of fly ash has a significant impact on the harmless and resource of fly ash. At present, the migration behaviors of chlorine and metal ions during thermal treatment of fly ash is not clearly demonstrated. In this manuscript, the phase compositions, transformation behaviors, the variation of mass and content of chlorine and various metal ions were analyzed through diverse characterization methods under different sintering temperatures to understand the migration behaviors of chlorine and metal ions during thermal treatment. Roasting experiments showed that the migration behaviors of heavy metals and chlorides were consistent. The chlorine, sodium, potassium and heavy metal ions can be removed sharply while the calcium, aluminum, magnesium and iron were decreased slightly when the roasting temperature was above 750 °C. The findings also suggested that removed chlorides were soluble chlorides and unstable crystals in municipal solid waste incineration fly ash were inclined to formed steady structure under high temperature. The structure of roasted fly ash became denser and generated ceramic-like particle due to thermal agglomeration and chemical reactions.
Collapse
Affiliation(s)
- Chunlong Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shujie Lin
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Youcai Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Kunsen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lu Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengqin Xie
- Baoshan Iron & Steel Co., Ltd., No. 899 Fujin Road, Baoshan District, Shanghai 201900, China.
| | - Tao Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
32
|
Bernasconi D, Caviglia C, Destefanis E, Agostino A, Boero R, Marinoni N, Bonadiman C, Pavese A. Influence of speciation distribution and particle size on heavy metal leaching from MSWI fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:318-327. [PMID: 34929536 DOI: 10.1016/j.wasman.2021.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Fly ash from municipal solid waste incineration (MSWI-FA) contains leachable heavy metals. In the present study the correlations between heavy metal content, particle size, speciation distribution with respect to water leaching are investigated, using a combination of solid-state bulk analytical techniques, leaching treatments, sequential extractions and thermodynamic geochemical modelling. Among the analyzed heavy metals, Zn and Pb are the most abundant in any grain size class, followed by Cu, Cr, Cd and Ni, with concentration that tends to increase with a decrease of the grain size. The phase composition is constituted of salt (halite, sylvite, anhydrite and syngenite), which provide the main minerals regardless of the particle size class; calcite, quartz and gehlenite occur in comparatively lower amounts, while 50% wt is composed of amorphous fraction. Heavy metal leaching is strongly correlated to speciation distribution, and in particular to the fraction (F1) associated with salt, carbonate and weak surface sorption. Leaching from speciation due to surface complexation on Al/Fe (hydr)oxide becomes relevant at acidic regime. Particle size and heavy metal content, in turn, moderately correlate with leaching. The F1-speciation as a function of particle size does not exhibit a definite trend shared by all heavy metals under investigation. This suggests that i) differences in speciation distribution, rather than bare heavy metal content or particle size, govern leaching from MSWI-FA; ii) F1 can be regarded as a marker of the potential heavy metal leaching; iii) a comparatively modest efficiency in managing MSWI-FA is expected from grain size separation strategies.
Collapse
Affiliation(s)
| | | | | | - Angelo Agostino
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | | | - Nicoletta Marinoni
- Earth Sciences Department "Ardito Desio", University of Milan, 20133 Milan, Italy
| | | | | |
Collapse
|
33
|
Wang H, Zhu F, Liu X, Han M, Zhang R. A mini-review of heavy metal recycling technologies for municipal solid waste incineration fly ash. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:1135-1148. [PMID: 33818201 DOI: 10.1177/0734242x211003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This mini-review article summarizes the available technologies for the recycling of heavy metals (HMs) in municipal solid waste incineration (MSWI) fly ash (FA). Recovery technologies included thermal separation (TS), chemical extraction (CE), bioleaching, and electrochemical processes. The reaction conditions of various methods, the efficiency of recovering HMs from MSWI FA and the difficulties and solutions in the process of technical development were studied. Evaluation of each process has also been done to determine the best HM recycling method and future challenges. Results showed that while bioleaching had minimal environmental impact, the process was time-consuming. TS and CE were the most mature technologies, but the former process was not cost-effective. Overall, it has the greatest economic potential to recover metals by CE with scrubber liquid produced by a wet air pollution control system. An electrochemical process or solvent extraction could then be applied to recover HMs from the enriched leachate. Ongoing development of TS and bioleaching technologies could reduce the treatment cost or time.
Collapse
Affiliation(s)
- Huan Wang
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Fenfen Zhu
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Xiaoyan Liu
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Meiling Han
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Rongyan Zhang
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| |
Collapse
|
34
|
Zhang Y, Wang L, Chen L, Ma B, Zhang Y, Ni W, Tsang DCW. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125132. [PMID: 33858099 DOI: 10.1016/j.jhazmat.2021.125132] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is considered as a hazardous waste that requires specific treatment before disposal. The principal treatments encompass thermal treatment, stabilization/solidification, and resource recovery. To maximize environmental, social, and economic benefits, the development of low-carbon and sustainable treatment technologies for MSWI fly ash has attracted extensive interests in recent years. This paper critically reviewed the state-of-the-art treatment technologies and novel resource utilization approaches for the MSWI fly ash. Innovative technologies and future perspectives of MSWI fly ash management were highlighted. Moreover, the latest understanding of immobilization mechanisms and the use of advanced characterization technologies were elaborated to foster future design of treatment technologies and the actualization of sustainable management for MSWI fly ash.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Bin Ma
- Laboratory for Concrete & Construction Chemistry, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Yike Zhang
- State Key Laboratory of Energy Clean Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wen Ni
- School of Civil and Resource Engineering, University of Science and Technology Beijing, 100083, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
35
|
Yu S, Zhang H, Lü F, Shao L, He P. Flow analysis of major and trace elements in residues from large-scale sewage sludge incineration. J Environ Sci (China) 2021; 102:99-109. [PMID: 33637269 DOI: 10.1016/j.jes.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 05/25/2023]
Abstract
Increase of sewage sludge (SS) has led to the construction of more incineration plants, exacerbating to the production of SS incineration residues. However, few studies have considered the mass balance of elements in large-scale SS incineration plants, affecting the residues treatment and utilization. In this study, flow analysis was conducted for major and trace elements in the SS, the fly ash (sewage sludge ash, SSA) and bottom ash from two large-scale SS incineration plants. The elemental characteristics were compared with those of coal fly ash (CFA), and air pollution control residues from municipal solid waste incineration (MSWIA), as well as related criteria. The results showed that the most abundant major element in SSA was Si, ranging from 120 to 240 g/kg, followed by Al (76-348 g/kg), Ca (26-113 g/kg), Fe (35-80 g/kg), and P (26-104 g/kg), and the trace elements were mainly Zn, Ba, Cu, and Mn. Not all the major elements were derived from SS. Most trace elements in the SS incineration residues accounted for 82.4%-127% of those from SS, indicating that SS was the main source of trace elements. The partitioning of heavy metals in the SS incineration residues showed that electrostatic precipitator ash or cyclone ash with high production rates were the major pollutant sinks. The differences in some major and trace elements could be indicators to differentiate SSA from CFA and MSWIA. Compared with related land criteria, the pollutants in SSA should not be ignored during disposal and utilization.
Collapse
Affiliation(s)
- Siyuan Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
36
|
Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, Amin NAS, Ho WS, Lee TH. Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7757-7784. [PMID: 32020458 DOI: 10.1007/s11356-020-07933-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The rapidly increasing generation of municipal solid waste (MSW) threatens the environmental integrity and well-being of humans at a global level. Incineration is regarded as a technically sound technology for the management of MSW. However, the effective management of the municipal solid waste incineration (MSWI) ashes remains a challenge. This article presents the global dynamics of MSWI ashes research from 1994 to 2018 based on a bibliometric analysis of 1810 publications (research articles and conference proceedings) extracted from the Web of Science database, followed by a comprehensive summary on the research developments in the field. The results indicate the rapid growth of annual publications on MSWI ashes research, with China observed as the most productive country within the study period. Waste Management, Journal of Hazardous Materials, Chemosphere and Waste Management & Research, which accounted for 35.42% of documents on MSWI research, are the most prominent journals in the field. The most critical thematic areas on this topic are MSWI ashes characterisation, dioxin emissions from fly ash, valorisation of bottom ash and heavy metal removal. The evolution of MSWI ashes treatment technologies is also discussed, together with the challenges and future research directions. This is the first bibliometric analysis on global MSWI ashes research based on a sufficiently large dataset, which could provide new insights for researchers to initiate further research with leading institutions/authors and ultimately advance this research field.
Collapse
Affiliation(s)
- Syieluing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Angel Xin Yee Mah
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Process Systems Engineering Centre (PROSPECT), Research Institute of Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abu Hassan Nordin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Hydrogen and Fuel Cell Laboratory, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Ramli Mat
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nor Aishah Saidina Amin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wai Shin Ho
- Process Systems Engineering Centre (PROSPECT), Research Institute of Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Innovation Centre in Agritechnology for Advanced Bioprocess, Universiti Teknologi Malaysia (UTM) Pagoh, 84600, Pagoh, Johor, Malaysia
| |
Collapse
|